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ABSTRACT 25 

The aim of this study was to examine the effects of sodium phosphate (SP) supplementation on 26 

physiological responses to submaximal exercise and 20 km cycling time-trial performance. Using a 27 

randomised, double-blind, crossover design, 20 endurance-trained male cyclists (age: 31 ± 6 years; 28 

height: 1.82 ± 0.07 m; body mass: 76.3 ± 7.0 kg; maximal oxygen uptake [V̇O2max]: 57.9 ± 5.5 mL·kg-29 

1·min-1) completed two supplementation trials separated by a 14-day washout period. The trials 30 

consisted of 10 minutes of cycling at 65% V̇O2max followed by a 20 km time-trial. Expired air was 31 

monitored throughout each trial for the evaluation of V̇O2, minute ventilation (V̇E), and respiratory 32 

exchange ratio (RER). Heart rate was monitored during each trial along with ratings of perceived 33 

exertion (RPE) and blood lactate concentration. For four days before each trial, participants ingested 50 34 

mg∙kg fat-free-mass-1·day-1 of either SP or placebo. There were no effects (p ≥ 0.05) of supplementation 35 

on physiological responses during cycling at 65% V̇O2max. There were also no effects of 36 

supplementation on time-trial performance (placebo: 32.8 ± 2.2 mins; SP: 32.8 ± 2.3 mins). 37 

Nevertheless, relative to placebo, SP increased V̇E (mean difference: 3.81 L·min-1; 95% likely range: 38 

0.16-7.46 L·min-1), RER (mean difference: 0.020; 95% likely range: 0.004-0.036), and RPE (mean 39 

difference: 0.39; 95% likely range: 0.04-0.73) during time-trials; as well as post time-trial blood lactate 40 

concentration (mean difference: 1.06 mmol·L-1; 95% likely range: 0.31-1.80 mmol·L-1). In conclusion, 41 

SP supplementation has no significant effects on submaximal physiological responses or 20 km time-42 

trial performance. 43 

 44 

Key Words: Ergogenic; endurance; serum phosphate; 2, 3-diphosphoglycerate  45 



- 3 - 
 

INTRODUCTION 46 

Sodium phosphate (SP) is a legal nutritional supplement that has been suggested to improve 47 

athletic performance (Currell et al., 2012). Several mechanisms have been proposed to explain this 48 

potential ergogenic effect, including an increase in resting erythrocyte 2, 3-diphosphoglycerate (2, 3-49 

DPG) concentration (promoting oxygen offloading at the muscle via a reduction in oxyhaemoglobin 50 

affinity) (Bremner et al., 2002; Cade et al., 1984), an enhancement of myocardial contractility (Kreider 51 

et al., 1992), an increase in extracellular hydrogen phosphate (HPO4
-) concentration (facilitating 52 

hydrogen ion buffering) (Buck et al., 2015; Kopec et al., 2016), and an increase in the activity of various 53 

oxidative enzymes, such as phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase 54 

(Buck et al., 2013).  55 

 56 

Given the above mechanisms, it has been hypothesised that SP supplementation may increase 57 

aerobic metabolism, and thus enhance endurance performance (Buck et al., 2013; Fukuda et al., 2010). 58 

In corroboration, despite one conflicting report (West et al., 2012), research into SP supplementation 59 

has consistently shown an increase in maximal oxygen uptake (V̇O2max) (Brewer et al., 2013; Cade et 60 

al., 1984; Czuba et al., 2009; Kreider et al., 1992; Kreider et al., 1990; Stewart et al., 1990). 61 

Nevertheless, research examining the effects of SP supplementation on endurance performance has 62 

produced conflicting results, with some studies reporting significant improvements (Folland et al., 63 

2008; Kreider et al., 1992), while others report no effect (Brewer et al., 2013, 2014; Buck et al., 2014; 64 

Kreider et al., 1990). It is also difficult to determine the effects of SP supplementation on physiological 65 

responses during endurance exercise, possibly because most investigations have evaluated those 66 

responses during self-paced time-trials or incremental tests rather than fixed-intensity bouts of exercise. 67 

As such, while some studies have shown a significant increase in oxygen uptake (V̇O2) following SP 68 

supplementation (Czuba et al., 2009; Kreider et al., 1990, 1992), others have observed no effect (Brewer 69 

et al., 2014; Folland et al., 2008). Similarly, some investigations have demonstrated a SP-induced 70 
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decrease in heart rate (Czuba et al., 2009), whereas others have reported no effect (Brewer et al., 2013, 71 

2014; Folland et al., 2008; Kreider et al., 1990, 1992; West et al., 2012).   72 

 73 

It is difficult to attribute the conflicting responses of SP supplementation to methodological 74 

differences between studies, since discrepant findings exist regardless of differences in dosing 75 

strategies, mode of exercise, or participant training status. Indeed, despite some differences in the 76 

duration of supplementation (typically 6 days) the dose range used in previous research is very small 77 

(3.3-4.0 g·day-1; Buck et al., 2013). Moreover, all studies into SP supplementation have used trained 78 

participants; though between-study differences in V̇O2max (50-75 mL·kg-1·min-1) support clear 79 

differences in levels of ability. The issue of training status is important since well-trained athletes have 80 

been shown to have already elevated resting erythrocyte 2, 3-DPG levels (Brodthagen et al., 1985), 81 

likely due to an adaptive training response (Mairbäurl, 2013). However, the suggestion that well-trained 82 

athletes may be less responsive to the potential ergogenic benefits of SP supplementation seems unlikely 83 

considering that previous research has demonstrated that SP can improve time-trial performance in 84 

those individuals (Folland et al., 2008; Kreider et al., 1992). 85 

 86 

The factor that explains most likely the discrepant findings regarding the effects of SP 87 

supplementation on endurance performance is statistical error associated with the use of small sample 88 

sizes (Button et al., 2013). Small sample sizes reduce the chances of finding a true effect as well as 89 

reducing the likelihood that a statistically significant finding reflects a real effect (Button et al., 2013). 90 

Indeed, of those studies that have investigated the effects of SP supplementation on endurance 91 

performance, the largest sample size was 13 (Buck et al., 2014), with most using sample sizes ≤ 10 92 

(Brewer et al., 2013, 2014; Folland et al., 2008; Kreider et al., 1990, 1992). The principal aim of this 93 

study was therefore to address the issue of sample size in order to examine the effects of SP 94 

supplementation on endurance (20 km cycling time-trial) performance. In addition, by examining the 95 

effects of SP supplementation on physiological responses during both fixed-intensity submaximal 96 
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cycling and time-trial performance, the study also aimed to provide insight into the potential 97 

mechanisms behind any ergogenic effect of SP supplementation. 98 

 99 

METHODS 100 

Participants 101 

Twenty endurance-trained (De Pauw et al., 2013) male cyclists and triathletes volunteered for 102 

the study, which was approved by St. Mary’s University Ethics Committee. Sample size calculations 103 

were performed based on the results of previous investigations into the effects of SP supplementation 104 

on endurance performance (Brewer et al., 2013, 2014; Buck et al., 2014; Folland et al., 2008; Kreider 105 

et al., 1990, 1992). Using the associated effect sizes, a power of 0.8, and a p value of 0.05, the analyses 106 

produced sample sizes ranging from 2 to 20,000. Given the practical limitations associated with 107 

recruiting trained participants, a sample size of 20 was chosen as it fell within the range determined 108 

from the calculations and was, with one exception (n = 13), at least double the sample size used in 109 

previous investigations. Before testing, participants received written and verbal instructions regarding 110 

the nature of the investigation and completed a training history questionnaire, which indicated that all 111 

had been actively involved in road cycling for at least one year. Time spent training each week was 112 

reported as 9.4 ± 3.9 hours. Before commencement of the study, all participants completed a health-113 

screening questionnaire and provided written informed consent. Means ± standard deviation for age, 114 

height, body mass, fat-free-mass (FFM), and V̇O2max of the participants were: 31 ± 6 years, 1.82 ± 0.07 115 

m, 76.3 ± 7.0 kg, 67.3 ± 6.3 kg, and 57.9 ± 5.5 mL·kg-1·min-1, respectively. Participants were instructed 116 

to maintain a consistent training volume throughout the study and to follow the same diet for 24 hours 117 

before all trials. Participants were also instructed to avoid food and drink for 1 hour before all trials and 118 

to abstain from caffeine, alcohol, and strenuous exercise for 24 hours before all trials. 119 

 120 

Experimental overview  121 
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Participants were required to complete one preliminary trial followed by two experimental 122 

trials. The preliminary trial was used to provide descriptive data and to determine the fixed-intensity 123 

submaximal cycling workloads employed during the first part of the experimental trials. The 124 

experimental trials were performed in a crossover, randomised, counterbalanced, and double-blinded 125 

manner, separated by 14 days to allow for the washout period of SP (Cade et al., 1984). In line with 126 

strategies used in previous research (Buck et al., 2013), for four consecutive days before each 127 

experimental trial, participants ingested 50 mg∙kg FFM-1∙day-1 of either tribasic SP dodecahydrate (Iron 128 

Power, Melbourne, Australia) or placebo (maltodextrin; My Protein, Manchester, United Kingdom). 129 

Daily amounts were divided into four equal doses, with each dose administered in an opaque gelatine 130 

capsule (My Protein, Manchester, United Kingdom). As in previous research (Brewer et al., 2013, 2014; 131 

Buck et al., 2014), doses were ingested at ~4 hour intervals with a meal and ~300 mL of water to prevent 132 

gastrointestinal discomfort. Exercise, other than the time trials, was performed on an 133 

electromagnetically-braked cycle ergometer (Lode Excalibur Sport, Lode BV, Groningen, The 134 

Netherlands). Time trials were performed on a racing bicycle (San Remo, Claud Butler, Brigg, United 135 

Kingdom) seated on a motor-braked turbo trainer (Tacx Genius, Aardenburg, the Netherlands). 136 

Ergometers of this type have previously been shown to have very good test-retest reliability for 20 km 137 

time-trial performance (Peiffer & Losco, 2011). The cycle ergometer and the racing bicycle were fitted 138 

with clipless pedals and the participants cycled using their own cycling shoes. Saddle height and 139 

handlebar position for each participant were determined during the preliminary trial to enable 140 

replication in subsequent trials. Prior to all trials equipment was calibrated in accordance with 141 

manufacturer instructions. 142 

 143 

Procedures 144 

Preliminary trial 145 

All trials were performed at the same time of day (± 2 hours) in an air-conditioned laboratory 146 

maintained at a temperature of 18°C. The preliminary trial began with the calculation of participant 147 
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FFM using air-displacement plethysmography (device for measuring volume changes within a body) 148 

(BOD-POD, Life Measurement Inc., Concord, CA, USA). Subsequently, participants performed an 149 

incremental exercise test which began at 120 W and increased by 20 W every 3 minutes. Participants 150 

were given 30 s during the first stage to achieve a comfortable cadence and were instructed to maintain 151 

this throughout the remainder of the incremental tests. Each stage was followed by 30 s of passive rest, 152 

during which 20 μL of capillary blood was obtained from the earlobe and analysed for blood lactate 153 

concentration using an automated analyser (Biosen C-Line, EKF Diagnostic, Barleben, Germany). The 154 

test was terminated when a blood lactate concentration ≥ 4 mmol∙L-1 was attained. After 5 minutes of 155 

passive rest, the maximal phase of the incremental exercise test began at 160 W and increased by 20 W 156 

every minute. The test was terminated when participants reached volitional exhaustion, at which time a 157 

final blood lactate concentration measurement was obtained. Throughout both phases of the incremental 158 

exercise test, participants breathed room air through a facemask (Hans Rudolph, Kansas City, MO, 159 

USA) that was secured in place by a head-cap assembly (Hans Rudolph, Kansas City, MO, USA). 160 

Expired air was monitored continuously using an online gas analyser (Oxycon Pro, Jaeger, Hoechberg, 161 

Germany). The analyser was calibrated before each trial using oxygen and carbon dioxide gases of 162 

known concentrations (Cryoservice, Worcester, UK), and the flowmeter was calibrated using a 3 L 163 

syringe (Viasys Healthcare GmbH, Hoechberg, Germany). All V̇O2 data were filtered to eliminate 164 

values that were outside four standard deviations of the local mean (the two breaths preceding and 165 

following the breath of interest). Oxygen demand for each of the submaximal incremental stages was 166 

determined as the average V̇O2 during the final 30 s of each 3-minute stage. V̇O2max was determined as 167 

the highest 30 s average V̇O2 recorded during the maximal phase of the test provided that at least two 168 

of the following criteria had been met: (a) a plateau in V̇O2, as determined by an increase of less than 2 169 

mL·kg-1·min-1 over the previous stage, (b) a heart rate within 10 b·min-1 of age-predicted maximum, (c) 170 

a respiratory exchange ratio (RER) ≥ 1.15, and (d) a blood lactate concentration ≥ 8 mmol·L-1. Linear 171 

regression and individual power output-V̇O2 relationships were used to calculate the fixed-intensity 172 

submaximal cycling workloads required to elicit 65% of V̇O2max, to be employed during the 173 

experimental trials. After a 10-minute recovery period, where participants cycled at a self-selected low 174 
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intensity, a familiarisation 20 km time-trial (same protocol as in the experimental trials) was performed 175 

to minimise any potential changes in performance due to learning. 176 

 177 

Experimental trials 178 

Prior to each experimental trial, participants rested in a seated position for 5 minutes, after 179 

which 300 μL of capillary blood was collected from the earlobe. Blood samples were left to clot at room 180 

temperature for 60 minutes before being centrifuged at 4000 rpm for 10 minutes at 4°C. Subsequently 181 

decanted serum samples were frozen at -80°C until analysed for serum phosphate concentration using 182 

an automated analyser (Monza, Randox, London, UK). Participants then performed 10 minutes of 183 

cycling at 65% of the power output required to elicit V̇O2max, maintaining the same cadence as in the 184 

submaximal incremental test during the preliminary trial. Oxygen uptake, minute ventilation (V̇E), RER, 185 

and heart rate (RCX3, Polar Electro Oy, Kempele, Finland) were monitored continuously during cycling 186 

at 65% V̇O2max and averaged over the final 30 s of each 5-minute split to provide mean responses at 5 187 

minutes and 10 minutes. Blood lactate concentration and rating of perceived exertion (RPE; 15-point 188 

scale; Borg, 1970) were also determined at 5 minutes and 10 minutes during cycling at 65% V̇O2max. 189 

After 10 minutes of passive rest, participants completed a 20 km time-trial on the turbo trainer with the 190 

bicycle rear tyre pressure at 100 psi. The time-trial was performed against a resistance designed to 191 

replicate outdoor, level-gradient cycling conditions. No verbal encouragement was provided and all 192 

measures of elapsed time were removed from the environment. The only pertinent information visible 193 

to participants throughout each time-trial was the distance completed. Participants were free to change 194 

cadence and gears throughout each time-trial; however, the gearing chosen during the familiarisation 195 

time-trial was noted and used to standardise the starting intensity for the experimental time-trials. 196 

Distance completed, power output, and cadence were recorded at 1 Hz throughout each experimental 197 

time-trial. Expired air was monitored continuously throughout each experimental time-trial for the 198 

evaluation of V̇O2, V̇E, and RER. Heart rate was monitored continuously throughout each experimental 199 
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time-trial and RPE was recorded at 5 km intervals. Blood lactate concentration was determined 1 minute 200 

before and immediately after each experimental time-trial. 201 

 202 

Statistical analyses 203 

All data were analysed using the Statistical Package for the Social Sciences (version 22, IBM 204 

SPSS, Armonk, NY, USA). Data are presented as means ± standard deviation, and 95% confidence 205 

intervals are provided for all estimates. A paired samples t-test was used to determine the effects of 206 

supplementation on resting serum phosphate concentration. Two-way (supplement × time) analyses of 207 

variance (ANOVAs) were used to determine the effects of supplementation and time on physiological 208 

responses (V̇O2, V̇E, RER, heart rate, RPE, and blood lactate concentration) during exercise at 65% 209 

V̇O2max. Two-way (supplement × 5 km split) ANOVAs were used to determine the effects of 210 

supplementation and 5 km splits on 20 km time-trial performance measures (completion time, power 211 

output, and cadence) and physiological responses (V̇O2, V̇E, RER, heart rate, and RPE). A two-way 212 

(supplement × time) ANOVA was used to determine the effects of supplementation and time on blood 213 

lactate concentration prior to and immediately following time-trial performance. Violations to 214 

assumptions of sphericity were adjusted using the Greenhouse-Geisser correction factor (Field, 2013). 215 

Significant effects were followed up using post hoc tests with Bonferroni adjustments (Field, 2013). 216 

The significance level was set at p < 0.05 for all analyses.  217 

 218 

RESULTS  219 

Serum phosphate  220 

Placebo supplementation resulted in a resting serum phosphate concentration of 0.77 ± 0.18 221 

mmol·L-1, whereas SP supplementation resulted in a resting serum phosphate concentration of 0.76 ± 222 

0.15 mmol·L-1. There was no significant effect of supplementation on resting serum phosphate 223 

concentration (p = 0.762). 224 
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 225 

Physiological responses to submaximal fixed-intensity exercise 226 

The mean power output during the submaximal exercise bouts was 186 ± 34 W. There was no 227 

significant effect of supplementation on V̇O2 (p = 0.694), V̇E (p = 0.950), RER (p = 0.298), heart rate (p 228 

= 0.885), RPE (p = 0.650), or blood lactate (p = 0.375) during cycling at 65% of V̇O2max (Table 1). 229 

There was also no significant effect of time on V̇O2 (p = 0.766) or RER (p = 0.656). However, there 230 

was a significant effect of time on V̇E (p = 0.001), heart rate (p < 0.001), RPE (p < 0.001), and blood 231 

lactate (p = 0.033). Post hoc tests revealed that from 5 min to 10 min, V̇E, heart rate, and RPE increased 232 

significantly, whereas blood lactate decreased significantly. There were no significant supplement × 233 

time interactions for V̇O2 (p = 0.982), V̇E (p = 0.777), RER (p = 0.495), heart rate (p = 0.641), RPE (p 234 

= 0.095), or blood lactate (p = 0.573).  235 

 236 

Time-trial performance  237 

There was no significant effect of supplementation on completion time (p = 0.975), power 238 

output (p = 0.777), or cadence (p = 0.503) during the time-trials (Table 2). However, there was an effect 239 

of 5 km split on completion time (p < 0.001), with significant differences between all comparisons apart 240 

from that between the 5-10 and 10-15 km splits. Similarly, there was a significant effect of 5 km split 241 

on power output (p < 0.001). Post hoc tests revealed that participants produced a significantly higher 242 

power output in the final 5 km of each time-trial in comparison with each of the other 5 km splits. There 243 

was also an effect of 5 km split on cadence (p = 0.001), with significantly increased values in the 5-10 244 

and 15-20 km splits, when compared with the 0-5 km split. There were no significant supplement × 5 245 

km split interactions for completion time (p = 0.505), power output (p = 0.512), or cadence (p = 0.566). 246 

 247 

Time-trial physiological responses 248 
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Participants completed the placebo and SP experimental time-trials at a mean intensity of 83 ± 249 

8% of V̇O2max. There was no significant effect of supplementation on V̇O2 (p = 0.944) or heart rate (p = 250 

0.141) during the time-trials (Table 3). However, there was an effect of 5 km split on V̇O2 (p = 0.012), 251 

with significantly increased values in the 15-20 km split, when compared with the 0-5 and 10-15 km 252 

splits. There was also an effect of 5 km split on heart rate (p < 0.001), with mean values increasing 253 

throughout the time-trials and with post hoc tests revealing significant differences between all 254 

comparisons apart from that between the 5-10 and 10-15 km splits. There were no significant 255 

supplement × 5 km split interactions for V̇O2 (p = 0.701) or heart rate (p = 0.111). 256 

 257 

There was an effect of supplementation on V̇E (p = 0.042) during the time-trials (Table 3), with 258 

SP resulting in significantly higher values than placebo (mean difference: 3.81 L·min-1; 95% likely 259 

range: 0.16-7.46 L·min-1). There was also an effect of 5 km split on V̇E (p < 0.001), with mean values 260 

increasing throughout the time-trials and with post hoc tests revealing significant differences between 261 

all comparisons apart from that between the 5-10 and 10-15 km splits. However, there was no significant 262 

supplement × 5 km split interaction for V̇E (p = 0.103). There was also an effect of supplementation on 263 

RER (p = 0.020) during the time-trials (Table 3), with SP resulting in significantly higher values than 264 

placebo (mean difference: 0.020; 95% likely range: 0.004-0.036). However, there was no significant 265 

effect of 5 km split on RER (p = 0.095) and no supplement × 5 km split interaction (p = 0.978). 266 

 267 

There was an effect of supplementation on RPE (p = 0.030) during the time-trials (Table 3), 268 

with SP resulting in significantly higher values than placebo (mean difference: 0.39; 95% likely range: 269 

0.04-0.73). There was also a significant effect of 5 km split on RPE (p < 0.001). Post hoc tests revealed 270 

a progressive increase in RPE throughout the time-trials with significant differences between all 271 

comparisons. However, there was no significant supplement × 5 km split interaction for RPE (p = 272 

0.632).  273 

 274 
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There was a significant effect of supplementation on blood lactate concentration (p = 0.003; 275 

Figure 1). Blood lactate concentration also significantly increased from pre-time-trial to post-time-trial 276 

(p < 0.001). Moreover, there was a significant supplement × time interaction (p = 0.006). Post hoc tests 277 

revealed that there was no significant effect of supplementation on pre-time-trial blood lactate 278 

concentration (p = 0.738); however, relative to placebo, post-time-trial blood lactate concentration was 279 

significantly increased with SP (mean difference: 1.06 mmol·L-1; 95% likely range: 0.31-1.80 mmol·L-280 

1; p = 0.004).  281 

 282 

DISCUSSION 283 

The principal aim of this study was to examine the effects of SP supplementation on 20 km 284 

cycling time-trial performance. The key finding was that SP supplementation had no significant effect 285 

on time-trial completion time. Supplementation with SP also had no significant effect on power output 286 

or cadence during the time-trials. The absence of any significant effect of SP supplementation on time-287 

trial performance is consistent with some reports (Brewer et al., 2013, 2014; Buck et al., 2014; Kreider 288 

et al., 1990), but not others (Brewer et al., 2015; Folland et al., 2008; Kreider et al., 1992). However, it 289 

is worth noting that the small sample sizes associated with previous research increase the risk of false 290 

positives and reduce the likelihood that findings reflect a true effect (Button et al., 2013). Given that 291 

the present study was the first to examine the effects of SP supplementation on time-trial performance 292 

using a relatively large sample size, the findings of the present investigation add considerable weight to 293 

the argument that SP supplementation provides no ergogenic benefit during time-trial performance. 294 

 295 

Resting serum phosphate concentrations in the present study were slightly lower than 296 

anticipated, but were within the normal range for adults (Buck et al., 2013). Nevertheless, relative to 297 

placebo, the present study demonstrated no SP-induced increase in resting serum phosphate 298 

concentration. Apart from one exception (Czuba et al., 2009), previous research has also reported no 299 

change in serum phosphate concentration following SP supplementation (Brewer et al., 2013; Buck et 300 
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al., 2015; Kopec et al., 2016; Kreider et al., 1990; Stewart et al., 1990). Given similarities in the dosing 301 

strategies used in these investigations, it seems, as highlighted by others (Buck et al., 2015; Kopec et 302 

al., 2016; Kreider et al., 1992; Stewart et al., 1990), that the measure may not be the best indicator of 303 

SP loading effects.  304 

A secondary aim of the present study was to investigate the potential mechanisms behind the 305 

ergogenic effects of SP supplementation. If, as hypothesised, SP supplementation improves oxygen 306 

offloading at the muscle via an increase in erythrocyte 2, 3-DPG levels (Bremner et al., 2002; Cade et 307 

al., 1984), then an enhancement of aerobic metabolism would be expected. However, given that there 308 

was not only no SP-induced improvement in time-trial performance, but also no increase in V̇O2 during 309 

either fixed-intensity submaximal cycling or time-trial performance, the findings of the present study 310 

fail to provide support for the above mechanism. Given that the period of fixed-intensity submaximal 311 

cycling was performed at a lower intensity than the time-trials, it seems unlikely that the absence of an 312 

effect of SP on V̇O2 could be due to exercise intensity. Although resting erythrocyte 2, 3-DPG levels 313 

were not measured in the present study, an alternative explanation for the lack of any increase in V̇O2 314 

is that SP supplementation may not increase 2, 3-DPG concentration in red blood cells. Indeed, of those 315 

studies that have measured 2, 3-DPG concentrations following SP supplementation, Cade et al. (1984) 316 

and Stewart et al. (1990) reported significant increases, Buck et al. (2015), Czuba et al. (2008), Kopec 317 

et al. (2016), and Kreider et al. (1992) reported no change, and Kreider et al. (1990) reported a 318 

significant decrease. Once again, the use of a small sample sizes may have influenced these findings 319 

along with the fact that erythrocyte 2, 3-DPG levels are already elevated in endurance trained 320 

individuals (Brodthagen et al., 1985; Buck et al., 2013) and can change rapidly post-sampling (Llohn 321 

et al., 2005).  322 

 323 

An alternative mechanism by which SP supplementation has been suggested to increase aerobic 324 

metabolism is via an enhancement of myocardial contractility (Buck et al., 2013; Fukuda et al., 2010). 325 

Indeed, using cardiac ultrasound and colour flow Doppler technology, Kreider et al. (1992) reported 326 
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SP-induced increases in various measures of cardiac function in well-trained athletes, albeit 327 

concomitant with increases in time-trial performance (Kreider et al., 1992). Then again, there were few 328 

effects of SP supplementation on those same measures when compared at each intensity during an 329 

incremental test, or when compared at the same relative intensity (anaerobic threshold). Moreover, 330 

although heart rate values alone are unlikely to be a reliable indicator of cardiac function; it is worth 331 

highlighting that the present study, and several others have reported no SP-induced change in heart rate 332 

during time-trial performance (Brewer et al., 2013, 2015; Folland et al., 2008; Kreider et al., 1990). 333 

Overall, considering that the present study found no effect of SP supplementation on V̇O2 or time-trial 334 

performance, it appears that any effect of SP on cardiac function does not translate into any ergogenic 335 

benefit.  336 

 337 

It is difficult to explain how SP increased RER during the time-trial in the present study, but 338 

had no effect on RER during fixed-intensity submaximal cycling. Although the latter is supported by 339 

research showing no effect of SP supplementation on RER during submaximal incremental exercise 340 

(Kreider et al., 1992); previous research investigating the effects of SP supplementation on RER during 341 

time-trial performance has contrastingly reported no effect, despite a SP-induced increase in power 342 

output (Folland et al., 2008; Kreider et al., 1992). In the present study, a SP-induced increase in RER, 343 

in the absence of any change in V̇O2 during the time-trial, would support the corresponding increase in 344 

V̇E, as a result of an associated increase in V̇CO2. Then again, it is difficult to reconcile that response in 345 

the absence of any change in performance. To add to the confusion; of those studies that observed no 346 

SP-induced change in RER despite an increase in time-trial performance, Folland et al. (2008) reported 347 

no corresponding change in V̇E, while Kreider et al. (1992) reported an increase. Moreover, Brewer et 348 

al. (2014) reported no change in performance and no change in V̇E.  349 

 350 

As with the above, it is difficult to reconcile how, in the absence of any change in performance, 351 

blood lactate concentrations in the present study increased following SP supplementation in the time 352 
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trial, but not during fixed-intensity submaximal exercise. Previous research has shown that SP 353 

supplementation has no significant effect on post-time-trial blood lactate concentration regardless of 354 

whether there was an increase in performance (Folland et al., 2008; Kreider et al., 1992 ) or not (Brewer 355 

et al., 2013, 2014; Buck et al., 2014). In the present study, the increase in post-time-trial blood lactate 356 

concentration is consistent with the corresponding increase in RER and V̇E resulting from the need to 357 

buffer associated hydrogen ions. However, an increase in blood lactate concentration generally indicates 358 

an enhancement of anaerobic energy provision (Maughan & Gleeson, 2004) which, in the absence of 359 

any change in V̇O2, would normally suggest an increase in performance. Similar contradictions in the 360 

present study exist concerning RPE, with significant SP-induced increases during the time-trial, despite 361 

no change in performance, contrasting with no effect of SP during fixed-intensity submaximal cycling. 362 

Moreover, the result is in contrast with previous studies showing that SP has no effect on RPE during 363 

(Folland et al., 2008; Kreider et al., 1990) or immediately after time-trial performance (Brewer et al., 364 

2014); though differential effects on performance add to the confusion. Given that the RPE scale was 365 

initially validated against heart rate (Borg, 1970), it was unsurprising that the absence of an effect of 366 

SP supplementation on heart rate during fixed-intensity submaximal cycling coincided with no SP-367 

induced change in RPE. However, it is unclear as to why the same response was not reflected during 368 

the time-trials. One potential explanation for the increase in RPE during the time trials is that it was 369 

induced by the corresponding increase in V̇E. In partial support, it has recently been shown that 370 

breathing frequency correlates very strongly (r = 0.89) with RPE during time-trial performance (Nicolò 371 

et al., 2016).  372 

 373 

In conclusion, the results of the present study indicate that SP supplementation has no 374 

significant effect on time-trial performance. Indeed, the associated increase in RPE suggests that SP 375 

supplementation may result in endurance athletes having to work subjectively harder to achieve the 376 

same level of time-trial performance. Given that SP has been proposed to improve endurance 377 

performance primarily via aerobic mechanisms, the absence of any SP-induced change in V̇O2 or heart 378 

rate provides further support for this lack of an ergogenic benefit. Notably, SP supplementation 379 
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increased RER and V̇E during the time-trials and resulted in a higher post-time-trial blood lactate 380 

concentration all of which are difficult to explain; particularly given the absence of a corresponding 381 

effect during submaximal exercise or any effect on time trial performance.  382 
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Table 1. The effects of sodium phosphate supplementation on various physiological responses during 461 

10 minutes of cycling at 65% of the power output required to elicit maximum oxygen uptake (N = 20). 462 

Values are means ± standard deviation. 463 

Supplement 
Time 

(min) 

V̇O2 

(L·min-1) 

V̇E 

(L·min-1) 
RER 

Heart rate 

(b·min-1) 
RPE 

BLC 

(mmol·L-1) 

 5 3.02 ± 0.47 69.76 ± 12.25 0.88 ± 0.06 128.1 ± 9.0 11.5 ± 1.4 1.76 ± 0.99 

 10 3.02 ± 0.40 72.01 ± 11.35 0.88 ± 0.05 130.9 ± 10.2 12.2 ± 1.1 1.55 ± 1.16 

 5 3.01 ± 0.47 69.99 ± 11.19 0.89 ± 0.06 128.2 ± 11.5 11.1 ± 1.4 1.83 ± 1.01 

 10 3.00 ± 0.52 71.93 ± 11.56 0.89 ± 0.04 131.3 ± 12.5 12.3 ± 1.6 1.65 ± 1.33 

Note: SP = sodium phosphate; V̇O2 = oxygen uptake; V̇E = minute ventilation; RER = respiratory exchange ratio; 464 

RPE = rating of perceived exertion; BLC = blood lactate concentration. 465 

Table 2. The effects of sodium phosphate supplementation on completion time, power output, and 466 

cadence during a 20 km cycling time-trial (N = 20). Values are means ± standard deviation.  467 

Supplement Distance (km) Completion time (min) Power output (W) Cadence (rpm) 

 0-5 8.40 ± 0.58 285 ± 56 96 ± 9 

 5-10 8.18 ± 0.56 293 ± 55 97 ± 8 

Placebo 10-15 8.21 ± 0.58 290 ± 57 97 ± 8 

 15-20 7.97 ± 0.55 317 ± 58 98 ± 9 

 0-20 32.76 ± 2.20 296 ± 54 97 ± 8 

 0-5 8.43 ± 0.61 284 ± 62 96 ± 10 

 5-10 8.19 ± 0.58 292 ± 59 98 ± 10 

Sodium phosphate 10-15 8.19 ± 0.61 293 ± 60 98 ± 10 

 15-20 7.95 ± 0.60 321 ± 64 99 ± 11 

 0-20 32.77 ± 2.31 297 ± 58 98 ± 10 

Note: rpm = revolutions per minute. 468 

Table 3. The effects of sodium phosphate supplementation on various physiological responses during 469 

a 20 km cycling time-trial (N = 20). Values are means ± standard deviation. 470 

Supplement 
Distance 

(km) 

V̇O2  

(L·min-1) 

Heart rate 

(b·min-1) 

V̇E 

(L·min-1) 

RER RPE 

 0-5 3.58 ± 0.61 144.4 ± 11.6 95.4 ± 20.5 0.91 ± 0.06 14.2 ± 1.3 

 5-10 3.67 ± 0.55 153.7 ± 12.0 103.0 ± 22.6 0.91 ± 0.05 15.6 ± 1.3 

Placebo 10-15 3.64 ± 0.56 155.8 ± 13.2 105.0 ± 24.7 0.90 ± 0.05 16.2 ± 1.5 

 15-20 3.79 ± 0.56 162.0 ± 13.0 117.0 ± 29.5 0.92 ± 0.06 17.9 ± 1.5 

 0-20 3.67 ± 0.55 154.1 ± 11.7 105.1 ± 22.7 0.91 ± 0.05 - 

 0-5 3.55 ± 0.72 144.7 ± 14.9 96.8 ± 22.3 0.93 ± 0.06 14.5 ± 1.2 

 5-10 3.67 ± 0.67 155.2 ± 14.0 105.6 ± 23.3 0.93 ± 0.05 15.9 ± 1.1 

Sodium phosphate 10-15 3.65 ± 0.62 158.9 ± 13.9 109.6 ± 24.5 0.92 ± 0.05 16.7 ± 1.3 

 15-20 3.79 ± 0.62 164.9 ± 13.1 123.8 ± 28.7 0.95 ± 0.06 18.3 ± 1.3 

 0-20 3.67 ± 0.64 156.0 ± 13.1 108.9 ± 22.9 0.93 ± 0.05 - 

Note: V̇O2 = oxygen uptake; V̇E = minute ventilation; RER = respiratory exchange ratio; RPE = rating of perceived 471 

exertion. 472 

Placebo 

SP 
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 480 

 481 

Figure 1. The effects of sodium phosphate supplementation on blood lactate concentration prior to and 482 

immediately following a 20 km cycling time-trial (N = 20). Values are means ± standard deviation. * 483 

indicates significantly different (p < 0.05) from placebo. 484 


