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ABSTRACT
The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary
systems present a window on to the intrinsic properties of stellar-mass black holes and hence
a testbed for general relativity. One explanation for these features is that relativistic distortion
of the accretion disc’s differential rotation creates a trapping region in which inertial waves
(r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-
scale magnetic fields push this trapping region to the inner disc edge, where conditions may
be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but
fully global perspective, deriving linearized equations describing a relativistic, magnetized
accretion flow, and calculating normal modes with and without vertical density stratification.
In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the
inner edge, though the effect depends on the choice of vertical wavenumber. In a global model
we better quantify this susceptibility, and its dependence on the disc’s vertical structure and
thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the
inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100–300. We posit
that the appearance of r-modes in observations may be more determined by a competition
between excitation and damping mechanisms near the ISCO than by the modification of the
trapping region by magnetic fields.

Key words: accretion, accretion discs – black hole physics – magnetic fields – MHD – waves –
X-rays: binaries.

1 IN T RO D U C T I O N

Understanding the variability observed in the emission from
X-ray binaries remains an important task in astrophysics. So-called
quasi-periodic oscillations (QPOs) frequently appear as 0.1–450 Hz
features in the power density spectrum of stellar-mass black hole
candidate systems. Historically, high-frequency quasi-periodic os-
cillations (HFQPOs) of ∼30–450 Hz, observed in anomalous states
of high accretion and luminosity, have attracted interest for the com-
parability of their frequencies to the characteristic orbital frequen-
cies close to a black hole. Because of their relative insensitivity to
luminosity variations, HFQPOs are thought to issue from the black
hole’s imprint on the inner regions of its encircling accretion disc
(Remillard & McClintock 2006; Motta 2016).

Okazaki, Kato & Fukue (1987) showed that in a purely hy-
drodynamic and isothermal model strong gravitational effects on
the epicyclic frequencies κ and �z create a narrow, annular, ‘self-
trapping’ region where large-scale, global inertial waves (sometimes
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dubbed gravito-inertial modes or g-modes, but here called r-modes)
might be constrained to oscillate as standing waves. Protected from
dissipation at the inner disc edge by their confinement within this
trapping region, hydrodynamic r-modes are subject to excitation
by large-scale warping and eccentric deformations in the accretion
flow, potentially growing to amplitudes sufficiently large to cause
variations in luminosity detectable as HFQPOs (Kato 2004, 2008;
Ferreira & Ogilvie 2008, 2009).

However, with temperatures of �1 keV providing sufficient ion-
ization to support magnetic fields, discs around black holes are un-
likely to be purely hydrodynamic. Magnetohydrodynamic (MHD)
turbulence sustained by the magnetorotational instability (MRI) of-
fers a widely accepted explanation for an effective viscosity driving
accretion (Balbus & Hawley 1998). The survival of trapped inertial
modes in the presence of such MHD turbulence is uncertain; in
fact, Reynolds & Miller (2008) observed prominent r-mode signa-
tures in hydrodynamic simulations, but, along with Arras, Blaes &
Turner (2006), found them absent from MRI-turbulent simulations.
It should be noted, though, that Arras et al. (2006) and Reynolds
& Miller (2008) omitted any r-mode excitation mechanism other
than the MHD turbulence itself, the latter authors concluding only
that the MRI does not actively excite the oscillations. On the other
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hand, taking an analytical approach, Fu & Lai (2009) questioned the
very existence of the self-trapping region when the accretion disc
is threaded by large-scale poloidal magnetic fields of appreciable
strength. However, Fu & Lai (2009) presented only a local analysis,
omitting the radial structure of the inherently global oscillations, as
well as vertical density stratification.

In this paper, we present a fully global, semi-analytical treatment
of the problem, calculating r-mode oscillations within isothermal
relativistic accretion discs threaded by azimuthal and vertical mag-
netic fields. We focus on two models: ‘cylindrical’ discs, which omit
vertical density structure, and fully global discs, which include it.
The wave modes are numerically calculated using pseudo-spectral
and hybrid pseudo-spectral-Galerkin methods, respectively.

In support of the conclusions of Fu & Lai (2009), we find that
increasingly strong vertical fields force the localisation of r-modes
inwards, towards the innermost stable circular orbit (ISCO). In
cylindrical models, azimuthal fields of equipartiton strength have
little effect. Meanwhile, r-mode sensitivity to the vertical magnetic
field depends on the parameterization of vertical structure through
isothermal sound speed cs and vertical wavenumber kz, and is hence
somewhat uncertain. In fully global models, the point at which
r-mode confinement depends on reflection at the inner boundary
depends on disc temperature and thickness. For isothermal sound
speeds of cs ∼ 0.001c, where c is the speed of light, we find critical
values of the plasma beta (ratio of gas to magnetic pressure) as low
as β ∼ 100–300, depending on the scale height’s rate of increase
with radius. These estimates are consistent with those of Fu &
Lai (2009), but we stress that such field strengths are relatively
high for large-scale, ordered magnetic fields; simulations of the
MRI produce fields of this strength or greater, but they are small-
scale and disordered. Finally, we demonstrate that with a choice of
vertical wavenumber motivated by the basis functions used in our
density stratified analysis, r-modes calculated in a cylindrical model
reproduce the frequencies and localizations of fully global trapped
inertial modes to within 1 per cent.

Our results indicate that if the accretion disc is sufficiently thin,
the trapping of r-modes is minimally affected by large-scale mag-
netic fields (unless those fields are very strong). And indeed, QPOs
only appear in emission states usually described by thin disc mod-
els. The frequencies, however, of the r-modes will be enhanced by
the presence of large-scale fields, which may complicate their use
when divining the properties of the central black hole. On the other
hand, this frequency enhancement could be used to estimate the
strength of the magnetic field itself, especially if the black hole
mass and spin are constrained by other measurements. Finally, we
stress that even if r-modes are pushed up against the ISCO this does
not necessarily mean that they are destroyed. The oscillations will
certainly be damped by radial inflow but could nonetheless achieve
appreciable amplitudes if sufficiently excited by a strong disc ec-
centricity and/or warp. In short, very strong large-scale magnetic
fields may not exterminate r-modes, just make them more difficult
to excite.

The structure of the paper is as follows. In Section 2, we review
the nature of global oscillation modes and the potential for their
formation in relativistic accretion discs. Readers familiar with the
subject are invited to skip to Section 3, where we present the lin-
earized equations describing our magnetized, relativistic accretion
disc model. In Section 4, we examine the effects of azimuthal and
vertical magnetic fields on radially global modes calculated in the
cylindrical approximation, and in Section 5 we present our vertically
stratified results. Finally, in Section 6 we summarize and discuss
our findings.

2 BAC K G RO U N D

Analogous to helioseismology, discoseismology involves the study
of accretion disc oscillations that are global in that they maintain
their frequency and a coherent structure across a considerable radial
extent. Examples might include warps and eccentricities, which can
be thought of as non-axisymmetric waves with very low frequency
(Ferreira & Ogilvie 2009), or large-scale spiral density waves. Sub-
ject to sufficient excitation, such oscillations might reach amplitudes
large enough to cause observable variations in luminosity.

The establishment and persistence of global oscillations in a
realistic accretion flow may require specific conditions, however,
especially at the disc boundaries. For example, the growth of
inertial-acoustic oscillations in relativistic discs via the co-rotation
instability requires wave reflection at the inner radius and the trans-
mission of wave energy at key resonances (Papaloizou & Pringle
1984; Narayan, Goldreich & Goodman 1987; Lai et al. 2012), while
the r-modes considered in this paper may be damped by radial inflow
at the inner disc edge (Ferreira 2010).

Accretion discs around stellar-mass black holes offer protection
from such damping, the effects of strong gravity possibly provid-
ing a narrow region separated from the inner edge within which
global r-mode oscillations could reside and grow. While the hor-
izontal epicyclic frequency, κ , has a monotonic radial profile in
Newtonian centrifugally supported discs in near Keplerian rota-
tion, strong gravity introduces radii at which κ2 attains a maximum
and falls below zero. The latter radius defines the ISCO within
which matter plunges towards the black hole, while the existence
of the former has spurred the development of several theories of
wave propagation aimed at explaining HFQPOs (Kato 2001). In
this section, we review the key elements of these theories, treating
hydrodynamic and magnetohydrodynamic models in turn.

2.1 Hydrodynamic waves in relativistic discs

Okazaki et al. (1987) used a pseudo-Newtonian treatment with a
Paczynski–Wiita potential (see Section 3) in considering a hydro-
dynamic model of a thin, vertically isothermal, relativistic accretion
disc. The authors argued that although a rigorous treatment of an
accretion disc around a black hole would require a general rela-
tivistic model, the effects of strong gravity on wave propagation
arise primarily through the relativistic modification of the epicyclic
frequency. They showed that the linearized equations derived for
perturbations of the form δ(r, z)exp [imφ − iωt], for azimuthal
wavenumber m and frequency ω, are approximately separable in r
and z under the assumption of a scale height H(r) = cs/�z that varies
slowly with radius. This separation allows for a description of the
perturbations’ vertical structure by modified Hermite polynomials
of vertical order n. Projecting on to a given vertical order leaves a
decoupled, second-order system of ordinary differential equations
in r which, with appropriate boundary conditions, can be solved
numerically for the direct calculation of global normal modes.

Although we are interested in global oscillations, local analyses
provide insight into the effect that the epicyclic frequency’s non-
monotonic radial profile has on wave propagation. Neglecting the
radial variation of background quantities and assuming a radial
dependence for perturbations of δ(r) ∝ exp [ikrr], where kr is a local
radial wavenumber, Okazaki et al. (1987) derived the dispersion
relation

k2
r =

(
ω̃2 − κ2

) (
ω̃2 − n�2

z

)
ω̃2c2

s

, (1)
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Figure 1. Axisymmetric (m = 0) wave propagation regions for fully rel-
ativistic characteristic frequencies κG and �Gz (defined in Section 3) with
spin parameter a = 0, sound speed cs = 0.01c and vertical quantum num-
ber n = 1. R-mode trapping regions, as defined by bounding frequencies κ2

and �2
z (top), and representative effective potential wells −k2

r (bottom) are
plotted both with no magnetic field (solid lines) and with a vertical magnetic
field with midplane β ∼ 500 (bottom, dash–dotted line).

for ω̃ = ω − m�. Since oscillatory behaviour requires real kr, the
radial profile for −k2

r can be thought of as an effective ‘potential
well’, allowing wave propagation wherever −k2

r < 0 (Li, Good-
man & Narayan 2003). The profiles for the horizontal and verti-
cal epicyclic frequencies κ and �z then define different regions
of localization in the disc for three different families of waves.
When n = 0, 2D ‘inertial-acoustic’ waves can propagate at radii
where ω̃2 > κ2. Non-zero n gives wave propagation where either
ω̃2 > max[κ2, n�2

z] = n�2
z or ω̃2 < min[κ2, n�2

z] = κ2. The for-
mer, higher frequency waves are known as acoustic or p-modes,
while the latter, lower frequency waves are the inertial r-modes of
our interest. Fig. 1 shows the regions of propagation for such global
modes in the axisymmetric case, as defined by the conditions on ω2

(top) and −k2
r (bottom).

The Lindblad, co-rotation and vertical resonances occur where
ω̃2 = κ2, ω̃ = 0, and ω̃2 = n�2

z , respectively. They define the wave
propagation regions in a hydrodynamic, isothermal disc, and depend
closely on the radial profiles of the orbital and epicyclic frequen-
cies. As illustrated in Fig. 1(top), the maximum in κ2 (solid line)
introduced by the prescription of relativistic frequencies provides a
narrow region of confinement for modes with non-zero n. The two
Lindblad resonances at radii where ω̃2 = κ2 define turning points,
within which the inertial modes might be confined irrespective of
conditions at the ISCO. The effective potential well defined by −k2

r

(solid line in Fig. 1, bottom) has a minimum at the radius where κ

achieves its maximum, denoted as Rκ . This minimum is only local,
however, as the vertical resonance occurring at the radius where
ω̃2 = n�2

z allows r-modes to ‘leak’ to the outer regions of the disc
and propagate as p-modes. The extent of this leakage is limited by
the effective potential barrier between the two propagation regions
(Ferreira & Ogilvie 2008).

In isolation, trapped inertial waves are almost purely oscilla-
tory, a small exponential decay coming only from wave leakage.
Any explanation of HFQPOs involving r-modes then requires an
excitation mechanism.1 Kato (2004, 2008) estimated the growth
rates of trapped inertial waves coupled to large-scale warps or ec-
centricities in the accretion flow, describing a global analogue to
the local parametric instability introduced by Goodman (1993) and
Ryu & Goodman (1994). This coupling involves the transfer of
negative wave energy from the fundamental, axisymmetric r-mode,
through the global disc deformations, to non-axisymmetric iner-
tial modes propagating within their co-rotation radius. Ferreira &
Ogilvie (2008) generalized the estimations of Kato (2004, 2008),
calculating explicitly the growth rates of the fundamental trapped
inertial mode when excited by warps and eccentricities, and prof-
fering r-modes as a promising explanation for HFQPOs.

2.2 Magnetohydrodynamic waves in relativistic discs

The global calculations conducted by Okazaki et al. (1987) and
Ferreira & Ogilvie (2008) bore out the predictions of the local anal-
ysis, bolstering the argument that trapped waves cause HFQPOs.
However, as recognized by Reynolds & Miller (2008) and Fu &
Lai (2009), the picture is much more complicated for magnetized
accretion flows.

Reynolds & Miller (2008) searched for trapped inertial waves
in global simulations of relativistic accretion discs utilizing a
Paczynski–Wiita potential. Peaks in the power density spectrum
at the frequencies and radii appropriate for r-modes appeared in
initially perturbed, hydrodynamic accretion discs, but were absent
from the spectrum obtained from MHD-turbulent simulations. The
authors concluded that turbulence caused by the MRI does not ac-
tively excite trapped inertial modes, but made no claims about active
damping. Indeed, O’Neill, Reynolds & Miller (2009) saw trapped
r-mode propagation in viscous simulations with α > 0.05, but found
that the wave amplitudes were below the noise levels observed in
MHD simulations by Reynolds & Miller (2008). Arras et al. (2006)
observed a similar absence of inertial waves in MHD turbulent
shearing box simulations. However, like Reynolds & Miller (2008),
these authors did not include any form of excitation for r-modes
other than the MRI turbulence itself. Henisey et al. (2009) consid-
ered such an excitation mechanism in simulations of MRI turbulent,
relativistic discs with non-zero spin, including a tilt to examine nu-
merically the excitation mechanism explored by Ferreira & Ogilvie
(2008), and observed the emergence of modes ‘at least partially
inertial in character.’

Separately, Fu & Lai (2009) put aside the question of MHD
turbulence and argued that large-scale magnetic fields destroy the r-
mode trapping region itself. They derived a local dispersion relation
analogous to equation (1) for a relativistic accretion disc threaded
by a purely vertical, constant magnetic field Bz, and found the self-
trapping region modified by an Alfvénic restoring force. Rather
than being constrained to propagate only where ω2 < κ2, their local

1 Ortega-Rodriguez & Wagoner (2000) concluded incorrectly (because of a
sign error in their analysis) that many hydrodynamic oscillation modes are
destabilized by viscosity, but in fact they are damped.
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analyses predict that axisymmetric, MHD r-modes are evanescent
except in the region where

k2
zV

2
Az < ω2 <

1

2

[
κ2 + 2k2

zV
2

Az +
√

κ4 + 16k2
zV

2
Az�

2

]
, (2)

where kz is the vertical wavenumber corresponding to an expo-
nential dependence exp [ikzz], and VAz = Bz/

√
μ0ρ is the Alfvén

speed.2 The inclusion of a large-scale vertical magnetic field modi-
fies the effective potential well defined by −k2

r (see Section 4.2.1),
an illustrative radial profile of which is plotted with a dash–dotted
line in Fig. 1(bottom) for β ≈ 500 and the prescription of a ver-
tical wavenumber kz = 1/H(r) = �z(r)/cs. In the presence of a
magnetic field, the potential well moves closer to the ISCO, as in-
dicated. For much stronger fields (smaller β), the trapping region
includes the inner edge of the disc, implying that r-mode oscillations
would need to be confined by the outer turning point and the inner
edge itself, where conditions may be uncertain and most likely
unfavourable (e.g. Gammie 1999; Afshordi & Paczynski 2003;
Ferreira 2010).

The self-trapping region’s loss of distinction from the inner
boundary does not necessarily rule out the existence of r-modes.
Modes pushed to the inner edge of the disc would need to rely on
excitation sufficient to overcome the damping effects of radial in-
flow (Ferreira 2010), and might require some reflection mechanism
for their confinement. Such a reflection is required for explanations
of HFQPOs that involve 2D, non-axisymmetric inertial-acoustic
modes, which local analyses suggest are less susceptible to the ef-
fects of large-scale magnetic fields and subject to amplification at
co-rotation (Lai & Tsang 2009; Fu & Lai 2011; Lai et al. 2012; Yu
& Lai 2015).

In summary, Reynolds & Miller (2008) and Fu & Lai (2009)
threw the efficacy of trapped inertial waves as an explanation for
HFQPOs into some doubt. However, the simulations only indicated
that the MRI does not actively excite r-modes, and in applying local
approximations Fu & Lai (2009) neglected the global nature of dis-
coseismic oscillations. Local analyses do give insight into the struc-
ture of wave propagation in accretion discs, but the WKBJ ansatz
limits us to scales much smaller than those of the background flow,
an inappropriate assumption when considering oscillations coher-
ent across large radial and vertical extents. Additionally, although
the scaling kz ∝ 1/H is natural in the nearly separable, hydro-
dynamic problem (Okazaki et al. 1987), the inseparability of the
MHD equations in r and z makes the exact proportionality unclear.
Further, as noted by Kato (2017), the inverse dependence of the
Alfvén speed on density enhances the importance of vertical den-
sity stratification. These considerations motivate our focus on fully
global normal mode calculations, and our examination of the role
that density stratification plays in localizing MHD trapped inertial
waves.

3 D I S C MO D E L A N D L I N E A R I Z E D
E QUAT I O N S

We consider a thin, inviscid, non-self-gravitating, differentially ro-
tating flow. The ideal MHD equations can be written as

∂u
∂t

+ u · ∇u = −∇P

ρ
− ∇� + 1

μ0ρ
(∇ × B) × B, (3)

2 The modes subject to confinement within the regions defined by equation
(2) are epicyclic-Alfvénic in nature, but we refer to both them and purely
hydrodynamic trapped inertial waves as r-modes throughout this paper.

∂ρ

∂t
= −∇ · (ρu), (4)

∂B
∂t

= ∇ × (u × B) , (5)

∇ · B = 0, (6)

where u, ρ, B, and P are the fluid velocity, density, magnetic field,
and gas pressure, respectively.

Equations (3)–(6) provide a Newtonian description of a plasma
in the limit of ideal MHD, and are therefore not strictly applicable
to relativistic accretion discs. However, as mentioned in Section 2,
relativistic effects outside of the ISCO are frequently approximated,
in both analysis and simulation (e.g. Okazaki et al. 1987; Reynolds
& Miller 2008), with the prescription of a ‘pseudo-Newtonian’
Paczynski–Wiita potential, given in cylindrical coordinates (r, φ, z)
as

� = −GM√
r2 + z2 − rS

, (7)

where G is the gravitational constant, M the mass of the central
black hole, and rS = 2GM/c2 is the Schwarzschild radius of the
event horizon. In the absence of modification by pressure gradients
and magnetic stresses, the introduction of a singularity at r = rS

gives midplane (z = 0) orbital and horizontal epicyclic frequencies

�2
P = GM

r(r − rS)2
, (8)

κ2
P = GM(r − 3rS)

r(r − rS)3
, (9)

the second of which passes through zero at r = 3rS, and achieves
a maximum at r ≈ 3.73rS. The point at which κP = 0 defines the
ISCO, denoted by rISCO. The maximum replicates qualitatively that
which appears in the exact frequencies for a particle in orbit around
a Kerr black hole, given by

�G = 1

(r3/2 + a)
, (10)

κG = �G

√
1 − 6

r
+ 8a

r3/2
− 3a2

r2
, (11)

�Gz = �G

√
1 − 4a

r3/2
+ 3a2

r2
, (12)

where a ∈ ( − 1, 1) is the dimensionless spin parameter, and
radii and frequencies are expressed in units of gravitational ra-
dius rg = GM/c2 and the gravitational frequency ωg = c3/(GM).
These expressions are commonly inserted in otherwise Newtonian
analyses to approximate the effects of black hole spin on wave
propagation in the accretion flow (Ferreira & Ogilvie 2008).

We consider a background equilibrium flow of the form
u = r�(r)φ̂, in isorotation with a magnetic field B = Bφ(r)φ̂ +
Bz(r) ẑ. We neglect radial magnetic fields for their complication of
the equilibrium. For a gravitational potential of the form given in
equation (7), the radial component of equation (3) then yields

�2 = 1

r

[
∂�

∂r
+ 1

ρ

∂P

∂r
+ 1

μ0ρ

(
Bφ

dBφ

dr
+ Bz

dBz

dr
+ B2

φ

r

)]
. (13)

For simplicity we assume the gas is globally isothermal with P =
c2
s ρ. In a thin disc without magnetic fields, a barotropic equation
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of state with constant cs guarantees an equilibrium angular velocity
profile � that depends only on radius. As can be seen from equation
(13), this remains true when our setup includes either a density
profile ρ = ρ(r) independent of z (as considered in Section 4), or a
purely uniform, vertical magnetic field (as considered in Section 5).
In reality, the temperature, and hence the sound speed, ought to
decrease with radius. We discuss the ramifications of a globally
isothermal equation of state in Section 6; in short, we predict this
assumption leads to an overestimate of the disc scale height as a
function of radius, and consequently an overestimate of r-modes’
susceptibility to background magnetic fields.

Equation (13) implies that steep gradients in the pressure and
magnetic fields, as well as the so-called hoop stress due to az-
imuthal magnetic fields, may cause deviations from the orbits of
particles rotating with ‘pseudo-Keplerian’ angular velocities de-
fined by �2

K = (1/r)∂r�. We include these deviations in calcu-
lations utilizing a Paczynski–Wiita potential, but ignore them as
O(1/r2) effects when utilizing the general relativistic formula for
the characteristic frequencies. The vertical independence of u and
B yields, in the classic thin disc approximation, the hydrostatic
equilibrium c2

s ∂z ln ρ = −∂z� ≈ −�2
zz, which gives a background

density distribution ρ(r, z) = ρ0(r)exp [ − z2/(2H2)].
The independence of the equilibrium from φ and t allows

us to consider perturbations of the form δ(r, φ, z, t) = δ(r, z)
exp [imφ − iωt]. Because non-axisymmetric r-modes encounter a
co-rotation resonance and may be strongly damped at the radius
where ω̃ = ω − m� = 0 (Li et al. 2003), historical focus has been
given to axisymmetric trapped inertial waves with m = 0. The co-
rotation resonance might be avoided by non-axisymmetric modes
with frequencies large enough that the radius where ω = m�(r)
lies outside of the self-trapping region. However, such frequencies
would be of the order of kHz, too high to explain HFQPO observa-
tions in stellar-mass black hole binaries. For this reason, we restrict
our attentions to axisymmetric modes. In particular, we focus on
the fundamental axisymmetric r-mode with the simplest radial and
vertical structure, as it is the least likely to be disrupted, and the
most likely to produce a net luminosity variation.

We disturb the equilibrium with axisymmetric fluid velocity,
magnetic field and enthalpy (h ≡ δP/ρ) perturbations of the form
[v, b, h](r, z) exp[−iωt], where ω is in general complex. Lineariz-
ing equations (3)–(6) then yields

− iωvr = 2�vφ −
[

∂

∂r
− 1

μ0P

(
Bz

dBz

dr
+ Bφ

r

d(rBφ)

dr

)]
h

+ 1

μ0ρ

⎡
⎣Bz

∂br

∂z
−

(
Bφ

∂

∂r
+ dBφ

dr
+ 2Bφ

r

)
bφ

−
(

Bz

∂

∂r
+ dBz

dr

)
bz

⎤
⎦, (14)

− iωvφ = − κ2

2�
vr + 1

μ0ρ

(
1

r

d(rBφ)

dr
br + Bz

∂bφ

∂z

)
, (15)

− iωvz = −∂h

∂z
+ 1

μ0ρ

(
dBz

dr
br − Bφ

∂bφ

∂z

)
, (16)

− iωh = −c2
s

{[
∂

∂r
+ 1

r

(
1 + d ln ρ0

d ln r

)]
vr

+
(

∂

∂z
+ ∂ ln ρ

∂z

)
vz

}
, (17)

− iωbr = Bz

∂vr

∂z
, (18)

−iωbφ = −
(

Bφ

∂

∂r
+ dBφ

dr

)
vr + Bz

∂vφ

∂z
−Bφ

∂vz

∂z
+ d�

d ln r
br , (19)

− iωbz = −
(

Bz

∂

∂r
+ dBz

dr
+ Bz

r

)
vr , (20)

where ∇ · b = 0 has been substituted into the induction equation,
so that the perturbations satisfy the solenoidal condition by con-
struction. In the following sections, we solve equations (14)–(20)
under various approximations and in full.

4 C Y L I N D R I C A L C A L C U L AT I O N S

To set the scene and isolate clearly the radially global aspects of
MHD r-modes, we first present calculations made in the cylindri-
cal approximation, in which the vertical lengthscale of the per-
turbations is assumed to be much smaller than that of the equi-
librium flow. Strictly speaking, this assumption is inappropriate;
the r-modes of most interest are those with the simplest vertical
structure. (These are the least affected by large-scale magnetic
fields.) However, the cylindrical model is particularly attractive
from a numerical standpoint, providing a less expensive framework
for global, non-linear simulations. Furthermore, we show in Sec-
tions 5.3.3 and 5.4.2 that with a specific choice of vertical wavenum-
ber, cylindrical r-modes can be very closely identified with trapped
inertial waves calculated from a fully global and self-consistent
model.

Neglecting the vertical dependence of � and ρ in equations (14)–
(20), we Fourier transform and prescribe a plane-wave z-dependence
exp [ikzz], where the vertical wavenumber kz is assumed for simplic-
ity and self-consistency to be constant (revisited in Section 5.4.2).
We do consider radial variation in B and ρ in making calculations
with a Paczynski–Wiita potential, writing

B = Bφ0

(
r

r0

)q

φ̂ + Bz0

(
r

r0

)p

ẑ, (21)

ρ = ρ00

(
r

r0

)σ

, (22)

where r0 is the radius of the ISCO in the absence of modification
by gas pressure and magnetic forces, Bφ0 and Bz0 are constant
magnetic field strengths, ρ00 is a constant density, and q, p, and σ

are constant power-law indices. For convenience, we follow Fu &
Lai (2009) in defining the midplane Alfvénic Mach number MA =
|V A|/cs = √

2β−1/2, where V A = B/
√

μ0ρ is the midplane Alfvén
velocity and β is the midplane plasma beta. We then writeMAz(r) =
VAz/cs and MAφ(r) = VAφ/cs , noting that both are functions of
radius. With these prescriptions, the equilibrium flow subject to a
Paczynski–Wiita potential follows the midplane angular velocity

�2 = GM

r(r − rS)2
+ c2

s

r2

[
σ + (q + 1)M2

Aφ + pM2
Az

]
. (23)

Note that we only use this expression when p, q, σ 
= 0. When
omitting all background radial gradients in B and ρ we employ the
correct general relativistic frequencies, setting � ≈ �G and κ ≈ κG,
from equations (10)–(12).

Trading b for the Alfvén velocity perturbation vA = b/
√

μ0ρ(r),
equations (14)–(20) can be written as
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− iωvr = 2�vφ −
(

d

dr
− (q + 1)

r
M2

Aφ − p

r
M2

Az

)
h

+ cs

⎡
⎣ikzMAzvAr − MAφ

(
d

dr
+ σ + 2q + 4

2r

)
vAφ

−MAz

(
d

dr
+ σ + 2p

2r

)
vAz

⎤
⎦, (24)

− iωvφ = − κ2

2�
vr + cs

(
(q + 1)

r
MAφvAr + ikzMAzvAφ

)
,

(25)

− iωvz = −ikzh + cs

( p

r
MAzvAr − ikzMAφvAφ

)
, (26)

− iωh = −c2
s

[(
d

dr
+ 1 + σ

r

)
vr + ikzvz

]
, (27)

− iωvAr = ikzcsMAzvr, (28)

− iωvAφ = −cs

[
MAφ

(
d

dr
+ q

r

)
vr − ikzMAzvφ + ikzMAφvz

]

+ d�

d ln r
vAr, (29)

− iωvAz = −csMAz

(
d

dr
+ p + 1

r

)
vr . (30)

Non-dimensionalizing radii, frequencies, and velocities in units of
rg, ωg, and rgωg = c (respectively), equations (24)–(30) can be writ-
ten as a generalized eigenvalue problem of the form AU = ωBU ,
where B specifies the boundary conditions placed on the eigenvec-
tor U , and solved using a pseudo-spectral method. With derivatives
approximated by Chebyshev spectral derivative matrices, this re-
quires only the use of standard numerical packages for finding the
eigenvalues and eigenvectors of matrices (Boyd 2001). All normal
mode calculations made in the cylindrical approximation were per-
formed using a Gauss–Lobatto grid on r ∈ [rISCO, rISCO + 14rg]
with a discretization of N = 200.

4.1 Cylindrical, hydrodynamic r-modes

We point out that the hydrodynamic dispersion relation in the cylin-
drical approximation is similar to equation (1), but with n�2

z re-
placed by k2

z c
2
s . In our simplified model with constant kz, the ver-

tical resonance has vanished: k2
z c

2
s does not decrease with radius

like n�2
z , so p-modes with ω2 > k2

z c
2
s > κ2 can propagate freely,

while r-modes with ω2 < κ2 are evanescent everywhere except in
the narrow region near the radius of maximal κ , Rκ . As a result, the
r-modes calculated with the cylindrical model experience no decay
from wave leakage, and ω is entirely real. This justifies the use of
the rigid wall boundary condition vr = 0 at the outer as well as the
inner boundaries in hydrodynamic calculations using the cylindrical
approximation.

Apart from the absence of wave leakage, our hydrodynamic
trapped inertial modes resemble those of Ferreira & Ogilvie (2008).
The solid curves in Fig. 2 show example radial profiles of Re[vr] for
normal modes. Here, the calculations employ the correct general
relativistic formulas for the frequencies �G and κG. Though hy-
drodynamic calculations are not the focus of this paper, we briefly

Figure 2. Radial profiles of Re[vr] for hydrodynamic and magnetohydrody-
namic r-modes calculated with non-zero Bz, with inner and outer boundary
conditions given as vr = 0 (top), dvφ/dr = 0 (middle), and dbr/dr = 0
(bottom). General relativistic characteristic frequencies were used (=⇒p,
q, σ = 0), with a = 0 and kz = �z(r0)/cs ≈ 22.7r−1

g for cs = 0.003c. The
filled black and unfilled red dots give the radii of maximal vr (denoted rmax)
and inner radii where −k2

r = 0 for the calculated frequencies ω (denoted
rTR).

summarize the effects of different parameters as a point of com-
parison with previous work. Increasing kz causes the fundamental
trapped inertial mode’s confinement to narrow, and its frequency to
grow. Increasing cs, which causes the potential well −k2

r to become
wider, expands the radial extent of the r-modes. Using a Paczynski–
Wiita potential to investigate radial density variation, we find that in
the hydrodynamic model, physically reasonable power-law indices
0 > σ ≥ −1.5 give a pressure gradient that acts only minimally
through � and κ .

4.2 Cylindrical, magnetohydrodynamic r-modes

4.2.1 Magnetohydrodynamic boundary conditions

Although nonzero magnetic fields introduce more derivatives to
equations (24)–(30), with appropriate choices of variable the system
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can be reduced to a single ODE of second order (e.g. Appert, Gruber
& Vaclavik 1974; Ogilvie & Pringle 1996). We then require exactly
two boundary conditions, and considering a local dispersion relation
for a radial wavenumber kr (derived from equations 24–30 with the
assumptions δ(r) ∝ exp[ikrr], kr , kz 
 1/r) provides insight into
which may be appropriate (for the case with Bφ = 0, see equation
28 in Fu & Lai 2009).3

For frequencies within the range defined by equation (2) and con-
stant kz � �z(r0)/cs , we find that effective potential wells defined
by −k2

r remain positive at rout = rISCO + 14rg for the magnetic field
strengths considered. This is because our assumption of a constant
kz still excludes a vertical resonance. The choice of outer boundary
condition then makes little difference. Sufficiently strong vertical
magnetic fields can drive the profiles for −k2

r to negative values
at the ISCO, however, suggesting that MHD r-mode confinement
may become dependent on reflection at the inner boundary. To as-
sess the degree of this dependence, we also consider the boundary
conditions dbr/dr = 0 and dvφ/dr = 0 at rin = rISCO, utilizing the
former unless otherwise stated.

4.2.2 Purely vertical magnetic field, Bφ(r) = 0, Bz(r) 
= 0

We use the same pseudo-spectral method as earlier to calculate
solutions with a non-zero vertical magnetic field. As in the hydro-
dynamical case, each calculation at a given kz produces a discrete
set of modes, each with radial structures of increasing complexity.
The modes may be distinguished by quantum numbers l, where
l = 0 corresponds to the fundamental, which exhibits the simplest
structure.

Fig. 2 shows plots of Re[vr] for fundamental MHD r-modes cal-
culated with a purely constant vertical magnetic field of strengths
up to MAz = 0.15 (β � 100), using general relativistic formulas
for the characteristic frequencies, all three boundary conditions,
cs = 0.003c and the naive assumption kz = �z(r0)/cs ≈ 22.7r−1

g .
The frequencies Re[ω] can be used to construct profiles for −k2

r ,
which give a local estimate, here called rTR, of the r-mode turning
point, or inner edge of the trapping region (plotted as red, unfilled
dots in Fig. 2). The black dots give the modes’ radius of maximal
radial velocity, rmax . While rmax does not measure the evanescence
of the r-modes, unlike rTR it provides a global measure of their
localization, and qualitatively illustrates the effect of the vertical
magnetic field.

Fig. 2 indicates that the inclusion of a purely constant vertical
magnetic field forces r-modes towards the plunging region within
the ISCO, as predicted by the local analysis. This migration is ac-
companied by changes in mode frequency, illustrated in Fig. 3.
These alterations to the mode behaviour occur because the addition
of a vertical magnetic field amplifies the restoring force to horizon-
tal disturbances, causing the r-modes to become hybrid epicyclic-
Alfvénic, and their frequencies to increase with Bz as well as kz. If

3 We note that the profiles for −k2
r found from this dispersion relation

can deviate based on whether or not the classic equality d�/d ln r =
κ2/(2�) − 2� is used in conjunction with the general relativistic versions
of the characteristic frequencies. Although this equality was assumed in
deriving equations (14)–(20), it is not accurate for characteristic frequen-
cies κG, �G derived from the Kerr metric (equations 10–12). In solving
equations (14)–(20) with the general relativistic frequencies, we equate the
direct formulae for κ2

G and d�G/d ln r with the epicyclic and shearing terms
appearing in equations (15) and (19) (resp.).

Figure 3. Re[ω] for the fundamental l = 0 r-mode calculated in the cylin-
drical approximation, as in Fig. 2(bottom), for varying kz and Alfvénic Mach
number MAz. Modes found to have rmax ≤ rISCO are excluded.

Figure 4. Radius of maximal vr, rmax , for the fundamental l = 0 r-mode
calculated in the cylindrical approximation, as in Fig. 2(bottom), for varying
kz and Alfvénic Mach number MAz. Modes found to have rmax ≤ rISCO are
excluded.

the Alfvénic restoring force is too large, the modes cease to be con-
fined without reflection at the inner boundary (compare the middle
and bottom panels of Fig. 2 with the top, although a non-zero value
of vr at the inner boundary does not necessarily mean the mode is
not evanescent there). We find that the frequency increases shown
in Fig. 3 follow the dependence on Alfvén frequency ωAz = kzVAz

given by equation (2), but diverge by as much as 10 per cent for
larger values of kz and VAz.

The degree to which the mode’s localization is affected by MAz

depends on both the vertical wavenumber kz and the sound speed
cs, the combination of which parametrizes vertical structure in the
cylindrical model. Fig. 4 shows a heatmap of rmax for the modes
whose frequencies are shown in Fig. 3. The two figures show a
similar dependence of the mode frequency and localization on MAz

and kz. The sound speed chosen has a more significant impact on
rmax than on ω, however. Naively choosing kz = �z(r0)/cs and
varying cs and MAz, we find that lower values of cs make the
r-modes marginally less susceptible to the vertical magnetic field,
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as measured by rmax . More importantly, larger values of cs increase
the width of the trapping regions for the r-modes, causing them
to encounter the inner boundary at lower magnetic field strengths.
Including a non-zero spin parameter also prolongs the r-modes’
march towards the ISCO.

Performing calculations with a Paczynski–Wiita potential yields
qualitatively the same results, and allows for the convenient eval-
uation of the effects of radial density and magnetic field variation,
which modify both the rotation profile (23) and equations (24)–
(30). Radial density variation with power laws 0 ≥ σ ≥ −1.5
impact MHD r-modes more than in the hydrodynamic case, acting
through the Alfvén speed to delay the point at which rmax ∼ rISCO,
and to marginally increase their frequencies further. Radially de-
creasing Bz acts also through the background Alfvén velocity VAz,
but instead forces the fundamental r-mode closer to the ISCO at a
given value of Bz0. This can be understood through equation (2). As
the r-modes migrate inwards, the restoring force from the magnetic
field becomes larger and larger.

4.2.3 Purely toroidal magnetic field, Bφ(r) 
= 0, Bz(r) = 0

Trapped inertial mode calculations made with Bφ 
= 0, Bz = 0
and rigid wall boundary conditions confirm the predictions of Fu
& Lai (2009) that large-scale azimuthal magnetic fields modify
r-modes only negligibly. For the ranges of sound speed and verti-
cal wavenumber considered in Section 4.2.2, an equipartition field
strength with β = 1 (MAφ = √

2) is required for even a 0.5 per cent
change in frequency. Changes in r-mode localization are impercep-
tible.

5 V E RT I C A L LY S T R AT I F I E D , FU L LY G L O BA L
C A L C U L ATI O N S

Our calculations of trapped inertial waves made in the ideal MHD,
cylindrical approximation confirm the qualitative behaviour pre-
dicted by the local analyses of Fu & Lai (2009). Although our
simple cylindrical model provides an inexpensive framework for
non-linear simulations, it nevertheless has too many free param-
eters, and is strictly inappropriate for the case of most interest
with kz ∼ 1/H. To find accurate measurements of the critical field
strengths at which the mode confinement becomes dependent on the
inner boundary, then, it is essential to consider the vertical structure
of the disc. In this section, we present a fully general, vertically
stratified model for axisymmetric oscillations in an accretion disc
threaded by a uniform vertical magnetic field in Sections 5.1 and 5.2,
and calculations of critical magnetic field strengths both without and
with the coupling of vertical modes provided by radial scale height
variation in Sections 5.3 and 5.4 (respectively).

In this section, we also seek to validate the use of an unstrat-
ified, cylindrical model to study the behaviour of trapped inertial
waves and other global oscillations. The ansatz of an exponential
dependence δ(r, z) ∝ δ̃(r) exp[ikzz] relies on the assumption that
the background flow’s scale of vertical variation is much larger
than that of the perturbations. Cylindrical models may then be un-
derstood to target phenomena taking place at the midplane of the
disc. For this approach to be valid, we must find a correspondence
between r-modes calculated with both the cylindrical model, and
a fully general treatment. In particular, we must identify an ap-
propriate vertical wavenumber. The choice of kz greatly influences
cylindrical r-modes’ response to increasing vertical magnetic field
strength (see Section 4), but, as discussed in Section 2, is made

unclear by the non-separability introduced by such a field. In Sec-
tions 5.3.3 and 5.4.2, we present calculations demonstrating a clear
correspondence both without and with (respectively) the inclusion
of radial scale height variation.

The importance of vertical density stratification has been rec-
ognized by Kato (2017), who noted that the Alfvén speed asso-
ciated with a purely constant vertical magnetic field would have
a much steeper vertical than horizontal gradient in an isothermal
disc. Kato (2017) also considered a vertically stratified, isothermal
accretion disc threaded by a purely constant vertical magnetic field,
but used radially local analyses, and asymptotic expansions with
MAz = VAz/cs as a small parameter. Further, the author used the
argument of a rarified corona to impose a rigid lid. Here, we instead
present fully global calculations made without explicit restrictions
on the magnetic field strength, and relax this imposition of vertical
disc truncation.

5.1 Stratified equations: a change of variables

Since our cylindrical analyses suggest that both azimuthal magnetic
fields and radial variation in ρ and B have very little effect on the
trapped inertial modes, we consider a purely constant B = Bz ẑ and
set p = q = σ = 0. Thus, the density profile is radially constant:
ρ = ρ00g(η), where η(r, z) ≡ z/H(r) is a new vertical coordinate,
and g = exp [ − η2/2] is the Gaussian density profile associated
with an isothermal disc.

In addition to this change of coordinate, we modify equations
(14)–(20) with a change of dependent variable. In the case of a
purely constant B = Bz ẑ, the perturbation to the Lorentz force
J × B is proportional to (∇ × b) × B, prompting the definition

L ≡ Bz

[
1

H

∂br

∂η
−

(
∂

∂r
+ ∂η

∂r

∂

∂η

)
bz

]
r̂ + Bz

H

∂bφ

∂η
φ̂. (31)

Eliminating bφ and bz in favour of L’s r and φ components, Lr

and Lφ , and trading the enthalpy perturbation h = c2
s δρ/ρ for the

non-dimensional � = δρ/ρ for convenience, equations (14)–(20)
can be re-written as

− iωvr = 2�vφ − c2
s

(
∂

∂r
− d ln H

dr
η

∂

∂η

)
� + Lr

μ0ρ
, (32)

− iωvφ = − κ2

2�
vr + Lφ

μ0ρ
, (33)

− iωvz = − c2
s

H

∂�

∂η
, (34)

− iω� = −Lrvr + d ln H

dr

η

g

∂(gvr )

∂η
− 1

gH

∂(gvz)

∂η
, (35)

− iωbr = Bz

H

∂vr

∂η
, (36)

iωLr = B2
z

{
Lrr−LHHη

∂

∂η
+

[
1

H2
+

(
d ln H

dr

)2

η2

]
∂2

∂η2

}
vr,

(37)

− iωLφ = B2
z

H2

∂2vφ

∂η2
+ Bz

H

d�

d ln r

∂br

∂η
, (38)
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where we have defined the differential operators

Lr ≡ ∂

∂r
+ 1

r
, (39)

Lrr ≡ ∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
, (40)

LHH ≡ d ln H

dr

(
2

∂

∂r
+ 1

r
− 2

d ln H

dr

)
+ 1

H

d2H

dr2
. (41)

5.2 Boundary conditions and series expansions

In this section, we describe the series expansions and numerical
method utilized in solving equations (32)–(38). Readers interested
only in the results of our calculations may skip to Sections 5.3
and 5.4. For numerical efficiency we follow Okazaki et al. (1987)
and Ogilvie (2008) in making the ansatz that for a given perturbation
δ(r, η), we can write

δ(r, η) =
∞∑
n

δn(r)Bn(η), (42)

where {Bn} is a set of orthogonal basis functions satisfying the
boundary conditions imposed on δ(r, η) as η → ±∞. Finding
the exact solution would require solving for an infinite number
of radially variable coefficients δn(r), but we find that with the
appropriate choice of Bn, truncating the series expansions at a finite
n = M can produce excellent approximations to the eigenvalues ω.

In the hydrodynamic case, Okazaki et al. (1987) showed that
the fluid variables v and h are well described by modified Hermite
polynomials Hen of order n. However, in the MHD problem, the r
and φ components of the induction equation imply that velocities
increasing polynomially with η would result in an unbounded bend-
ing of the field lines high above the disc. Although bending may
in reality occur for large-scale poloidal field loops with footpoints
in the outer disc, our focus on the inner radii of the black hole
accretion disc prompts us to impose the condition that the mag-
netic field lines become purely vertical at large η. This implies that
br , bφ, ∂zvr , ∂zvφ → 0 as |η| → ∞. A more appropriate choice,
then, is to expand vr, vφ and � as

vr (r, η) =
∞∑

n=1

un(r)Fn(η), (43)

vφ(r, η) =
∞∑

n=1

vn(r)Fn(η), (44)

�(r, η) =
∞∑

n=1

�n(r)Fn(η), (45)

where un, vn, and �n are functions to be determined. The basis
functions Fn(η) are solutions to the equation

d2F

dη2
+ K2gF = 0, (46)

where K is a constant, dimensionless eigenvalue. Subject to the
boundary condition that ∂ηF → 0 as η → ∞ this equation (de-
rived by Gammie & Balbus 1994; Ogilvie 1998; Latter, Fromang &
Gressel 2010) is in Sturm–Liouville form, with guaranteed discrete
sets {Fn} and {Kn} (written as {KnH} in Latter et al. 2010). The Fn

describe the horizontal velocity components of MRI channel modes
in the local, anelastic approximation, and are related to another set

of basis functions, {Gn(η)}, by

dFn

dη
= KnGn. (47)

Both sets of functions (cf. Fig. A1 and fig. 1 in Latter et al. 2010)
are orthogonal, and can be normalized such that∫ ∞

−∞
gFnFm dη = δnm, (48)

∫ ∞

−∞
GnGm dη = δnm. (49)

The functions {Gn} provide an appropriate basis set for the radial
magnetic field perturbation, which we expand as

br (r, η) =
∞∑

n=1

bn
r (r)Gn(η). (50)

For the Lorentz force perturbation, we appeal to the models of
Gammie & Balbus (1994) and Sano & Miyama (1999), who as-
sumed that far from the disc the magnetic field goes to a force free
configuration, such that L → 0. Finally, for the vertical velocity
perturbation, we note that the assumption that � goes to a constant
implies that vz → 0 as η → ±∞ as well. In theory, then, vz, Lr, and
Lφ can be expanded in any set of orthogonal basis functions that go
to zero at infinity, but we find the fastest convergence for

vz(r, η) =
∞∑

n=1

wn(r)g1/4(η)Fn−1(η), (51)

Lr (r, η) =
∞∑

n=1

Ln
r (r)g(η)Fn(η), (52)

Lφ(r, η) =
∞∑

n=1

Ln
φ(r)g(η)Fn(η), (53)

where wn, Ln
r , and Ln

φ are functions to be determined.
It should be noted that G0 = 0, K0 = 0, and F0 is a constant. Since

F−1 is undefined, the expansion for vz must start from n = 1. For
the vertically structured inertial waves, the n = 0 basis functions do
not describe any of the other perturbations, and their exclusion has
no impact on the solutions.

The basis functions for vz and L are also orthogonal with the
weights g1/2 and g−1 (respectively). Substituting our expansions
into equations (32)–(38), we gain an infinite number of coupled
systems of seven equations, but this orthogonality allows us to
greatly reduce the dimensionality of our problem. First scaling r
and H by rg, frequencies by ωg, v and cs by rgωg = c, br by
Bz, and L by B2

z /rg , we multiply equations (32)–(38) by suitable
combinations of basis functions of arbitrary order m and integrate
over

∫ ∞
−∞ dη to gain (after swapping indices)

−iωun = 2�vn−c2
s

d�n

dr
+c2

s

d ln H

dr

∞∑
m=1

νnm�m+M2
Azc

2
s L

n
r , (54)

− iωvn = − κ2

2�
un + M2

Azc
2
s L

n
φ, (55)

− iωwn = − c2
s

H

∞∑
m=1

θnm�m, (56)

− iω�n = −Lrun − d ln H

dr

∞∑
m=1

λnmum + 1

H

∞∑
m=1

αnmwm, (57)
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− iωbn
r = Kn

H
un, (58)

−iω
∞∑

m=1

γnm

K2
m

Lm
r = Lrrun

−
∞∑

m=1

[
νnmLHH + 1

H 2
γnm +

(
d ln H

dr

)2

μnm

]
um, (59)

− iωLn
φ = −K2

n

H2
vn − Kn

H

d�

d ln r
bn

r , (60)

where the coefficients θnm, αnm, γ nm, λnm, νnm, and μnm are defined
by finite integrals involving various combinations of η, g, Fn, Fm,
Gn, and Gm (see Appendix A1). These coupling coefficients connect
the equation sets of different orders, and thus illustrate the non-
separability of the problem, though as we shall see the coupling is
relatively weak. A given set of equations of nth order couples to
other sets of equations with orders n + 2, n + 4, . . . of the same
parity, but the integrals quickly go to zero away from n ≈ m. This
suggests that we may lose little in accuracy by truncating the series
in equations (54)–(60) at a relatively small m = M. A danger with
this numerical method is that inappropriately chosen basis functions
can lead to unconverged solutions. In general, however, we find
that with these basis expansions, calculating a converged trapped
inertial mode of a given vertical order n only requires extending
the series expansion to M ≥ n + 4. With truncation at larger M,
energetic contributions to the solution from coefficients of higher
order are negligible, as are changes in frequency (further discussion
in Appendix A2).

Discretizing our radial domain on a Gauss–Lobatto grid with
N gridpoints, equations (54)–(60) can once again be written as a
generalized eigenvalue problem AU = ωBU , where B now car-
ries the coupling coefficients γ nm in addition to encoding the
boundary conditions, of which we require two for each order
n included in the truncated series. The solution takes the form
U = (U1, U2, . . . , UM )T with nth order radial coefficients Un =
(un, vn,wn, hn, bn

r , Ln
r , Ln

φ)T . We find that 10 grid points per rg

are sufficient to resolve the least radially complicated fundamental
r-mode of physical interest.

Once the truncated series of coupled eigenvalue problems has
been solved, the fully global, (r, η)-dependent fields can be recon-
structed for each perturbation variable δ(r, η) with the summations∑M

n δn(r)Bn(η). In the following sections, we present fully global
r-mode solutions calculated without (Section 5.3) and with (Sec-
tion 5.4) the coupling provided by radial scale height variation.
We use our calculations to find approximations to the critical mag-
netic field strengths at which r-modes require reflection at the inner
boundary for confinement, as well as a correspondence with, and kz

prescription for, the cylindrical model presented in Section 4.

5.3 Global r-modes in a flat disc

In this section, we make the simplifying approximation that the
scale height of the disc is purely constant: H = cs/�z(rISCO). This
is motivated by the relative proximity of the trapping region to
the inner edge of the disc and H’s weak radial variation within
this region. With this approximation ∂r ln H = 0 and LHH = 0, so
the couplings involving the coefficients λnm, νnm, and μnm drop out.
The absence of a vertical resonance again makes the outer boundary
condition irrelevant, since the r-modes should be evanescent at rout

as long as it is placed beyond the outer turning point.

5.3.1 The global r-mode spectrum

Solving equations (54)–(60) with series truncation at a vertical
order n = M produces M sets of global trapped inertial modes.
Each set consists of modes with similar vertical structure but dif-
fering radial structure. As with our cylindrical calculations, we
order the members of each set according to the number of ra-
dial nodes in vr, e.g. l = 0, 1, 2, . . . . The members of each set
are dominated by a single component Uk of order n = k, testi-
fying to the weak separability of the problem. As a consequence,
all the members of that set express a vertical profile closely re-
sembling Bk , and for that reason we assign a quantum number
(or vertical order) ‘k’ to the set of modes dominated by the kth
order radial coefficients. There are hence two numbers denoting
modes: l and k, representing their radial and vertical quantization,
respectively.

For example, Fig. 5 shows a representative fundamental r-mode.
The (r, η) heat maps show the full solution U(r, η), and alongside
them we plot the radial profiles of the various coefficients Un(r) that
constitute the full solution. As is clear from the latter, the mode is
completely dominated by the n = 1 component. We hence assign the
vertical quantum number k = 1 to this mode, and its radial structure
tells us that l = 0. In addition, Fig. 6 shows the (exaggerated) effect
of the mode on the background magnetic field lines, close to the
trapping region.

To illustrate the structure of the oscillations within the disc, the
component of the linearized momentum perturbation pr = ρ00gvr

is shown for similarly calculated modes with l = 0, 1, 2 radial and
k = 1, 2, 3 vertical structures in Fig. 7. In the weakly magnetized
case with small MAz, the r-modes possessing the same radial node
structure but dominated by different n have nearly the same fre-
quencies. With increasing magnetic field strength, however, these
groups of solutions separate in both the frequency and physical
domains. As foreshadowed by the dependence on kz observed in
our cylindrical calculations, we find that the more vertically com-
plicated modes with larger quantum number k are more strongly
affected by the vertical magnetic field. This can be seen in the radial
momentum fields shown in Fig. 7. The k = 2 modes (middle row)
have been forced further inwards by the background magnetic field
(β = 1250) than the k = 1 modes (top row), and the k = 3 modes (bot-
tom row) even further. Additionally, with more complicated vertical
structure, increases in Re[ω] are larger for modes of a given radial
structure.

As mentioned, the radially and vertically fundamental mode
(Fig. 5, top left in Fig. 7) is the least likely to be dis-
rupted and most likely to cause an observable luminosity vari-
ation, so we focus on its response to the vertical magnetic
field.

5.3.2 Critical magnetic field strengths

We seek a convenient metric for evaluating the critical magnetic
field strength at which trapped inertial mode confinement be-
comes dependent on conditions at the inner boundary. At low
magnetic field strengths and sound speeds the frequencies mea-
sured (Fig. 8) are extremely insensitive to the boundary condi-
tions imposed at rin and rout, agreeing to the precision allowed by
our numerical method. However, for sufficiently strong magnetic
fields, the frequencies do become dependent on the inner boundary,
with different boundary conditions producing different frequen-
cies (Fig. 9). We identify the point at which this happens as one
(conservative) measure of the critical magnetic field strength for
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Figure 5. Left: Real parts of the radially variable coefficients [un, vn, wn, �n, b
n
r , Ln

r , L
n
φ ](r) for the radially and vertically fundamental (l = 0, k = 1) trapped

inertial mode calculated with cs = 0.003c, a = 0, r/rg ∈ [6, 20], N = 200, M = 7, and midplane MAz = 0.04 (β ≈ 1250). Right: Heatmaps of the fully
reconstructed solutions Re[vr, vφ , vz, �, br, Lr, Lφ ](r, η). The induction equation has been used to find the fields for bφ(r, η) (bottom left) and bz(r, η) (bottom
right). Note that the magnetic field and Lorentz force perturbations are proportionately larger in magnitude because they are scaled by much smaller quantities
than the velocity perturbations, which are scaled by the speed of light.

r-mode independence from the ISCO. As a point of comparison,
we have also considered the first derivatives of the radial velocity
for modes calculated with rigid boundary conditions. The magnetic
field strength at which these derivatives become non-zero at the

inner boundary provides a very similar, slightly more stringent
measure.

Fig. 10 shows estimates of the critical magnetic field strengths
attained with the former metric. We plot the field strengths at
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Figure 6. Magnetic field geometry in the r − z plane, close to the trapping
region for the l = 0, k = 1 r-mode shown in Fig. 5. Magnetic field lines are
plotted as evenly spaced contours of the poloidal magnetic flux function.
Given the axisymmetry of the field, this can be calculated as �(r, z) =∫

r(Abz + Bz) dr , where the amplifying factor A = 1/ max[bz] normalizes
the linear perturbation (which is already scaled by Bz) so as to make its effect
discernible.

which the percentage difference between frequencies calculated
with different boundary conditions reaches 0.01 per cent (i.e. when
100 × (ωV − ωB)/ωB reaches 10−2, where ωV and ωB are the
frequencies calculated with the boundary conditions vr = 0 and
∂rbr = 0, respectively). Fig. 10 illustrates the inverse relationship
between disc temperature and r-mode resilience to vertical mag-
netic fields. This is to be expected, since trapped inertial modes
are less well-confined in hotter, thicker discs even without mag-
netic fields (Ferreira & Ogilvie 2008). For sound speeds ranging
from cs = 0.001c to cs = 0.01c, we find critical midplane Alfvénic
Mach numbers of MAz ∼ 0.14−0.06 (β ∼ 100–550). We stress,

however, that these values arise from the rather stringent condition
that the frequencies ωV and ωB differ by one-hundredth of a percent,
a somewhat arbitrary value. If we allow frequency discrepancies as
large as 0.1 per cent the critical Mach numbers rises to values above
0.1, and β values lower than 100.

The only other free parameter, the spin of the black hole, has
a weaker effect on the critical field strengths. Larger values of
the parameter a allow r-modes to remain independent of the inner
boundary in the presence of marginally stronger magnetic fields,
and result in slightly steeper increases in frequency with MAz.

5.3.3 Cylindrical correspondence

In calculating trapped inertial modes in both cylindrical and strat-
ified disc models, it is natural to ask how solutions found in the
two regimes relate to one another. Latter, Fromang & Faure (2015)
showed that local MRI channel modes calculated in the shearing
box correspond to sections in the evanescent regions of much larger,
radially global MRI modes. We consider an analogous relationship
between r-modes in MHD discs with and without vertical density
stratification.

With respect to an appropriate choice of vertical wavenumber, Fu
& Lai (2009) adopted the relationship kz ∼ √

ε/H, with ε being
of order unity. We find that in general this relationship holds both
with and without the inclusion of radial variation in H. However,
we go further, finding a precise value for the proportionality

√
ε.

The rapidity of the convergence we find with our expansion in the
basis functions Fn and Gn suggests the following identification, for
kz in units of r−1

g :

kz = Kn

H
. (61)

In particular we choose kz = K1/H ≈ 1.16/H to follow our interest
in the vertically fundamental, k = 1 r-mode (cf. Fig. A1 and fig. 1
in Latter et al. 2010).

Figure 7. Real parts of the radial momentum perturbation pr = ρ00gvr for trapped inertial waves with radial quantum numbers l = 0, 1, 2 (from left to right)
and vertical orders k = 1, 2, 3 (from top to bottom), calculated as in Fig. 5. The black dashed line indicates Rκ , while the white dashed lines mark z = ±H and
z = ±2H.
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Figure 8. Frequencies for the fundamental l = 0, k = 1 r-mode, calculated
using a purely constant scale height (and the boundary condition ∂r br = 0),
with varying cs and midplane MAz, for a = 0 (circles), a = 0.5 (triangles),
and a = 0.8 (stars). Sound speed is indicated with the same colour-map used
in Fig. 9, black corresponding to cs = 0.001c and yellow to cs = 0.01c (r ∈
[rISCO, rISCO + 14rg], N = 300, M = 7).

Figure 9. Heatmap of percent differences between frequencies calculated
as in Fig. 8, using the boundary conditions vr = 0 (ωV) and ∂r br = 0, (ωB),
with varying sound speeds and magnetic field strengths (a = 0).

Figure 10. Critical Alfvénic Mach number MAc found from the constant
scale height mode calculations presented in Fig. 8 by considering the percent
variations in frequency between modes calculated with the inner boundary
conditions vr = 0 and ∂r br = 0 (see Fig. 9).

Figure 11. Percent differences between frequencies (top) and radii of max-
imal vr (bottom) calculated for fully global r-modes with a purely constant
scale height (Figs 8 and 10) and cylindrical r-modes calculated with the same
spin (a = 0), sound speeds and magnetic field strengths, and kz = K1/H
(here � indicates the difference between quantities calculated using the two
models). Marginally closer relationships were found for larger values of a.

With this prescription, the frequencies for cylindrical modes
closely follow those of fully global modes. Fig. 11(top) shows
the percent difference between frequencies calculated for stratified
r-modes and cylindrical r-modes with kz = K1/H, at sound speeds
cs = 0.001–0.01c, and a = 0 (similar results are obtained for a = 0.5,
0.8). In all cases, the frequencies differ by less than 0.5 per cent, but
the deviation increases from 0.01−0.03 per cent to 0.1−0.3 per cent
for larger sound speeds. For comparison, frequencies calculated
with the prescription kz = 1/H give percent differences as large
as 1−10 per cent, increasing with larger magnetic field strengths.
Fig. 11(bottom) shows the percent differences between measure-
ments of the radius of maximal vr, rmax, between cylindrical and
stratified calculations, which are also less than 1 per cent.

The close agreement between frequencies and localization
found through fully global and unstratified calculations made with
kz = K1/H suggests that the cylindrical model presented in Sec-
tion 4 can accurately describe the behaviours of fully global, MHD
r-modes. However, the correct choice of kz is essential to exploit
this property.

5.4 The effects of radial scale height variation

In this section, we include the radial variation of the isothermal scale
height H = cs/�z, and thus present fully global, self-consistent
calculations of MHD r-modes. We now must contend with non-
zero profiles for ∂r ln H and LHH , which in turn provide further
couplings in equations (54)–(60) through the coefficients νnm, λnm,
and μnm. The integrals defining these coefficients (see Appendix A1)
are larger than those defining θnm, αnm, and γ nm, but they couple
with the equations only in concert with factors that are �O(1/r),
and we find that their inclusion has little effect on the r-modes.
The largest effect comes from radial variation in the coefficients
involving H−1, which exacerbates the impact of the background
magnetic field. However, the extent of this exacerbation is likely
exaggerated by our simplifying assumption of a globally constant
sound speed.

MNRAS 476, 4085–4103 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/4085/4858398
by University of Cambridge user
on 08 May 2018



4098 J. W. Dewberry, H. N. Latter and G. I. Ogilvie

Figure 12. Real parts of the radial momentum perturbation pr = ρ00gvr (interpolated from r, η to r, z coordinates) for trapped inertial waves with radial
quantum numbers l = 0, 1, 2 (from left to right) and vertical orders k = 1, 2, 3 (from top to bottom), calculated with cs = 0.001c, a = 0, r/rg ∈ [6, 20], N = 300,
M = 7, midplane MAz = 0.04 (β ≈ 1250) and a radially variable scale height. The black dashed line indicates Rκ , while the white dashed lines mark z = ±H
and z = ±2H.

Introducing radial variation in disc thickness also complicates
our choice of boundary conditions, this time at rout. In hydrody-
namic disc models, a vertical resonance occurs at the radius where
ω2 = n�2

z (Ferreira & Ogilvie 2008), beyond which lies the prop-
agation region for p-modes with frequency ω. Fu & Lai (2009)
identified the analogous radius for an unstratified disc threaded by
a purely constant vertical field as that where ω2 = k2

z c
2
s . Given the

correspondence found in Section 5.3.3, we place our outer bound-
ary beyond the radius at which ω2 = K2

1 �2
z and implement a wave

propagation boundary to allow for ‘tunnelling’ of r-modes to the
outer regions of the disc. At rout, we require ∀n that ∂run = ikrun,

with kr determined using kz = K1/H(rout) and a frequency calcu-
lated for an r-mode using the modified cylindrical model described
in Section 5.4.2. The frequencies calculated for these modes are
then complex. However, we find that, as observed by Ferreira &
Ogilvie (2008) in their hydrodynamic calculations (cf. their table 1),
the decay rates are negligible for the range of sound speeds consid-
ered here.

5.4.1 Eigenmodes and critical field strengths when H = H(r)

The discrete spectrum of global r-modes calculated with the fully
self-consistent inclusion of radial scale height variation is similar to
that found with the approximation of a purely constant H. Truncating
our series expansions at vertical order n = M results in M sets of
r-modes, each with their own discrete spectrum of radial quantum
numbers l. Qualitatively, the response of the r-modes to increasing
background magnetic field strength is the same as that observed with
a purely constant H. Once again solutions dominated by coefficients
of larger vertical order n = k are pushed further towards the ISCO
by a given increase in Bz (Fig. 12), and increases in frequency are
comparable (Fig. 13).

However, the critical field strengths at which frequencies diverge
for modes calculated with the boundary conditions vr = 0 and
∂rbr = 0 at rin are lower by nearly a factor of 2 (Fig. 14). This

Figure 13. Frequencies for the fully general fundamental r-modes, calcu-
lated as in Fig. 8 but with the inclusion of radial scale height variation, as
a function of Alfvénic Mach number, sound speed (colour-scale goes from
black for cs = 0.0005c to yellow for cs = 0.004c), and black hole spin
parameter a.

arises through the dependence on disc thickness discussed in Sec-
tion 5.3. For a given sound speed, the r-modes observe a thicker
disc at the trapping region with scale height variation than without.
Alternatively, one might look to equation (2). For the prescription
kz ∝ H−1, the contribution to the restoring force provided by the
Alfvén frequency kzVAz increases as the mode is forced inwards by
the vertical magnetic field.

The estimates of critical magnetic field strengths obtained in
this section are likely exaggerated by the assumption of global
isothermality, though, which results in more rapid flaring of the
disc than might be found with more realistic temperature profiles.
As mentioned in Section 3, however, radial temperature gradients
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Figure 14. Critical Alfvénic Mach number MAc found from the variable
scale height mode calculations presented in Fig. 13 by considering the
percent variations in frequency between modes calculated with the inner
boundary conditions vr = 0 and ∂r br = 0.

significantly complicate the equilibrium flow, and we do not con-
sider them here.

5.4.2 Cylindrical correspondence when H = H (r)

Fully global trapped inertial modes calculated with the inclusion of
radial scale-height variation do not show a direct correspondence
with r-modes calculated in the cylindrical model as presented in Sec-
tion 4, due to the assumption of a purely constant vertical wavenum-
ber kz associated with the latter. Suppose now that kz = kz(r). For
perturbations δ with the dependence δ(r, z) ∝ δ̃(r) exp[ikz(r)z], we
then have

∂δ

∂r
= eikzz

(
dδ̃

dr
+ iz

dkz

dr
δ̃

)
. (62)

The dependence on z of the second term on the right-hand side
eliminates the advantage of separability for which one might as-
sume a plane wave dependence in the first place. However, if in
our cylindrical calculations we retain radial variation in using the
prescription kz = K1/H(r) but assume that the scale height H varies
slowly enough for dkz/dr to be negligible, we find that the coupling
of vertical modes is weak enough that the correspondence is still
very close, although not as precise as that presented in Section 5.3.3.

As in Fig. 11, Fig. 15 shows the percent difference between fre-
quencies calculated with increasing magnetic field strengths and
varying sound speeds cs/c = 0.0005–0.004 for stratified modes
and cylindrical modes calculated with the kz = K1/H(r). Again the
percent changes in frequency are less than 1 per cent, and percent
changes in radii of maximal radial velocity less than 2 per cent, but
the former increase more rapidly with sound speed than with the ap-
proximation of a purely constant scale height. This is perhaps due to
the increasing relevance of the radial derivative ignored in equation
(62). In terms of the scaled coordinate η, this prescription for the
vertical wavenumber of a perturbation δ(r, η) might alternatively be
written as δ(r, η) = δ̃(r) exp[iK1η], yielding

∂δ

∂r
= eiK1η

(
dδ̃

dr
− iK1η

d ln H

dr
δ̃

)
. (63)

In implementing this prescription for a radially variable kz(r) in our
cylindrical, unstratified model, then, we are omitting the coupling of
vertical modes that is included self-consistently in our fully global

Figure 15. Percent differences between frequencies (top) and radii of max-
imal vr (bottom) calculated for fully global r-modes with a radially vari-
able scale height (Figs 13 and 14) and cylindrical r-modes calculated with
the same spin (a = 0), sound speeds and magnetic field strengths, and
kz(r) = K1/H(r) (a similar wave propagation boundary condition to that
described in Section 5.4 was used for the cylindrical modes).

calculations, and this omission becomes more relevant in hotter,
thicker discs.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have reconsidered the effects of poloidal and toroidal magnetic
fields on trapped inertial waves in magnetised relativistic accretion
discs by undertaking cylindrical and fully global linear eigenvalue
calculations. Our work expands on and more thoroughly investigates
a prediction made by local analyses (Fu & Lai 2009): that a purely
constant, vertical magnetic field forces r-modes inward, possibly
removing their independence from the inner edge of the disc.

We have verified that poloidal magnetic fields do force r-modes
to migrate inwards, and established more realistic estimates for
the critical magnetic field strength at which the modes are pushed
up against the inner disc edge. However, we find that at lower
temperatures MHD inertial modes can remain independent from the
inner boundary, even in the presence of relatively strong magnetic
fields; the cooler and thinner the disc, the less susceptible the modes
are to the fields. We also find that r-mode frequencies can nearly
double because of the magnetic field (see Figs 8 and 13). This
frequency enhancement should be kept in mind when using QPOs
to estimate properties of the black hole-disc system.

Normal modes calculated with a cylindrical model confirm that
an azimuthal field of even equipartition strength has little effect
on r-mode frequencies or localizations. Radial gradients in mag-
netic fields or density, for reasonable power-law indices, also have
negligible effects. Finally, we have shown that with an appropriate
choice of vertical wavenumber, trapped inertial modes calculated
in a simplified cylindrical framework (ideal for global non-linear
simulations) closely reproduce the frequencies and localizations of
fully global r-modes (to within 1 per cent).

For an inner accretion disc temperature of ∼1 keV, isothermal
sound speed estimates of

cs =
√

kBT

μmp

≈ 0.001c (64)
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lead to the survival of the r-mode trapping region in the presence of
vertical magnetic fields with midplane Alfvénic Mach numbers less
than MAz ≈ 0.08−0.14 (see Fig 10 and 14). It should be empha-
sized that these critical field strengths should be regarded as lower
bounds, given the stringency of the criterion used to find them.
Moreover, a loss of isolation from the inner boundary need not pre-
clude the existence of trapped inertial waves, given the possibility of
wave reflection by steep density gradients or other features. All one
can say is that r-modes that are forced up against the ISCO require
greater excitation to counteract enhanced energy losses through the
inner boundary.

We note that beyond assuming an isothermal equation of state, we
have applied other simplifications to our model, in order to more
feasibly investigate r-mode propagation in a fully global, MHD
context. One such simplification is the omission of a background
radial inflow, which intensifies near the ISCO. Ferreira (2010) con-
sidered the effects of radial inflow on trapped inertial modes, and
found that decay rates were amplified by the presence of a tran-
sonic accretion flow in a viscous disc model. However, the author
found that the severity of the damping depends on the location of
the sonic point, a location rsonic < rISCO still allowing r-mode ex-
citation by warps and eccentricities in a hydrodynamic disc. The
movement of the trapping region towards the inner boundary by a
poloidal magnetic field would make damping by radial inflow more
likely, but not a certainty for sonic points far enough within the
ISCO.

Additionally, although the range of sound speeds considered
is motivated by observations, radiation pressure is expected to
play a large role in the black hole accretion discs associated with
X-ray binaries in the emission states in which HFQPOs are primarily
observed. The thickening of the disc associated with this radiation
pressure might nullify the increase in critical magnetic field strength
we have observed for discs with lower sound speeds, although the
inclusion of radiative transfer may modify the dynamics in other
ways.

We have also excluded the impact of radial magnetic fields, which
some have suggested might counteract the disruptive effects of a
purely vertical one (Ortega-Rodriguez et al. 2015), as might disc
truncation above and below by a hot corona (Kato 2017). Further, we
have considered only the effects of large-scale, ordered magnetic
fields, for which midplane plasma betas of β � 500 are actually
rather strong. Although the MRI may saturate near equipartition on
small scales, the net flux associated with large-scale poloidal fields
with the strengths considered here strongly affects MHD turbulence
and outflows in accretion disc simulations (e.g. Lesur, Ferreira &
Ogilvie 2013; Bai & Stone 2014; Salvesen et al. 2016).

Our final take away point is the following. The appearance or not
of trapped inertial waves in observations may be determined more by
a competition between excitation by disc deformations, and damp-
ing by radial inflow and wave leakage, rather than the effect of a
large-scale magnetic field on the self-trapping region alone. Mod-
els and non-linear simulations including more complicated flow
dynamics, thermodynamics, and magnetic field configurations will
certainly shed more light on the issue and form the basis for future
work.
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A P P E N D I X A : N U M E R I C A L M E T H O D F O R
S T R AT I F I E D C A L C U L AT I O N S

A1 Coupling coefficients

Substituting the series expansions discussed in Section 5.2 in equa-
tions (32)–(38), multiplying by suitable combinations of basis func-
tions Fn and Gn (see Fig. A1) of arbitrary order and integrating over∫ ∞

−∞ dη, the orthogonality relations (48)–(49) allow for the elimi-
nation of many of the infinite sums. This projection on to a given
vertical order n is marred only by sums over the other vertical orders
m that involve the coupling integrals

θnm = Km

∫ ∞

−∞
g3/4Fn−1Gm dη, (A1)

λnm =
∫ ∞

−∞
gFm (Fn + ηKnGn) dη, (A2)
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Figure A1. The n = 1, 2, 3, 4, 5 basis functions Gn (top) and Fn (bottom), normalized such that
∫ ∞

−∞ GnGm dη = δnm and
∫ ∞

−∞ gFnFm dη = δnm. The latter
are found from the former, which are calculated using pseudo-spectral methods utilizing Whittaker cardinal functions (compare with fig. 1 in Latter et al. 2010).

αnm = Kn

∫ ∞

−∞
g5/4Fm−1Gn dη, (A3)

γnm = K2
m

∫ ∞

−∞
g2FnFm dη, (A4)

νnm = Km

∫ ∞

−∞
ηgFnGm dη, (A5)

μnm = K2
m

∫ ∞

−∞
η2g2FnFm dη. (A6)

These integrals are evaluated by first calculating the basis functions
Fn, Gn and eigenvalues Kn, then integrating numerically over the
range of η within which the normalized integrands are >10−4. The
numerical values for the integrals computed with n, m ∈ [1, 30] are
shown in the heatmaps in Fig. A2. For small n, the integrals go to
zero very quickly with increasing m, such that the couplings are very
weak for equations with very different vertical order. Additionally,
the heatmaps in Fig. A2 illustrate the symmetry in equations (32)–
(38) ensuring that mode couplings are restricted to either even or
odd parity.

A2 Numerical convergence

To check for convergence with increasing series truncation order
M, we track both the normal mode frequencies and the relative
energetic contributions from each Un to the full solution U . For
|f|2 = ff∗, we quantify the latter through norms defined for each
variable, at each vertical order n, as

vr :
∫ ∞

−∞

∫ rout

rin

ρ00g|unFn|2 dr dη, (A7)

vφ :
∫ ∞

−∞

∫ rout

rin

ρ00g|vnFn|2 dr dη, (A8)

vz :
∫ ∞

−∞

∫ rout

rin

ρ00g|wng
1/4Fn−1|2 dr dη, (A9)

� :
∫ ∞

−∞

∫ rout

rin

|c2
s �nFn|2 drdη, (A10)

br :
∫ ∞

−∞

∫ rout

rin

|bn
r Gn|2 drdη, (A11)

Lr :
∫ ∞

−∞

∫ rout

rin

|Ln
r gFn|2 drdη, (A12)

Lφ :
∫ ∞

−∞

∫ rout

rin

|Ln
φgFn|2 drdη. (A13)

With the expansions discussed in Section 5.2, the energetic con-
tributions from the non-dominant n are at least two orders of mag-
nitude smaller than that from the dominant n, and quickly fall off
with increasing series truncation to values smaller than the error in-
troduced by our Chebyshev collocation method. Beyond truncation
at M = 5, changes in frequency for the fundamental k = 1 r-mode
are less than 10−4 per cent, and continue to fall with increasing M.
Frequencies found with increasing M and MAz are shown for in
Tables A1 and A2 for constant and variable scale height calcula-
tions (respectively). Like Table A2, Table A3 shows frequencies
calculated with variable H(r) but with the coupling provided by the
radial derivatives of H excluded.

It should be noted that we have more trouble resolving the co-
efficients Un and frequencies at lower magnetic field strengths
(MAz � 0.04), when larger sound speeds (cs � 0.007c for con-
stant H and cs � 0.003c for variable H) are used. Beyond the largest
values of cs considered in Sections 5.3 and 5.4 (0.01c and 0.004c, re-
spectively), these resolution issues extend throughout the full range
of magnetic field strengths considered. This indicates that the series
expansions given in Section 5.2 are less appropriate in thicker discs,
and highlights the importance of disc thinness to r-mode trapping
in magnetized contexts.
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Figure A2. Heatmaps showing the values computed numerically for the coupling integrals θnm, αnm, γ nm, λnm, νnm, and μnm. The heatmaps are saturated
because the amplitudes of the coupling integrals on the diagonal do not matter (i.e. the n = 1 equations clearly ought to couple very strongly with the m = 1
equations).

Table A1. Frequencies Re[ω]/ωg for the fundamental l = 0, k = 1 trapped inertial mode, calculated with a purely constant scale height and the boundary
condition ∂r br = 0, for varying magnetic field strength and series truncation order M (a = 0, cs = 0.001, r/rg ∈ [6, 20], N = 200).

MAz 0.02 0.04 0.06 0.08 0.1 0.12 0.14
∼β 5000 1250 556 312 200 139 102

M = 1 0.022 789 0.024 658 0.027 08 0.029 722 0.032 439 0.035 166 0.037 882
M = 3 0.022 791 0.024 66 0.027 082 0.029 726 0.032 443 0.035 17 0.037 886
M = 5 0.022 791 0.024 661 0.027 083 0.029 726 0.032 443 0.035 171 0.037 887
M = 7 0.022 791 0.024 661 0.027 083 0.029 727 0.032 444 0.035 172 0.037 887
M = 9 0.022 791 0.024 661 0.027 083 0.029 727 0.032 444 0.035 172 0.037 887
M = 11 0.022 791 0.024 661 0.027 084 0.029 727 0.032 444 0.035 172 0.037 887
M = 13 0.022 791 0.024 661 0.027 084 0.029 727 0.032 444 0.035 173 0.037 888
M = 15 0.022 791 0.024 661 0.027 084 0.029 727 0.032 444 0.035 173 0.037 888

Table A2. Frequencies Re[ω]/ωg for the fundamental l = 0, k = 1 trapped inertial mode, calculated with a variable scale height and the boundary condition
∂r br = 0, for varying magnetic field strength and series truncation order M (a = 0, cs = 0.001, r/rg ∈ [6, 20], N = 200).

MAz 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
∼β 5000 2222 1250 800 555 408 312 246

M = 1 0.022 342 0.022 768 0.023 375 0.024 174 0.025 184 0.026 431 0.027 975 0.029 662
M = 3 0.022 346 0.022 772 0.023 379 0.024 178 0.025 187 0.026 433 0.027 977 0.029 667
M = 5 0.022 347 0.022 773 0.023 379 0.024 178 0.025 188 0.026 434 0.027 977 0.029 668
M = 7 0.022 347 0.022 773 0.023 379 0.024 179 0.025 188 0.026 434 0.027 977 0.029 669
M = 9 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 434 0.027 978 0.029 669
M = 11 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 434 0.027 978 0.029 669
M = 13 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 434 0.027 978 0.029 67
M = 15 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 435 0.027 978 0.029 67
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Table A3. Frequencies Re[ω]/ωg for the fundamental l = 0, k = 1 trapped inertial mode, calculated as in Table A2, but with the coupling provided by the
radial derivatives of H excluded.

MAz 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
∼β 5000 2222 1250 800 555 408 312 246

M = 1 0.022 342 0.022 768 0.023 375 0.024 175 0.025 184 0.026 431 0.027 977 0.029 665
M = 3 0.022 346 0.022 772 0.023 379 0.024 178 0.025 188 0.026 434 0.027 978 0.029 671
M = 5 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 435 0.027 979 0.029 672
M = 7 0.022 347 0.022 773 0.023 38 0.024 179 0.025 188 0.026 435 0.027 979 0.029 672
M = 9 0.022 347 0.022 773 0.023 38 0.024 179 0.025 189 0.026 435 0.027 979 0.029 673
M = 11 0.022 347 0.022 773 0.023 38 0.024 179 0.025 189 0.026 435 0.027 979 0.029 673
M = 13 0.022 347 0.022 773 0.023 38 0.024 179 0.025 189 0.026 435 0.027 979 0.029 673
M = 15 0.022 347 0.022 773 0.023 38 0.024 179 0.025 189 0.026 435 0.027 979 0.029 673
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