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Abstract

Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a
number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several
diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and
sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European
family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER),
57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based
plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for
phospholipids (smallest P-value = 9.886102204) and 10 loci for sphingolipids (smallest P-value = 3.10610257). After a
correction for multiple comparisons (P-value,2.261029), we observed four novel loci significantly associated with
phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the
variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci
for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation
processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3,
DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci
(ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid
pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2
diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho-
and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
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Introduction

Phospho- and sphingolipids are present in all eukaryotic cell

membranes and contribute to organelle structure and signalling

events that influence cell behaviour and function [1–3]. Phospha-

tidylcholines (PC), phosphatidylethanolamines (PE), lysophospha-

tidylcholines (LPC) and PE-based plasmalogens (PLPE) are major

classes of phospholipids that play an important role in several key

processes such as cell survival and inflammation [4–6]. Sphingo-

lipids are also essential components of plasma membranes and

endosomes and are believed to play critical roles in cell surface

protection, protein and lipid transport and sorting, and cellular

signalling cascades [7]. In plasma, PC, PE and sphingomyelin

(SPM) are included in the structure of lipoproteins; they constitute

more than two-thirds of the total phospholipid content in HDL-C

and LDL-C, as well as in platelets [8,9]. Remarkable differences in

plasma lipoprotein acceptor affinities for the phospholipids exist

(LDL-C is the major acceptor for SPM, whereas HDL-C is the

predominant acceptor for PC) [9]. Altered concentrations of

circulating phospholipids have been implicated in the pathology of

type 2 diabetes, dyslipidemia and cardiovascular disease [10–15],

as well as a wide range of other common diseases including

dementia and depression [16].

Identifying genetic variants that influence phospho- and

sphingolipid concentrations will be an important step towards

understanding pathways contributing to common human disease.

Earlier studies of these metabolites identified a number of genetic

loci associated with their levels in blood [17–19]. We conducted a

meta-analysis of genome-wide association studies (GWAS) on

plasma levels of 24 SPMs, 9 ceramides (CER), 57 PCs, 20 LPCs,

27 PEs and 16 PLPEs in five European populations: (1) the

Erasmus Rucphen Family (ERF) study, conducted in the Nether-

lands, (2) the MICROS study from the Tyrol region in Italy, (3)

the Northern Swedish Population Health Survey (NSPHS) in

Norrbotten, Sweden, (4) the Orkney Complex Disease Study

(ORCADES) in Scotland, and (5) the CROAS (CROATIA_Vis)

study conducted on Vis Island, Croatia.

The top findings were further analysed by adjusting for plasma

HDL-C, LDL-C, TG and TC levels. The influences of these top

hits on within class lipid ratios were also assessed, to help elucidate

potential mechanisms. Finally, the variants that were associated

with plasma phospho- and sphingolipid levels were tested for

association with carotid intima media thickness (IMT), type 2

diabetes (T2DM), and coronary-artery disease (CAD) using large

consortia meta-analysis results.

Results

Table 1 provides an overview of the study populations. The

mean age, gender ratio and mean values of major classes of

phospho- and sphingolipids were comparable among the 5

populations. Means for the individual species are presented in

Table S1. Figure 1A and 1B shows the combined Manhattan plot

for the meta-analyses of the absolute values and proportions of all

phospholipid traits, respectively; Figure 2A and 2B provides the

same for the sphingolipids. Out of 357 meta-analyses performed,

202 outcomes yielded genome-wide significant findings, most of

which were located around two genes, FADS and LIPC, which

were identified previously [17,19] as key lipid regulators and are

associated with a large number of species (Table 2 and Table 3).

Q-Q plots for the lipid GWAS that yielded significant associations

are provided in Figure S1.

Phospholipids
As shown in Table 2, 25 loci were nominally associated (P-

value,561028) with absolute plasma levels and/or proportions of

the phospholipid species. Among those loci, previously reported

relationships between the FADS1, LIPC, PLEKHH1, GCKR,

APOA1-5, and ELOVL2 loci and phospholipids were successfully

replicated [17,19]. Four novel genome-wide significant loci were

also detected after a multiple testing correction to adjust for the

approximate number of independent genotypes and phenotypes

(n = 23) studied (P-value,2.261029). These included PAQR9 on

3q23 (associated with %PE 34:1 and %PE 36:1), AGPAT1 on

6p21.32 (associated with PC 32:0), PKD2L1 on 10q24.31 (LPC

16:1), and PDXDC1 on 16p13.11 (LPC 20:3, PC 34:2, PC 36:3

and PC 38:3). Fifteen additional regions provided suggestive

evidence of association (2.261029,P-value,561028) with phos-

pholipids including the PNLIPRP2 locus, associated with %PC

36:1; ZNF600 with PC/LPC ratio; ALG1 with PC 30:1; ABHD3

with %PC 32:2; KLF12 and DLG2, both associated with PC O

42:5; ILKAP with PC 40:3 and %PC 40:3; ITGA9 with PLPE
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18:0/22:6; OR8I2 with %PC 26:0; PCDH20 with PC 32:1; CDK17

and SYT9, both associated with PC O 42:6; CDH8 with the

proportion of saturated LPC; KCNH7 with %PC O 36:5; and

ALG14 with %LPC 18:0. Regional association plots for all

phospholipid loci are presented in Figure S2.

Many of the genome-wide significant and suggestive loci in

Table 2 were associated with the percentage of each lipid molecule

within its own class (mol%) rather than to absolute values. Single

SNP analysis of ratios showed that rs4500751 (PDXDC1) was

strongly associated with PC 36:3/PC 34:2 (P-value = 4.37610225)

and LPC 20:3/LPC 16:1 (P-value = 6.84610223) (Table S2).

Further, rs11662721 (ABHD3) was associated with the ratio of PC

32:2 to PC 36:2 (P-value = 9.35610210), but also to PC 36:3 (P-

value = 1.8061029) and PC 38:3 (P-value = 6.7161029).

rs9437689 (ALG14) and rs603424 (PKD2L1) were associated with

the ratios of LPC 16:0 to LPC 18:0 (P-value = 2.7061028) and

LPC 16:1 (P-value = 2.25610215), respectively. SNP rs10885997

(PNLIPRP2) was associated with PC 36:1/PC 34:1 (P-val-

ue = 3.28610210) and PC 36:1/PC 34:3 (P-value = 1.1561029).

SNP rs7337585 (PCDH20) was associated with the ratio of PC

32:1 to several ether-bound PC species (the strongest association

was with PC 32:1/PC O 32:0; P-value = 1.82610218) and, finally,

rs2945816 (OR8I2) was associated with the ratio of PC 26:0 to

several long chain PCs (the strongest association was with PC

26:0/PC 36:1; P-value = 2.9361029).

Sphingolipids
Table 3 shows the 10 loci that were associated with either

absolute plasma levels (panel A) or percentages (panel B) of

sphingomyelin species or ceramides. Among those loci, 5

(ATP10D, FADS1-3, SGPP1, SPTLC3, LASS4) were previously

described in genome-wide analyses [18,19]. These loci retained

significance after adjustment for the number of genotypes and

phenotypes tested. In addition, five novel loci were identified at a

nominal P-value of 561028 (PAPD7, CNTNAP4, PLD2, LPAR2,

and APOE). Two of these, APOE on 19q13.32 (associated with

SPM 24:0 and SPM 22:0) and PLD2 on 17p13.2 (associated with

SPM 23:0), remained significant after correction for the number of

phenotypes tested. The other three showed suggestive evidence of

association (2.261029,P-value,561028) to either sphingomy-

elins or ceramides: PAPD7 on 5p15.31 (SPM 17:0), the CNTNAP4

region on 16q23.1 (% Glu-CER 24:1, %Glu-CER) and LPAR2 on

19p13.11 (%C 18:0). Regional association plots for the sphingo-

lipid loci are presented in Figure S3.

When studying the ratios of the index lipid to the other lipids

within the same class, the strongest association for rs12051548

(PLD2) was found with the SPM 23:0/SPM 16:1 ratio (P-

value = 2.43610210). SNP rs7259004 in the APOE locus was

strongly associated with the ratio of SPM 24:0 to SPM 24:2 (P-

value = 5.1161029) and SPM 16:1 (P-value = 4.7961028) but also

with the ratio of SPM 22:0 to the same lipids (SPM 24:2: P-

value = 2.9161028 and SPM 16:1: P-value = 1.9861028).

HDL-C, LDL-C, TG, and TC
As a point of reference, the genome-wide significant findings (P-

value,561028) from the GWAS of TC, LDL-C, HDL-C, and TG

in these samples are provided in Table S3. CETP was associated with

HDL-C levels (P-value = 8.5610220), APOE was associated with

LDL-C (P-value = 9.2610226) and TC levels (P-value = 4.6610211).

APOA1-5 (P-value = 1.661028) and PDCD11 (P-value = 2.7610210)

were associated with TG levels. Except for the PDCD11 locus, these

associations have all been previously reported [20].

To determine if the associations of the phospho- and

sphingolipid loci were mediated by these major classes of plasma

Author Summary

Phospho- and sphingolipids are integral to membrane
formation and are involved in crucial cellular functions
such as signalling, membrane fluidity, membrane protein
trafficking, neurotransmission, and receptor trafficking. In
addition to severe monogenic diseases resulting from
defective phospho- and sphingolipid function and metab-
olism, the evidence suggests that variations in these lipid
levels at the population level are involved in the
determination of cardiovascular and neurologic traits and
subsequent disease. We took advantage of modern
laboratory methods, including microarray-based genotyp-
ing and electrospray ionization tandem mass spectrome-
try, to hunt for genetic variation influencing the levels of
more than 350 phospho- and sphingolipid phenotypes.
We identified nine novel loci, in addition to confirming a
number of previously described loci. Several other genetic
regions provided substantial evidence of their involvement
in these traits. All of these loci are strong candidates for
further research in the field of lipid biology and are likely
to yield considerable insights into the complex metabolic
pathways underlying circulating phospho- and sphingo-
lipid levels. Understanding these mechanisms might help
to illuminate factors leading to the development of
common cardiovascular and neurological diseases and
might provide molecular targets for the development of
new therapies.

Table 1. Study populations.

ERF MICROS NSPHS ORCADES VIS

N (4034) 800 1086 654 714 780

% Female (56.4) 60.13 56.63 52.75 53.36 57.94

Age 49.65 (15.20) 45.26 (16.08) 46.98 (20.70) 53.59 (15.71) 56.55 (15.36)

Total SPM 532.21 (109.39) 587.03 (114.19) 516.98 (121.98) 468.25 (96.4) 499.01 (105.26)

Total PC 2198.55 (444.36) 2527.88 (457.25) 2249.18 (493.67) 1941.73 (372.96) 2066.56 (427.91)

Total PLPE 52.68 (14.91) 58.21 (17.05) 62.28 (24.28) 42.15 (13.16) 55.60 (15.39)

Total PE 37.22 (16.69) 37.15 (18.12) 20.58 (7.25) 25.02 (11.19) 34.34 (14.55)

Total CER 8.45 (1.95) 9.26 (2.12) 9.30 (2.52) 7.12 (1.83) 9.05 (2.23)

Values for age and lipid concentrations are presented as mean (standard deviation).
doi:10.1371/journal.pgen.1002490.t001
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Figure 1. Genome-wide association results for 115 phospholipid species. (A) Genome-wide association results for plasma levels of 115 phospholipid
species. (B) Genome-wide association results for within-class proportions of 115 plasma phospholipid species. Manhattan plots show the combined association
signals (2log10(P-value)) on the y-axis versus SNPs according to their position in the genome on the x-axis (NCBI build 36). Novel genes are represented in red,
while previously known loci are represented in black.
doi:10.1371/journal.pgen.1002490.g001
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lipoproteins, conditional analyses were performed. Table S4 shows

the effect size, standard error, and P-values for the genome-wide

significant loci when adjusted for HDL-C, LDL-C, TG and TC.

Only the association of the APOE locus (rs7259004) with SPMs

was greatly affected by the incorporation of LDL-C and TC. No

other major differences were observed in effect size or P-value.

Pathway analyses
Additionally, we investigated whether the genes from the

GWAS fit into previously known sphingolipid and glyceropho-

spholipid pathways, which are available among the canonical

pathways from various data bases provided by ConsensusPathDB

[21]. By testing for enrichment of known pathways, glycerolipid

metabolism (P-value = 0.002; KEGG), chylomicron-mediated lipid

transport (P-value = 0.003; Reactome), triglyceride biosynthesis (P-

value = 0.006; Reactome), metabolism of lipids and lipoproteins

(P-value = 0.002; Reactome) and biosynthesis of the N-glycan

precursor (P-value = 0.005; Reactome) were found to be signifi-

cantly enriched among the phospholipid related loci. Considering

the sphingolipid associated loci, the same analysis implicated the

sphingolipid metabolism (P-value = 1.061025; Reactome), metab-

olism of lipids and lipoproteins (P-value = 1.061025; Reactome),

and LPA receptor mediated events (P-value = 0.002; PID)

pathways. These analyses suggested that, among genes from the

same locus, SRD5A1 is a more likely candidate than PAPD7 and

LPAR2 is a more likely candidate than neighbouring ZNF101 and

ATP13A1 (Tables S5 and S6).

Figure S4 places all of the nearest, or most likely, genes from

genome-wide significant and suggestive loci in the Ingenuity

glycerophospholipid metabolism pathway [22]. Of the 25 loci

associated with phospholipids at a nominal P-value,561028, 13

genes (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS2, DAGLA,

DLG2, APOA1, APOC3, ELOVL2, CDK17, LIPC and PLA2G10)

from 11 loci can be mapped to the glycerophospholipid

metabolism pathway; among the 10 loci associated with sphingo-

myelins or ceramides, 6 genes (FADS2, DAGLA, PLD2, LASS4,

APOE, APOC2) from 4 loci can be mapped to the same pathway

(Figure S4). Figure S5 maps the same genes onto the Ingenuity

sphingolipid metabolism pathway. Of the 10 sphingomyelin or

ceramide loci, 9 genes from 5 loci (FADS1, FADS2, C11orf10,

SGPP1, APOE, APOC1, APOC2, ,LASS4, and PLD2) can be placed

in this pathway, as was the case for 12 genes from 8 loci implicated

in phospholipids (ILKAP, ITGA9, AGPAT1, FADS1, FADS2,

C11orf10, APOA1, APOA5, APOC3, PCDH20, LIPC, and PDXDC1).

Association with IMT, T2DM, and CAD risk
The top 35 SNPs were assessed for association with IMT,

T2DM, and CAD using the GWAS results from the CHARGE

[23], DIAGRAM [24] and CARDIoGRAM [25] consortia,

respectively. For IMT, we observed a significant association (P-

value = 761024) with the FADS1-2-3 locus SNP rs102275 (Table

S7). rs1061808, located in the HLA region on chromosome 6, and

two SNPs from the FADS1-2-3 region (rs174479 and rs102275)

were associated with T2DM risk (nominal P-value,0.05) (Table

S8). rs964184 from the APOA1-5 region was previously reported to

be associated with CAD risk (P-value = 8.02610210) by the

CARDIoGRAM meta-analysis study (Table S9). For all three

outcomes, the observed P-value distribution differed significantly

from that expected under the null hypothesis (Kolmogorov

Smirnov P-value#3.3610216; Figure S6).

Discussion

This genome-wide association study of more than 350 phospho-

and sphingolipid measurements in five European populations

yielded 25 loci associated with phospholipids and 10 loci associ-

ated with sphingolipids using a nominal P-value of 561028. After

correction for the number of independent phenotypes, the novel

genome-wide significant loci included: PAQR9, AGPAT1, PKD2L1,

PDXDC1, APOE and PLD2. In addition, further analysis of

suggestive SNPs with lipid ratios showed significant association for

an additional 3 loci (ABDH3, PNLIPRP2, and PCDH20).

The strongest association in the PAQR9 locus was observed

between rs9832727 and the proportion of mono-unsaturated PEs,

especially with the ratios PE 34:1/PE 34:2 and PE 36:1/PE 36:2.

The protein coded byPAQR9 is an integral membrane receptor

and functions as receptor for the hormone adiponectin,

suggesting a molecular link with obesity and T2DM [26].

However, we did not observe an association between T2DM

risk and this variant.

In the AGPAT1 locus, rs1061808 was associated with the

proportion of PC 32:0, and, especially, with the ratio of PC 32:0/

PC 34:1. AGPAT1 is directly connected to phospholipid metab-

olism (Figures S4 and S5), as the product of this gene converts

lysophosphatidic acid (LPA) into phosphatidic acid (PA) [27]. The

locus lies 400 kb distant from the HLA-DRB1 gene which was

previously associated with insulin secretion [28]. A suggestive

association between rs1061808 and increased T2DM risk was

observed in the DIAGRAM consortium meta-analysis results.

We found two loci that strongly influence plasma LPC levels:

PKD2L1 and PDXDC1. An intronic variant, rs603424 in the

PKD2L1 gene, was strongly associated with LPC 16:1. Pathway

analyses suggest that another gene in the same region, SCD (FADS-

5), 25 kb away, may be a better candidate since it encodes the

stearoyl-CoA desaturase (delta-9-desaturase) enzyme which is

involved in fatty acid desaturation. Other members of the FADS

family are the strongest genetic regulators of phospholipid

metabolism identified to date. In the PDXDC1 locus, the strongest

association was observed for intronic SNP rs4500751. This variant

is 300 kb distant from PLA2G10, a gene that plays a major role in

releasing arachidonic acid from cell membrane phospholipids [29]

and the protein can be mapped to both the glycerophospholipid

and the sphingolipid metabolism pathways by Ingenuity (Figures

S4 and S5). In our study, the variant was strongly associated with

the ratios of 20:3 fatty acid carrying LPCs, as well as PEs, and PCs,

but not with the others, suggesting a fatty-acid specific mechanism

for this enzyme.

Another index SNP (rs7259004), associated with SPMs, maps to

the well known APOE locus, which also includes three other lipid

genes (APOC1, APOC2 and APOC4). Results from the conditional

analyses (Table S4) suggest that the effect of this variant on SPM

22:0 levels is dependent on plasma LDL-C levels and that SPM

22:0 and SPM 24:0 are likely be abundant in LDL-C particles,

which can also be inferred from their high phenotypic correlations

with LDL-C (r = 0.6, P-value = 2.8610268 for SPM 22:0 and

r = 0.6, P-value = 2.8610266 for SPM 24:0).

Figure 2. Genome-wide association results for 33 sphingolipid species. (A) Genome-wide association results for plasma levels of 33
sphingolipid species. (B) Genome-wide association results for within-class proportions of 33 sphingolipid species. Manhattan plots show the
combined association signals (2log10(P-value)) on the y-axis versus SNPs according to their position in the genome on the x-axis (NCBI build 36).
Novel genes are represented in red, while previously known loci are represented in black.
doi:10.1371/journal.pgen.1002490.g002
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A second locus associated with the SPMs is PLD2 (phospholipase

D2). PLD2 catalyzes the hydrolysis of PC to produce phosphatidic

acid and choline and the PLD2 signalling pathway is involved in

the destabilization of ABCA1 and, therefore, plays a role in the

generation of plasma HDL-C particles [30]. PLD2-related

processes may be responsible, in part, for determining the SPM

content of HDL-C. Unexpectedly, we did not observe an

association between PC levels and the PLD2 locus.

The analysis of the ratios of the phospholipids uncovered three

additional associations significant at the adjusted genome-wide

threshold (P-value,2.261029): ABDH3, PNLIPRP2 and PCDH20.

The exact function of the ABDH3 and PCDH20 proteins, and

how they relate to phospholipid metabolism, has not been

determined. PNLIPRP2 (pancreatic lipase-related protein 2) fulfils

a key function in dietary fat absorption by hydrolyzing

triglycerides into diglycerides and, subsequently, into monoglyc-

erides and free fatty acids (Figure S4) [31]. We found that a

synonymous coding SNP (rs10885997) in PNLIPRP2 was associ-

ated with the ratios PC 36:1/PC 34:1 and PC 36:1/PC 34:3,

suggesting a fatty-acid specific turnover between these lipids.

A closer examination of the findings published by Illig et al.,

supports the association signals within 100 kb of loci PDXDC1

(same SNP, P-value = 2.861027), AGPAT1 (P-value = 4.961027),

PNLIPRP2 (P-value = 2.761027), KLF12 (P-value = 5.961027),

ALG1 (P-value = 4.761023), CDH8 (P-value = 7.661027), PLD2

(P-value = 9.461024) and ZNF600 (P-value = 3.361027) for vari-

ous phospho- and sphingolipid outcomes. SNP rs603424 in

PKD2L1 was previously associated with acylcarnitine C 16:1,

although this result was not replicated [19].

The significant hits from the current study were further studied

for potential associations with IMT, T2DM, and CAD. For all

three outcomes, the P-value distributions differed significantly

from the expected null distribution even after exclusion of

nominally significant SNPs, suggesting that some of these variants

contribute to these outcomes even when they do not achieve

statistical significance.

Among our top hits, rs102275 from the FADS cluster was

associated with IMT in the CHARGE meta-analysis results [23].

This finding demonstrates the involvement of the FADS locus in

the development of atherosclerosis.

In addition, the top SNP from the APOA1-5 locus was

implicated in CAD risk in the CARDIoGRAM study [25]. This

locus, previously associated with TG levels [20], influenced two

ether-bound PCs and the PC/SPM ratio in our study. APOA1

and APOA2 are the predominant proteins in HDL-C particles,

which also transport TG. The association between the phospho-

lipids and rs964184 remained significant after adjustment for TG

levels, suggesting that this signal is not due solely to TG mediated

effects. APOA1 is also a cofactor for lecithin cholesterol

acyltransferase (LCAT) which converts cholesterol and PC to

cholesteryl esters and LPC on the surface of HDL-C [32] and it is

possible that the association we observe here is due to LCAT

mediated phospholipid cleavage.

Mapping the findings into the glycerophospholipid and

sphingolipid metabolism pathways uncovered several enzymes,

kinases, peptidases and G-protein coupled receptors that may also

be relevant for phospho- and sphingolipid metabolism. Among

those involved in sphingolipid metabolism (Figure S5), HNF4A

(hepatocyte nuclear factor-4) appears to be a common interacting factor

for several genes (PCDH20, APOC1, AGPAT1, ITGA9, PLD2,

C11ORF10, APOC2, GCKR, APOE, APOC3 and LIPC) from our

GWAS. It is already known that the extinction of many hepatic

functions and their expression are correlated with expression of
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HNF4A which is a candidate transcription factor for further

research on lipidomics [33].

In conclusion, we identified 15 previously undescribed loci that

were suggestively associated (2.261029,P-value,561028) with

phospho- and sphingolipid levels. These included interesting

candidate genes such as LPAR2. These loci will require follow-

up to definitively establish their relationship with these pheno-

types. We also identified nine novel loci below the corrected

genome-wide significance threshold (P-value,2.261029). These

loci considerably expand our knowledge of genes/regions involved

in the determination of phospho- and sphingolipid concentrations

and provide interesting avenues for future research into this

important topic.

Materials and Methods

All studies were approved by the local ethical committees.

Detailed descriptions of the study populations that contributed to the

meta-analysis, as well as detailed information on ethical statements,

genotyping, lipid measurements and pathway analysis, are presented

in Text S1. Briefly, lipid species were quantified by electrospray

ionization tandem mass spectrometry (ESIMS/MS) using methods

validated and described previously [34,35]. For each lipid molecule,

we adopted the naming system where lipid side chain composition is

abbreviated as Cx:y, where x denotes the number of carbons in the

side chain and y the number of double bonds. For example, PC 34:4

denotes an acyl-acyl phosphatidylcholine with 34 carbons in the two

fatty acid side chains and 4 double bonds in one of them. Lipid traits

were analysed individually as well as aggregated into groups of

species with similar characteristics (e.g. unsaturated ceramides).

These were then analyzed as both absolute concentrations (mM) and

as molar percentages within lipid sub-classes (mol%) (calculated as

the proportion of each lipid molecule among its own class (e.g. PC,

PE, PLPE, LPC). The additive value of the analyses of molar

proportions is that it may bring to light genes involved in the

transition of one species to another, such as through fatty acid chain

elongation or (de)saturation. We also performed single SNP

association analyses for each novel locus and the ratio of the index

lipid (for example, PC 34:1) to the other lipids in the same class (in

the example, PC 34:1/PC 36:1, PC 34:1/PC 38:1) so that we could

determine whether the SNP might be involved in elongation or

(de)saturation.

DNA samples were genotyped according to the manufacturer’s

instructions on Illumina Infinium HumanHap300v2, Human-

Hap300v1 or HumanCNV370v1 SNP bead microarrays. Geno-

type data for these five populations were imputed using MACH

1.0 (v1.0.16) [36,37] using the HapMap CEU population (release

22, build 36).

As all of the studies included related individuals, testing for

association between lipid and allele dosage were performed using a

mixed model approach as implemented with the ‘mmscore’ option

in the GenABEL software [38]. Results from the five populations

were combined using inverse variance weighted fixed-effects

model meta-analyses using the METAL software [39]. To correct

for multiple testing, we adopted a Bonferroni correction for the

number of phenotypes studied. Since most of the lipid values are

correlated with each other, we used the number of principal

components (n = 23) that accounted for 79% of the phenotypic

variance for this correction and applied it to the classical genome-

wide significance threshold (561028).

Supporting Information

Figure S1 Q-Q Plots from the GWAS of phospho- and

sphingolipid traits with genome-wide significant findings. The x-

axis shows the expected chi-square value, the y-axis shows the

observed. Lambda (l): Genomic control inflation factor.

(PDF)

Figure S2 Regional plots of phospholipid related loci. Regional

association plots covering a 1 Mb window around the top SNPs

were created using Locus Zoom (https://statgen.sph.umich.edu/

locuszoom). Diamonds denote the index SNPs (with the smallest P-

value). The color scale on the right refers to the linkage

disequilibrium (R2) between each SNP and the index SNP. Blue

peaks show recombination rates.

(PDF)

Figure S3 Regional plots of sphingolipid related loci. Regional

association plots covering a 1 Mb window around the top SNPs

were created using Locus Zoom (https://statgen.sph.umich.edu/

locuszoom). Diamonds denote the index SNPs (with the smallest P-

value). The color scale on the right refers to the linkage

disequilibrium (R2) between each SNP and the index SNP. Blue

peaks show recombination rates.

(PDF)

Figure S4 Lipid Pathways by Ingenuity (glycerophospholipid

metabolism). Genes discovered in the GWAS are shown in orange.

1.Phosphatidylcholine-sterol O-acyltransferase has member mouse

Lcat. 2. ApoA-I [APOA1] increases activation of LCAT. Binding

of apoA-I [APOA1] and LCAT occurs. 3. Association of human

APOA1 protein and human APOL1 protein occurs. 4. The

affinity of binding of human APOL1 protein and cardiolipin in a

system of purified components is greater than the affinity of

binding of human APOL1 protein and phosphatidylinositol 3,5-

bisphosphate in a system of purified components. 5. Binding of

cardiolipin and human Matrilysin [MMP7] protein occurs in a

cell-free system. 6. MMP7 protein increases C-terminal truncation

cleavage of APOA1 protein. 7. In cell surface from RAW 264.7

cells, 8-bromo-cAMP increases binding of APOA1 protein and

phosphatidylserine. 8. Phospholipase A1 catalyzes the following

reaction: 1 phosphatidylserine+1 water2.1 2-Acyl-sn-glycero-3-

phosphoserine+1 fatty acid. 9. Phosphatidylserine decarboxylase

catalyzes the following reaction: 1 carbon dioxide+1 phosphati-

dylethanolamine2.1 phosphatidylserine. 10. Binding of phos-

phatidylserine and PKC ALPHA [PRKCA] protein occurs in a

system of purified components. 11. Binding of human APOA1

protein and human GPI-PLD [GPLD1] protein occurs in human

plasma. 12. Binding of apoA-I [APOA1] and phosphatidylcholine

occurs. A molecular complex consisting of APOAI [APOA1] and

of phosphatidylcholine increases secretion of phosphatidylcholine.

13. Lysophospholipase catalyzes the following reaction: 2 fatty

acid+1 sn-glycero-3-phosphocholine2.1 phosphatidylcholine+2

water. 14.Human SPLA2 [PLA2G10] protein increases release of

phosphatidylcholine to arachidonic acid. Mammalian group I

sPLA2 [PLA2G10] increases hydrolysis of phosphatidylcholine.

15. In pulmonary surfactant, mouse sPLA2-X [Pla2g10] protein

increases hydrolysis of phosphatidylglycerol. 16. Phospholipase A2

has member rat Lcat. 17. Rat Pla2 has member rat Pla2g10. 18.

Human PLA2 has member human PLA2R1. 19. Phospholipase

A2 has member human YWHAZ. 20. Binding of human PCTK2

[CDK17] protein and human YWHAZ protein occurs. 21.

Phospholipase A2 catalyzes the following reaction: 1 1-acyl-sn-

glycero-3-phosphocholine+1 water2.1 monocarboxylic acid+1

sn-glycero-3-phosphocholine. 22. Phospholipase A2 catalyzes the

following reaction: 1 1-(1-alkenyl)-sn-glycero-3-phosphocho-

line2.1 choline plasmalogens. 23. Phospholipase A2 catalyzes

the following reaction: 1 phosphatidylethanolamine+1 water2.1

1-acyl-sn-glycero-3-phosphoethanolamine+1 fatty acid. 24. Phos-

pholipase A2 has member rat Lamb2. 25. Binding of human
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LAMB2 protein and human ZNF512B protein occurs. 26. Binding

of human PLCG2 protein and human ZNF512B protein occurs.

27. Interaction of cytochrome b5 [CYB5] and phosphatidylcholine

bilayers occurs. 28. Binding of rat Cytb5 [Cyb5a] protein and rat

Delta 6 desaturase [Fads2] protein occurs in Cos-7 cells. 29. In

CHO-ldlA7 cells, binding of a protein-protein complex consisting

of mutant human APOA1 (R160V;H162A with its amphipathic

helix 6 mutated) and of cholesterol and of phosphatidylcholine and

mouse Sr-bi [Scarb1] protein is the same as binding of a protein-

protein complex consisting of mutant human APOA1

(R160V;H162A with its amphipathic helix 6 mutated) and of

cholesterol and of phosphatidylcholine and mutant mouse Sr-bi

[Scarb1] protein (M158R). 30. Interaction of C-reactive [CRP]

and artificial phosphatidylcholine bilayers occurs. 31. Binding of

10 kd mutant human APOE protein (N-terminal truncation 1–222

with its carboxy terminal domain retained) and phosphatidylcho-

line and triolein occurs in a system of purified components. 32.

Binding of phosphatidylcholine and PRNP protein occurs in

detergent-resistant membrane fraction from FRT cells. 33.

Brefeldin A decreases association of phosphatidylcholine and a

protein fragment containing a N-terminal domain from human

Apob protein. 34. Binding of phosphatidylcholine and Phospho-

lipase c [Plc] protein(s) occurs. Phospholipase C catalyzes the

following reaction: 1 phosphatidylcholine+1 water2.1 1,2-

diacylglycerol+1 phosphorylcholine. 35. In NCI-H295r cells,

binding of human APOE3 protein and human SR-BI [SCARB1]

protein increases uptake of cholesteryl ester. 36. Interaction of

apolipoprotein E [APOE] and rat CRP occurs. 37. Association of

apoE and phospholipid occurs. 38. Association of apoE and

phospholipid occurs. 39. Binding of phospholipid and Phospho-

lipase c [Plc] protein(s) occurs. 40. Human PLC has member

human PLCG2. 41. Human EDG4 [LPAR2] is involved in

activation of phospholipase C. 42. Plc has member PLCB1. 43.

Binding of human APOB protein and human LIPC protein

occurs. 44. Triacylglycerol lipase has member mouse Lipc. 45.

Triacylglycerol lipase has member human DAGLA. 46. Triacyl-

glycerol lipase has member rat Pnliprp2. 47. Triacylglycerol lipase

catalyzes the following reaction: 1 fatty acid+1 sn-2-monoacylgly-

cerol2.1 1,2-diacylglycerol+1 water. 48. Carnitine O-palmitoyl-

transferase catalyzes the following reaction: 3 coenzyme A+1

triglyacylglycerol2.3 acyl-coenzyme A+1 glycerol. 49. Phospho-

lipid:diacylglycerol acyltransferase catalyzes the following reaction:

1 lysophospholipids+1 triglyacylglycerol2.1 1,2-diacylglycerol+1

phospholipid. 50. Sphingosine N-acyltransferase catalyzes the

following reaction: 1 acyl-coenzyme A+1 sphingosylphosphocho-

line2.1 coenzyme A+1 sphingomyelin. 51. Sphingosine N-

acyltransferase has member rat Lass4. 52. Non-amino-acyl group

acyltransferase catalyzes the following reaction: 1 2-acyl-sn-

glycerol 3-phosphate+1 coenzyme A2.1 acyl-coenzyme A+1

glycerophosphoric acid. 53. Non-amino-acyl group acyltransferase

has member rat Elovl2. 54. Association of apoC-III [APOC3] and

triglyacylglycerol occurs. 55. Lipoprotein lipase has member

human APOC2. 56. 1-acylglycerol-3-phosphate O-acyltransferase

has member rat Agpat1. 57. 1-acylglycerol-3-phosphate O-

acyltransferase catalyzes the following reaction: 1 coenzyme A+1

phosphatidic acid2.1 1-Acyl-sn-glycerol 3-phosphate+1 2,3-

dehydroacyl-coenzyme A. 58. Binding of purified rat Plcb1

protein and a protein fragment containing a phox homology

domain from human PLD2 protein occurs in a cell free system. 59.

EGF protein increases dissociation of human PLD2 protein and

mouse Munc-18a [Stxbp1] gene. Binding of a protein fragment

containing a PX domain from human PLD2 protein and mouse

Munc-18a [Stxbp1] protein occurs in a system of purified

components. 60. Binding of rat Pld protein(s) and rat Munc-18

[Stxbp1] protein occurs in rat brain. 61. GRB2 protein increases

activation of rat Pld protein(s) that is increased by Pdgf

complex(es). Association of growth factor receptor-bound protein

2 [GRB2] and PLD occurs. 62. Binding of human GRB2 protein

and human KCNH7 protein occurs. 63. Mouse Pld2 protein

increases activation of human Pld protein(s) in HPAEC cells that is

increased by hyperoxia of HPAEC cells. Phospholipase D has

member mouse Pld2. 64. In cytoplasm, PLD protein(s) catalyzes

the following reaction: phosphatidylcholine2.phosphatidic acid.

65. Phospholipase D has member rat Gpld1. 66. Binding of

transgenic human APOA-I [APOA1] protein and cholesteryl ester

and mouse HDL in plasma from blood of mutant mouse with a

homozygous knockout of mouse Apoa1 occurs. 67. Binding of

ARF1 protein and phosphatidic acid occurs in a cell fraction from

Cos cells. 68. Binding of ARF1 protein and a protein fragment

containing a C2A domain from rat Syt9 protein occurs in lysate

from RBL-2H3 cells. 69. Binding of phosphatidic acid and PKC

ALPHA [PRKCA] protein occurs in a system of purified

components. 70. In cytoplasm, DGK f [DGKZ] protein catalyzes

the following reaction: DAG2.PA. 71. Association of rat Dgkz

protein and rat Dlg1 protein and rat Dlg2 protein and rat Dlg3

protein and rat Dlg4 protein occurs. 72. Binding of human PLD2

protein and human PRKCA protein occurs. 73. Mouse Pla2g1br

[Pla2r1] protein decreases binding of mouse Pla2g10 protein and

PLA2R [PLA2R1] protein.

(PDF)

Figure S5 Lipid Pathways by Ingenuity (sphingolipid metabo-

lism). Genes discovered in the GWAS are shown in orange. 1. In

mouse liver, mouse PPAR-alpha [Ppara] protein is necessary for

expression of mouse Delta 6 desaturase [Fads2] mRNA that is

mediated by WY-14643. Binding of a DNA fragment (2385–373)

containing a DR1 from human DELTA 6 DESATURASE

[FADS2] gene and a protein-protein complex consisting of mouse

PPAR-alpha [Ppara] and of rat Rxr alpha [Rxra] occurs in a cell

free system. 2. In Hep3B cells expressing human APOAV

[APOA5] protein, human Ppar alpha [PPARA] protein increases

activation of promoter fragment (2617–18) from human APOAV

[APOA5] gene. 3. In mouse liver, mouse PPAR-alpha [Ppara]

protein is necessary for expression of mouse Fads1 mRNA that is

mediated by WY-14643. 4. Binding of palmitoyl-CoA and mutant

mouse Ppar alpha [Ppara] protein (N-terminal truncation 1–100

with its A/B domain deleted) occurs in a cell-free system. 5.

PPARA protein decreases expression of APOC3 protein. Binding

of promoter fragment (296–61) from human APOC3 gene

consisting of hormone response element and a protein-protein

complex consisting of PPAR ALPHA [PPARA] and of RXR

ALPHA [RXRA] occurs in a cell fraction from Cos-1 cells. PPAR

ALPHA [PPARA] protein decreases transcription of APOC

[APOC3] gene with a DNA endogenous promoter that has a

PPAR response element. 6. PPAR ALPHA [PPARA] protein

increases expression of human APOA1. 7. In HepG2 cells, mutant

mouse HNF1-alpha [Hnf1a] protein (R131Q) causes little or no

change in activation of APOC3 gene that is increased by human

HNF4A2 protein. In HuH7 cells, rat Hnf4 alpha2 protein

increases expression of human APOC3 mRNA. In a nuclear

extract from Caco2 cells, the binding avidity of binding of

promoter fragment from APOC3 gene consisting of HNF4

binding site and human HNF4A2 protein is greater than the

binding avidity of binding of promoter fragment from FABP1 gene

consisting of HNF4 binding site and human HNF4A2 protein.

HNF4 protein increases trans-activation of DNA endogenous

promoter from APOC [APOC3] gene that is decreased by C JUN

[JUN] protein. Binding of rat Hnf4a protein and palmitoyl-CoA

occurs in a cell-free system. 9. Binding of human HNF4A protein
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and human PCDH20 gene occurs. 10. In HuH7 cells, rat Hnf4

alpha2 protein increases expression of human APOC1 mRNA. 11.

Binding of human AGPAT1 gene and human HNF4A protein

occurs. 12. Binding of human HNF4A protein and human ITGA9

gene occurs. 13. Binding of human HNF4A protein and human

PLD2 gene occurs. 14. In HuH7 cells, ARP-1 [NR2F2] protein

decreases activation of promoter fragment (2851–29) containing a

AP-1 site and a DR1 response element and a DR4 and a Hnf1

binding site and a USF binding site from human LIPC gene that is

increased by HNF4A protein. In HuH7 cells, PGC1A

[PPARGC1] protein increases trans-activation of promoter

fragment (2851–29) containing a AP-1 site and a DR1 response

element and a DR4 and a Hnf1 binding site and a USF binding

site from human LIPC gene that is dependent on HNF4A protein.

15 Binding of human C11orf10 gene and human HNF4A protein

occurs. 16. Binding of human GCKR gene and human HNF4A

protein occurs. 17. In F9 cells, HNF4A protein and mouse Pgc-

1alpha [Ppargc1a] protein increase expression of mouse Apoc2

mRNA. Binding of human APOC2 gene and human HNF4A

protein occurs. 18. In HuH7 cells, rat Hnf4 alpha2 protein

increases expression of human APOE mRNA, 19. In HuH7 cells,

rat Hnf4 alpha2 protein increases expression of human APOA1

mRNA. Binding of a DNA fragment (2205–192) containing a

ApoA1 site A from human Apoa1 gene and Hnf4 protein occurs in

a nuclear extract from Cos cells. 20. CDPdiacylglycerol-serine O-

phosphatidyltransferase catalyzes the following reaction: 1 cytidine

39-phosphate+1 phosphatidylserine2.1 CDPdiacylglycerol+1 L-

serine. 21. Substituted phosphate group transferase catalyzes the

following reaction: 1 choline+1 phosphatidylserine2.1 L-ser-

ine+1 phosphatidylcholine. 22. Binding of CRP protein and PE

occurs in a cell-free system. 23. Interaction of apolipoprotein E

[APOE] and rat CRP occurs. 24. In cell surface from RAW 264.7

cells, 8-bromo-cAMP increases binding of APOA1 protein and

phosphatidylserine. 25. Binding of fibrillar AMYLOID BETA

protein(s) and human APOA1 protein occurs in human serum. 26.

Binding of APOA1 protein and cholesterol occurs in extracellular

space. 27. Association of human APOA1 protein and human

APOL1 protein occurs. 28. Binding of V. cholerae Cholera toxin

B [CtxB] protein and a molecular complex consisting of DMPC

and of human APOA-I [APOA1] and of GM1 in a cell-free system

occurs. 29. Beta-galactosidase catalyzes the following reaction: 1

galactose+1 ganglioside GM22.1 ganglioside GM1+1 water. 30.

Hexosyltransferase catalyzes the following reaction: 1 ganglioside

GM1+1 GDP fucose2.1 fucosyl-GM1+1 GDP. 31. Exo-alpha-

sialidase catalyzes the following reaction: 1 ganglioside GD1a+1

water2.1 ganglioside GM1+1 N-acetylneuraminic acid. 32. The

affinity of binding of human APOL1 protein and 3-sulfogalacto-

sylceramide in a system of purified components is greater than the

affinity of binding of human APOL1 protein and phosphoinositol

in a system of purified components. 33. Interaction of cholesterol

and galactosylceramide occurs. 34. In hepatocytes from fasted

female mouse, mutant mouse SR-BI [Scarb1] gene (homozygous

knockout) and hypomorphic mouse SR-BI [Scarb1] gene increase

accumulation of a molecular complex consisting of mouse Apoe

and of free cholesterol in plasma from fasted female mouse that

involves atherogenic diet. 35. Interaction of Cholesterol and

sphingomyelin occurs. 36. Binding of human AMYLOID BETA

40 protein and galactosylceramide occurs in a cell-free system. 37.

Binding of A BETA 42 [AMYLOID-BETA PEPTIDE 42] protein

and sphingomyelin in phosphatidylcholine vesicles occurs. 38.

Binding of mouse Apoe protein and mouse Prnp protein occurs.

39. Binding of PRNP protein and sphingomyelin occurs in

detergent-resistant membrane fraction from FRT cells. 40.

Sphingosine N-acyltransferase catalyzes the following reaction: 1

acyl-coenzyme A+1 sphingosylphosphocholine2.1 coenzyme

A+1 sphingomyelin. 41. Sphingosine N-acyltransferase catalyzes

the following reaction: 1 coenzyme A+1 phytoceramide2.1

hexacosanoyl-coenzyme A+1 phytosphingosine. 42. Sphingosine

N-acyltransferase catalyzes the following reaction: 1 acyl-coen-

zyme A+1 D-erythro-dihydrosphingosine2.1 coenzyme A+1

dihydroceramide. 43. Sphingosine N-acyltransferase catalyzes

the following reaction: 1 acyl-coenzyme A+1 D-sphingosine2.1

ceramide+1 coenzyme A. 44. Sphingosine N-acyltransferase has

member rat Lass4. 45. Human Gpcr has member human LPAR2.

46.Binding of G protein coupled receptor [Gpcr] protein(s) and

sphingosine-1-phosphate occurs. 47. Sphingosine-1-phosphate

phosphatase protein(s) catalyzes the following reaction: 1 sphin-

gosine-1-phosphate2.1 Sphingosine. 48. Sphingosine-1-phos-

phate phosphatase protein(s) catalyzes the following reaction: 1

ceramide-1-phosphate2.1 ceramide. 49. Binding of human

S1PR5 protein and human SGPP1 protein occurs. 50. Dihydro-

sphingosine 1-phosphate increases activation of EDG8 protein.

Binding of dihydrosphingosine 1-phosphate and EDG8 protein

occurs. 51. S-1P in extracellular space increases activation of

S1PR5 [EDG8] protein in plasma membrane. Binding of EDG8

protein and sphingosine-1-phosphate occurs in Cho cells. 52.

Calcium and lipids are necessary for binding of ceramide-1-

phosphate and a protein fragment containing a C2 domain from

Cpla2 protein(s). 53.Human Cpla2 has member human

PLA2G10. 54. Rat Pla2 has member rat Pla2g10. 55. Binding

of ceramide and Phospholipase A2 [Pla2] protein(s) increases

apoptosis of cells. 56. Ceramide increases activation of protein

kinase C zeta [PRKCZ]. Binding of CDC42 protein in a cell-free

system and ceramide in phosphatidylserine vesicles and PAR6

[PARD6A] protein in a cell-free system and human PKCZ

[PRKCZ] protein in a cell-free system is greater than binding of

CDC42 protein in a cell-free system and ceramide in phospha-

tidylcholine vesicles and PAR6 [PARD6A] protein in a cell-free

system and human PKCZ [PRKCZ] protein in a cell-free system.

57. Ceramide is involved in activation of PKCA [PRKCA] protein

in cells. Binding of ceramide and protein kinase C-alpha

[PRKCA] occurs. 58. In a in vitro system, phox homology

domain from human PLD2 protein increases activation of human

PKC ZETA [PRKCZ] protein. Binding of PLD2 protein

containing a CT motif and a CRIV and a CR1 domain and a

CR2 domainand a CR3 domain and a phox homology domain

and a pleckstrin homology (PH) domain and PKC ZETA

[PRKCZ] protein containing a C1 domain and a PB1 domain

and a serine/threonine kinase domain occurs in Cos-7 cells. 59.

Binding of human PLD2 protein and human PRKCA protein

occurs. 60. In Cos-7 cells, human PLD2 protein increases

activation of c-src [SRC] protein. Human SRC protein increases

phosphorylation of PLD2 protein in a cell-free system. 61. Binding

of a protein fragment containing a pleckstrin homology (PH)

domain from PLD2 protein and c-src [SRC] protein occurs in

lysate from Cos-7 cells. In a cell-free system, SRC protein

increases phosphorylation of phosphatase. 62. Pp60c-src increases

phosphorylation of L-serine. 63. Human EGFR protein increases

phosphorylation of PLD2 protein in a cell-free system. Binding of

human EGFR protein and human PLD2 protein occurs.

64.Binding of extracellular domain from human EGFR protein

and Ganglioside GM4 occurs in a system of purified components.

65. GSK3beta increases phosphorylation of serine [L-serine]. 66.

In LNCaP cells, dominant negative mutant ILK protein (R211A)

causes little or no change in phosphorylation of GSK-3beta

[GSK3B] protein to phosphorylated (S9) GSK-3beta [GSK3B]

protein that is decreased by ILKAP protein.

(PDF)
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Figure S6 Q-Q plots for the association between the top loci and

disease end points. PKS: P-value from a one sample Kolmogorov-

Smirnov test comparing the observed P-value distribution to that

expected under the null.

(PDF)

Table S1 Mean phospho- and sphingolipid concentrations of the

study participants. SD: standard deviation; P-value: P-value for the

test comparing means by gender.

(PDF)

Table S2 Association findings on selected lipid-lipid ratios.

Effect: regression coefficient; seEffect: standard error of the

regression coefficient.

(PDF)

Table S3 GWAS of standard plasma lipid measures in the

EUROSPAN Consortium. Allele1: Effect allele; Effect: regression

coefficient; StdErr: standard error of the regression coefficient.

(PDF)

Table S4 Conditional analysis of the genome-wide significant

loci. Effect: regression coefficient; StdErr: standard error of the

regression coefficient.

(PDF)

Table S5 ConsensusPathDB pathway enrichment for phospholipid

related loci. Gene list: ALG14, GCKR, KCNH7, ILKAP, ITGA9,

PAQR9, ELOVL2, AGPAT1, PKD2L1, PNLIPRP2, SYT9, OR8I2,

FADS1, DLG2, APOA1, CDK17, PCDH20, KLF12, PLEKHH1,

LIPC, ALG1, PDXDC1, CDH8, ABHD3, ZNF600. +: Pathways

with P-value,0.01; *: P-value after correction for False Discovery

Rate; KEGG: http://www.genome.jp/kegg/; Reactome: http://

www.reactome.org; SMPDB: http://www.smpdb.ca/; HumanCyc:

http://humancyc.org/; PharmGKB: http://www.pharmgkb.org/;

Wikipathways: http://www.wikipathways.org; EHMN: http://www.

ehmn.bioinformatics.ed.ac.uk.

(PDF)

Table S6 ConsensusPathDB pathway enrichment for sphingo-

lipid related loci. Gene list: ATP10D, SRD5A1, FADS2, SGPP1,

CNTNAP4, PLD2, LPAR2, LASS4, APOE, SPTLC3. +:

Pathways with P-value,0.01; *: P-value after correction for False

Discovery Rate; Reactome: http://www.reactome.org; Wikipath-

ways: http://www.wikipathways.org; PID: http://pid.nci.nih.

gov/.

(PDF)

Table S7 Genome wide significant SNPs and their associations

with IMT (CHARGE Consortium, Bis et al, Nat Genet 43:940–

947, 2011). Effect: regression coefficient; seEffect: standard error

of the regression coefficient.

(PDF)

Table S8 Genome wide significant SNPs and their associations

with type 2 diabetes risk (DIAGRAM Consortium, Voight et al,

Nat Genet 42:579–589, 2010). 95% CI: 95% Confidence Interval.

(PDF)

Table S9 Genome wide significant SNPs and their associations

with coronary artery disease risk (CARDIoGRAM Consortium,

Schunkert et al, Nat Genet 43: 333–338, 2011). 95% CI: 95%

Confidence Interval.

(PDF)

Text S1 Extensive materials and methods.

(DOC)

Text S2 Full list of phospholipids that are significantly associated

to FADS1-2-3 and LIPC region SNPs.

(DOC)
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