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From top to bottom: Cell polarity in
Hedgehog and Wnt trafficking
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Abstract

Spatial organization of membrane domains within cells and cells within tissues is key to the development of organisms
and the maintenance of adult tissue. Cell polarization is crucial for correct cell–cell signalling, which, in turn, promotes
cell differentiation and tissue patterning. However, the mechanisms linking internal cell polarity to intercellular
signalling are just beginning to be unravelled. The Hedgehog (Hh) and Wnt pathways are major directors of
development and their malfunction can cause severe disorders like cancer. Here we discuss parallel advances
into understanding the mechanism of Hedgehog and Wnt signal dissemination and reception. We hypothesize that
cell polarization of the signal-sending and signal-receiving cells is crucial for proper signal spreading and activation of
the pathway and, thus, fundamental for development of multicellular organisms.
Hedgehog and Wnt—two major signalling networks
The signalling proteins of the Hedgehog (Hh) and Wnt
families are both major organizers of development,
directing cell differentiation and tissue patterning. In
adult life they remain essential for maintaining tissue
homeostasis. Both Hh and Wnt molecules are funda-
mental to many vital processes such as cell proliferation,
cell migration, cell differentiation and axonal path finding.
These fundamental processes contribute to embryonic
development as well as playing a role in disease processes
like tumour genesis [1–3]. Remarkably, although Hh and
Wnt are two distinct signalling pathways, with different
ligands, receptors, effectors and targets, new research is
revealing striking parallels regarding their mechanisms for
signal production, distribution, release and reception. Pro-
duction of these signalling molecules is confined to a cell
cluster, and the signal is then transported over consider-
able distance to organize the neighbouring tissue. Further-
more, both molecules also share characteristic post-
translational processing with the addition of lipids, which
results in anchoring to the plasma membrane. Strong
membrane association of the signalling factors impedes
their free diffusion towards receiving cells, and thus, alter-
native transport modes have been investigated.
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Two membrane-bound mechanisms are proposed:
transport through extracellular vesicles and/or signalling
filopodia called cytonemes [4]. Besides their emerging
role in cancer biology and diagnostics, extracellular vesi-
cles play a specific role in cell-to-cell communication [5,
6]. Exovesicles have been found to carry Hh and Wnt
proteins and activate the corresponding signalling path-
ways in cells they fuse or interact with. In addition, we
and others have experimentally analysed cytoneme-
based signal transport as a mechanism that facilitates
the distribution of the membrane anchored Hh and Wnt
ligands towards reception [7–13]. Signalling through
filopodia has also been described for other signalling
pathways, such as the EGF, FGF, Notch and Bmp path-
ways, suggesting that this might be a general mechanism
used by cells and thus cellular regulation processes could
be similarly shared [4]. In addition to exosomes and
cytonemes, further intercellular trafficking of signalling
molecules has been reported. These include signalling
dissemination through processed diffusible ligands,
soluble ligand multimers, special carrier proteins, and
lipoproteins; however, these are the focus of other
reviews [14–16].
The cell membrane is far from homogeneous and evi-

dence of differential compartmentalization of mem-
branes for cell function is constantly being revealed.
Epithelial cell polarization includes the specification of
an apical domain, towards the luminal side of a tissue,
and a basal membrane, in contact with the extracellular
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matrix, while polarized mesenchymal cells distinguish a
front and rear axis. This not only distinguishes two sides
of the cell in the planar dimension, but also provides
distinct membrane properties and components. Such a
spatial organization of the cell is known to be essential
for morphogenetic processes during development as well
as to maintain tissue homeostasis. For example, changes
in polarity are related to an increase of proliferation in
tumour development [17]. However, the mechanisms
behind this process are just starting to be unveiled. The
secretion of exovesicles, filopodia formation and intra-
cellular trafficking are strongly linked to cell polarity
regulation; thus, we hypothesize that the study of the
cells own spatial organization is significant to our under-
standing of signalling processes in complex tissues.
Latest advances in intracellular signal trafficking, exo-

vesicle generation and cytoneme-mediated signal trans-
port show remarkable similarities between the Hh and
Wnt pathways. These processes are tightly linked to the
spatial cellular organization of the signal-producing
cell. In addition the signal-receiving cell is also
Fig. 1. Apical ligand recycling in source cell. Endocytosis-regulated Wnt/Wg
chaperones transport the ligands to the apical side of the source cell. The liga
secretion at the basolateral side
polarized to ensure proper signal reception and activa-
tion of the signalling cascades. In this review, we exam-
ine this research from a cell polarity perspective,
stressing common and unique features, exposing a gen-
eral mechanism for lipid-modified ligands and examin-
ing its links to cell polarity regulation.

Hh and Wnt molecules are both lipid-modified
and strongly associated with membranes
Hh and Wnt protein family members are produced as non-
functional precursors (Fig. 1). Both molecules are subject to
different post-translational modifications, essential for their
final activity, including secretion and signalling. Despite the
differences in their synthesis and processing, the result is
similar: highly lipid-modified signalling molecules that are
strongly attached to cellular membranes.
In the case of Wnt/Wg proteins two kinds of modifi-

cations have been described, palmitoleic acid addition
and N-glycosylation, both taking place in the endoplas-
mic reticulum (ER). The ER multipass O-acyltransferase
Porcupine (Porc) directs palmitoylation and maturation
and Hh secretion. After formation and lipid modification of the ligand,
nds get re-endocytosed and packaged on exosomes for subsequent
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of Wnt proteins [18–20]. Lipid modifications are essen-
tial for correct secretion and signalling [18, 21, 22]. Mu-
tations in the cysteine residues subject to palmitoylation
result in a significant loss of activity and redistribution
of Wnt proteins in both vertebrates and Drosophila [18,
23, 24]. Recent data show that cleavage of the essential
palmitoleate moiety by the carboxylesterase Notum is an
important regulatory process to reduce Wnt signalling
range [25]. Extracellular levels of Notum in the blood
serves as a biomarker for Wnt-driven cancer [26]. In the
case of glycosylation, the number of glycosylation resi-
dues varies between the different Wnts and it is possible
this modification is dispensable for its activity [27, 28].
Hh is initially synthesized as a 45-kDa precursor be-

fore undergoing autocatalytic cleavage in the ER [29,
30]. The cleaved C-terminal region (Hh-C) is degraded
via the proteasome [31] while the N-terminal part (Hh-
N) containing the signal activity is dually lipidated [32].
First, an autocatalytic cholesterol addition in the C-
terminus is made [31, 33], followed by the palmitoyla-
tion of an N-terminal conserved cysteine [34–36].
Hh-N lacking cholesterol or palmitic acid attachment is
able to signal but not to fully activate targets in
responding cells [37–40]. Therefore, parallel to the case
of Wnt, these lipid modifications are required for the
complete activity of the protein. In addition, the indis-
pensable molecules for Hh signalling, Dispatched
(Disp), which is required for the release of Hh from
producing cells, [41–45] and the soluble extracellular
matrix (ECM) factor Scube2 [46–50] require the cor-
rect lipidation of Hh to function. Loss-of-function
mutants for Disp show accumulation of trapped lipid-
modified Hh in unresponsive producing cells, but not
unmodified Hh [41, 42, 45], showing that lipid modifi-
cations are essential for the required Hh dispersion. In
vertebrates, Scube2 is required for processing and
bioactivation of Sonic Hedgehog (Shh), one of three
mammalian Hh homologues [51]. Scube2 is not present
in flies, but the diffusible protein Shf/Wif-1 is also simi-
larly indispensable for lipid-modified Hh long-range
signalling in the wing disc [52–55].
As described above, activity of Hh and Wnt proteins is

dependent on correct lipid modification. On this same
line of thought, cholesterol addition to Shh has also been
shown to enhance long-range signalling [56]. Besides a
potential signal function, the immediate consequence of
lipidation is the anchoring of the molecule to cell mem-
branes, which would restrict free diffusion but, paradox-
ically, could be in favour of long-distance distribution. In
agreement with this observation, two membrane-
dependent mechanisms for Hh/Wnt distribution have
been proposed: movement by means of membranous
organelles such as cytonemes and through exovesicles
[9, 11, 16, 57]. Indeed, a membrane-tethered form of Wg
replacing the endogenous one in Drosophila has been
reported as able to signal and produce patterning. The
authors suggest dispersion is dispensable and instead
propose that all cells initially express the ligand and, by
dynamic decline of expression, patterning is achieved.
[58]. However, the possibility of additional direct mem-
brane–membrane distribution mechanisms at a distance
such as through cytonemes has not been ruled out.
Thus, lipid modification of Wnt/Hh ligands is a pre-
requisite for signalling and membrane anchoring, which
we propose allows their inclusion in the distribution
mechanism that includes pathway-crucial elements for
proper signalling.
Hh and Wnt molecules undergo apico-basal
recycling prior to their distribution
After processing, ligands reach the cell membrane (Fig. 1).
Remarkably, both Hh and Wnt molecules require similar
complex and precise intracellular trafficking in the produ-
cing cells before their release [43, 53, 59, 60]. The Golgi
transmembrane protein Evi/Wls plays a crucial role in the
trafficking of mature Wnts to the cell membrane [61–63].
Evi/Wls and Wnt proteins are transported together to the
cell surface before being re-endocytosed, and in Evi/Wls
loss of function experiments Wnt appears trapped in the
secretory pathway, blocking its final release. Interestingly,
Evi/Wls is then recycled and retrogradly transported from
plasma membrane back to the ER [64]. This process
requires the retrograde endosomal protein-sorting
machinery, the retromer complex, as Evi/Wl is degraded
in the lysosome in retromer mutants, resulting in reduc-
tion of Wnt secretion [65–69]. Thus, after membrane
presentation Wnt is re-endocytosed in a Dynamin-
dependent process before its final secretion [70, 71].
Cellular compartmentalization of this procedure might be
a key regulatory aspect of signalling.
In this line of thought, recycling of Drosophila Wg

from the apical surface is regulated by the ubiquitin
ligase RNF Godzilla that targets the Snare-complex
protein Synaptobrevin [60]. In this process, Wg pro-
tein is routed from early apical endosomes to the
basolateral surface where signal secretion takes place.
Previous research also points out an additional role
for glycosylation in the polarized sorting of Wnt3a
for basolateral secretion and in apical secretion of
Wnt11 [72]. Different types of glycosylation target
different Wnts for their respective sorting in the
epithelial polarized cells, where for example the crucial
Evi/Wls localizes basolaterally and is necessary for Wnt3a
basal secretion but not for Wnt11 apical secretion [72].
Thus, prior to secretion, Wnt protein follows a highly
regulated intracellular recycling route in the ligand-
producing cell.
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Analogous to the Wnt protein, Hh in the source cells
also needs fine regulation of its intracellular traffic be-
fore distribution. Besides disagreements regarding con-
centration gradient contribution, two secreted Hh
populations have been described in Drosophila epithelia,
an apical and a basolateral one [11, 43, 53, 59, 73, 74].
Here again as for Wnt/Wg, dynamin-dependent endo-
cytosis is required for proper Hh signalling activity.
Dynamin mutants in the producing cells of the Drosoph-
ila wing disc accumulate Hh in the apical domain [43,
73, 75], while interfering with Rab proteins (e.g. Rab5,
Rab4 and Rab8), implicated in the first recycling step,
results in Hh subapical accumulation and a reduction in
signalling [43, 59]. Two different routes for the secreted
populations have been proposed: in the first one we
argue that Hh is endocytosed to then reach the basolat-
eral membrane for long range signalling via cytonemes
and exovesicles [11, 43, 75]; while in a second one, Hh
endocytosis from the apical membrane allows its inclu-
sion within exovesicles to be finally distributed for dis-
tant signalling through the apical membrane again [59].
Supporting a mainly basolateral distribution of Hh, the

crucial Disp protein is basolaterally localized in polarized
epithelium [43, 76, 77]. In addition, the cell surface hep-
aran sulfate proteoglycans (HSPGs) Dally-like (Dlp) and
Dally, essential for Hh signalling activity, are also pro-
posed to be involved in Hh recycling to the basolateral
membrane [43]. Dally and the Hh co-receptor Brother
of Ihog (Boi) are suggested as key factors in the retention
of apical Hh for subsequent re-internalization and baso-
lateral redirection [53]. In a different interpretation Dally
has been suggested to facilitate long-range signalling
through the apical membrane, after the cleavage of its
GPI anchor by the hydrolase Notum [78]. However, add-
itional experiments have suggested that Notum is not re-
quired for Hh release and does not function in the
cleavage of the Dally GPI anchor but rather limits Wg/
Wnt signalling by cleavage of the palmitoleate adduct
from Wnt proteins [25]. On the other hand, Dlp co-
localizes and interacts with Disp at the basolateral mem-
brane [43], where the Hh co-receptor Ihog also localizes
and holds Hh for its distribution to receiving cells [53].
Furthermore, in agreement with Hh recycling to basolat-
eral membrane, recent vertebrate experimental data re-
vealed a defect in apico-basal distribution of Shh, with
less basolateral morphogen on Shh producer cells, when
deficient for the heparin sulfate synthase Ext1, during
lung development [79]. Therefore, we conclude that po-
larized localisation of Hh-related proteins such as Ihog
and the involvement of HSPGs within intercellular traf-
ficking are key for Hh redistribution.
Furthermore, intracellular trafficking and cell polarity

could be interdependent [80]. The endocytosis process
could be directing an endosomal sorting target, different
from degradation, as well as partly maintaining a polar-
ized status of the membrane. Intracellular trafficking
regulation through the endosomal sorting ESCRT com-
plex is indeed involved in cell polarity definition, both in
apico-basal epithelial polarity as well as front-rear polar-
ity in migrating cells [81]. In this context, several mem-
bers of the ESCRT complex have been shown to be
involved in both Hh and Wnt signalling, probably
through their role in polarized endosomal sorting as well
as exovesicle formation. Further evidence of endosomal
sorting being required for signalling has recently been
shown through the Arf6/Hh interaction, which impedes
Hh endosome targeting to lysosomal degradation, thus
allowing its traffic to be targeted to signal competent
endosomes [82].
Endocytosis and intracellular endosomal sorting are

crucial processes prior to ligand secretion in both the
Hh and Wnt/Wg source cells. We hypothesize that
polarity of the cell membrane in ligand-producer cells is
important to the signalling process in general. In support
of this, apico-basal trafficking has also been proposed
for the lipid modified EGF ligand Spitz [83]. However,
all evidence to date refers to epithelial apico-basal polarity
and whether a different compartmentalization or polarity
arrangement of the cell membrane could be important for
signalling between mesenchymal cells is a major outstand-
ing question.
In summary, the polarization of the source cell deter-

mines the route of secretion of the ligands of the Hh
and Wnt family. This has an important influence on the
mode of transport, the signalling range and the recep-
tion of the ligand, which we will discuss in the following
sections.

Exosomes and cytonemes disseminate Hh and Wnt
proteins
In the last few years, experimental data show that exove-
sicles (EVs) could be a key factor in the secretion of the
hydrophobic molecules Wnt and Hh (Fig. 2) [6, 11, 57,
74, 84, 85]. This mechanism requires the participation of
multivesicular bodies (MVBs), where the cargo is loaded
from endosomes prior to exocytosis, and is dependent
on ESCRT and Snare family members [86]. Indeed, com-
ponents of the ESCRT machinery are strongly implicated
in Wnt and Hh distribution and signalling function, re-
ported both in cell culture as well as in vivo experiments
[6, 11, 74, 87]. Supporting this model, the molecules Hh
and Disp have been shown to be present, facing the
extracellular side, on the membrane of exosomes [11]. In
Drosophila, the Wg and Evi/Wls complex has also been
observed within exosomes [84] in a process requiring
the exocytic G-protein Rab11 and Myosin 5A [88].
Strongly challenging free diffusion models, experimental

evidence for cytoneme-mediated signalling has significantly



Fig. 2. Ligand trafficking at the basolateral side. Wnt/Wg and Hh traffic from the basolateral side of the source cell to the receiving cell on exosomes
or cytonemes. At the basolateral side of the receiving cell, the ligands bind to the receptors and co-receptors, respectively. Consequently, signal
pathway activation and ligand–receptor degradation take place in the target cell
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increased in the last 10 years, coinciding with the great ad-
vance in imaging techniques. Cytonemes are actin-based
filopodia functionally specialized in signalling [4, 89]. For
both Wnt and Hh, we and others have identified cytonemes
directly influencing signalling, as short-term interruption of
the cytoskeleton machinery for filopodial establishment in
source cells results in shortening of cytonemes and the sig-
nalling range [7, 12–14]. Signalling through these types of
protrusions has been reported in Drosophila as well as ver-
tebrate systems, mediating the transport of molecules such
as Notch [90–93], EGF [94, 95], FGF [95], BMP [96, 97],
Wnt [7, 93, 98] and Hh [8–10, 12, 13]. Thus, cytonemes as
an intercellular communication structure are likely to have
a pivotal role in morphogenesis during development as
well as in adult tissue maintenance. It therefore follows
that filopodia regulation mechanisms are highly relevant
to understanding signalling function. Understanding cyto-
neme establishment and cargo upload are now critical as-
pects to be determined. In turn, filopodia formation and
cargo upload might be directly linked to cell polarity regu-
lation, clearly implicating compartmentalization of cell
procedures [99].
The cytoneme and exovesicle models should not be seen

as two independent routes for dissemination. Exovesicles
containing Wnt/Hh are not sufficient for the complete
activation of target genes in vitro, suggesting that an extra
mechanism for signalling via vesicles is required to accom-
plish signalling [11, 57, 85]. We and others have shown
that cytonemes are required for Hh restricted long dis-
tance signalling [9, 12, 13] and exovesicles containing Hh
are proposed to move along cytonemes to reach receiving
cells [11]; thus, signalling through exovesicles might need
to be mediated by direct cell–cell contact to activate sig-
nalling completely, which would not occur via exovesicle
transport alone. In addition, Wg exosomes have been
shown to travel along axons and be released into the syn-
aptic cleft of neuromuscular junctions in Drosophila; thus,
a similar mechanism may be at play in cytonemes. Wg
exosomes then activate the Wnt signalling cascade of the
post-synaptic neuron [84]. Furthermore, endocytosis has
been shown to be necessary for cytoneme-mediated sig-
nalling [97] and thus it is likely to require specific endoso-
mal sorting towards the localized cytoneme. Wnt
signalling is activated after endocytosis of the Wnt–recep-
tor complex [100].
However, a limitation of the combined membrane-

bound transport mechanisms would be to grasp the
means by which soluble factors such as Scube 2 and
Shifted (in Drosophila) influence signal spreading [51, 53],
as well as how factors with an inhibitory effect over the
pathways such as the Hedgehog Interacting Protein (Hip)
[101] and secreted Frizzled Related Proteins (sFRPs) exert
their effects [102]. To date whether the signalling mole-
cules travelling on cytonemes are localized inside or
outside the filopodia remains unclear. Thus, one possibil-
ity is that either through travelling or at the release point,
the membrane-anchored signalling molecules are exposed
to the extracellular space and interacting with such soluble
factors. Reinforcing this possibility, both the Hh and Wnt
molecules are located at the outside of EVs [11, 57].
In the section above, we have described that cyto-

nemes and EVs are modes to spread lipid-modified li-
gands such as Hh and Wnt in a tissue. The formation of
these carriers requires a machinery of proteins routing
the ligand from the ER/Golgi through the endocytic
pathway to the locations at the cell membrane where
these transport carriers can be formed.

Transport of signalling molecules in a polarized cell
Basolateral polarization of filopodia formation against
the apical establishment of micro-villi, and lateral
lamelipodia-like protrusions, has been shown for epi-
thelial cells [103]. This apico-basal graded distribution
of protrusions is also regulated by an apico-basal
concentration gradient of the Rho GTPase Rac, which
is in turn defined by polarity proteins, possibly through
direct inhibition of Rac activity on the apical side of the
cell [99, 103]. Experimental intervention using dominant-
negative Rac in the Drosophila notum primordium
affected Delta-Notch signalling through basal filopodia,
essential for establishment of the highly organized bristle
pattern [90]. These filopodia are basally localized and
dynamic, and signal through transient direct filopodia–
filopodia contact, establishing, as a result, intermittent
cell–cell signalling for gradual refinement of pattern dur-
ing lateral inhibition [90]. Hh signalling cytonemes in the
Drosophila wing disc epithelium also mainly extend ba-
sally. Emanating from both the ligand source cells as well
as receiving cells, they form and break contacts dynamic-
ally, with contact activating signalling [9, 12, 13]. In
addition, our electron microscopy analysis of the wing disc
revealed the presence of microvilli structures only on the
apical surface of the epithelium [11], in concordance with
the polarized organization of protrusion establishment
previously described for notum epithelia [103]. Recycling
of Hh from the apical to the basal membrane as a previous
step for its distribution is also in accordance with the
polarization of the signalling filopodia.
A remarkably similar recycling process has been reported

for the Drosophila Wg [60], again linking polarization to
the mechanism for dispersion (Fig. 1). During zebrafish
development we have described cytonemes to carry Wnt8a
at their tips, transporting the ligand from source cells to-
wards receiving cells until direct contact is reached [7]. At
the source cell, Wnt on cytoneme tips initiates the forma-
tion of the ligand–receptor complex—the so-called Wnt
signalosome—which is a prerequisite for signal activation.
Interestingly, in the case of the source cell the ligand Wnt8a



Gradilla et al. BMC Biology  (2018) 16:37 Page 7 of 11
clusters at the plasma membrane where it can recruit the
transducer of CDC42-dependent assembly protein 1
(Toca-1) and consecutively activate a filopodia nucleation
complex for localized filopodia initiation [7, 104]. Hence,
intracellular trafficking of the Wnt ligand could also be
key to the spatial localization of protrusion establishment
in vertebrates and is likely to be linked to cell membrane
polarization.
Other factors recently found to direct basolaterally lo-

calized cell membrane protrusions are the G-protein-
coupled receptors and stem cell markers Lgr5 and Lgr4.
Lgr4/5 activation by R-spondin ligands potentiates Wnt/
β-catenin signalling. Interestingly, their presence at the
plasma membrane after blocking their internalization ro-
bustly promotes filopodia, and these protrusions are
capable of performing signalling molecule conveyance
and share defined characteristics of cytonemes such as
being long fragile actin-rich filopodia (up to 100 μm)
[105]. Consistent with this, recent findings suggest that
Lgr5 primarily functions via the Rac1 pathway to en-
hance actin polymerisation and strengthen cell–cell ad-
hesion in stem cells in the intestinal crypt and colon
cancer cells [106]. In Drosophila there is evidence of
long distance recruitment of the neuropeptide Bursicon
by the ortholog Lgr2, although the mechanisms remain
unknown [107].
These findings suggest a potential role for the receptors,

comprising the hardware for potential long-distance sig-
nalling in stem cells, but also adds to the hypothesis of a
generally shared mechanism for distant cell–cell commu-
nication through basal filopodia. Not only could cell in-
trinsic cues favour the formation of filopodia at the basal
side, but also external signals could locally facilitate the
emergence of cytonemes.

Polarized formation of cytonemes in the receiving
cell
Apico-basal polarity in signal reception is another im-
portant on-going research question (Fig. 2). It is likely to
have important implications for our understanding of
signalling regulation. In vertebrates the requirement of
cilia, an apical cytoplasmic microtubule-based extension,
for Hh signalling (i.e. Shh, Ihh) has been clearly demon-
strated [108–110]. These data along with the finding of
Shh/Ptch1 co-localization within cilia, has led to the
possible misconception that cilia are the cellular com-
partment for Hh reception [111]. Interestingly, inter-
action between ligand-carrying cytonemes and receiving
cell cytonemes containing the co-receptors Cdo/Boc has
been observed during chicken limb bud development,
suggesting a cilia-independent Hh reception process
through cytoneme-mediated signalling [10].
In some cell types transduction of Hh signal after

signal reception is independent of a cilia-like structure.
In Drosophila, although most cells lack cilia,
compartmentalization of Hh signal transduction might
still occur within the plasma membrane due to
Smoothened activation mechanisms [112, 113], while
cytoneme-mediated Hh reception takes place at the
basal side of receiving cells [12, 13]. In the wing disc
epithelium, the Hh receptor Ptc localizes on basolateral
cytonemes emanating from Hh responding cells; and
experiments blocking dynamin-dependent rapid endo-
cytosis of the receptor complex show the clear basal
localization of extracellular Hh/Ptc complex [13].
Moreover, basal contact sites of producer and receiving
cell cytonemes was revealed by high-resolution imaging
in the Drosophila wing imaginal disc. In the GRASP
technique (GFP Reconstitution Across Synaptic Part-
ners), complementary fragments of a fluorescent mol-
ecule are expressed in each distinct cellular
compartment. The GRASP technique showed
cytoneme-to-cytoneme contact all along the receiving
territory and importantly co-localization of both the re-
ceptor Ptc and the ligand Hh was shown at contact
sites [13]. Basal cytoneme-mediated Hh uptake was also
observed after monitoring imaging of fluorescent Hh,
Ptc and Smo at physiological levels, providing further
data of intracellular Hh distribution at source cells [12]
and in favour of an apico-basal polarized signalling
process. In addition, despite the unknown mechanisms
for actual molecule release and signal activation at the
contact and reception site, either from cytonemes or
EVs, there is strong parallel evidence for the require-
ment of a proteolytic shedding process carried by extra-
cellular matrix metalloproteases together with Scube2
and HSPGS [114]. Thus, basolateral cytonemes could
closely approximate the area where final membrane
shedding and Hh release occur for signal activation
(further reviewed in [114]).
In a similar signalling scenario where vertebrate polar-

ized cells of the developing neural tube display a Shh
concentration graded response, Shh uptake might also
occur basally. In this context, although two externalized
Hh pools are found, most extracellular Hh is localized
on the basal side of the ventral neural tube, which is also
the closest side to the Hh source, the notochord [111].
Furthermore, in the retina neuro-epithelium Shh and
the co-receptor Cdo co-localize at the basolateral side,
where also filopodia-like structures are stabilized by Cdo
[115]. Basal signal reception then is in accordance with
the described required recycling of the Hh ligand.
A parallel mechanism has been shown for Wg/Wnt

proteins [60]. Basal dynamic cytonemes have been
shown to transport the Wnt receptor Frizzled (Fzd) from
myoblast progenitors of flight muscles towards Wg
source cells in the wing disc epithelium, forming a Wg/
Fzd complex that then moves in a retrograde direction
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[93]. Likewise, the chicken Wnt receptor Fzd7 has been
observed on filopodia emanating from dermomyotome
cells [116]. In addition, in Xenopus the Wnt co-receptor
Lrp6 is asymmetrically localized to the basolateral mem-
brane in ectodermal blastomeres [117]. This, together
with the mainly basal distribution of Wg across the re-
ceiving territory in the Drosophila wing disc, might indi-
cate similar reception mechanisms for long-distance
signalling.
We have discussed the importance of cell polarization

in signal dissemination and, in addition, the increasing
evidence that the target cell is similarly polarized. This
leads to the question: how are receiving cytonemes influ-
enced by polarization? Based on the presented work, we
suggest that cell polarity in the target cell influences the for-
mation of responding cytonemes but also the localization
of the receptor complex and signal transduction.

Basal formation of cytonemes and the extracellular
matrix
As well as via cell intrinsic cues, basal polarization of
filopodia might also be linked to the interaction of the
basal membrane with the extracellular matrix (ECM),
which provides an adhesive framework for the filopodia
(Fig. 2). In this context, we have shown that Drosophila
basal Hh cytonemes are unable to extend across large
ttv mutant clones where HSPG assembly in the ECM
has been impaired [9]. Similarly, FGF and BMP cyto-
neme extension is experimentally hampered by the re-
duction of HSPGs and laminin within the ECM, on
which cytonemes would normally grow during dorsal air
sac development [118]. Interestingly, in the latter case
the planar cell polarity (PCP) regulators Prickle (Pk) and
Van Gogh (Vang) are reported as responsible for main-
taining the normal extracellular levels of the HSPGs
Dally and Dally-like (Dlp) [118]; however, details of the
regulatory mechanism are still unknown and could be
unrelated to the known role of Pk and Vang in the defin-
ition of tissue planar polarity.
The requirement of HSPGs for cytoneme spread has

again been demonstrated for Hh signalling in the wing
disc epithelium where the signalling filopodia extend
aberrantly through Dally and Dlp mutant territory [13].
Moreover, receiving-cell cytonemes over-expressing Dally
or Dlp acquire stability when interacting with cytonemes
over-expressing the co-receptor Ihog and emanating from
Hh producer cells, indicating a potential role for HSPG/
Ihog interaction in trans during cytoneme growth [13].
Additionally, a recent publication describes a novel role
for the Hh co-receptors Ihog/Boi in cell adhesion, where
they are crucial for correct segregation of posterior and
anterior cell populations [119]. Ihog retains Hh on the cell
surface mainly at the basolateral side of the Drosophila
wing disc for distribution, presentation and subsequent
signal reception at cytoneme contacts [13]. Ihog then
would allow internalization of Hh receptor Patched (Ptc)/
Hh complexes. It is this Ptc/Hh endocytosis that directs
Ihog to degradation in receiving cells, resulting in a pro-
tein spatial pattern that is the reverse of Ptc expression,
with less Ihog on the Hh signalling region [119]. These de-
creased Ihog levels seem to reduce cell–cell adhesion
[119] and, interestingly, this coincides with the locations
where Hh cytoneme extension would take place [9, 13]. In
summary, the extracellular matrix provides the substrate
for cytonemes to extend. We speculate that the inter-
action of cell membranes with the ECM may have a role
in induction, but also in stabilisation and direction, of
these fragile structures.
However, regulation of cytoneme orientation is still a

key outstanding question and might result from the
combination of several PCP regulators, interaction with
the ECM, and cytoneme dynamics regulation in trans.
Evidence of the PCP pathway influencing cytoneme
appearance is scarce and further research is needed, as
so far it is unclear if the PCP pathway is activated in the
source and/or in the receiving cells and how its activity
in cytoskeletal remodelling could connect to cytoneme
formation.

Concluding remarks and open questions
Lipid modifications are key features of the signalling
molecules Hh and Wnt. These modifications can influ-
ence apico-basal localisation [43, 76] and this in turn is
likely to define the secretion mechanism of these two
proteins. We compared recent data regarding Hh and
Wnt secretion, distribution and reception, revealing a
potential general model for lipid-modified ligands. We
provide evidence that trafficking in the ligand-
producing cells shifts membrane-anchored molecules
from apical membrane to basal membrane, targeting
distribution through cytonemes. We hypothesize that
apical ligand re-endocytosis is required for acquiring
membrane identity and inclusion into a membrane-
bound dispersion mechanism such as exovesicles and/
or cytonemes at the basolateral side. Furthermore, sig-
nal reception might also be polarized; recent evidence
in Hh and Wnt signalling suggests a basal localization
of both receiving cytonemes and reception complexes.
These conclusions are in line with the possible coordin-
ation of vesicle trafficking and protrusion formation
with regard to the cytoskeleton and membrane spatial
arrangement of cells.
Critical areas regarding a cytoneme-mediated mech-

anism for signalling still need to be explored, includ-
ing their establishment and cargo uploading, and it is
likely these steps also involve cell polarity regulation
elements. Understanding the polarized behaviour of
vesicle genesis and transport, as well as cellular
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protrusions for signalling, is thus a vast area for fu-
ture research, one that is increasing in interest as emer-
ging research reveals their role in a greater variety of
signalling scenarios, both during development and in adult
tissue maintenance. Identification of hub points of signal
trafficking and cellular polarity might allow their identifica-
tion as potential targets in drug discovery and add to the
achievement of greater insight into coordinated develop-
mental processes.
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