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Abstract

A numerical analysis is made for thermophoretic transport of small particles through the convection in

a differentially heated square cavity with a wavy wall. The governing gas-particle partial differential

equations  are solved numerically  for some values of the considered parameters  to investigate  their

influence on the flow, heat and mass transfer patterns. It is found that the effect of thermophoresis can
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be quite significant in appropriate situations. The number of  undualtions can essentially modify the

heat transfer rate and fluid flow intensity.

Nomenclature

Roman letters

21 , CC                   =           concentrations

C                       =         aerosol particle concentration

pd                      =         particle diameter

g   = gravitational acceleration vector

pk                   =       thermal conductivity of aerosol particle

Tk  =        dimensionless coefficient

Kn                       =           Knusen number

L                       =        length and height of the cavity

n                           =        vector normal to the wavy surface

TC NN ,             =        thermophoresis parameters

Nu                     = local Nusselt number

Nu   = average Nusselt number

p   = pressure

Pr                    = Prandtl number

Ra   = Rayleigh number

Sc                          =         Schmidt number

Sh                     = local Sherwood number

Sh   = average Sherwood number
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t                              =         dimensional time

T   = dimensional temperature

CT   = low temperature

hT                      = high temperature

vu,   = dimensionless velocity components

vu,   = dimensional velocity components

TT vu ,               =       thermophoretic deposition velocity components

x, y   = dimensionless Cartesian coordinates

yx,   = dimensional Cartesian coordinates

Greek symbols

                      =        thermal conductivity

                      =        buoyancy ratio parameter

T                     =        volumetric thermal expension coefficient 

C                     =        volumetric diffusion expension coefficient 

                        = nanoparticles volume fraction

                       =       number of undulations

                       =        gas mean free path)

   =       dynamic viscosity

                            =          kinematic viscosity

   =       dimensionless temperature

   = density

   = dimensionless time

                            =        surface of the wavy cavity
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 ,                       =          new independent variables 

                       = dimensionless vorticity

   = dimensionless stream function

Keywords:  Free  convection;  Wavy  wall;  Differentially  heated  cavity;  Thermophoresis  effect;

Numerical results

I. Introduction

THE effect of thermophoresis known as a temperature gradient induces an opposite movement to low-

sized  gas  suspended  particles,  has  been  studied  considerable  in  the  past  and  has  many  industrial

applications such as: air-cleaning devices to remove submicron- and micron-sized particles from gas

streams, deposition of particulate material on heat exchanger surfaces (Epstain et al. [1]), problems

including nuclear reactor safety (Tsai and Liang [2]), modified chemical vapor deposition (Jenson et al.

[3]), in the semiconductor industry (Opiolka et al. [4]), optical fiber fabrication (Song and Hwang [5]),

etc. In the presence of a temperature gradient, in addition to other forces like drag, gravity or Brownian,

a thermophoretic force depending on Knudsen number acts on the aerosol particles. Reviews of theory

and experiments done in the field can be found in Bakarov [6], He and Ahmadi [7], and Piazza and

Parola [8]. Thermophoretic aerosol particles deposition in the boundary layer flow of a Newtonian fluid

has been extensively studied. Epstein et al. [1] have studied the thermophoretic deposition in a natural

convection  boundary  layer  on  a  cold  vertical  plate.  Goren  [9]  investigated  the  thermophoretic

deposition in a laminar compressible boundary layer flow past a flat plate. Wang and Chen [10] studied

the deposition of particles from a boundary layer flow onto a continuously moving wavy surface, etc.

They  found that  the  particle  concentration  at  the  wall  has  very  close  values  in  both  laminar  and

turbulent flow and that the particles are attracted by a plate colder than the gas and the concentration

drops monotonically as the wall is approached. The thermophoretic aerosol particles deposition in a
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fluid-saturated  porous  media  was  studied  by  Chamkha  and  Pop  [11]  for  a  vertical  flat  plate  and

Postelnicu [12] for a horizontal flat plate. They reported a high deposition of particles on the plate

which increases when the thermophoresis parameter increases. 

With many industrial and environmental applications, the natural convection of enclosed fluids

has been an important subject due to its particular transition to turbulence mechanism by destabilizing

the buoyancy-driven flow and its high numerical computational requirements. A large section of the

previous research done on this topic has been reviewed by Bejan [13]. Extensive work was done by De

Vahl  Davis  [14]  who presented  the  final  form of  the  problem and computational  results  for  high

Rayleigh numbers. The complexity of the system is increased when the convective is not only driven

by temperature but  concentration  differences  also.  Beghein et  al.  [15] investigated  numerically  the

thermosolutal  natural  convection  in  a  square  cavity  filled  with  air  mixed  with  different  kinds  of

pollutants subject to horizontal temperature and concentration gradients. Sheremet [16] has investigated

the effects of Soret and Dufour effects on heat transfer and fluid flow patterns in a square cavity with

and  without  solid  walls.  An  essential  influence  of  contaminant  source  on  flow and  heat  transfer

structure has been shown. Sezai and Mohamad [17] have studied the double-diffusive convection in a

cubic  enclosure  with  opposing  temperature  and  concentration  gradients.  The  results  showed  a

significant influence of solutal buoyancy force and Lewis number on heat and mass transfer rate at high

values of Rayleigh numbers. Kuznetsov and  Sheremet [18, 19] have examined numerically double-

diffusive natural convection in a square [18] and cubical [19] cavities bounded by solid walls of finite

thickness and conductivity with a local heat and contaminant sources. It has been revealed the effect of

buoyancy ratio parameter on intensification of heat and mass transfer process.

In general, the main assumption of the studies which considered the free and mixed convection

flow  in  vertical  channels  is  that  the  thermophoretic  deposition  of  aerosol  particles  is  negligible.

However,  due  to  its  fundamental  and  technological  importance,  theoretical  studies  of  the

thermophoretic effects on particle deposition in channel, tube or pipe flow were performed by many
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investigators (Weinberg [20], Fiebig et al. [21], Grosan et al. [22], Chang et al. [23]), etc. Moreover,

Chein and Liao [24] presented a numerical model including both the particle molecular diffusion and

thermophoretic effects to study nanoparticle deposition in a two-dimensional channel flow subject to

two types of thermal conditions. Talbot et al. [25] analyzed the thermophoresis of particles in a heated

boundary layer, and Batchelor and Shen [26] studied the thermophoretic deposition in a gas flow over a

cold surface. Many practical and industrial applications of the thermophoretic effects can be found in

the  open  literature,  for  example,  a  method  for  hybridization  and  binding  between  biomolecules

involving thermophoresis, the thermophoretic filtering of liquids and the process for preparation of

ceramic film are mentioned in the patents ([27] and [28]). 

Wavy shaped enclosures are used in engineering applications as given by Varol and Oztop [29],

Sultana and Hyder [30], Shenoy et al. [31], etc. Circular, square and an arc-square cavity whose shape

lies between the square and circular cavity are analyzed by Ridouane and Campo [32]. They used finite

volume method and found that the heat transfer enhancement provided by the circular cavity is large

for low Rayleigh numbers and decreases for moderate Rayleigh number and practically vanishes for

higher values of Rayleigh number. We mention also here the very interesting papers by Siddiqa et al.

[33,34] on dynamics  of two-phase dusty fluid flow along a wavy surface and on  double diffusive

natural  convection flow over a wavy surface situated in a non-absorbing medium.

Based on above literature survey, the number of studies on double-diffusive natural convection

in  a  differentially  heated  wavy  cavity  under  thermophoresis  effect is  still  limited  especially  for

curvilinear surfaces. To the authors’ best knowledge, the thermophoretic transport effects in the steady

convective flow in a wavy cavity have not been studied before and it is the main aim of this paper to

study this problem. The scope of this paper is to numerically analyze the effect of thermophoresis on

natural convection in a differentially heated square cavity having a wavy wall filled with a Newtonian

fluid containing suspended aerosol particles. Streamlines, isotherms, isoconcentration contours as well

as average Nusselt number and fluid flow rate are presented and discussed in details. 
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II. Basic equations

We analyze the free convective flow and heat transfer of a warm gas, containing suspended

aerosol particles, inside a differentially heated square cavity with a wavy isothermal wall. The domain

of interest is presented in Fig. 1 with dimensional Cartesian coordinate system where the origin is set in

the cavity’s  bottom left  corner,  the  x -axis  is  a  horizontal  axis  and  y -axis  is  a vertical  axis with

opposite direction relative to the gravitational acceleration. The considered enclosure is kept at constant

temperatures  T1 and  T2 and constant concentrations  C1 and  C2 at the left wavy and right flat walls,

while horizontal walls are adiabatic and impermeable. The length and height of the cavity is denoted by

L. It is assumed that the left wavy wall and right flat wall of the cavity are described by the following

relations  1 cos 2x L L a b y L       and 2x L , respectively.  2 1 cos 2x x L a b y L       

is the distance between vertical walls.

Fig. 1. Physical model and coordinate system
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Except for the density, the properties of the fluid are taken to be constant. It is further assumed

that the effect of buoyancy is included through the Boussinesq approximation in the following form:

   0 1 T c C cT T C C          (1)

The  viscous,  radiation  and  Joule  heating  effects  are  neglected.  Under  the  above  assumptions,  the

conservation  equations  for  mass,  momentum  and  thermal  energy  can  be  written  in  Cartesian

coordinates as follows:

0
u v
x y

 
 

 
(2)

2 2

2 2

u u u p u u
u v

t x y x x y
 

       
      

        
(3)

   
2 2

2 2 T c C c

v v v p v v
u v T T C C g

t x y y x y

       
                     

     (4)

2 2

2 2

T T T T T
u v

t x y x y


     
    

     
(5)

    2 2

2 2
T Tu C v CC C C C C

u v D
t x y x y x y

       
      

       
(6)

Here ),( vu  are the dimensional velocity components along the Cartesian coordinates ),( yx


, T  is

the  fluid  temperature,  C is  a  aerosol  particle  concentration,  Tu  and  Tv  are  the  thermophoretic

deposition velocity components, which are defined as

,    T T T T

T T
u k v k

T x T y
  

 
 

(7)

and the physical meaning of the other quantities is mentioned in the nomenclature. The dimensionless

coefficient Tk  depends on the Knudsen number Kn ( pdKn /2 , where pd  is the particle diameter
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and  is the gas mean free path) and the ratio of the thermal conductivity between the gas and particles.

According to Talbot et al. [25], Tk  is expressed as 

   

2.34 2.18
=

1 3.42 1 2 4.36

f p

T

f p

k k Kn
k

Kn k k Kn

     

    
(8)

The values of  Tk  is in the range between 0.2 and 1.2 (Batchelor and Shen [26]),  fk  is a thermal

conductivity of fluid, pk  is a thermal conductivity of aerosol particles,   is a Cunningham correction

factor. Further, it is assumed that particles have only one size, hence the particulate matter is diluted

enough that pairs or groups of particles may be considered (Epstein et al. [1]).

In order to analyze the fluid flow and heat transfer in general scale we introduce the following

dimensionless variables

   

         chcchccT

cTchT

CCCCTTTTLTTgvv

LTTguuLyyLxxLLTTgt









,,

,,,,
                  (9)

and also dimensionless stream function  ψ , u v
y x

  
  

  

 
 and vorticity  

v u
x y

 
 

 
 .  Therefore

the governing Eqs. (2)–(6) using the dimensionless variables (9) can be written as follows

2 2

2 2x y
 


 

 
 

(10)

2Pr
u v

x y Ra x x
    

 


    
     

    
(11)

2 2

2 2

1

y x x y x yRa Pr

      



       
    

        
(12)

2 2

2 2

1

C C
T

T T

Pr
y x x y Sc Ra x y

N NPr
k

Ra x N x y N y

      



  

 

       
     

       

         
       

          

(13)
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with the following boundary conditions

2 2

2 2

2

2

2

2

0, , 1, 1 on the left wavy wall

0, , 0, 0 on the right flat wall

0, , 0, 0 on the bottom and top walls

x y

x

y y y

 
   


   

  
 

 
    

 


   



  
   

  

(14)

Here  3
TRa g TL    is the Rayleigh number, Pr    is the Prandtl number, 

C

T

C
T










 is the

buoyancy  ratio  parameter,  Sc D  is  the  Schmidt  number,  c
C

C
N

C



 and  c

T

T
N

T



 are  the

thermophoresis parameters, h cC C C    and h cT T T   .

It is interesting to note that when 0   there is no mass transfer and the buoyancy force is due

to thermal diffusion only. The mass transfer driven flow is valid for both positive and negative values

of  . Hence, the two buoyant mechanisms aid each other when  0   and oppose each other when

0  , respectively (Mahajan and Angirasa [35]).

The physical quantities of interest are the local Nusselt number Nu and local Sherwood number

along the hot wavy wall and average Nusselt number Nu  and average Sherwood number Sh  , that are

defined as

1

0 0

1

0 0

,   

,   

x

x

Nu Nu Nu dy

Sh Sh Sh dy










 




 







n

n

(15)

III. Numerical method
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The cavity in the x and y plane, i.e., physical domain, is transformed into a rectangular geometry in

the computational domain using an algebraic coordinate transformation by introducing new independent

variables  and . The left and right walls of the cavity become coordinate lines having constant values of

.  The independent  variables  in the physical  domain are transformed to independent  variables  in the

computational domain by the following equations:

 

 
1

1 cos 2
,

cos 2

x a b yx x
a b y

y








    
 

  




(16)

Taking into account transformation (16) the governing equations (10)–(13) will be rewritten in the

following form:

22 2 2 2 2

2 2 2
2

x y y y
       


    

          
       

            

(17)

22 2

2

2 2 2

2 2
2

Pr
x x Ra x y

y y x x

         

     

        


     

             
        

             

        
    

         

(18)

22 2 2 2 2

2 2 2

1
2

x x x y y yRa Pr

              

         

                   
          

                      

(19)

22 2 2 2 2

2 2 2

2

1
2

C C
T

T T

Pr
x x Sc Ra x y y y

N NPr
k

Ra x N y N y

                   
           

                     

             
          

               

              

         

      

      
C

T

N
N y

       
    

        

   

   

(20)

The corresponding boundary conditions are given by
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22 2 2 2
1 1

2 2

2 2
2 2

2

2

2

0, 2 , , on 0

0, , , on  1

0, , 0, 0 on  0 and  1

c c

h c h c

c c

h c h c

T T C C
x y y y T T C C

T T C C
x T T C C

           
          

             

   
     

    

  
     

  

      
    

   

 
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(22)                       

The local Nusselt number along the left wavy wall can be found as follows:
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or taking into account Eq. (16) we can obtain 

            
1

2
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1
y

x xy
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   
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                                                                            (24)

The local Sherwood number also can be defined as 

           
1

2
0

1

1
y

x xy

Sh
x y
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

 
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                                                                             (25)

Therefore, the average Nusselt and Sherwood numbers can be defined as

1 1

0 0

,Nu Nu d Sh Sh d    .                                                                                                          (26)
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The governing equations (17)–(20) with corresponding boundary conditions (21) were solved

using the finite difference method of the second order accuracy (see Sheremet [16], Kuznetsov and

Sheremet  [18,  19],  Shenoy  et  al.  [31]).  Comprehensive  description  and  verification  of  the  used

numerical schemes have been presented earlier (see Sheremet [16], Kuznetsov and Sheremet [18, 19],

Shenoy et al. [31]).

The developed in-house computational code has been verified using numerical data by Sezai

and Mohamad [17] for the double-diffusive convection in a square cavity, filled with a binary fluid

such as an aqueous solution. Different temperatures and concentrations are specified between the left

and right vertical walls and zero heat and mass fluxes are imposed on the remaining walls with no slip

boundary conditions for all velocity components. The flow is assumed to be laminar and the binary

fluid is assumed to be Newtonian and incompressible. The comparison of results is analyzed in terms

of the average Nusselt and Sherwood numbers (see Table 1). 

Table 1. Variations of Nu  and Sh  with Ra for 10, 0 5Pr Le .  

Ra
Sezai and Mohamad [17] Present data

Nu Sh Nu Sh

102 1.0 1.0 1.0 1.0
103 1.07 2.5 1.09 2.45
104 2.21 5.28 2.18 5.29

510

4
3.64 – 3.65 8.94

105 4.5 – 4.53 11.29

For the purpose of obtaining grid independent solution, a grid sensitivity analysis is performed.

The grid independent solution was performed by preparing the solution for free convection in a square

wavy  cavity  filled  with  a  warm gas,  containing  suspended  aerosol  particles  at  Ra = 104,  Pr = 0.7,

Sc = 10.0,  = 1.0, NT = 8, NC = 2, kT = 1.0,  = 2, a = 0.9, T1 = Th, T2 = Tc, C1 = Cc, C2 = Ch. Four cases

of the uniform grid are tested: a grid of 5050 points, a grid of 100100 points, a grid of 150150
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points, and a much finer grid of 200200 points. Figure 2 shows an effect of the mesh parameters on

the average Nusselt number of the left wavy wall and fluid flow rate inside the cavity.

Fig. 2. Variation of Nu (left vertical wall) (a) and max
  (b) versus time and mesh parameters

On the basis of the conducted verifications the uniform grid of 150150 points has been selected

for the following analysis.

IV. Results and Discussion

Numerical  analysis  has  been realized  for  the following values  of  key parameters:  Rayleigh

number  (Ra = 104),  Prandtl  number  (Pr = 0.7),  Schmidt  number  (Sc = 0.1–100),  buoyancy  ratio

parameter  ( = 0.0–1.0),  thermophoresis  parameters  (NT = 8,  NC = 2),  dimensionless  thermophoretic

coefficient (kT = 0.1–1.0), undulation number ( = 0–2), a = 0.9 and two cases of boundary conditions

I – T1 = Th, T2 = Tc, C1 = Cc, C2 = Ch and II – T1 = Tc, T2 = Th, C1 = Ch, C2 = Cc. Particular efforts have

been focused on the effects of these parameters on the fluid flow, heat and mass transfer inside the

wavy cavity. Streamlines, isotherms and isoconcentrations as well as average Nusselt and Sherwood

numbers  and  fluid  flow  rate  for  different  values  of  governing  parameters  mentioned  above  are

illustrated in Figs. 3–14.
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Figures 3 and 4 present distributions of streamlines, isotherms and isoconcentrations inside the

wavy cavity in the case of different boundary conditions and for various values of Schmidt number. It

should  be  noted  that  used  boundary  conditions  reflect  the  effect  of  wavy wall  on  deposition  and

ablation of small particles at curved wall. The case of hot wavy wall and cold flat wall is demonstrated

in Fig. 3. For Sc = 0.1 and Sc = 1.0 one can find a domination of heat and mass diffusion mechanism

when  isothermal  and  isoconcentrations  are  parallel  to  vertical  walls  of  constant  temperature  and

concentration.  Moreover,  taking  into  account  the  thermophoresis  effect  the  small  particles  are

distributed uniformly inside the cavity. An appearance of two convective cells of low intensity inside

the cavity for these values of Schmidt  number illustrates  a formation  of different  temperature  and

concentration  gradients  within  the  cavity.  Further  increase  in  Schmidt  number  (Fig.  3c)  leads  to

essential intensification of convective heat and mass transfer, where one major vortex is formed inside

the cavity and three recirculations are at corners of the cavity. Isotherms illustrate more significant

heating of the cavity upper part taking into account the major vortex shape, while recirculation in the

upper wave trough reflects the formation of stagnant zone of high quasi-constant temperature. At the

same time,  low temperature disturbs from the right vertical  wall  along the bottom surface.  Such a

circulation defines a motion of small  particles.  Highest concentration is in the bottom right corner

where a minor vortex circulates and lowest concentration is in the upper wave trough. It is worth noting

that due to the thermophoresis  effect the upper part  has a low concentration of particles while the

bottom part has a high concentration of particles.

In  the  case  of  hot  flat  vertical  wall  and  cold  wavy wall  with  the  opposite  distribution  of

concentration we have the fluid flow, heat and mass transfer patterns (Fig. 4) that are symmetry to the

abovementioned. For low values of Schmidt number (Figs. 4a and b) the diffusion mechanism for heat

and  mass  transfer  is  essential  and  location  of  convective  cells  cores  as  well  as  isotherms  and

isoconcentrations are opposite in comparison with Figs. 3a and b. When Sc = 10 (Figs. 4c) on can find

also one major vortex and three minor ones. Highest particles concentration is inside the bottom wave
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trough, while the lowest concentration in the upper right corner. The main reason for such behavior is

the effect of thermophoresis force and geometry of the cavity with stagnation zones. It is interesting to

note, that the considered mass buoyancy force has an opposite effect on the convection due to the

temperature gradient for the considered case is directed in positive x-coordinate while the concentration

gradient is directed in negative  x-coordinate. But for the thermophoresis effect we have the particles

circulation along the main circulation. If we consider the case when thermal Rayleigh number is equal

to zero but concentration one is not zero the formed circulation will be opposite.

Fig. 3. Streamlines, isotherms and isoconcentrations (case I) for  = 1.0, kT = 0.5,  = 1:

Sc = 0.1 – a, Sc = 1.0 – b, Sc = 10.0 – c
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Fig. 4. Streamlines, isotherms and isoconcentrations (case II) for  = 1.0, kT = 0.5,  = 1:

Sc = 0.1 – a, Sc = 1.0 – b, Sc = 10.0 – c

The effects of Schmidt number and used boundary conditions on average Nusselt and Sherwood

numbers at left wavy wall are presented in Fig. 5. As has been mentioned above, low values of Schmidt

number reflect heat and mass conduction; therefore regardless of the considered boundary conditions

these values are identical. An increase in  Sc up to 10 leads to an essential growth of  Nu  and  Sh .
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Average  Nusselt  number  at   = 200  for  different  boundary  conditions  has  identical  values,  while

average Sherwood number does not obtain steady state value. The effect of dimensionless time is also

interesting, namely, an increase in Sc leads to a growth of time needed for obtaining steady-state mode.

Fig. 5. Variations Nu  (a) and Sh  (b) at wavy wall for  = 1.0, kT = 0.5,  = 1

Figures  6  and  7  show streamlines,  isotherms  and  isoconcentrations  for  different  values  of

buoyancy ratio parameter and used boundary conditions. Regardless of the analyzed case, an increase

in  leads to a weak attenuation of the convective flow, heat transfer and mass transfer along the main

vortex.  More  essential  influence  of  mass  flux  reduces  the  heat  transfer  due  to  the  opposite

concentration  effect  as  has  been  mentioned  above  that  results  in  an  appearance  of  addition

recirculations in wave troughs and cavity corner. In the case of hot right wall and cold left one the

effect of buoyancy ratio parameter is similar to the abovementioned.

Figure 8 demonstrates the heat and mass transfer enhancement with Schmidt number and the

rate  of  this  enhancement  increases  with the  buoyancy ratio  parameter.  While  average  Nusselt  and

18



Sherwood  numbers  decrease  with  a  growth  of  .  It  is  worth  noting  that  change  of  the  analyzed

boundary conditions leads to essential differences in average Sherwood number for high values of the

buoyancy ratio parameter.

Fig. 6. Streamlines, isotherms and isoconcentrations (case I) for Sc = 10.0, kT = 0.5,  = 1:

 = 0.0 – a,  = 0.1 – b,  = 1.0 – c
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Fig. 7. Streamlines, isotherms and isoconcentrations (case II) for Sc = 10.0, kT = 0.5,  = 1:

 = 0.0 – a,  = 0.1 – b,  = 1.0 – c
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Fig. 8. Variations of Nu (a) and Sh  (b) at wavy wall for kT = 0.5,  = 1

Figures 9–11 show the effect of dimensionless thermophoretic coefficient on fluid flow, heat

and  mass  transfer  patterns  for  Sc = 10.0,   = 1.0,   = 1.  Regardless  of  the  analyzed  boundary

conditions, an increase in kT leads to weak fluid flow intensification, while temperature field changes

insignificantly and concentration field changes essentially. An increase in thermophoretic coefficient

characterizes a growth of thermophoresis velocity (see Eq. (7)) that reflects an increase in particles

concentration in the bottom right corner (Fig. 9) and left bottom wave trough (Fig. 10). 
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Fig. 9. Streamlines, isotherms and isoconcentrations (case I) for Sc = 10.0,  = 1.0,  = 1:

kT = 0.1 – a, kT = 0.5 – b, kT = 1.0 – c

Figure 11 presents the heat transfer enhancement with dimensionless thermophoretic coefficient

and  it  is  not  dependent  on  the  used  boundary  conditions.  At  the  same  time,  this  heat  transfer

intensification is more essential for high values of Schmidt number. In the case I average Sherwood
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number is a weak decreasing function of kT, while for the case II  Sh  is an increasing function of kT.

The main reason for such behavior is a growth of the surface length where particles subside. 

Fig. 10. Streamlines, isotherms and isoconcentrations (case II) for Sc = 10.0,  = 1.0,  = 1:

kT = 0.1 – a, kT = 0.5 – b, kT = 1.0 – c
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Fig. 11. Variations of Nu  (a) and Sh  (b) at wavy wall for  = 1.0,  = 1

The effect of undulation number on streamlines, isotherms and isoconcentrations for different

boundary conditions is presented in Figs. 12 and 13 for Sc = 10.0,  = 1.0, kT = 0.5. Regardless of the

used boundary conditions (cases I and II) the main reason for various flow, heat and mass transfer

patterns is a deformation of internal fluid zone due to wave crests and troughs. For the considered range

of   we  have  the  following  analysis  of  fluid  intensity:  for  the  cases  I  and  II

0 2 1

max max max
0 062 0 057 0 054. . .

  
  

  
     .  Therefore,  the  wave  troughs  define  the  fluid  flow

intensity. It should be noted that the value of undulation number does not change the location of zones

with the highest and lowest values of particles concentration. One can find only the modification of the

isoconcentrations and isotherms near the wavy wall. 
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Fig. 12. Streamlines, isotherms and isoconcentrations (case I) for Sc = 10.0,  = 1.0, kT = 0.5:

 = 0 – a,  = 1 – b,  = 2 – c
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Fig. 13. Streamlines, isotherms and isoconcentrations (case II) for Sc = 10.0,  = 1.0, kT = 0.5:

 = 0 – a,  = 1 – b,  = 2 – c

The effect of undulation number on average Nusselt and Sherwood numbers at wavy wall for

different boundary conditions is shown in Fig. 14. In the case of Sc > 3 a growth of undulation number

leads to the heat transfer rate reduction regardless of the used boundary conditions (cases I and II). As
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for average Sherwood number, an increase in  for Sc > 2 also leads to a diminution of Sh . While for

Sc < 2  the  dependences  are  non-linear.  As  has  been  mentioned  above,  in  the  case  of  the  highest

concentration  along  wavy  wall  average  Sherwood  number  is  greater  in  comparison  with  another

considered case.

Fig. 14 Variations of Nu  (a) and Sh  (b) at wavy wall for  = 1.0, kT = 0.5

V. Conclusions

     In the present work we attempt to model natural convective flow in a wavy wall cavity considering

the double-diffusion and thermophoresis effects. The initial domain was transformed using appropriate

transformations  in  a  rectangular  one.  The  modified  governing  dimensionless  partial  differential

equations  were  solved  using  a  finite  difference  method  of  the  second  order  accuracy.  The  flow

characteristics such as streamlines, isotherms and isoconcentrations along with average Nusselt and

Sherwood numbers at wavy wall were presented in graphical form for several values of the governing

parameters. Two cases of differentially heated cavity were taken into account, namely: case I when left
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wavy wall  is  kept  at  high temperature  and low concentration,  while  the  right  wall  is  kept  at  low

temperature and high concentration; case II when left wavy wall is kept at low temperature and high

concentration, while the right wall is kept at high temperature and low concentration. The conducted

analysis revealed that the average Nusselt number is an increasing function of Schmidt number and

thermophoretic  coefficient,  and  a  decreasing  function  of  buoyancy ratio  parameter  and undulation

number for  Sc > 3 regardless of the used boundary condition cases. At the same time,  the average

Sherwood number is an increasing function of Schmidt number and a thermophoretic coefficient for

case II,  and a decreasing function of buoyancy ratio  parameter,  undulation number for  Sc > 2 and

thermophoretic coefficient for case I. It should be noted that the waviness of the wall essentially affect

the mass transfer taking into account the obtained results for the average Sherwood number.
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