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We analyze an extended version of the dynamical mean-field Ising model. Instead of classical
physical representation of spins and external magnetic field, the model describes traders’ opinion
dynamics. The external field is endogenized to represent a smoothed moving average of the past
state variable. This model captures in a simple set-up the interplay between instantaneous social
imitation and past trends in social coordinations. We show the existence of a rich set of bifurca-
tions as a function of the two parameters quantifying the relative importance of instantaneous
versus past social opinions on the formation of the next value of the state variable. Moreover, we
present a thorough analysis of chaotic behavior, which is exhibited in certain parameter regimes.
Finally, we examine several transitions through bifurcation curves and study how they could be
understood as specific market scenarios. We find that the amplitude of the corrections needed
to recover from a crisis and to push the system back to “normal” is often significantly larger
than the strength of the causes that led to the crisis itself.

Keywords : Ising model; social opinion dynamics; chaos; regime shifts; bifurcation delay.

∗Author for correspondence

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the
Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original
work is properly cited.

1830010-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/157768051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1142/S0218127418300100


April 24, 2018 8:19 WSPC/S0218-1274 1830010

D. Smug et al.

1. Introduction

The Ising model and its mean-field version have a
time-honored history in economics, sociology and
finance, since its introduction as a mathematical
model of ferromagnetism in statistical mechanics
in 1920. Rather than magnetic spins related via
Heisenberg interactions, the spins represent agents
who have several options and decide to adopt one of
them according to a combination of inputs involv-
ing their own idiosyncratic judgments (akin to ther-
mal noise in physics), external news (similar to
the external magnetic field) and social influences
(analogous to the spin–spin exchange interaction).
A large set of economic models can be mapped
onto various versions of the Ising model to account
for social influence in individual decisions. And the
Ising model is one of the simplest models describ-
ing the competition between the ordering force of
imitation or contagion and the disordering impact
of private information or idiosyncratic noise. It is
sufficiently rich to exhibit complex behaviors, such
as phase transitions (bifurcations) and spontaneous
symmetry breaking [McCoy & Wu, 1973]. Since
decision making and social interactions are two
of the most important ingredients of social orga-
nization, it is thus natural that the Ising model
and its extensions to understand social organiza-
tion have blossomed over many decades (see e.g.
[Brock & Durlauf, 2001; Callen & Shapero, 1974;
Galam et al., 1982; Galam & Moscovici, 1991; Gor-
don et al., 2009; Granovetter & Soong, 1983; Mon-
troll & Badger, 1974; Nadal et al., 2005; Orléan,
1995; Phan et al., 2004; Schelling, 1971; Sornette,
2014; Weidlich, 1971, 1991, 2003; Weidlich & Hueb-
ner, 2008]).

Motivated by its applications to financial mar-
kets, we study an extended version of the dynamical
mean-field equation of the Ising model in which the
external (magnetic or news) field is endogenized to
represent a smoothed moving average of the past
state variable. This new model stands for a sim-
plification of the interplay between instantaneous
social imitation and past trends in social coordina-
tions [Harras et al., 2012; Kaizoji et al., 2015; Sor-
nette & Zhou, 2006; Zhou & Sornette, 2007]. We
show the existence of a rich set of bifurcations as
a function of the two parameters quantifying the
relative importance of immediate versus past social
opinions on the formation of the next value of the
state variable. Moreover, we identify where one can
find chaos in the 3D parameter space. Finally, we

explore how the parameter shifts through certain
bifurcation curves lead to variations in the behav-
ior of the system.

The article is organized as follows. The next sec-
tion recalls the equation and main properties of the
standard mean-field Ising model. Section 3 intro-
duces the extended mean-field Ising model, which
takes the form of two coupled discrete equations. In
Sec. 4, we analyze bifurcations in the extended sys-
tem and, in Sec. 5, we compare the behavior to the
original 1D system. Section 6 presents where one
can find chaotic behavior in the extended system.
Section 7 covers certain scenarios of market pas-
sages when parameters changed from one regime to
another. Section 8 concludes.

2. Dynamical Version of the
Standard Mean-Field Ising Model

The standard mean-field equation of the Ising
model can be written as

s = tanh[β(s + H)], (1)

where s is the average state variable (mean spin
or magnetization) of a given representative agent
and H is the external influence (magnetic field). In
financial applications, s can represent the traders’
opinions whether to buy or sell and H is the impact
of incoming news on their decisions. Parameter
β quantifies the strength of the social imitation
between agents (or, originally, the inverse tempera-
ture). Expression (1) describes the value of the aver-
age opinion s as being determined by the sum of
the external influence H and of an effective impact
exerted by the other surrounding agents, themselves
adopting on average the same opinion s. The aver-
age state variable s is thus the solution of the
implicit equation (1), which has two control param-
eters β and H.

In a dynamical context, one can generalize (1)
into a recurrence equation describing how the col-
lective opinion evolves, when influenced by external
news and its past state [Ollikainen, 2016]:

st+1 = tanh[β(st + H)]. (2)

Then, the fixed points of the map (2) are solutions
of the implicit equation (1). Figure 1 presents how
the fixed points of the map (2) vary when the
parameters H and β change. In the symmetric case
for H = 0 [Figs. 1(a) and 1(b)], there is a pitchfork
bifurcation at β = 1, hence, when the system passes
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(a) (b)

(c) (d)

(e)

Fig. 1. The map (2) st+1 = tanh[β(st + H)] and its bifurcation diagrams for different values of the coupling strength β and
external field H . (a) H = 0. Depending on β the shape of the map changes. Higher values of β increase the curvature of the
map giving birth to two new fixed points at β = 1. The schematic curves are plotted for β = 0.5 (red) and β = 2.5 (blue).
(b) Bifurcation diagram for H = 0 with a pitchfork bifurcation at β = 1. (c) β = 2.5. Depending on H the function is moved
horizontally. For β > 1 such a shift can make some of the fixed points disappear in a saddle-node bifurcation. The curves
are plotted for H = −0.2 (blue) and H = 0.4 (red). (d) Bifurcation diagram for β = 2.5. For a set of parameters there are
three fixed points, but if the external field is too strong (in absolute value), two of the fixed points disappear in a saddle-node
bifurcation. (e) Bifurcations in two-parameter plane. For H = 0 and β = 1 there is a cusp.

that point, a symmetry breaking occurs (assuming
tiny noise in the system or slightly asymmetric ini-
tial conditions). However, the pitchfork bifurcation
is structurally unstable with respect to the second
control parameter H: for nonzero H, saddle-node

bifurcations occur instead [see Figs. 1(c) and 1(d)].
The system has thus always either one or three fixed
points. In the latter situation, two out of three fixed
points are always stable and for β = 1 and H = 0
one can observe a cusp [Fig. 1(e)].
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3. Extended Mean-Field Ising
Model

We generalize map (2) by introducing a dynamics
on the field H. In the standard map (2), as already
mentioned, H is considered to be exogenous, and is
taken to represent the influence of outside news on
the opinion or decision s(t) of the typical agent.
Motivated by models of financial price dynamics
[Kaizoji et al., 2015; Ollikainen, 2016], we pro-
pose to interpret H as a measure of momentum
of the opinion dynamics. To reduce the dynamics
to arguably the simplest model without the need
for specifying the price evolution, one can consider
that the opinion dynamics momentum is a proxy
for the price momentum included in the asset price
dynamics of [Kaizoji et al., 2015]. Let us recall that
the logic of the initial model [Kaizoji et al., 2015]
is that the so-called noise traders or technical ana-
lysts come to their investment decisions based on
the information they gather from the opinions of
their fellow noise traders and on their measure of
the strength of the price trends. Trend-following or
momentum investing is indeed a widely used class
of investment strategies (see e.g. [Ross et al., 2017;
Lempérière et al., 2014; Roncalli, 2017]). The influ-
ence of the decisions of other investors is captured
by the term βst in (2). The momentum of the social
opinion mirroring the trend of the price is embodied
in the H term, which is assumed to be given by the
following auto-regressive dynamics

Ht+1 = θ · Ht + (1 − θ) · st, where θ ∈ [0, 1).
(3)

Equation (3) defines Ht as the exponential moving
average of approximately nθ � 1/(1 − θ) previous
opinion states {st−1, st−2, . . . , st−nθ

}. For θ = 0,
Eq. (3) gives Ht+1 = st, corresponding to a one-step
memory. For θ → 1−, the memory becomes infinite
(with Ht+1 = Ht = H0) and the initial momentum
value H0 is always remembered.

Putting Eq. (3) together with Eq. (2) yields the
dynamical system that we study in this article,{

st+1 = tanh(a · st + b · Ht),

Ht+1 = θ · Ht + (1 − θ)st,
(4)

where st is the opinion (positive — buy, nega-
tive — sell) of the representative investor and Ht

is its momentum. For θ = 0, this system reduces
to the dynamical mean-field Ising model (2) for
a = b = β. For notational convenience, we will refer

to the 2D-map (4) as M , such that {st+1,Ht+1} =
M({st,Ht}).

In the standard mean-field equation (1), and by
extension in the map (2), the parameters a and b are
usually taken to be positive, corresponding respec-
tively to so-called “ferromagnetic” interactions (or
positive feedback and imitation in the social con-
text) and a positive organizing effect of the exter-
nal influence H. Negative values of a should not
be interpreted as “antiferromagnetic” interactions,
since the latter refer to a propensity to take a spin
value opposite to that of the neighbor, which is dif-
ferent from a tendency to take the sign at the next
time step that is the opposite of the sign at the pre-
vious time step. Instead, a negative value of a in (4)
can be interpreted as a contrarian behavior tending
to correct at the next time step what can be per-
ceived as a dangerous consensus. Such a mechanism
was identified and explored by Corcos et al. [2002]
in a simpler 1D-map describing the proportion of
“bullish” agents in the population of investors.
The rationale for negative values of a is thus that
investors may become worried when the consensus
is too large, which may signal an exuberant unsus-
tainable bubble. In response, these investors may
decide to become contrarians and change their deci-
sion. If the representative agent adopts this stance,
this will give oscillatory dynamics as well as deter-
ministically chaotic behaviors, as we document in
detail below. Similarly, negative values of parameter
b can be rationalized by such a contrarian response,
but now built on a longer time scale according to
the sensitivity of a growing trend.

4. Bifurcations for Fixed θ

Let us explore the transitions that can be observed
in the system (4) for certain fixed values of 0 <
θ < 1. The Jacobian J and its eigenvalues λ1

and λ2 are

J =

[
a b

1 − θ θ

]
(5)

and

λ1,2 =
a + θ ± √

(a − θ)2 + 4b(1 − θ)
2

. (6)

4.1. Codimension-1 bifurcations

The following bifurcations of codimension-1 can be
classified.
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(1) Bifurcations of the fixed point (0, 0):

(a) A pitchfork bifurcation occurs when one of
the eigenvalues is equal to 1 (marked with
the black solid line in the two-parameter
bifurcation diagram in Fig. 3 and with the
black surface in Fig. 4). The bifurcation
occurs for a obeying the following depen-
dence as a function of b and θ:

a(b, θ) = −b + 1. (7)

(b) Period doubling (flip) occurs when one of the
eigenvalues is equal to −1 (marked as the red
solid line in the two-parameter bifurcation
diagram in Fig. 3 and as the red surface in
Fig. 4). The bifurcation occurs for a obeying
the following dependence as a function of b
and θ:

a(b, θ) = b
1 − θ

1 + θ
− 1. (8)

(c) Neimark–Sacker bifurcation occurs when
both eigenvalues lie on the unit circle and
have equal real parts (marked as a green
solid line below the black one in Fig. 3 and
with the green surface in Fig. 4). The bifur-
cation occurs for a obeying the following
dependence as a function of b and θ:

a(b, θ) =
1 + b(1 − θ)

θ
. (9)

(2) Bifurcations of nonzero fixed points (there is no
available analytical expression):

(a) Period doubling (as previously; marked with
light blue line in Fig. 3).

(b) Neimark–Sacker bifurcation (as previously;
marked with green solid line above the black
one in Fig. 3).

(3) Bifurcations of period-2 fixed points (no explicit
analytical expression):

(a) Pitchfork bifurcation occurs when the
period-2 fixed point has one eigenvalue equal
to 1 under the twice iterated map M(M(·)).
It is marked with the blue solid line in the
two-parameter bifurcation diagrams.

(b) Neimark–Sacker bifurcation (as previously
but for the second iterate of the map M ,
namelyM(M(·))).

Figure 2 presents bifurcation diagrams for one
value of θ = 0.99 and three different values of b,

(a)

(b)

(c)

Fig. 2. One-parameter bifurcation diagrams for θ = 0.99.
The solid lines stand for stable points and dashed lines
for unstable. The colors black, red and green represent
fixed points, period-2 fixed points and oscillatory or quasi-
oscillatory behavior, respectively. (a) b = 3, (b) b = 1 and
(c) b = −1.

namely 3, 1 and −1. In all the cases, for large values
of a there are stable nontrivial fixed points (black
solid) and, for small values of a, there are stable
period-2 points (red solid). Depending on b, the
transition between those states occurs in a variety of
ways. For b = 3 [Fig. 2(a)] while varying a, the fol-
lowing bifurcations occur (from left to right): pitch-
fork giving rise to two new unstable fixed points;
period doubling of unstable fixed points; pitchfork
of period-2 fixed points; period doubling of unstable
trivial fixed point. The region of bistability between
flipping (jumping from one period-2 fixed point to
another) and nonzero fixed points is shown in gray
shade. Decreasing b to 1 [Fig. 2(b)] shifts linearly
the pitchfork bifurcation to the right in terms of a
[see Eq. (7)], whereas the flip remains practically in
the same position [1−θ

1+θ ≈ 0 in Eq. (8)]. This leads
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Fig. 3. Bifurcation diagrams of system (4) in the two-parameter plane {a, b} for three fixed values of θ. (a) θ = 0.99,
(b) θ = 0.50 and (c) θ = 0.00. Beside all the bifurcation curves, the black dashed lines represent the case a = b = β ≥ 0,
corresponding to the original 1D-map (2). Similarly to the situation shown in Fig. 1(b), a pitchfork bifurcation also occurs
here, but for β = 0.5 (instead of β = 1), due to the contribution of the momentum term in (4). Scanning all possible values
of a and b, a variety of behaviors can be classified. All the diagrams for different values of θ are qualitatively similar. As can
be deduced from Eq. (7), θ does not influence the position of the pitchfork bifurcations at all. The other two bifurcations
(period doubling — red, Neimark–Sacker — green) of the trivial fixed points move as θ varies. For the singular case of θ = 1,
these bifurcation lines become parallel. The domain in white represents the existence of only one attractor, which is the trivial
equilibrium.

to “untying” the characteristic 8-shaped curve and
leaves only bifurcations of the trivial fixed point.
For b becoming sufficiently negative [here: b = −1
in Fig. 2(c)], additional phenomena occur. At a ≈ 1,
there is a Neimark–Sacker bifurcation that destabi-
lizes the trivial fixed point giving rise to stable oscil-
lations. The oscillations disappear due to a sequence
of bifurcations in a tiny region in parameter space
(for more information see: Chapter 7 in [Gucken-
heimer & Holmes, 1983]). Bistability can be found
there as well, but the region is so narrow as to be
invisible.

4.2. Codimension-2 bifurcations

For the two-dimensional discrete system (4),
codimension-2 bifurcations occur if |λ1| = |λ2| = 1.
This implies that there are three possible bifurca-
tions and all of them can be parametrized in terms
of θ:

(1) λ1 = λ2 = 1 (pitchfork + Neimark–Sacker;
green points):

a = −θ + 2,

b = θ − 1.
(10)
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Fig. 4. Scan of the values of θ for codimension-1 and -2
bifurcations of the fixed point (0, 0). The surfaces in black,
red and green correspond to the boundaries for the pitchfork,
flip and Neimark–Sacker bifurcations, respectively.

(2) λ1 = 1 and λ2 = −1 (pitchfork + flip; red
points):

a = −θ, b = θ + 1. (11)

(3) λ1 = λ2 = −1 (flip + Neimark–Sacker; green
points with red face color):

a = −θ − 2, b =
(θ + 1)2

θ − 1
. (12)

We present the curves where codimension-2
bifurcations occur as bold points both in Fig. 3
and also in the three-dimensional plane {a, b, θ} in
Fig. 4. Figure 4 visualizes additionally codimension-
1 bifurcations for which the analytical form exists.
One notices that for θ = 0 codimension-2 bifur-
cations occur close to each other, whereas for
θ → 1 one of those bifurcations is shifted towards
infinity.

5. Comparison Between Extended
and Original Mean-Field Ising
Models

The crucial question to be answered at this point
is how the behavior of the extended system actu-
ally varies from what was observed in the original
Ising mean-field model. If a = b = β ≥ 0, the two-
dimensional system, independently of θ, exhibits
a bifurcation at β = 0.5. In contrast to the sys-
tem (2) and its pitchfork in β = 1, adding the equa-
tion for Ht+1 in (4) makes the bifurcation occur
for a value β twice smaller. This is caused by the
fact that, around the stable fixed point (0, 0), we

can use the approximation st ≈ Ht and retrieve
st+1 = tanh[2β(st + 0)].

If the system (4) is constrained to the phys-
ical interpretation of the parameters, i.e. a > 0
and b > 0, and if the memory parameter θ is
less than 1, there always exists a region where the
period-2 solutions arise. This follows from Eq. (8),
a(b, θ) = b1−θ

1+θ − 1, governing the position of the
flip bifurcation. Obviously, for any given positive
θ < 1, the term 1−θ

1+θ is positive as well. Therefore,
one can find a sufficiently large b such that b1−θ

1+θ > 1,
hence there always will exist a > 0 where period-2
points exist. Nevertheless, this does not mean that
those periodic points are directly observable as they

(a)

(b)

(c)

(d)

Fig. 5. Time profiles for different initial conditions and
θ = 0. (a) and (b) a = 1, b = 3. Initial conditions: (a) in red:
s0 = −0.1 and H0 = 0.1, in blue: s0 = 0.1 and H0 = −0.1,
(b) in red: s0 = 0.5 and H0 = −0.5, in blue: s0 = −0.5 and
H0 = 0.5. (c) and (d) a = 3.3, b = −2. Initial conditions:
(c) in red: s0 = −0.05 and H0 = −0.05, in blue: s0 = 0.05
and H0 = 0.05, (d) in red: s0 = −0.99 and H0 = −0.99, in
blue: s0 = 0.99 and H0 = 0.99.
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are not stable until the pitchfork of period-2 point
occurs. This bifurcation is marked with dark blue
color in Fig. 3 but also occurs at the right bound-
ary of the shaded interval in Fig. 2(a). When the
period-2 points stabilize, one can observe that, for
different initial conditions, the system might behave
differently — it might either converge to a single
fixed point (positive or negative one) or to a flip-
ping behavior [see Figs. 5(a) and 5(b)].

Numerical simulations show that, even for θ
very close to 1, the curve of period-2 fixed point
pitchfork bifurcation (dark blue line in Fig. 3)
crosses the line a = 0. We present in Fig. 6 the
values of b when a crosses 0 for certain values of θ.

To sum up what was stated above, we would
like to underline that, for different values of a >
0 and b > 0, only three types of attractors are
possible:

• trivial equilibrium,
• nontrivial fixed point (positive and negative),
• period-2 fixed points.

If we allow a and b to take values from the whole
R

2, the system may exhibit a much broader variety
of behaviors. There is for instance a set of parame-
ters for which oscillations occur (see the green filled

0 0.5 1
θ

100

101

102

103

b

Fig. 6. Value of b for a = 0 on the dark blue curve represent-
ing pitchfork bifurcations to period-2 fixed points depend-
ing on θ. The selected points represent where the bistability
occurs in the regime b > 0. The diagram says that for every
θ < 1 there occurs bistability in the physically justified region
(a > 0, b > 0). Of course, for θ near 1, this region might not
be accessible as b needs to be very large. For lower values
of θ, the parameter b decreases gradually to 0. This means
that the lower the memory coefficient, the lower parameter b
needs to obtain bistability in the physical region of positive
parameters a and b.

area in Fig. 3). The region of existence of oscilla-
tions intersects with the region where the nontriv-
ial stable solutions exist [see Figs. 5(c) and 5(d)].
We do not explore it further here, but some of the
oscillations can be quasi-periodic, while others stay
strictly periodic. We have observed periodic behav-
ior for periods between 3 and 8 (we assume that
higher periodicity is also possible), and even chaotic
behavior. The latter is analyzed further in Sec. 6.

6. Chaos

This section presents several tests to show where,
both in time space and in parameter space, chaos
exists and what kind of attractors can be expected
in system (4).

In order to better understand the bifurcations
present in the system, we explore the largest Lya-
punov exponent for several values of θ, computed
by examining the growth of solutions of the varia-
tional equation for a typical initial condition and
perturbation vector. The result is presented in
Fig. 7: blue denotes negative and red denotes pos-
itive exponents. For a > 0 and b > 0 we find
no chaos, but for some negative values of a or b,
more interesting behaviors occur. The diagrams in
Fig. 7 clearly show many features of the bifurca-
tion diagrams in Fig. 3 — in particular the lines
of bifurcation of stable attractors. The bifurcations
of unstable attractors are however not visible. Note
that in order to compensate for the slow dynamics
as θ → 1, we normalize by (1 − θ).

In Fig. 7(a) (θ = 0.99) the slightly visible light
red dots scattered in the right part of the dia-
gram correspond to quasi-periodic behavior, much
more iterations taken into computation of Lya-
punov exponent will allow them to vanish. For
θ = 0.00 [Fig. 7(c)], we have been unable to identify
any trace of chaos within the selected parameter val-
ues. Analysis of Fig. 7(b) (θ = 0.5) suggests that the
parameter domain a ∈ (−5,−3) and b ∈ (−10,−8)
may be the most favorable to find chaotic behav-
ior. Therefore, we explore below this region more
thoroughly.

For example, let us fix a = −4.17 and θ = 0.5.
These parameters are chosen so as to obtain sev-
eral regions of chaotic behavior while scanning b.
Figure 8(a) illustrates the attractors as the s com-
ponent against parameter b. To generate this kind
of diagram, we start with two initial conditions
{−0.5, 0.5} and {0.5,−0.5} for b = −10.3 and iter-
ate the system 400 times. Then, we discard the

1830010-8
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(a)

(b)

(c)

Fig. 7. Largest Lyapunov exponent, rescaled by 1
1−θ . (a)

θ = 0.99, (b) θ = 0.50 and (c) θ = 0.00. The parameters
are chosen so as to correspond with Fig. 3. For θ = 0.99
[panel (a)] there is no region with chaotic behavior, the spo-
radic light red dots in the bottom right-hand side of the
plot are caused by quasi-periodic behavior and cannot be
interpreted as chaos. In panel (b) one can observe a region
with potentially chaotic behavior, moreover, in panels (b)
and (c) there are characteristic Arnold tongues correspond-
ing to period locking.

first 100 points and plot the last 300 points. For
the next value of b, namely −10.29, we use as the
initial condition the final state of the system after
those 400 iterations. The procedure is repeated until

b = −8.3. The attractors obtained in this scheme
are plotted in black and blue. Moreover, we per-
form the procedure identically, starting with the
same initial conditions and decreasing b from −8.3
to −10.3. The attractors are then plotted in green
and red. It is visible that changing the direction of
the scan helps to discover different attractors and
the system is multistable or at least bistable in the
vast part of the diagram — up to b ≈ −8.5.

For all the attractors, we investigate again the
Lyapunov exponent to identify where exactly the
chaotic attractors can be expected [see Fig. 8(b)].

(a)

(b)

Fig. 8. Bifurcation diagrams illustrating multistability and
chaotic behavior in the system (4). For both panels, the
parameters are a = −4.17 and θ = 0.5. (a) Bifurcation dia-
gram of system (4). In red and blue are marked attractors to
which the system converges when increasing b and initiated
in (−0.5, 0.5) and in (0.5,−0.5) respectively. Similarly, for
decreasing b, we use green and red colors. One can deduce
that chaotic behavior is possible within several intervals (b
around −10, around −8.75 and around −8.55). For other val-
ues of b, the system converges to periodic or quasi-periodic
oscillations. For b = −9, there are two period-3 orbits coex-
istent with a chaotic attractor, whereas for b = −9.5 one can
observe two separated period-24 orbits. In between, there is a
triple cascade of period-doubling bifurcations. (b) The largest
of the two Lyapunov exponents for the blue attractor in A.
Occurrences of Lyapunov exponent λ > 0 confirm that one
can expect chaos for b ≈ −10, b ≈ −9, b ≈ −8.77 and for
b ≈ −8.53.
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(a)

(b)

(c)

Fig. 9. Examples of chaotic attractors for a = −4.17 and
θ = 0.5: (a) Shows four simultaneously stable chaotic attrac-
tors for b = −10, (b) shows a single chaotic attractor (red)
simultaneously stable with two period-3 orbits (blue, black)
for b = −9, and (c) shows bistability between a single chaotic
(blue) and a periodic (red) attractor for b = −8.53. The colors
correspond to the colors in Fig. 8(a). Observe the character-
istic folding of the chaotic attractors.

Indeed, there are several regions with a positive
exponent. We select some of them and plot the
attractors in phase space {s,H} in Fig. 9. The
methodology explained above obviously does not
provide all the attractors, which can be instantly
spotted in Fig. 9(a), where two minor attractors
are marked.

The attractors in Figs. 9(b) and 9(c) are more
interesting. When zoomed-in on the tip of the

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Chaotic trajectories corresponding to the attractors
presented in Fig. 9. (a) s variable taken in the blue region in
Fig. 9(a), (b) H variable taken in the blue region in Fig. 9(a),
(c) s variable taken in the blue region in Fig. 9(b), (d) H
variable taken in the blue region in Fig. 9(b), (e) s variable
taken in the blue region in Fig. 9(c) and (f) H variable taken
in the blue region in Fig. 9(c).
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attractor, we can clearly see the characteristic
chaotic folding. This allows us to conclude that,
indeed, chaotic behavior is possible in the dynamics
of noise traders’ opinions.

To provide basic intuitions about the system’s
behavior in the chaotic regimes, we include Fig. 10
with time series of s and H for some of the attrac-
tors presented in Fig. 9. The colors of the time series
correspond to the colors of the chaotic attractors.

7. Market Passages Through a
Bifurcation

This section presents how parameter changes can
influence the noise traders’ behaviors. We analyze
four scenarios of parameter shifts across certain
bifurcation curves. To keep it simple, we vary only
parameter a fixing b and θ. One can interpret the
linearly shifted parameter as an extension of the
system (4) taking the form:


st+1 = tanh(at · st + b · Ht),

Ht+1 = θ · Ht + (1 − θ)st,

at+1 = at + k,

(13)

where k is a fixed value.
Let us analyze four scenarios:

(1) Market passage through flip and Neimark–
Sacker bifurcation [Fig. 11(a), k = 0.04]. This sce-
nario begins with a situation where the traders have
mixed stable opinions whose average is st = 0. Let
us then pick an average memory length (θ = 0.5)
and contrarian attitudes (a = −1 and b = −2)
representing for instance mindsets after a recent
financial draw-down. This is a regime with only
one stable state. If the market conditions change in
terms of parameter a (for instance to a more con-
trarian stance — a = −3, or to a highly imitating
behavior — a = 3), the traders’ opinions are desta-
bilized and the variables start to flip or oscillate.
Two important observations can be made at this
point:

(a) if the market conditions change because of rea-
sons which are difficult to track, it might not be
possible to determine which way the parameter
a should be changed to revert to the original
state;

(b) a transition back to the nominal state st = 0
requires a larger shift of a than the original one.
For instance, if a shift occurs from a fixed point

(a)

(b)

(c)

(d)

Fig. 11. Linear passages through bifurcations as described
by the system (13). Initial values are taken in the neigh-
borhood of an attractor corresponding to the parameter a
given by the leftmost value in each diagram. Parameter a is
increased at each time iteration by a certain fixed value k,
leading to the dynamics for the order parameter represented
by the blue curve. The red curve is generated by decreasing
a from the rightmost value. (a) θ = 0.50, a ∈ [−3, 5], b = −2,
k = 0.04, (b) θ = 0.50, a ∈ [−4,−2], b = −6, k = 0.04,
(c) θ = 0.99, a ∈ [0, 6], b = −2, k = 0.004 and (d) θ = 0.99,
a ∈ [−3, 0], b = 3, k = 0.04. Black vertical lines represent
where the bifurcations occur.

with a = 1 to a = 3 (blue trajectory), oscilla-
tions appear. A backward transition to a state
without oscillations (red trajectory) requires
shifting the parameter much further than just
to 1, namely as far as a = −1. A similar behav-
ior exists when decreasing a from a = −2 to
a = −3 (red trajectory) and then increasing a
(blue trajectory) to −1. This might be confused
with a hysteresis loop, but this is actually a
bifurcation delay that arises often in fast–slow
dynamical systems (see for instance [Baesens,
1995] or [Mandel & Erneux, 1984]).
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(2) Market passage to a chaotic regime [Fig. 11(b),
k = 0.04]. When the system is in a highly contrar-
ian flipping state (θ = 0.5, a = −4, b = −6), certain
parameter changes might lead to a transition to a
chaotic regime. Then, instead of switching opinions
at every step, the behavior of traders cannot be
predicted, which might lead to an undesired mar-
ket behavior. Nevertheless, there is some remaining
regularity in the sense that, in the chaotic regime,
one can observe that the transition from a positive
to a negative opinion state and vice versa occurs at
least once per three steps. The bifurcation delay is
not significant in this scenario, after 3–4 iterations
when moving leftwards through the bifurcation line
the system retrieves its flipping behavior.

(3) Market passage into the rapid oscillations regime
[Fig. 11(c), k = 0.004]. Similarly to the first sce-
nario, the transition through a Neimark–Sacker
bifurcation of the trivial fixed point exhibits a
bifurcation delay. Moreover, the oscillations become
very rapid and not symmetric (see Chapter 3
in [Ollikainen, 2016]), which corresponds to large
market price changes such as during bubbles and
crashes. Decreasing parameter a can lead to acceler-
ating oscillations (such as those described by the so-
called log-periodic power law singularity (LPPLS)
models presented for instance in [Johansen et al.,
1999, 2000; Sornette, 2003; Sornette et al., 2013]).
On the other hand, the system can pass through
another Neimark–Sacker bifurcation (this time of
nonzero fixed points) and stabilize on a nontrivial
positive or negative fixed point. The way the system
settles down on one of the fixed points is very sensi-
tive to the current opinion value. This means that, if
the market opinion varies quickly, it is prone to set-
tle easily to either a “bullish” or a “bearish” market,
depending not only on the parameter value a, but
also on the transition time as well. This may lead to
market unpredictability even if all the parameters
could be known precisely.

(4) Switching through a bistable region [Fig. 11(d),
k = 0.04]. The last scenario we present is a passage
across four bifurcation curves, but actually only two
of them change the behavior of the system. Those
are the flip of nonzero fixed points and the pitchfork
of period-2 fixed points. The region in the middle
is bistable as in Fig. 2(a). The behavior of the sys-
tem is in essence a mixture of three components: (a)
bifurcation delay as in scenario 1, (b) sensitivity of
settling down as in scenario 3, and (c) hysteresis

in response (see for instance the saddle-node case
in [Kuznetsov, 1998]). Component (c) is caused by
the existing bistability. Namely, for lower values of
a, the system jumps up and down. After the sec-
ond black line in Fig. 11(d), it slowly converges to
a fixed point. On the way back, it starts to flip very
slowly when the system passes the left black line.
This hysteresis in behavior results in a much larger
delay than observed in scenario 1. Also, if the sys-
tem is on the fixed point in the bistable region and a
is decreased far enough, in order to retrieve the fixed
point, reverting the parameter to its original state
might not be sufficient to suppress the flipping. Eco-
nomically speaking, this means that, if there is a
small change which destabilizes the market, simply
reverting the change might not be enough to sta-
bilize the system again and thus much larger inter-
ventions might be needed.

8. Conclusions

We have introduced and analyzed in detail an
extended two-dimensional dynamical version of the
mean-field Ising model. Inspired by the dynam-
ics of social imitation in financial markets involv-
ing fast imitation and slower trend following, the
traders’ opinion dynamics is modeled as the inter-
play between instantaneous social imitation and
past trends in social coordinations. The standard
magnetic field in the Ising model is reinterpreted
and endogenized as a smoothed moving average of
the past state opinion variable.

We have shown the existence of a rich set of
bifurcations as a function of the two parameters a
and b quantifying the relative importance of instan-
taneous versus past social opinions on the formation
of the next value of the state variable. The depen-
dence as a function of a third parameter θ control-
ling the memory length over the past states has also
been dissected. We have presented a thorough anal-
ysis of the existence of chaotic behavior, present in
certain parameter regimes. Finally, we have exam-
ined four scenarios in which a slow change of a con-
trol parameter induces transitions through bifurca-
tion boundaries. These scenarios have been offered
as possible simplified models of changes of regimes
in financial markets. One important lesson is that,
due to the phenomena of delayed bifurcations often
associated with fast–slow dynamical systems as well
as of possible hysteresis, the amplitude of the cor-
rections needed to recover from a crisis and to push
the system back to “normal” may be significantly
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larger than the strength of the causes that led to
the crisis itself. In other terms, this is a quantita-
tive reminder that “prevention is better than cure”,
at least in our conceptual model of financial market
opinion dynamics.
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