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ABSTRACT OF THEDISSERTATION

Distributed Termination Detection
For Multiagent Protocols

by

Tshiamo Motshegwa

Doctor of Philosophy in Computer Science

City University, London, October 2009

The research conducted in this thesis is on distributed termination detection in multia-

gent systems.

Agents engage in complex interactions by executing behaviour specifications in the

form of protocols. This work presents and experiments with aframework for making

termination in a multiagent system explicit. As a side effect, the mechanism can be

exploited to aid management of agent interactions, by providing visibility of the inter-

action process and can be extended to drive multiagent system management tasks such

as timely garbage collection.

Results from previous attempts to deploy agents systems when scaling up, e.g. Agentc-

ities, have shown and exposed a big gap between theory and practice especially in the

reliability and availability of deployed systems. In particular more work needs to be

done in the area of supporting agent infrastructures as muchas in theoretical agent

foundations.

There are two aspects to this problem of termination detection in multiagent systems,

firstly, the formal verification of behaviour at compile-time and secondly, monitoring

and control at run-time. Regarding the former, there has been some work on the ver-
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ification of agent communication languages. But overall verification is difficult and

often requires knowledge of internal states of agents at compile time, and as yet has

not been satisfactorily solved to be deployed in real systems. The second, the runtime

approach is adopted in here.

The research is not about protocol engineering but assumes correct protocols, and

protocol specifications to be finite state machine graphs. Given these correct verified

protocols, the thesis proposes a number of definitions culminating in identification of

minimal information in the form of sub-protocols that agents being autonomous, can

make available for the termination detection. An off line procedure for deriving these

sub-protocols is then presented.

The thesis then considers a termination detection model, and within this model, pro-

poses an conversation model encompassing protocol executions, with hierarchical con-

versations modelled as diffusing computation trees and defines a number of predicates

to derive termination in centralised and distributed environments. Algorithms that im-

plement these predicates are sketched and some complexity analysis is performed. The

thesis then considers a prototype implementation evaluated over some defined detec-

tion delays metric.

The evaluation approach is heavily empirical, with an experimental approach adopted

to evaluate various configurations of the termination detection mechanism. The eval-

uation employs robust resampling and bootstrapping methods to analyse and obtain

distributions and confidence intervals of the detection delays metric for the termina-

tion detection mechanism.
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CHAPTER 1

Introduction

Like mathematicians, computer scientists use formal languages to denote

ideas. Like engineers, they design things, assembling components into systems

and evaluating tradeoffs among alternatives. Like scientists, they observe the

behavior of complex systems, form hypotheses, and test predictions,

— Allen B. Downey.

Aspiring computer scientist aspire to do these things.

The research in this thesis is in the area of multiagent systems (MAS). Multiagent

systems are related to distributed systems in that they are inherently distributed and

distributed systems offer a platform for developing multiagent systems.

Differences are often cited to exist between the agent and object models and related

communication models assumed in the two areas. Agents are deemed autonomous (in

theory), are considered higher level entities which use a rich communication language

and execute interaction protocols to engage in potentiallycomplex goal oriented inter-

actions in dynamic and uncertain environments. By contrastobjects are by and large

passive, with no real control over execution of their methods, for example. But as ob-

served in [239], it appears the debate on agents and objects (processes) has moved on

to converge to a consensus that agents and objects to occupy different realms and can

co-exist.

It is worth observing though that, while distributed systems emphasise distribution
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of resources, MAS in addition, emphasise distribution of objectives, distribution of

problem solving1 (e.g. by the divide and conquer metaphor), coordination of actions

and flexible interaction in open environments.

Given these assumptions, there are important issues addressed in the distributed system

research and the corresponding results that can be adopted in developing multiagent

systems but taking into account issues pertinent to the agent model of computation.

This thesis proposes to look at one particular area, distributed termination detection.

We consider this in a multiagent system, identifying agent interaction protocols as the

mechanism that enable coordination and flexible interaction between agents and using

this as a starting point of our model.

Termination is an example of a stable global state of a distributed system. Components

of a distributed system have only local views of a computation and lack a global per-

spective. So ascertaining that a distributed computation has terminated is not straight

forward since it requires a global view.

The termination detection problem is related to the more general problem of detection

of global predicates, a fundamental problem in debugging and monitoring.

It has also been shown [227], that the semantics of the garbage collection problem

are contained in the semantics of the termination detectionproblem, in that, with ap-

propriate transformations garbage collection schemes canbe derived from termination

detection schemes.

So termination detection has useful applications as the terminated status is among

stable states (consider as another example global communication deadlock) that should

be known for system administration. In summary consider thefollowing applications

of termination detection;

1Though this is also present in non-agent based distributed systems.
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1. Distributed workpool, i.e. dynamic mapping of tasks onto processes for load

balancing in which any task may potentially be performed by any process, and

if the work is generated dynamically and a decentralized mapping is used, then

a termination detection algorithm would be required so thatall processes can

actually detect the completion of the entire program and stop looking for more

work.

2. Deadlock detection, a stable state where there arewait-for cycles ,i.e. when two

or more processes permanently block each other by each process having a lock

on a resource which the other process are trying to lock.

3. Crash recovery, recovering and rolling back from abnormal termination.

4. Garbage collection, because termination detection is related to garbage collec-

tion, it is possible with appropriate transformations to derive garbage collection

schemes from termination detection schemes as [227] has shown.

We wish to explore research done in distributed systems in the area of termination

detection to provide a basis for development of a class of mechanisms to make termi-

nation explicit in multiagent systems, (possibly at a tradeoff with some autonomy of

agents, not an unrealistic assumption for practical systems). This mechanism can be

exploited in the future for work on automatic garbage collection of multiagent systems

in automated environments.

1.1 Hypothesis

The primary goal of this research is to study termination detection in multiagent sys-

tems and to design, implement and experiment with a mechanism for detecting termi-

nation of agent interactions in multiagent systems. A working hypothesis is that the

3



mechanisms will allow for timely detection of termination in multiagent interactions.

1.2 The Problem

One of the underlying assumptions in the development of societies of interacting au-

tonomous agents is that we can fully specify correct and predictable interaction pro-

tocols and mechanisms apriori. Given that this has been achieved, collaborating or

self-interested agents can then engage in complex interactions such as negotiation to

achieve their goals. Equipped with these capabilities and imbued with specific pri-

vate strategies and resources, agents can be let loose in open environments to perform

complex transactions on behalf of their owners. But given the nature of the interaction

space (potentially large, open and unpredictable environments) and inherent uncer-

tainty in open systems, it is extremely difficult to specify and predict fully apriori such

interactions and their likely consequences without building overly complex monolithic

agents.

Also experiments and experiences with an attempt to do deploy agents for services on

a global network called AgentCities [66] are recounted in [242] and [67] lists concrete

challenges for AgentCities service environment as follows, quote;

– i – Automation, i.e. management of autonomy:- Understanding how to effectively

automate systems in an open environment, how to control and manage de-

ployed automated systems. This must draw on work from mathematical control

theory to distributed systems and agent technology,

– ii – Interoperability, i.e. communication:- How to enableon-line software systems

to interact with one another in increasingly flexible ways: configurable inter-

action sequences, communication about arbitrary domains,
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– iii – Coordination:- Putting in place frameworks that enable automatic creation,

maintenance, execution and monitoring of contracts and agreements between

automated systems to fulfil their business objectives,

– iv – Knowledge acquisition (interfaces between worlds):-Putting in place frame-

works that enable automatic creation, maintenance, execution and monitoring

of contracts and agreements between automated systems to fulfil their business

objectives.

We claim and position our research to make a contribution to the first point above,

observing that multiagent systems are distributed and are implemented on distributed

systems infrastructures, and noting (as has been elsewhere[247]), that research efforts

in agent infrastructure support should necessarily draw upon experiences and coordi-

nate with the general distributed systems research.

We observe that, while autonomy is a key feature in agent based systems, some level

of control for the highlighted purposes should be acceptable when building non-trivial

agent-based applications, such as the ones envisaged in global agent based service pro-

vision networks as exemplified by past initiatives such as AgentCities [66]. This is not

an unreasonable assumption given that, while autonomous, agents in real applications

participate in societies governed by some enforced rules ofparticipation.

Chapter 3 from page 37 considers in detail multiagent systems and traditional dis-

tributed systems to motivate and highlight why some traditional problems in distributed

systems like the termination detection problem may need further consideration within

agent computational model assumed in multiagent systems. As a prelude to that dis-

cussion, consider that agents are deemed to generally have ahigh degree of autonomy

about what they do, and regarding termination detection, agents may offer additional

information about the execution of their protocols to facilitate the termination detection
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process for example.

Furthermore, consider the flexibility of interactions in multiagent systems, in particular

consider a multiagent society with provisions for dynamismin protocols, i.e. in such

environments;

– i – There could be support for dynamic execution of coordination protocols as

proposed by [31], i.e. where the role an agent intends to holdwithin a protocol

can be played without the need of prior knowledge.

– ii – There could be an infrastructure for dynamic protocol specification as dis-

cussed in [14], an infrastructure that accommodates revision of protocol spec-

ifications during execution in situations where there is such a strong require-

ment. This approach can be contrasted with the traditional one where specifi-

cation of protocols has largely been considered as a design-time activity.

– iii – There could be infrastructure support for runtime protocol discovery in general.

Given these points, we propose that there is a plausible casefor considering further

how issues like termination detection can be addressed within multiagent systems en-

vironments.

1.3 Assumptions

From an Artificial Intelligence perspective, agents are communicative, intelligent, ra-

tional and possibly intentional entities. From thecomputingperspective, they are au-

tonomous, asynchronous, communicative, distributed and possibly mobile processes

[191] and multiagent systems or societies of agents aremodulardistributed systems

and havedecentralizeddata. Agents in a society haveincomplete informationor capa-

bilities and interact to further their goals.
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So regarding our research assumptions, we;

– i – We accept the computing perspective of agents as detailed above, and do not

for example consider mentalistic notions in agents.

– ii – Furthermore, assume that an agent’s behaviours are specified through public

protocols for example available through public a library. We assume public

protocols so that an external entity, e.g a resource manager, can know about

terminating states and protocol paths.

– iii – Assume that all messages are observable in principle so that in general an ob-

server can decide if a terminating state has been reached.

– iv – Assume a total ordering of messages, e.g. through a global clock. This is es-

sential because temporal ordering of messages are used to identify current state

of protocols. This global clock can be realised through clock synchronisation

in a distributed system for example.

– v – And without loss of generality assume further that protocols are in the form

of finite state machines, edge-labelled directed graphs andassume existence

of transformations of other behaviour specifications to finite state machines

(FSMs) for use with our mechanism. The basis for this assumption is discussed

in Chapter 4.4, page 54, but as a prelude to that, we assume FSMs because;

• Most of the models used in protocols specification are mainlyextensions

of finite state machines, i.e. FSMs underpin the current study of proto-

cols.

• FSMs are grounded in sound theoretical foundations and are well under-

stood.

• FSMs are relatively simple to implement.
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• FSMs are accompanied by a variety of techniques and tools forformal

analysis and design.

• FSMs have an intuitive graphical representation and graph theoretic ap-

proaches can be used with the resulting protocol structures

– vi – Regarding properties of agents, particularly the notion that agents can be per-

sistent, we assume non-persistent agents, agents with a known lifecycle. In

the case of persistent agents, assume existence ofcopiesof these agents whose

resources can be recouped once they have played their part ininteractions. We

assume that an agent or such a copy of an agent is terminated ifall protocol

executions in its set of interactions have reached terminalstates. Regarding

the notion of autonomy, we assume agents to be autonomous andthis feature

allows them to offer runtime information about their publicprotocol execu-

tions but are constrained by some society rules, e.g. obligation to register and

provide this information.

Research Methodology Regarding the research methodology [129] observes that is

no one standard way of conducting research in an evolving discipline like computer

science and goes on to discuss models of argument, namely proof by demonstration,

empiricism, mathematical proof and hermeneutics.

Our approach is to develop a model and a framework and conducta simulation and

perform detailed experimental evaluation (empiricism) toprovide a demonstration and

set benchmarks for future work. So the methodology can be thought of as using em-

piricism and coupled with proof of concept by demonstration.
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1.4 Contribution and Originality

We propose a concrete and generic method for termination detection for multiagent

systems discussed and evaluated in Chapters 5 to 10.

With this method, we propose to have made a number of contributions; On atheo-

retical level, we have considered the distributed termination detectionresearch from

distributed systems and considered it in the agent model andused this a basis for de-

veloping a class of agent control mechanisms.

1. To this end, in Chapter 5, we present definitions related toprotocols, and define

minimal protocol information agents can make available andpropose a termina-

tion detection model.

2. We present an agent conversation model, and define some predicates and present

algorithms for their implementation.

3. Combining all these we present a distributed protocol fortermination detection

and consider distribution possibilities.

On apractical level, we have offered a structured and systematic, methodical experi-

mental framework, i.e.

1. In Chapter 6 we offer a prototype implementation for flat conversations and use

it to evaluate the proposed mechanism and various configurations. The experi-

mental prototype uses and tests a widely used agent development framework.

2. Again in Chapter 6 we define an extensive experimental and data analysis frame-

work that uses robust resampling methods for quantitatively evaluating a proto-

type in this research. We claim that this experimental framework can also be

used evaluating future contributions in this area as none tomy knowledge exist.
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3. Equally experimental work and results here can also set a benchmark for future

work for comparison.

Aspects of these contributions have been previously published in [174] and are subject

of papers in progress resulting from research discussed in this thesis.

1.5 Exploitation

In addition to the applications given on page 2, consider thefollowing example sce-

narios for how termination detection maybe be exploited in agent applications.

Automated Auction-based marketplaces Consider an automated agent-based mar-

ket place hosting an auction with numerous agents. Typically participants maintain

varying valuations of goods and bid to those upper bounds according to adopted pri-

vate strategies. Inevitably most participants will drop off early from the game. Typi-

cally in real applications, these entities would stay on longer than need be consuming

system resources. In most applications this is not a concern. But where scalability and

resource consumption is an issue, a deliberative mechanismfor identifying and timely

garbage collecting defunct agents is a necessity.

Multi-agent Negotiation Other uses of timely detection of termination in agent sys-

tems is in the area of multi-issue negotiation where an agentparticipates in numerous

interactions to acquire resources forming a composite service for example. The overall

negotiation is only complete when all deals are closed. So a mechanism for ascertain-

ing this state would be useful.
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Figure 1.1: Mapping local view to global view for a process

Business ProcessesConsider a business process, with internal processes, transitions

and stages. The outside observer, for example a manager, does not need to know the

details of the internal processes, but would need to keep track of deliverables. This can

be achieved by reporting or by maintaining a list ofcheckpointsor observables, actions

marking stagetransitions. The external entity would then keep track of particular

terminal states marking end of a stage and transitions from them leading to the next

phase in the process.

A cluster of local states and transitions separated by designated terminal states and

checkpoints or observables can be viewed as an aggregate that can map to astatein

the partial global view, and this view maybe what is requiredby an external entity to

infer progress in the underlying process. Figure 1.1 illustrates this process.

In all these scenarios, we can envisage some protocol executions that can possibly

be composed with a termination detection protocol or can overseen by a termination

detection mechanism, and in line with the last assumption stated in page 7, termination

of agents can then be eventually derived.
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1.6 Thesis Roadmap

Part I presents background work, the material there is not mywork apart from the

analysis where given, the updated taxonomy and the survey ofthe related areas from

the given references. In Part I ;

1. Chapter 2 provides a theoretical back drop presenting background research in

termination detection, detailing models, algorithms and their taxonomy.

2. Chapter 3 Briefly discusses multiagent systems, their agent model ofcomputa-

tion, distributed systems and the process or object model.

In Part II,Chapter 5 presents

1. Definitions related to protocols, and defines minimal protocol information agents

can make available.

2. A termination detection model, comprising a conversation model, a set of pred-

icates and algorithms for their implementation.

3. A distributed protocol for termination detection and distribution possibilities.

Part III presents experimental details and results, with

1. Chapter 6 detailing experimental setup, prototype implementation, experimen-

tal design, and detailing data collection and analysis,

2. Chapters 7 , 8 , 9, 10 presenting experimental results and data analysis,

3. Chapter 11 offers a summary and conclusions
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4. Appendices A to I providing supplementary background material, illustrations,

further analysis or repeated data analysis , data summariesfor the experimental

part of the work. These appendices can be consulted when referenced in the

thesis for illustrations if necessary.

1.7 Summary

The research documented in this thesis is about terminationdetection in multiagent

systems. The problem is encountered and widely researched in distributed systems.

There are benefits of applications that can be accrued in considering this problem in

multiagent systems, but this requires consideration of properties of agents such as

flexible interaction and coordination through interactionprotocols, autonomy, possi-

ble runtime protocol discovery, protocol specification revision and dynamic execution

of coordination protocol with flexible roles. Therefore this highlights the need to re-

consider research with respect to agents, observing that agents being autonomous, they

can make available additional information about protocolsthey are executing.

This research proposes contributions at two levels, at a theoretical level, a considera-

tion of the termination detection problem in the agent model, and at a practical level

implementing and experimentally evaluating a mechanism for termination detection in

a multiagent environment.

Next, Part I of the thesis provides background material with Chapter 2 providing a

detailed survey of the research done in the area of termination detection in distributed

systems to provide a theoretical backdrop for our work.
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PART I

Background
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CHAPTER 2

State of the art in Termination detection in distributed

Systems

The problem we wish to discuss in this thesis was originally formulated in the area

of distributed systems. This chapter serves to provide a self contained survey of the

history and state of the art in the area of distributed termination detection. The purpose

of this being to provide a context and the theoretical underpinnings for the proposed

research work in this area within multiagent systems.

The chapter is structured as follows; A general introduction to the field is first given,

illustrating briefly application areas, terminology, models, and then the problem for-

mulation. A taxonomy and example classical algorithms are then discussed next. Then

finally a selection of recent algorithms is presented to reflect current activity in the

field.

2.1 Introduction and Background

There are times when there is a need to ascertain whether a condition is true for a dis-

tributed system and the condition cannot be judgedlocally but requiresglobalknowl-

edge of the state of the system. Distributed termination detection is one example that

encapsulates this problem, other examples include distributed deadlock detection, dis-

tributed garbage collection and distributed debugging.
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Distributed termination detection (from hereon referred to as DTD) is a fundamental

problem in distributed computing. It is a classical problemof distributed control, and

it is considered to be of practical, algorithmical, theoretical and methodical importance

[227].

The termination detection problem is related to the more general problem of detection

of global predicates, a fundamental problem in debugging and monitoring [16].

In general, a distributed system can be viewed as a set of autonomous processes which

cooperate with each other to compute a task. To coordinate computation and exchange

data, processes may communicate with each other by message-passing. Termination

detection refers to the necessity of determining whether the system has entered asilent

status where all processes are idle and no computation is possible to take place in the

future [233].

The level of difficulty to detect such a status depends on the nature of the distributed

system, but is usually non-trivial due to the variation of processor speeds and the un-

predictable delays of the message delivery and the absence of global clocks. The

distributed termination problem was first identified by [78], and has since inspired a

lot of research interest as reflected in various literature,(e.g. [77, 231].

DTD is closely related to other important problems such as deadlock detection [178,

44], garbage collection [227, 228] and snapshot computation [46]. Indeed with garbage

collection [227] has shown that the semantics of the termination detection problem are

fully contained in the garbage collection problem and that with appropriate program

transformations, solutions for the garbage collection problem can be applied to termi-

nation detection and vice versa.
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Application of Distributed Termination Detection DTD has many applications:

It serves an important role in thediffusion computation[78, 233] and thedistributed

workpool models which are commonly used in distributed and parallel computational

models [7]. The work pool or the task pool model is characterized by a dynamic

mapping of tasks onto processes for load balancing in which any task may potentially

be performed by any process. There is no desired preassignment of tasks onto pro-

cesses [7]. The mapping may be centralized or decentralized. [139] observes that, in a

workpool, if the work is generated dynamically and a decentralized mapping is used,

then a termination detection algorithm would then be required so that all processes can

actually detect the completion of the entire program (i.e.,exhaustion of all potential

tasks) and stop looking for more work.

Furthermore, the terminated status of a distributed systemis among the stable states

(such as global communication deadlock, token loss) that should be known for system

administration [233]. It has also been shown that termination detection schemes can

be applied to solve other distributed computing problems such as deadlock detection,

checkpointing [64], and crash recovery among others.

2.1.1 Overview and terminology

A distributed algorithm terminates when it reaches aterminal state, a configuration in

which no further event is applicable.

Techniques have been developed to make termination explicit by distributively detect-

ing that the program has reached a terminal configuration. These are the techniques

we set out to explore in this section.

A very informal problem statement can be formulated as follows; Given a network of

N nodes, implement a distributed termination detection algorithm. Each node can be

either inactiveor in passivestate. Only an active node can send messages to other
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nodes; each message sent is received after some period of time later. After having

received a message, a passive node becomes active; the receipt of a message is the

only mechanism that triggers for a passive node its transition to activity. For each

node, the transition from the active to the passive state mayoccurspontaneously. The

state in which all nodes are passive and no messages are on their way is stable: the

distributed computation is said to haveterminated. The purpose of the algorithm is to

enable one of the nodes, say node 0, to detect that this stablestate has been reached.

Definition of termination detection Consider this informal definition by [161],

A distributed computation is considered globally terminated if every pro-

cess is locally terminated and no messages are in transit. Locally termi-

nated can be understood to be a state in which the process has finished its

computation and will not restart unless it receives a message.

Consider a formalisation given by [233], summarised here, quote;

A distributed system consists of a set of processesS = {P1, P2...., Pn} which cooper-

ate with each other to complete a job. Processes can communicate with each other by

message-passing. Logically, from eachPi to eachPj there is a communication chan-

nel Ci,j. A process may switch between two states:activeand idle. A process when

performing some computation is said to be in the active state. An active process is free

to send/recieve messages and may become idle spontaneously. On idle state, a process

does not perform any computation, but can passively receivemessages, on which event

it becomes active immediately and starts computations. Fordistinction , computation

carried out and messages transmitted by the system are called basic computationand

basicmessagesrespectively.

The distributed system is said to be terminatediff (i) Pi is idle and (ii)Ci,j is empty

for all 1 ≤ i, j ≤ n (condition (ii) is necessary because message delays are unpre-
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dictable and anyhiddenmessage will wake up the system later). When terminated ,

no distributed process can become active and perform any further computation. Extra

messages, called control messages are sent , or extra information associated with basic

messages to detect such a state. This is the distributed termination detection problem

[233].

So the following definition follows;

Definition 1. Termination detection

LetPi(t) denote the state (active or idle) of processPi at time t andCi,j(t) denote the

number of messages of messages in transit in the channel at aninstantt from process

Pi to processPj . A distributed computation is said to be terminated at time instantt0

iff: (∀Pi(t0) = idle) ∧ (∀Ci,j(t0) = 0).

2.2 Classical Algorithms and Taxonomy

In early research in the areas, (1980’s) the termination detection algorithms were iden-

tified roughly fall into two categories, namely;

• Tracing algorithms(computation tree based). Algorithms of this type follow the

computation flow by tracing active nodes along the message chains that activated

them, and call termination when all traced activity has ceased.

• Probe algorithms(wave based) A probe is a distributed activity that visits all

processes in the network (can be implemented by a token circulating on a ring

or by an echo mechanism.

Algorithms of this category rely on global (coordinated) scans of the network

state and call termination when no activity is found. The distinction can be

compared to that between reference counting and mark-sweeptype garbage col-
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lectors [130].

The next section considers in more detail, the two classes ofalgorithms given in the

taxonomy above and gives example algorithms.

2.2.1 Tracing Algorithms

A tracing algorithm relies on the knowledge of the set of initially active nodes, be-

cause all activity of the computation originates from thesenodes by message chains.

Solutions of this type are based on maintaining dynamicallya directed graph, called

a computation graph (spanning tree), of which the nodes include all active processes

and all basic messages in transit [226].

Termination is detected when the computation graph becomesempty. One requirement

is that the network be bi-directed , i.e. messages can be sentin two directions via each

channel. The Dijkstra-Scholten algorithm [78] describes asolution for centralized ba-

sic computations, in which the computation graph is a tree with the initiator as the root

(the only node initially active). The Shavit-Franchez Algorithm [206] generalises this

solution to decentralised basic computations and uses a forest, in which each initiator

of the basic computation is the root of a tree.

To illustrate in detail this class of algorithms, we consider the details of the Dijkstra-

Scholten Algorithm below.

The Dijkstra-Scholten Algorithm The algorithm of Dijkstra and Scholten detects

the termination of acentralisedbasic computation ( called a diffusing computation

[78]). The initiator of the algorithm (called the environment) also plays an important

role in the detection algorithm.

Intuitively, the algorithm works as follows:

20



– i – Every node1 maintains a counterc. Sending a message increasesc by one; the

receipt of a message decreasesc by one. The sum of all counters thus equals the

number of messages pending in the network. Whennode0 initiates a detection

probe, it sends a token with a value0 to nodeN−1. Everynodei keeps the token

until it becomes passive; it then forwards the token tonodei−1 increasing the

token value byc.

– ii – Every node and also the token has a colour (initially allwhite). When a node

receives a message, the node turns black. When a node forwards the token, the

node turns white. If a black machine forwards the token, the token turns black;

otherwise the token keeps its colour.

– iii – Whennode0 receives the token again, it can conclude termination, if

• node0 is passive and white,

• the token is white, and

• the sum of the token value andc is 0.

Otherwise,node0 may start a new probe.

A formalisation of this algorithm in given in ([226]), and isgiven in Appendix I, page

346.

2.2.2 Wave-Based Solutions

Applications of the algorithms discussed above require that communication channels

are bidirectional; for each basic message sent fromp toqa signal must be sent fromq to

p. The average message complexity equals the worst case complexity; each execution

1Herenodeis used in place ofprocessto include other processing entities in general.
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requires one signal message per basic message, and in the case of the Shavit-Francez

algorithm, exactly one wave execution [226].

Wave based algorithms are based on the repeated execution ofawave algorithm; at the

end of each wave, either termination is detected, or a new wave is started. Termination

is detected if a local condition turns out to be satisfied in each process [226].

Dijkstra-Feijen-Van Gasteren [77] is an example of a wave based algorithm. It detects

termination of a basic computation usingsynchronousmessage passing.

But the synchronous message passing assumed in that algorithm is a serious limitation

on its general application, hence several generalisation of it to computations with asyn-

chronous message have since been proposed , e.g. Safra’s algorithm which introduces

message counting, counting messages sent and received in order to establish that no

messages are under way [160] has similarly introduced an algorithm based on vector

counting but which maintains a separate count for each destination.

It is worth noting that an alternative to maintaining message counts is to use acknowl-

edgements. [177] has proposed a variation of the Dijkstra-Feijen-Van Gasteren al-

gorithm to use acknowledgements, though the resulting algorithm does not offer an

improvement on the Shavit-Franchez algorithm.

2.2.3 Other approaches to termination detection

An alternative view of termination detection algorithms research is to consider a num-

ber of approaches in the existing literature for developingalgorithms for the termina-

tion detection problem and identify a wider range of categories. These are discussed

extensively in [4] and summarised here.

1. Usingdistributed snapshots. In this approach the fact that a consistent snapshot

of a distributed system captures stable properties is used,coupled with the fact
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that termination of a distributed computation is a stable property.

It follows therefore that if a consistent snapshot of a distributed computation is

taken after the distributed computation has terminated, the snapshot will capture

the termination of a computation. Algorithms using this approach often assume

that there is a logical bidirectional communication channel between every pair

of processes. Communication channels are assumed to be reliable but non-FIFO

and message delay is assumed arbitrary but finite.[46] and [116] discuss using

distributed snapshots for termination detection.

2. Usingweight throwing. In this approach there is a controlling process. A com-

munication channel exists between each process and the controlling process. All

processes start off in the idle state and are assigned a weight of zero, whilst the

controller process is assigned weight of one. The computation starts with the

controlling process sending a basic message to one of the processes. That pro-

cess becomes active and the computation starts. Weights arebounded between

zero and one , i.e. weightW (0 < W < 1). When a process sends a message it

sends a part of its weight in the message. On receiving a message a process adds

the weight received in the message to its weight. Thus the sumof weights on all

the processes and on the message in transit is always one. On becoming passive

a process sends its weight to the controlling agent in a control message. The con-

troller add this to its weight. If its weight becomes one, thecontroller concludes

termination. [161] and [117] discuss algorithms based on weight throwing.

3. Using spanning tree. AssumingN processesPi, 0 ≤ i ≤ N , the processes are

modelled as nodesi, 0 ≤ i ≤ N on a fixed connected unidirected graph. The

edges of the graph represent the communication channels through which a pro-

cess sends messages to neighboring processes in the graph. The algorithm uses a

fixed spanning tree of the graph with processP0 at its root which is responsible
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for termination detection. This process communicates withother processes to

determine their states. Messages used are calledsignals. All leaf nodes report

to their parents if they are terminated. A parent node will similarly report to its

parent when it has completed processing and all of its immediate children have

terminated and so on. The root concludes that termination has occurred, if it has

terminated and all of its immediate children have also terminated.

4. Message optimal. Algorithms using this approach attempt to optimise and re-

duce inefficiencies in message complexity when concluding termination, for ex-

ample in spanning tree based algorithms. [143] discusses such a message op-

timal algorithm, using a network represented byG = (V, E), whereV is the

set of nodes andE ⊆ V × V is the set of edges or communication links. The

communication links are bidirectional and exhibit FIFO property.The algorithm

assumes the existence of a leader and a spanning tree in a network

5. Usingatomic computation model. In the atomic model a process may at any

time take any message from its incoming communication channels immediately

change its internal stateandat the same instant send out zero or more messages.

All local actions at a process are performed in zero time, therefore there is no

need to consider process states when performing termination detection. In the

atomic model a distributed computation has terminated at timet if at this instant

all communication channel are empty. This is because execution of an internal

action at a process is instantaneous. To find out if there are any messages in tran-

sit, variousmessage countingmethods are normally used. This include , naive

counting, four counter methods, vector counters, channel counters [4] In this

model a dedicated process,P1, the initiator determines if the distributed com-

putation has terminated. The initiator starts terminationdetection by sending

control messages directly or indirectly to all other processes. [160] has devel-
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oped a number of algorithms based on the atomic model.

6. Fault tolerantmethods assumes processes may fail, particularly fail in a fail-stop

manner. Algorithms here detect termination in this environment. For example

based on the weight throwing scheme a scheme called flow detecting scheme is

developed by [48] to derive a fault tolerant termination detection algorithm.

Some selected with some optimisations and robustness considerations are presented in

Appendix I, page 348.

In addition to the above there are also attempts to develop a general computing model

for termination detection. An example of such work is discussed in detail in [37]. The

next section provides a brief summary of concepts discussedand introduced there.

2.3 A general computing model and termination detection

[37] introduces a general distributed computation model, termination definitions, some

terminology and predicates relating to termination detection and finally algorithms for

the given termination definitions.

So far the assumption has been that the reception of a single message is enough to

activate a passive process. In the general model introducedby [37], a passive process

does not necessarily become active on the receipt of a message, instead acondition of

activationof a passive process is more general and a passive process requires a set of

messages to become active. This requirement is defined over asetDSi of processes

from which a passive processPi is expecting messages. The setDSi associated with

a passive processPi is called a dependent set ofPi. A passive process becomes active

only when its activation condition is fulfilled.
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The Communication model: A distributed application program (whose execution

is traditionally called the underlying computation) is composed of a finite setP of

processesPi, i = 1, ..,n, interconnected by unidirectional transmission channels; the

channel Cij links the senderPi to the receiverPj. Processes communicate only by

exchanging messages through channels; there is neithercommon memorynor aglobal

clock, [37].

Communication isasynchronousin the following sense:

1. A sender sends a message to a channel (which then has responsibility for its

delivery) and then the sender immediately continues its ownexecution;

2. Channels do not necessarily obey the FIFO (first in first out) rule, but they are

reliable (no loss, no corruption, no duplication, no spurious messages);

3. Channel transfers (carries) a message to its destinationprocess, the receiver puts

it in its local buffer: the message has thenarrived. The arrived message can then

be consumed provided that its receiver has been activated, i.e. when the request

of receiver has been fulfilled;

4. The transfer delay (time elapsed between sending and arrival of a message) is

finite but unpredictable.

The process model: in addition to the discussed process model, there is a further

requirement expressed by anactivation condition(see below) defined over the set DSi

of processes from which a passive process Pi is expecting messages [37]. The set DSi

associated with a passive process Pi is called dependent set of Pi. A passive process can

only become active when its activation condition is fulfilled. If such an activation is re-

alized as soon as the activation condition is fulfilled ( i.e.without any additional delay

w.r.t the activation condition fulfillment), this constitutes instantaneous activation.
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A passive process that has terminated its computation is said to beindividually termi-

nated, its dependent set is empty and therefore it can never be activated [37].

Request models: Formulation of activation conditions strictly depends on the re-

quest model considered.

1. AND model:- In this model a passive process Pi can be activated when a mes-

sage fromeveryprocess Pj belonging to DSi has arrived. It models receive state-

ment that is atomic on several messages [37].

2. OR model:- In the OR model, a passive process Pi can be activated when a

message fromanyprocess Pj belonging to DSi has arrived. It models classical

non-deterministic receive constructs [37].

3. Other more complex models such asOR-AND, Basic k out of nandDisjunctive

k out of nmodels are presented in [37].

In order to abstract the activation condition of a passive process Pi, a predicatefulfilledA

can be considered, whereA is a subset of P, the set of all processes. PredicatefulfilledA

is true if and only if messages arrived (not yet consumed) from all processes belonging

to the setA are sufficient to activate process Pj. The following monotonicity property

is valid: if X ⊆ Y andfulfilledX is true, thenfulfilledY is also true [37].

Termination definitions: The following notations are introduced to formally define

terminations of distributed computations. The notation used here is introduced in [37].

1. passivei : true iff Pi is passive;

2. empty(j, i) : trueiff all messages sent by Pj to Pi have arrived at Pi; the messages

not yet consumed by Pi are in its local buffer;
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3. arri (j) : true iff a message from Pj to Pi has arrived and has not yet been con-

sumed by Pi;

4. arri = { processes Pj such that arri (j) };

5. nei = {processes Pj such that¬ empty(j, i) }.

Dynamic termination: The set P of processes is said to bedynamically terminated

at some time if and only if the predicateDterm is true at this moment, where:

Dterm≡ ∀Pi ∈ P: passivei ∧ ¬fulfilledi ( arri ∪ nei ) [37].

This notion of termination means that no more activity is possible from processes,

though messages of the underlying computation can still be in transit (represented by

possibly non empty setsnei in the predicate ). This definition is interesting forearly

detection of termination as it allows to conclude a computation is terminated even if

some of its messages have not yet arrived [37]. It can be shownthat once true, the

predicateDtermremains true, thus dynamic termination is a stable property[37].

Static Termination The setP of processes is said to bestatically terminatedat some

time if and only if the following predicate is true at this moment:

Sterm≡ ∀Pi ∈ P: passivei ∧ (nei = ∅) ∧ ¬fulfilledi ( arri) [37].

For this predicate to be true, channels must be empty and processes cannot be acti-

vated. Thus this definition is based on the state of both channels and processes. When

compared toDterm, the predicateStermcorrespond to "late" detection as, additionally,

channels must be empty.

[37] discusses a number of theorems related to static termination and outlines their

proofs, for exampleDterm 7→ Sterm(leads-to relation over the predicates).
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Given this model, static and dynamic termination detectioncan be discussed, this dis-

cussion is given in Appendix I, page 350 with some illustrations.

2.4 A contemporary taxonomy for distributed termination detec-

tion algorithms

[159] provides a more complete and detailed taxonomy for distributed termination

detection algorithms, partitioning the algorithms according to the following eight clas-

sification categories;

1. Thealgorithm type. This considers the general action of the algorithm. For

example most common method for constructing DTD algorithmsis to consider

creation of a wave algorithm.

2. The requirednetwork topology. Many DTD algorithms assume a particular net-

work topology for the nodes to allow correct and efficient definition of the algo-

rithm. Hamiltonian cycles, trees,spanning trees, rings etc. are often assumed.

3. Thealgorithm symmetry. If each process executes an identical algorithm, and

no process is distinguished from others for any purpose, then the DTD algorithm

is considered symmetric.

4. The requiredprocess knowledge. Some DTD algorithms can assume that the

process have knowledge of the system initially. An assumption can be made for

example about the static size of the network. It can be observed that given that

this knowledge is required at compile time, this makes the particular algorithm

less general and restricts the network from changing.

5. Thecommunication protocol. Protocols can be assumed to be synchronous or

asynchronous. Early DTD algorithms were based on communicating sequential
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processes [109]. CSP is an asynchronous protocol and the resulting protocol

were elegant, e.g. [92].

6. The communicationchannel behavior. The communication channel can be con-

sidered to be first-in first-out (FIFO) or non-FIFO. Algorithms assuming FIFO

are easier to construct e.g. [168]. FIFO channel can be achieved for example

with a network protocol, which can guarantee that eventually messages reach

an application in FIFO order. On the other hand a non-FIFO protocol is more

general as it can work with both type of channels, e.g. [78, 160].

7. Themessage optimality. It can be shown that there is a worst case lower bound

on the number of control messages used by a DTD algorithm, e.g. [45]. This

bound means that for each message sent in the basic computation, there is a con-

stant number of control messages to determine when termination has occurred.

8. Fault tolerance. This is a non-functional requirement that the algorithm isrobust

to failures of the network and individual nodes, important in distributed systems.

This taxonomy,2 and its elements are depicted in Figure 2.1. We have also extended

and updated this taxonomy to reflect and incorporate algorithms that have since been

subsequently developed.

2Or more precisely, the set of properties by which a taxonomy can be developed.
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algorithm type

DTD Algorithms

communication
protocol

symmetry

algorithm

topology
network

message

optimality

process
knowledge

communication
channel

tolerance

fault

{e.g synchronous ‖ asynchronous ‖... }

{e.g FIFO ‖ non-FIFO ‖.. }

{e.g symmetric ‖ token ‖... }

{e.g fault tolerant ‖ non-fault tolerant ‖... }

{e.g successors ‖ node information ‖... }

{e.g tree ‖ hamiltonian cycle ‖ ring ‖... }

{e.g optimal ‖ non-optimal ‖.. }

{e.g cyclic wave ‖ Tree wave ‖... }

Figure 2.1: A set of properties for Matocha’s taxonomy of distributed termi-
nation detection algorithms

3
1



Table 2.1 gives an example taxonomy with algorithms arranged by algorithm type.
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Algorithm Cyclic

wave

Tree

wave

General

wave

Non-repetitive

wave

Parental re-

sponsibility

Credit re-

covery

Other

(Francez,1980) X

(Dijkstra & Scholten,1980)

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Wang and Mayo, 2004) X

Table 2.1: DTD algorithms and their associated type, adapted from [159]

3
3



Appendix I from page 356 presents recent research activity and the updated taxonomy

in the rest of the tables from tables ( Table I.1 through to I.7) for the other categories

of the taxonomy.

A note on evaluating the performance of DTD algorithms Regarding performance

analysis and measurement of DTD algorithms, a set of metricscan be considered.

Three metrics are often deemed adequate [169], namely;

1. Detection latency. This measures the time elapsed between when the underlying

computation terminates and when the termination algorithmactually announces

termination. When computing this latency some algorithms e.g. [169] assume

that message delay is at most oneunit, similar assumptions are made in [144] and

[48] when analysing detection latency of their algorithms.In addition message

processing time is often deemed negligible.

2. Message complexity. This refers to the number of control messages exchanged

by the termination detection algorithm in order to detect termination. Some

algorithms as discussed above claim to be message optimal.

3. Message-size complexity. This means the size of control data as payload on the

message by the termination detection algorithm.

2.5 Summary

Distributed termination detection, DTD, constitutes one of the basic and important

problems in distributed computing. It is not easy to detect termination of a distributed

computation because of the difficulty in obtaining a consistent global state in the ab-

sence of global clocks.
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DTD has been observed to be related to other distributed computing problems such

as global snapshot detection and distributed garbage collection. Indeed there is an

important link between termination detection and garbage collection as first described

by [227].

Many distributed algorithms have since been proposed to solve the problem after it was

first conceived of by Dijkstra and Scholten when discussing diffusing computations.

This chapter has provided a detailed survey of the classicaldistributed termination de-

tection problem as formulated for the communicating process model and the numerous

solutions that have been since put forward. First the surveyconsidered the classical

algorithms and a taxonomy that partitioned the algorithms into waveandprobetype

algorithms.

section 2.4 introduced a contemporary taxonomy, due to Matocha, that gave eight crite-

ria for assessing DTD algorithms. In tables I.1 through to I.7 in Appendix I we updated

Matocha’s 1998 taxonomy of distributed algorithms with recent algorithm proposals.

It can be observed there that recent algorithms are by and large asynchronous and

mostly do not make assumptions about message arrivals and are claimed to be mes-

sage optimal. Most of the recent research activity has been in mobile systems and

wireless networks.

It is worth noting that the algorithms discussed in this chapter assume a process model

(by extension an object model). So while algorithms discussed here lay a good foun-

dation for the study of termination detection in distributed systems in general, they

often abstract away from the underlying computation so as tobe as general as possible

and hence may not be applicable directly to multiagent systems where an agent model

and differing assumptions are made. These assumptions include flexibility of agent in-

teractions, potential runtime dynamism of multiagent environments including runtime
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protocol discovery and potentially protocol specificationrevision , the use of seman-

tically rich interaction protocols and most importantly the high levels of autonomy

assumed which can manifest in agents being capable of providing additional informa-

tion about their protocol execution at runtime which may aidtermination detection

process

Therefore, following this discussion,Chapter 3 next discusses, compares and con-

trasts agents and objects models of computation. It considers the assumptions therein

in detail to motivate the need for revisiting problems encountered in distributed system

research, like the distributed termination detection problem covered here.
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CHAPTER 3

Distributed Systems vs Multiagent Systems

3.1 Introduction: On Agents and Multiagent Systems

Multiagent systems [220] research is multi-disciplinary and diverse. The theoretical

foundations of the field can be seen in diverse areas spanningcomputer science, ar-

tificial intelligence, logic, philosophy and linguistics,game theory, economics and

sociology.

On a practical and implementation level, work on multiagentsystems and agent ori-

ented software engineering can be viewed as an evolution of software engineering

and multiagent systems are built on and are an evolution of distributed systems with

emphasis on coordination and flexible interaction and open systems. Coordination

in multiagent systems is primarily cast into a communication problem and effected

through interaction protocols.

Below is a incomplete list of some key issues of research in multiagent systems and

some are expanded on in the next paragraphs.

–i– Agent communication languages [141] and interaction protocols [120].

–ii– Organisations [93, 27] electronic institutions and markets [75, 87].

–iii– Multiagent coordination [126, 80, 50, 25].

–iv– Multiagent learning [6, 203].
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–v– Negotiation [22].

–vi– Agent foundations, theories, social semantics, commitments [252], social order

[53], roles [132] and autonomy [179], norms [54, 151].

–vii– Agent oriented software engineering [239, 253] multiagent systems engineering

methodologies [36].

–viii– Agent technologies , languages and platforms [30].

–ix– Applications [127].

Agenthood Agents and Agent-orient programming are discussed in [209,249], where

agents and multiagent systems are proposed as candidate tools for managing the com-

plexity that is inherent in software systems. In evaluatingagent based solutions, com-

mon pitfalls to be considered in agent oriented developmentare highlighted in [248].

Multiagent systems research has not evolved in isolation but is closely related to other

areas such distributed artificial intelligence [29, 175].

Agentsshouldideally exhibit desirable characteristics such as autonomy but there are

some reservations [240] as to whether this is adequately captured and translated to real

systems in the current state of the art, leading to research in efforts in computational

autonomy [179]. Related to this is research on agent roles [73].

Agent communication languages Agents are distinguishable by their use of rich

agent communication languages [141, 135] with communicative actions (speech acts

[202]) [51] and defined semantics [140]. These semantics ideally should be verifiable

as discussed in [246]. Furthermore, regarding agent communication languages, there

has been also some efforts to define social semantics [213].
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Agent interactions Agents exist in societies called multiagent systems [247, 210]

and engage in collaborative (cooperative) or competitive interaction in achieving their

joint or individual goals. Agents can be given strategies and protocols to engage in ne-

gotiations [22] to achieve their goal. These negotiations can possibly involve multiple

issues, sometimes under time constraints [88]. Agents alsocan participate in auctions

[133, 12] in electronic marketplaces. In some agents theories, agents can engage in di-

alectic interactions such as argumentation [201] to resolve conflicts in there knowledge

[224] or belief revision [154] for example.

Agent theories There are numerous parallel strands of research in agent theories

[249]. In some theories agents can be ascribed high level mentalistic notions of beliefs,

desires and intentions [196], and have social semantics like commitments defined.

In practice there are various ways of implementing agents, e.g. logic based agents, and

it has been the case that agents can be realised with the object paradigm (though with

limitations [42]), and there are some views of agents as active objects [99].

3.2 Multiagent systems and Distributed systems

The research areas of multiagent systems and distributed systems overlap. Multiagent

systems are inherently distributed systems, and distributed systems are platforms for

supporting multiagent systems.

The following represent the widely accepted notions about agents (multiagent systems)

and distributed systems;

1. Agents are generally considered to beautonomous(i.e., independent, not-controllable,

in theory at least),reactive(i.e., responding to events),pro-active(i.e., initiating

actions of their own volition), andsocial (i.e., communicative). Sometimes a
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stronger notion is added that of beliefs, desired, intentions for example. Agents

vary in their abilities; e.g. they can be static or mobile, ormay or may not be

intelligent. Each agent may have its own task and/or role. Agents and multiagent

systems are used as a metaphor to model complex distributed processes.

2. A distributed system is considered to be a collection of independent systems that

appear to the users of a system as a single system, i.e.transparencyis often a

key element. Processes and/or data can (or cannot) move fromhost to host, share

information, etc.

There are a number of areas relevant to both distributed systems and multiagent sys-

tems that can be discussed to draw parallels.

Table 3.1 gives examples and compares and contrast various aspects of distributed

systems and multiagent systems, showing what is known and well understood in both

areas.

Feature Distributed System Multiagent system

mobility mainly no yes
Reliability mostly yes mostly no
Availability mostly yes mostly yes

Communication simple complex
Protocols syntax-based (e.g HTTP) semantic-based (e.g.FIPA )

Automatic Garbage Collection yes manual
Termination Detection yes not well studied

Table 3.1: Comparing and contrasting various features of multiagent and distributed
systems. Showing

The current state of the debate on agents is summarised in [239], and states that the

debate seems to converge to the consensus below, quote;

–i– The concept of agents is significantly different from theconcept of objects in
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that it allows for a qualitatively different perspective ofcomplex systems and

their development and,

–ii– there is room for both the agent concept and the object concept because they are

concerned with different levels of computational abstraction.

In our research we concur with this view and seek to consider some pragmatic and

practical concerns that emerge as we make a progression fromdeveloping distributed

systems based on relatively simple passive objects to building infrastructures for agents.

In particular we propose the argument below to motivate and highlight why some tra-

ditional problems in distributed systems like the termination detection problem may

need further consideration within agent computational model assumed in multiagent

systems. We consider autonomy, flexibility of interactionsand dynamism is multiagent

environment as relevant properties, i.e.

– i – Because agents are autonomous, regarding termination detection, agents may

offer additional information about the execution of their protocols to facilitate

the termination detection process for example.

– ii – Regarding flexibility and dynamism, consider the flexibility of interactions in

multiagent systems, in particular consider a multiagent society with provisions

for dynamism in protocols, i.e. in such environments;

• There could be support for dynamic execution of coordination protocols

as proposed by [31], i.e. where the role an agent intends to hold within a

protocol can be played without the need of prior knowledge.

• There could be an infrastructure for dynamic protocol specification as dis-

cussed in [14], an infrastructure that accommodates revision of protocol

specifications during execution in situations where there is such a strong
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requirement. This approach can be contrasted with the traditional one

where specification of protocols has largely been considered as a design-

time activity.

• There could be infrastructure support for runtime protocoldiscovery in

general.

We propose that given these points, there is a concrete case for considering further how

issues like termination detection can be addressed within multiagent systems environ-

ments.
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3.3 Summary

This chapter has given a brief overview and account of the areas of multiagent systems

and distributed systems by considering the underlying models of agents and objects.

The current consensus is to view the notion of agents and objects not as competing but

occupying different spheres and represent different levels of abstraction and therefore

can coexist. With this background, we propose that there is necessity to consider some

aspects of distributed systems research in light of the multiagent requirements and the

agent model.

The reason for this is that while a multiagent system is a distributed system, there

is emphasis on coordination, flexible interaction and higher degree of autonomy of

entities and dynamism in environments. We propose to consider one aspect, namely

a mechanism that detects termination of agents, by considering interaction protocols

that are used by agents to flexibly coordinate. We can exploitthis research to build

on an agent management infrastructure that can culminate inthe future with a realisa-

tion of an automatic timely mechanisms for high level tasks like society wide garbage

collection.

Having identified interaction protocols as a starting point, the next chapter considers

evolution of research in protocols, leading to the current state of the art in the area

of agents interaction protocols and to serve as basis for theassumptions we make

regarding protocols for subsequent chapters. These assumptions were introduced in

Chapter 1 page 7.
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CHAPTER 4

From computer protocols to agent interaction protocols

This chapter discusses interaction protocols as used in multiagent systems. First it

provides a background by considering evolution of protocols, how protocols are spec-

ified and implemented using current methodologies . This thesis is not about protocol

engineering or formal methods used therein for the development and verification of

protocols. The purpose of the chapter is to solely provide some context and a back-

drop for the discussion of the use of protocols in this thesisand also to give a basis for

the choice we made on the use of finite state machines in representing protocols. To

that end the chapter can be skipped without consequence to the subsequent chapters

apart from noting the assumptions we make about the model of protocols we adopt as

first highlighted in Chapter 1 in page 7.

4.1 Introduction

A distributed systems centric view considers protocols as sets of rules that govern the

interaction of concurrent processes in distributed systems. Protocol design is therefore

closely related and often discussed in the context various established fields, such as

operating systems, computer networks, data transmission,and data communications

[111].

There are a number of challenges regarding protocol engineering i.e. requirements,
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specification, validation verification of protocols, software engineering challenges that

also face other systems . For example, assuming a protocol designer is capable of

capturing and understanding the full set of requirements, then in conceptualising and

designing a protocol that meets its requirements, a language that has precise, unam-

biguous semantics is needed in order to capture the protocol. Such a language is re-

ferred to as a formal language [115].

For this, a large body of work exists in the formal languages area. The first task in

engineering a protocol is then that of choosing an appropriate language to describe the

protocol.

This chapter begins by giving a general overview of protocols, then introduces some

formal models and examples of formal languages for the specification of protocols.

The chapter then proceeds to discuss the state of the art in protocol engineering in

multiagent systems where it is shown that by and large, the current work builds on

the work done in the wider area of computer protocols. The chapter concludes by dis-

cussing what is regarded as current challenges in engineering protocols for multiagent

systems.

4.2 On computer protocols

The wider subject of computer protocols is discussed in detail in [111], where a histor-

ical account is given, together with fundamental challenges facing protocol designers

in designing and analyzing protocols that formalize interactions in distributed systems.

Regarding validation and verification of protocols, various formal methods have been

proposed , for example verification of protocols using modelchecking , e.g. SPIN is

covered in [112, 113] and [214, 32, 199].
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4.3 Specifying Protocols

Protocols have been studied extensively in relation to concurrent systems, and the be-

havior of concurrent systems is usually modelled as a sequence of states or actions, or

both. A specification of a protocol, i.e. what the protocol issupposed to do consists of

the set of all possible behaviors, or sequences of states, considered to be correct. The

problem at hand often cited, is to determine a language that is suitable for specifying

a protocol in an implementation-independent way. In addition however, this language

must allow to easily map the essential features of the protocol onto an implementation.

4.3.1 A formal model of protocol systems

One view is to consider a protocol as analogous to a language in that it consists of

a vocabularyof messages, a precisesyntaxfor encoding the messages, agrammar

that defines the rules for composing and exchanging messages, and thesemanticsfor

interpreting the meaning of strings in the vocabulary. Justas a spoken language serves

to convey an idea from one person to another, so a protocol provides some service

based on exchange. Therefore a protocol specification can beconsidered a precise and

unambiguous formulation of this language of exchange.

Furthermore if an assumption is made that the set of messagesthat can be exchanged

is finite, the analogy between languages and protocols leadsto very convenient, well-

developed formalisms - formal languages and finite automata. A standard definition of

a formal language is that of a set of strings of symbols from some one alphabet, where

an alphabet is a finite set of symbols and is usually denoted asΣ [114]. Relating this

to protocols,Σ is the set of messages that an entity can send or receive, including

messages that come from say, the environment (such as the expiration of a timer, for

example).
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4.3.1.1 Finite State Machines

A Finite State Machine, also called a finite automaton [163, 111, 114], consists of a

finite set of states and a set of transitions from state to state that occur on input symbols

chosen fromΣ. For each input symbol there is exactly one transition out ofeach state,

possibly a self-transition. The initial state, that can be denotedq0, is the state at which

the automaton starts, and there is a set of states called a final or accepting states.

Formally, an automaton is represented by a 5-tuple(Q, Σ, δ, q0, T ) whereQ is a finite

set of states,Σ is a finite input alphabet,q0 is the initial state,T is the set of final

(terminal) states, andδ is the transition function mapping. Given the current stateqn

and an inputσ, the transition relationδ (qn, σ)→ qn+1 defines the next state.

Definitions 2 and 3 provide the standard formal definitions for a finite automaton and

non-deterministic finite automaton.

Definition 2. A finite automaton (FA) A is a tuple(Q, Σ, δ, q0, T ) , where

• Σ is a finite input alphabet,

• Q is a finite set of states,

• δ is the (partial) next state function,δ : Q× Σ→ 2Q

• q0 represents the initial state andT defines the set of terminal states, i.eq0 ∈ Q,

T ⊆ Q.

δ is usually described by a transition diagram.[111]. Ifq, q
′ ∈ Q, σ ∈ Σ andq

′

=

δ (q, σ), andσ is said to be an arc from q to q
′

and writtenq
σ−→ q

′

.

A number of classes of FA can be distinguished, for example deterministic1FA shown

in Figure 4.1,whereQ = { S1, S2}, q0 = S1, T= { S2} and Σ = {1, 0}

1Other classes are Nondeterministic Finite Automata (NFA) and Nondeterministic Finite Automata
with ε transitions (FND-ε or ε-NFA).
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Definition 3. Deterministic finite automaton

A finite automaton is called deterministic if:

• δ maps each state/input pair into at most one state, i.e.

δ : Q× Σ→ Q

The definition for a finite automaton above does not provide a way of explicitly repre-

senting or manipulating variables other than by explicitlymanipulating the state of the

automaton. A notational convenience for separating a namedset of variables V that

are implicitly part of the state encoding yields a structureknown as an extended finite

state machine (EFSM) [113]. Formally, if V is a set of variables, each of which can

assume a finite number of values, then the EFSM is the automaton given by (Q, V,Σ,

δ, q0).

Finite State Machines and protocols A common way of modelling protocols is by

using communicating processes [108, 109] where each process is a finite automaton

and the network of processes is connected via error-free, full-duplex FIFO channels

[34].

The formal model of a finite state machine has been applied extensively to the study of

communication protocols, (particularly specification andverification), since the very

first publications for example in [3] where a pair of finite-state automata were used

to model the transmitter-receiver protocol in a data communications system. Further

early work is published in [68] [236, 35].

The finite state machine approach has also long been the method of choice in almost

all formal modelling and validation techniques [223]. An introduction the theory of

communicating finite state machines can be found also be found in [35].
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Figure 4.1: Example: Finite State Machine

4.3.1.2 Petri Nets

Many variations of the basic finite state machine model have been used for the analysis

of protocol systems, both restrictions and extensions. It is observed that the restricted

versions have the advantage, at least in principle, of a gainin analytical power. In

the literature, it is cited that the extended versions have the advantage of a gain in

modelling power [111]. Petri Nets are one such variant of finite state machine model.

Petri nets were first described in [189], and surveys can be found in [188, 176, 33], and

Petri Nets’ modelling power and some extensions are discussed in [2]

Petri net structure Briefly, a petri net,PN is represented by a bipartite directed

graph, with weighted arcs. In this graph, there are two kindsof nodes, namelyplaces

and transitions. The weighted arcs are either from a place to a transition or from a

transition to a place. A place that has an outgoing arc to a transitiont is called input

place oft, a place that has an incoming arc from a transitiont is called output place of

t.

Formally, a Petri Net structure 5-tuplePN = (P, T, F, W, Mo), a bipartite2 graph

2A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that
every edge connects a vertex in U to one in V i.e. , U and V are independent sets.
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where:

Definition 4. Petri net

P = {p1, p1, ..., pm} is a finite set of places.

T = {t1, t1, ..., tm} is a finite set of transitions,

F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs (i.e. a flow relation),

W : F → N − {0} is a weight function which associates a nonzero natural value to

each element ofF . If no weight value is explicitly associated with a flow element, the

default value 1 is assumed for the function,

Mo : P → N− {0} is the initial marking,

P ∩ T = ∅ (bipartite graph) andP ∪ T 6= ∅.

A petri-net structureN = (P, T, F, W ) without any specific initial marking is denoted

by N , and a petri net with a given initial marking is denoted(N, M0)

Figure 4.2 gives an example of a petri net for a simplified communication network as

discussed in [176] where also explanation of the notation isgiven.

Petri net dynamics The dynamics of a petri net is described by means of the concept

of marking. A marking is a function that assigns to each placea nonnegative integer,

called token; the initial state of the net is represented by the initial marking, denoted

with M0. From a graphic point of view, places are usually represented by circles,

transitions by rectangles and marks by black dots into places. A place containing a

token is said to be marked. Arcs are labelled with their weights and labels for unitary

weight are usually omitted.

The dynamics of the net is described by moving tokens among places according to a

particularfiring rule:
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Figure 4.2: Petri net example: A simplified model of a communication protocol,
adapted from [176]

1. a transitiont is enabled tofire if each input placep of t is marked with at least

w(p,t) tokens, wherew(p, t) is the weight of the arc fromp to t.

2. a firing of an enabled transitiont removesw(p, t) tokens from each input place

p of t, and addsw(t, p) tokens to each output place oft.

3. the marking of the other places which are neither input noroutput oft remains

unchanged.

4.3.1.3 Petri Nets and protocols

[60] surveys the applicability of petri nets for protocol specification and validation and

Figure 4.2 (adapted from [176]) shows graphically a very simple petri net model of a

communication protocol.
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4.3.2 Formal Languages for protocol specification

Since the models of computation usually considered are based on concurrent execution

of sequential processes, the primary function of a protocolspecification is to provide

the legal execution sequences that each process can exhibit. Thus a very natural way

to think about and specify protocols is by using a language that is based on concepts

rooted in programming languages. In programming languages, as in the study of natu-

ral languages, syntax is separated from semantics. Language syntax is concerned with

the structural aspects of the language, such as the symbols and the phrases used to re-

late symbols; syntactic analysis determines whether a program is legal. The semantics

of a programming language, on the other hand, deals with the meaning of a program,

i.e. what behavior is produced when the program statements are executed [115].

In order to create an unambiguous specification, one must usea language that has un-

ambiguous semantics, so that a legal phrase in the language has a single interpretation.

In a protocol context, this requires an underlying mathematical model of process exe-

cution, inter-process communication, and the system statespace. A language having

these properties is known as a formal description technique(FDT) [142].

A variety of languages have been proposed and developed for the purpose of describing

protocols. Some of these languages were developed with the goal of augmenting in-

formal descriptions in protocols published by standards committees, while others were

developed as aids for the design and verification of protocols. These languages can be

differentiated according to the model of computation, communication infrastructure,

synchronization primitives, notion of time, and support for data types[232].

Several early attempts at developing a language formalizing a protocol description

[15, 11, 10] gave birth to three parallel standardization efforts by the International

Standards Organization, ISO, and others. The standardisation effort resulted in three

primary languages, namely below:
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1. Estelle [72] is a second generation FDT. The underlying model is thatof ex-

tended finite state machines (EFSM) that communicate by exchanging messages

and by restricted sharing of some variables.

2. SDL:- The Specification and Description Language (SDL) was developed by

the standards body CCITT. SDL is also based on an extended finite state ma-

chine framework and was designed specifically for the specification and design

of telecommunications systems.

3. LOTOS:- The Language of Temporal Ordering Specifications [28] wasdevel-

oped by the ISO standards body and was passed as an international standard

in early 1989. LOTOS is strongly based on Milner’s calculus of communicating

system (CCS) [167], with additional influence by Hoare’s CSP[108]. It falls into

a class of languages known as aprocess algebra, which can be characterized by,

firstly, a wide use of equations and inequalities among process expressions, and

by secondly, an exclusive use of synchronized communication as the means of

interaction among system components.

[120] gives a quick overview of these formal languages techniques and earlier work

and general treatment of formal protocol representation, specification and verification

is given in [26, 164, 164, 223].

A comprehensive bibliography of protocol synthesis literature, i.e. attempts to for-

malize and automate the process of designing communications protocols, is given in

[200].
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4.4 Interaction protocols in Multi-Agent systems

Overview The previous section considered aspects of the general areaof communi-

cation protocols. Communication is also key aspect in multiagent systems, allowing

agents to exchange information to cooperate and to coordinate tasks. Typically, com-

munication in multiagent systems is represented as protocols, a set of rules that guide

interaction between several agents [121]. For a given stateof the protocol, only a finite

set of messages may be sent or received. So this leads to a classical view of an interac-

tion protocol as captured in [25], where the roles that agents play are considered, and

the interaction is described as a finite state machine where:

1. states identify global states of the protocol,

2. transitions represent messages that are labelled with a role identifier and a perfor-

mative. For any transition,agents playing an associated role can send a message

that uses the associated performative.

And to quote [25], then as such, interaction protocolsare a coordination model, the

coordination medium being the agent communication language, the ACL, and the coor-

dination laws are expressed through the finite state machinethat describes the protocol.

In our work we also take this view that agents coordinate using interaction protocols.

In multiagent research, it is widely accepted that protocols are public (compare this to

agent strategies that generate agent utterances , which areprivate )[198]. A common

protocol ensures that all participants following it will coordinate meaningfully and

expect certain responses from others. There are debates about this notion of common

protocols [187], in particular, concerns about difficulties in attaining common protocol

knowledge.

It is noted though that there are various ways;-
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1. protocol can be dynamically pre-arranged upon entering an interaction,

2. protocol maybe coded in the agents,

3. agents may obtain a protocol from a repository of published protocols,

4. an institution may dictate the protocol.

So in our work we assume common protocol knowledge, in particular through points

1, 2 and 3.

4.4.1 Protocol engineering in multiagent systems

There are a number of parallel strands of research on protocols and interaction be-

haviour specification in multiagent systems. [190, 86, 120]discuss protocols and

protocol engineering in multiagent environments and propose conceptual frameworks.

The standard approach to agent interactions has been message oriented, with inter-

actions defined by interaction protocols that give permissible sequences of messages.

Examples of research activity include work done on enhancing existing methods dis-

cussed above, i.e. finite state machines, petri-nets. Otherattempts consider deeper

issues of agent communication languages and the use of conversation policies [98] ,

and conversation oriented approach to agent interactions [20].

There are some arguments that the message centric approach is limited especially re-

garding robustness and flexibility [244]. It is with these concerns that there are strands

of research that consider a shift away from message centric view to the introduction of

social semantics and consideration of higher level notionssuch as social commitments

and development ofcommitment machines, CMs. [252].

There is also further research that consider dialectical approaches , advocating the use

of dialogue-games. [162] surveys commitment-based and dialogue-based protocols.
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It is worth noting however, that some of these approaches often assume some under-

lying model of agents, e.g. logical frameworks as it is the case for dialogue-based

protocols, and commitment machines can be mapped [244] to BDI frameworks [196].

The next sections considers briefly some of these approachesin turn.

4.4.1.1 Finite state machine based protocols

As discussed above there is historical precedent to using finite state in modelling pro-

tocols. This extends to multi-agent interaction protocols[251].

An interaction protocol as an fsm will show states and transitions labelled with allowed

messages. As an example consider a finite state machine representation of the Contract

Net Protocol3 [215] shown in Figure 4.3. In that figure,a andb representroles, i.e. in

the rolea, an agent can send messages from the set{cfp, accept_proposal, cancel,

reject_proposal} to a group of agents each playing the roleb. In the roleb and agent

can send messages from the set{propose, refuse, inform, cancel}. Indexing can be

used in the protocol message labels for both roles, e.g. to capture the fact that acfp

message is broadcast by an agent playing rolea to multiple agents in a group. We

can writea : cfp : b(i) and more generally if multiple instances of rolea exist write

a(i) : cfp : b(i). This setup can be generalised to multiple roles.

Finite state machine based protocols and conversation models are predominantly used

in multiagent system research. A justification is given in [57] where it is observed that

it is mainly because the finite state machines have an established underlying formal

model that supports structured design techniques and formal analysis and facilitates

development, composition and reuse. Furthermore finite state machines are simple,

intuitive, provide visual flow of action or communication and are sufficient for many

3Contract Net Protocol is a task allocation protocol that facilitates negotiation between bidders and
an auctioneer in a Multi-Agent System to form a contract.
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a:cfp:b(i)

b(i):propose:a

a:accept_proposal:b(i)

b(i):failure:a, a:cancel:b(i)b(i):inform:a

a:reject_proposal:b(i)

b(i):refuse:a    , b(i):not_undersood:a

(a)

Figure 4.3: Contract Net protocol, showing messages and indexed agent roles for
protocol participants.
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sequential interaction.

4.4.1.2 Petri Nets and agent protocols

While finite state machine based protocols and conversationmodels are predominantly

used, the main criticism has been that finite state machines are not adequately expres-

sive to model interactions with degrees of concurrency.

Therefore there is some research directions that explore the use of petri-nets in mod-

elling agent interactions, some work is reported in [102, 86].

Because the petri-net language is a generalisation of automata folmalism4 then with

appropriate transformations petri nets can be derived fromfinite transition systems

[56] and reverse transformation also exists, called reachability analysis, is part of the

definition of Petri Net. It generates a form of FSM labelled with Petri net transitions

and called state graph.

ColouredPetri-nets [128] have recently been explored to represent agent interactions

and related issues. [57] proposes the use of colored petri-nets as model underlying

language for conversation specification. The motivation cited there for this is that;

1. While finite state machines are commonly used, they are notsufficient for com-

plex agent interactions requiring concurrency.

2. Petri-net carry relative simplicity and graphical representation of Finite state

Machines in addition supports greater expressive power to support concurrency.

Furthermore, a language, Protolingua [57] based on this model was investigated within

the Jackal [58] agent development environment. For example[102] presents an anal-

ysis of existing Petri net representation approaches in terms of their scalability and

appropriateness for different tasks.
4To express concurrency of events.

58



4.4.1.3 AUML

There is active research on the use of AUML [21, 150] in modelling agents interaction

protocols, the rationale being that by aligning this work with the closest antecedent

technology object oriented software development, there are benefits to be accrued, es-

pecially in the wide acceptance of agents [21], indeed thereis a view in some research

strands in Agent-oriented programming that multiagent systems can be considered ex-

tensions of object-oriented systems.

AUML is an extension of Unified Modelling Language, UML5 [124] and there has

been attempts to model agent protocols and interactions using it, examples can be seen

in [136].

The motivation for the use of AUML has largely centered around the need for mod-

elling methods and tools that supports a complete process lifecycle [136]. For example,

the use of AUML specified interaction protocols in a prometheus6 based designed tool

[230] has been discussed in [185].

AUML has also been used by FIPA7 to specify FIPA agent interaction protocols [1].

Regarding implementation, FIPA protocols implementations in multiagent tools has

been largely as finite state machines.8

Figure 4.4 below shows an example of a FIPA contract-net protocol.

The AUML FIPA interaction protocol can be mapped to other formalisms, for example

[39] provides a transformation of AUML diagrams to petri-nets to help define opera-

tional semantics of interaction protocols, i.e. the semantics of the AUML diagrams

are defined through the semantics of petri-nets. Also [102] makes an argument for a

5Object Management Group.
6Prometheus is a software engineering methodology for designing agent systems.
7FIPA is an IEEE Computer Society standards organization that promotes agent-based technology

and the interoperability of its standards with other technologies. FIPA has specified and defined seman-
tics of FIPA-ACL, an agent communication language.

8Open source agent platform JADE uses finite state machine based "behaviours" for example.
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FIPA−ContractNet−Protocol

b: Participanta: Initiator

cfp (action, precondition)

refuse (reason−1)

not−understood

propose(precondition−2)

reject−proposal(reason−2)

accept−proposal(proposal)

inform

failure (reason)

deadline

x

x

x

(a)

Figure 4.4: FIPA contract-net protocol adapted from [1].
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semi-automatic procedure for converting FIPA interactionprotocol to their petri-net

representations in search of a better representation of protocol features.

4.4.1.4 Multiagent conversation policies

Another view of agent interactions is to consider a conversational model [59] and to

structure interactions as conversations [19] among agentsand organise messages into

appropriate contextual settings to provide a common guide to all agents. This is done

by using conversation policies,CPs. A definition of a conversation policy is given in

[98] and current research efforts discussed in [76].

Regarding implementation, while as observed in [162], the definition of conversation

policies abstracts from any precise computational model, in practice CPs are modelled

too as finite state machines and typically these models are called protocols.

Coloured petri nets [128] have been also used in conversation modelling as discussed

in [59].

There have also been proposals for a conversational and coordination language as dis-

cussed in [18] and use of such a language in conversation oriented programming is

described in [20].

It is worth noting though that conversation policies have limitations of their own. Par-

ticular challenges are identified by [162] to be in flexibility and specification of con-

versation policies.

4.4.1.5 Commitment-based and dialogue-based protocols

There is also active research directions in exploring the notion of commitments in

modelling agent interaction protocols. Commitment are defined through commitment

machines (CMs), where a commitment machine defines a range ofpossible interac-
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tions that start insome state(i.e. no initial state is designated as such, this to be

contrasted with standard interaction protocols and finite state machines [244]).

Regarding implementation, a commitment machine is adeclarativedescription of

states and allowed transitions in a protocol, an example description for the a netbill

protocol9 [61], is given in [244].

However [251] has shown that given a commitment machine, a finite state machine

equivalent representation can be synthesised automatically, and therefore one way to

visualise the interactions that are possible with a given commitment machine, is to

generate the finite state machine corresponding to the CM as demonstrated by [244].

Finally, there is also active research on the use of dialogue-game based protocols, and

there have been proposals for dialogue-game based agent communication languages

[41]. An extensive review of these new trends in ACLs and the use of commitment-

based and dialogue-based protocols is given in [162]. Some recent ideas about de-

signing and implementation of commitment-based interactions are given in [243] and

[244].

4.4.2 Discussion

We observe that the various approaches discussed above though somewhat varied, can

with appropriate transformations be converted to their under finite state machine equiv-

alents without loss of information for the purposes of the work we want to do in this

thesis on termination detection; Indications of possible existence of such transforma-

tions is due in part from the fact that some model are derivations of the finite state

machine, and in this discussion for example;

1. [245] states that each commitment machine implicitly defines a corresponding

9NetBill is a system for micropayments for information goodson the Internet.
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Finite state machine where the states of the FSM correspond to the states of the

CM and the transitions are defined by the effects of the actions and [251] has

shown that from a declarative description of states and allowed transitions in a

protocol, i.e. a commitment machine, a finite state machine representation can

be synthesised automatically.

2. AUML specified protocols can be converted to petri nets, and

3. Petri nets can be derived from transition systems [56, 186] and the reverse trans-

formations are possible.

4. Conversation policies in practice are implemented as finite state machines [162]

Research Assumptions In our work we make the assumption that agents coordinate

using interaction protocols, and that these interaction protocols are finite state machine

based or can be reduced or transformed to finite state machineequivalent represen-

tations with preserving transformations. This is particularly useful in heterogenous

environments where a common underlying representation is useful for interoperabil-

ity. Considering the discussion above regarding various ways in which interactions

are currently modelled, an assumption of a common underlying finite state machine

representation and possibility of implementing transformations is not unreasonable.

To this end, our research makes assumptions that underlyingprotocols are based on

the finite state machine model, and subsequent discussions e.g. in chapter 5, page 66,

treats protocols as finite state machines, edge-labelled directed graphs.
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4.5 Summary

This chapter has reviewed the evolution of computer protocols, their formal models

and techniques for their specification. The chapter then discussed current practices in

interaction protocols for multiagent systems, and has shown that current research in

this area extends previous work on computer protocols and isprogressing towards ap-

proaches like conversations policies and declarative descriptions such as commitment

machines. Often though particular underlying models for agents are assumed in this

approaches.

Various extensions to existing techniques has been proposed, for example the use of

colored petri-nets and AUML in modelling interaction protocols. Petri-nets are con-

sidered to address the concurrency issues in communication, and AUML is considered

to relate agent-oriented software engineering to the successful and widely accepted

UML approach in object oriented systems so as to encourage the uptake of agent de-

velopment.

But the finite state machine approach is widely used in modelling and implementing

protocols in implemented multiagent systems. Furthermore, in the discussion of other

approaches, it is apparent that with appropriate transformations, it is possible to derive

finite state model equivalent representations, this observation we propose can help in

accommodating heterogeneity in implemented systems.

So in this research we make an explicit assumption that coordination is achieved by the

message-centric interaction protocols and that this protocols are based on finite state

model as is predominantly the case.

With this background,Chapter 5 in Part II next considers a termination detection

model for multiagent systems interactions.
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PART II

TERMINATION DETECTION FOR
AGENTS
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CHAPTER 5

Termination Detection for Protocols

5.1 Introduction

We have discussed in the previous chapter, Chapter 4, section 4.4 that protocols rep-

resent the allowed interactions among communicating agents, and they regulate these

interactions. They can also be viewed as specifications of these interactions as cited by

[212]. Agents participate in different protocols by appropriately interacting with each

other, for example, by responding to messages, performing actions in their domain,

or updating their local states. Protocols can thus be taken as specifying policies that

agents would follow with regard to their interactions with other agents. These policies

would for example, determine the conditions under which a request will be acceded to

or permissions issued or a statement believed [212].

We have also noted in the previous chapter that there are various approaches to speci-

fying protocols and argued for adopting a finite state machine representation and con-

sidered some unified framework where with appropriate transformations a finite state

machine representation may be derived from others.

Chapter 2 discussed extensive research in termination detection in distributed systems

considering an underlying process model of computation. Under this computational

model, the termination detection problem was discussed andvarious algorithms pro-

posed over time were presented within some taxonomies.
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Chapter 3 discussed an agent model of computation, contrasted it to the process or

object model used in distributed systems research, and identified flexible interaction

and coordination as some of the main considerations in the agent model, and also

identified interaction protocols as a means to effect both.

The chapter also proposed that we could therefore consider looking closely at some

research in distributed systems but within the agent model,for example termination

detection, in light of the assumptions in the agent model. This in order to bring the

benefits of the termination detection applications to multiagent systems infrastructures.

These applications were covered in chapter 2, page 16. Thereit was observed that

as the terminated status is among stable states ( consider asanother example global

communication deadlock) that should be known for system administration. Other ap-

plications are listed there.

Now also recall the example scenarios introduced briefly in section 1.5 cited where a

termination detection mechanism can be exploited.

In all those scenarios, we can

–i– Consider agents executing a publicly visible behaviourspecification in the form

of public protocols, (while the agent strategies that generate agent responses

themselves maybe private).

–ii– Furthermore we can assume that these behaviour specifications are in a form

of finite state machines or if they can at least with appropriate transforms be

translated to finite state machines in a unified framework proposed as discussed

in the previous chapter.

–iii– As part of addressing the problem of termination, we can discuss the problem

of determining when individual agents have reachedterminal configurationsin

the protocols they are executing.
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–iv– To study the problem of termination detection in multiagent system adequately

will require consideration of representative cases in the space of interactions.

e.g., one to one (client server like), many to one (auction like) and many to

many (in general). We can consider a model for agent conversations, capture

multiplicity of interactions and consider termination detection in such a model.

–v– Furthermore we can consider the issue of what additionalinformation agents

can avail to aid this process by observing that in multiagentsystems, protocols

are made public while individual strategies are maybe made private and that

in practical implementations of multiagent systems, thereis bound to be some

restrictions on absolute agent autonomy, and provision of such additional infor-

mation may be in line with conditions for participation in anagent society, as is

the case with auctions for example.

5.2 Overview

This chapter is structured as follows;

Section5.3 begins by giving basic definitions aboutprotocols, observables, termina-

tion paths, unique termination paths, and defines and identifies theshortest unique

termination pathsas the minimal information that an agent can provide about its inter-

action protocol, (together with its interaction partners).

The section also sketches an off-line procedure to derive shortest unique paths given a

protocol graph and presents an algorithm for this.

Section5.4 presents a termination detection model, where we present a representation

for the notion of aconversation, and model this as an interaction from an agent’s per-

spective. The section also provides a model for branching conversation represented as

diffusing computationtree, and provides a definition of a data structure, a conversation
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matrix,c-matrix, a structure that can be used by controllers, entities that oversee con-

versations. Given this model and definitions, the section then sketches a procedure for

local termination of conversations and presents accompanying algorithms and some

complexity analysis.

Section5.5 considers possibilities for distribution, and discusses a distributed protocol

for termination detection over a cluster of controllers, and sketches a procedure of such

a protocol and gives some possible algorithms.

The section also provides preliminary evaluation of the protocol given the defined

metrics for evaluating termination schemes. Detailed quantitative evaluation of one of

these metrics, detection delays, is given in following chapters.

ThenSection 5.5.2 in page 108, discusses how a termination detection mechanism

may fit in within a generic multiagent systems management infrastructure.

Finally, Section5.6provides a discussion and summary for this chapter.

5.3 Definitions

Consider following definitions about protocols;

Definition 5 (Protocol). A protocol is a tuple(S, 7−→, L, T ), whereS is a set of states,

L is a set of labels,7−→⊆ S×L×S is a set of transitions andT ⊆ S is set of terminal

states, whereT 6= ∅ and∀t ∈ T 6 ∃s ∈ S, l ∈ L such thats 6= t and(t, l, s) ∈7−→.

We will sometimes writes
l7−→ s′ instead of(s, l, s′) ∈7−→. There is some states ∈ S

designated as a start state.
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a:cfp:b(i)

b(i):propose:a

a:accept_proposal:b(i)

b(i):failure:a, a:cancel:b(i)b(i):inform:a

a:reject_proposal:b(i)

b(i):refuse:a    , b(i):not_undersood:a

(a)

Figure 5.1: Contract Net protocol [215]. Showing roles in the protocol and with
indexing is used to identify protocol participants.

Example 1 (CNP). Consider a Contract-Net protocol1, the protocol can be repre-

sented by the state transition system as shown in Figure 5.1 below. The protocol shown

is being executed by two agents2. In this example3

S = {1, 2, 3, 4, 5, 6, 7, 8}; T = {5, 6, 7, 8}; L = {cfp, propose...} and 7−→ is as shown

in the Figure 5.1.

1An agent with a task to complete can solicit offers from otheragents via a call for proposals, cfp,
message.

2Messages are prefixed with agent identifiers
3Strictly speaking this is only a simple request protocol since it is defined as a one-to-one interaction.

CNP degenerates to simple request protocol if there is only one bidder or task agent.
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By executing a protocol,each agent participating in the protocol undergoes various in-

ternal state transitions. Each agent has a partial local view, i.e. interactions it engages

in. The larger problem posed here is that of deriving a globalview of system of inter-

acting agents given individual agent partial local views, e.g. if say quiescence of the

system is to be determined.

As part of addressing this problem, the discussion here centers on determining when

agents have reachedterminal configurations. The discussion also considers the issue

of what additional information can agents avail to aid this process while preserving

autonomy4 and not introducing too much central control.

To detect termination of a protocol, we can define atermination path, i.e. a sequence

of state transitions labelled by observable messages whichend in a terminal state.

Definition 6 defines atermination path.

Definition 6 (Termination Path). Let P = (S, 7−→, L, T ) be a protocol, then a pathp

of lengthn is a sequence(s1, . . . , sn) wheresi ∈ S for 1 ≤ i ≤ n andsj−1
lj7−→ sj for

1 < j ≤ n. The labels of pathp are defined as a sequence(l2, . . . , ln). Furthermore,

if sn ∈ T , thenp is a termination path.

Example 2. Given the protocolP in Figure 5.2 below, then for example, the path

p = (1, 2, 5) is a valid termination path with labels(b, c).

Definition 7 (Observable States and Observables). Let P = (S, 7−→, L, T ) be a pro-

tocol, then an Observable state is a statesi ∈ S s.t ∃ a unique pathp, andsi
∗7−→ sn

wheresn ∈ T andp ∈ TP , whereTP is a set of termination paths.5 Observables are

all the labels in pathp.

4In this preservation of autonomy, we mean within the rules, roles norms of the given society, and
assume enforcement of compliance. It is generally acceptedthat to engineer MAS, autonomy may be
constrained somewhat [184], our agents are constrained in that they do cannot make the decision not to
provide this information.

5Termination paths are derived by a defined termination pathsprocedure.
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Figure 5.2: A protocol with shortest unique termination path.
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a
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Figure 5.3: A protocol with no shortest unique termination path.

Definition 8 (Unique Termination Path). Let P = (S, 7−→, L, T ) be a protocol, then

a termination pathp with labels(l1, . . . , ln) is unique, if there is no pathp′ 6= p with

labels(l1, . . . , ln).

Example 3. Consider the protocol in Figure 5.2. The path(2, 5) is a termination path,

but as both paths(1, 4) and (2, 5) have labels(c) (2, 5) is not a unique termination

path. On the other hand(1, 2, 5) is a unique termination path, as there is no other

path with labels(b, c).

Definition 9 (Shortest Unique Termination Paths, Observables). Let P = (S, 7−→
, L, T ) be a protocol andTP the set of shortest unique termination paths, then the set

of observablesO is the union of all labels in any pathp ∈ TP , i.e. O =
⋃

Oi, where

Oi = {li|li ∈ (l1, . . . , ln) ∈ TP}.

Example 4. In Figure 5.2 above, the set of observables isO = {b, c, d, e}. Note that
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Figure 5.4: Shortest Unique Termination Paths

"a" is not element of the set O because the shortest unique path between states 1 and

5 is (3,5) with label "d".

Also Consider Figure 5.3. It is not always the case that thereis a shortest unique

termination path (e.g.s
a7−→ s, s

a7−→ s′, wheres′ is a termination state, does not have

a shortest unique termination path. The reason is that it contains a cycle. If we limit

ourselves to directed acyclic graphs, then this problem does not occur.

Minimal information Given the above definitions, the following statement can be

made: Considering an arbitrary protocol (such as that givenin Figure 5.2), the minimal

information (sub-protocol) that an external entity (monitor) needs to keep to ascertain

termination is the shortest unique termination paths of theprotocol being executed,

intuitively, if an observer is watching this protocol animation as messages are sent;

shortest termination paths provide and answer to the question;what are those messages

or sequences of messages that if observed we know the protocol is as close to the

terminal state as it can possibly be?

For the example being considered here, these are depicted inFigure 5.4.
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Procedure for deriving shortest termination paths A procedure for deriving ter-

mination paths given a protocol graph can be performed once and off-line on a given

protocol or a set of protocols. Such a procedure can involve agraph traversal such as

a modifieddepth-first-searchto;

–i– Perform a reachability analysis6,

–ii– Extract paths leading to terminal states,

–iii– and invoke a recursive mechanism to build up and check uniqueness of shortest

paths.

Onesuchprocedure is sketched below and an algorithm presented in Algorithm 1 page

80. A concrete example for illustration is given in example 5in page 78 for an arbitrary

protocol graph depicted in Figure 5.6 in page 77.

Procedure for deriving shortest termination paths

1. From the start nodes ∈ S Perform reachability analysis and from every pathp

∈ P of valid paths leading to terminal statet ∈ T , extract all labelsl ∈ L and

construct a setLp of sequences{li} of lengthonemade out of the labels, i.e.

Lp = {{li} | li ∈ L ∧ si
li7−→ si+1, si+1 6= t}. Note that we insist onsi+1 6= t

because labelsli in the immediate neighborhood of the terminal statest will be

used (see below ) to construct another setLt as input to the algorithm, and a

testLp

⋂
Lt 6= ∅ if true will mean that these{li}’s in Lt are not unique and not

shortest termination paths and therefore need updating.

6Not in the strong sense of state exploration, but in the senseof picking a state and traversing paths
to the final state.
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2. Consider an index setK = {n | 1 < n < h} whereh is the height of the

protocol graph, then let the setA = ∪k∈KAk represent the set of sequences of all

lengths representing transitions of any length. Starting from the root states ∈ S,

and from∀p ∈ P , construct setsAk = {{l1 . . . lk} | si
l17−→ s2

lK
99K sn, sn 6= t }

where each setAk is a set of all sequences of lengthk

3. Starting from a terminal nodet ∈ T , construct a setLt of sequences{li} of

lengthonemade out of the labels of the transitions in the immediate neighbor-

hood of the terminal statet, i,e,Lt = {{li} | li ∈ L ∧ si
l7−→ t, t ∈ T}

4. Initialise the set of shortest termination pathsTP to Lt, i.e. TP = Lt.

5. CheckLp

⋂
Lt = ∅

• If true returnTP as the set of minimal (shortest) termination paths.

• Else∀{li} ∈ Lp

⋂
Lt update{li ∈ TP} wheresi

l7−→ t, s ∈ S, t ∈ T to

include labelli−1 wheresi−1
li−17−→ si

li7−→ t, i.e. update{li} to {li−1, li} in

TP to include the next transition up that pathp ∈ P .

6. Repeat for(2 < n < h)

• ∀{li−n−1 . . . li} ∈ Tp if {li−n−1 . . . lj ⊂ {lk} ∈ Ak}, where⊂ meanssub-

sequence of, then update{lj} by appending the next transition label up the

pathp to make this sequence unique, i.e. i.e. update{lj} to{li−n, li−n−1 . . . li}
in TP .

7. The number of terminal states ,T is |T |, therefore, the set of all termination

paths for a protocol with multiple terminal states is,T P =
⋃

1≤n≤|T | TPn.

A graphical depiction of the trace of the shortest termination paths procedure is given

in Figure 5.5 where the input as an arbitrary protocol given in Figure 5.6.
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Figure 5.6: Showing and example protocol and termination paths extracted by Algo-
rithm 1. The trace of the process is shown in Figure 5.5

Example 5. For illustration, consider a protocolP shown in 5.6 (a) and the corre-

sponding shortest termination paths shown in 5.6 (b) derived by theSTP Algorithm

1 in page 80 whose trace is depicted in Figure 5.5. The following is an illustration of

the steps.

1. step 1From the protocol graph, extract pathsp ∈ P and construct setLp of

sequences.

• P = {p1, p2, p3} where paths are :p1 = (d, c, e), p2 = (b, c, d), p3 =

(e, b, c).

• ∴ the set of sequencesLp = {[b], [c], [d], [e]}

2. step 2ConstructAks, sets of sequences of lengthk.

• A1 = Lp = {[b], [c], [d], [e]}, A2 = {[e, b], [b, c], [c, d], [d, c], [c, e]}, A3 =
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{[e, b, c], [b, c, d], [d, c, e]}

3. step 3ConstructLt, the set of sequences of labels in the immediate neighbor-

hood of terminal state.

• Lt = {[c], [d], [e]}

4. step 4The set of termination pathTP initialised toLt derived in step 3.

• TP = Lt = {[c], [d], [e]}

5. step 5Check for uniqueness of paths:Lt = {[c], [d], [e]} andLp = {[b], [c], [d], [e]}.

• Lp

⋂
Lt 6= ∅ = {[c], [d], [e]}

• ∴ updateTP to TP = {[b, c], [c, d], [c, e]}

6. step 6Heighth of the protocol graph is 3,∴ Repeat for(2 < n < 3)

• Current elements ofTP are [b, c], [c, d] and [c, e], check if any is a sub-

sequence of some sequence element ofAk (RecallA1 = {[b], [c], [d], [e]},
A2 = {[e, b], [b, c], [c, d], [d, c], [c, e]}, A3 = {[e, b, c], [b, c, d], [d, c, e]})

– e.g. for the first iteration,Ak = A2 = {[e, b], [b, c], [c, d], [d, c], [c, e]}
then for each of[b, c], [c, d]or[c, e] check if any is a subsequence of

some[li] ∈ A2 and update with next transition where true, e.g.[b, c] ⊂
[b, c] ∈ A2. Then[b, c] ∈ TP is updated with the next transition,e in

pathp3 to which it belongs, to become[e, b, c] in the updatedTP

7. step 7If the protocol had multiple terminal states, then its setTP is the union

of all TPis whereTPi is set of termination paths for a particular terminal state

derived as above.
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The algorithm for shortest termination paths,stp, is presented in Algorithm 1 next

where thereachability andupdate procedures used within it are presented in Algo-

rithms 2 and 3 respectively. Thestp procedure declares global data structures, sets as

defined in the preceding discussion, namely setsTP , A, Lp, Lt initialised to be empty.

The variablesN andK are also as defined, i.eN represents the set of indices for the

total number of final states for a given protocol with multiple final states, andK the

set of indices for indexing sets in the setA = ∪k∈KAk as discussed previously.

Regarding the invoked procedures,reachability andupdate, they have access tostp’s

global variables as initialised there, and their outputs are the updated global variables.
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Algorithm 1 Shortest Termination paths algorithm

procedurestp (P, s, t)

INPUT: -ProtocolP = (S, 7−→, L, T ); s ∈ S, t ∈ T

OUTPUT: -A setTP of all shortest termination paths, sequences{li} of.
labels, i.e.TP = {{li}|li ∈ L} where{li}s are unique ,
sequences, i.e. for and indexed setA = ∪k∈KAk , then
∀Ak ∈ A 6 ∃ sequencesk ∈ Ak s.tsk = {li}

GLOBAL DATA STRUCTURES: SetsTP , Lp, Lt, A

INIT : N = {n | 1 < n < |T |}
K = {n | 1 < n < h}
h = height(P )
TP = ∅, Lt = ∅, Lp = ∅, A = ∅.

for all (t ∈ T ∧ n ∈ N) do
reachability(P, s, t)

setTPn = Lt

if Lp

⋂
Lt = ∅ then

return TP
else

update(P, TPn, A)
end if

end for
return TP =

⋃
1≤n≤|T | TPn.
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Algorithm 2 Reachability algorithm

procedurereachability (P, s, t)

INPUT: -ProtocolP = (S, 7−→, L, T ); s ∈ S, t ∈ T

OUTPUT: -Updated setLp = {{li} | li ∈ L ∧ si
li7−→ si+1, si+1 6= t},

-Updated setLt = {{li} | li ∈ L ∧ si
l7−→ t, t ∈ T},

-Indexed setA = ∪k∈KAk

DATA STRUCTURES: Access tostp’s global data structuresA, Lt, Lp

for all k ∈ K do
traverseP and constructAks and deriveA
if (k = h) then

insertli to Lt

end if
end for

setLP = A1

return Lp, Lt, A
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Algorithm 3 Termination paths update Algorithm

procedureupdate ()

INPUT: -Indexed setA = ∪k∈KAk

-Current set of shortest termination paths,TP

OUTPUT: -Updated set of shortest termination paths,TP

DATA STRUCTURES: Access tostp’s global data structuresA, TP

repeat
for all {li . . . ln} ∈ TP do

for all Ak ∈ A do
for all lk ∈ Ak do

if {li . . . ln} ⊂ lk then
{li . . . ln} −→ {li−1, li . . . ln}

end if
end for

end for
A −→ A− AK

end for
update()

until A = ∅
return TP
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5.4 Termination detection model

The discussion of termination detection algorithms in chapter 2 assumes and underly-

ing process (object) model of computation and the algorithms discussed there use basic

messages and rely primarily on low level constructs such as message counting and ac-

knowledgements. Agents use high level agent communicationlanguages, ACLs, and

coordinate using structured interaction protocols that regulate their interactions, and

agent messages have a context. Therefore an entity tasked with detecting global prop-

erties such as termination can use additional information about a protocol to carry out

the task as discussed above in section 5.3.

Additionally a particular agent can engage in multiple interactions or conversations in

pursuit of its goals. To this end we consider a conversational model for agent interac-

tions.

5.4.1 A model for agent conversations

Consider a number of conversational scenarios;

1. Scenario 1: An agent engages in a conversation involving the executionof a

single protocol in a single interaction with another party.

2. Scenario 2: An agent engages in multiple independent conversations involving

execution of a single protocol.

3. Scenario 3: An agent engages in a single conversation that triggers additional

conversations and the original conversation is not terminated until the sub-conversations

are terminated, i.e. consider the recursive definition of a conversation.

4. Scenario 4: A generalisation of the point above, where an agent engagesin

multiple conversations that have sub-conversations.
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First consider definition 10 below that defines a conversation. In this definition con-

versations can involve sub-conversations.

Definition 10. A conversation is a tuple〈Ck, 〈Ck,i〉, P, F 〉where〈Ck,i〉 is a vector of its

associated conversations (if it triggered any) andP is a protocol or sub-protocol (such

as the set of termination pathsTP ) associated with this conversation.F ∈ {0, 1}, is

a flag that is set if the root conversationCk is completed, unset otherwise. Then for

notational convenience we can writeCk 7→ F to refer to the boolean flagF associated

with the root conversationCk ( or equivalently just writeCk = 1 or Ck = 0 or

at a higher level, the notationCk 7→ F can be represented by a predicate such as

computeF (Ck) ).

Example 6. If during a conversationC1 between(i, j) further sub-conversationsC1,1

andC1,2 are triggered, whereC1,1 andC1,2 may as well be roots of further conversa-

tions, then represent this as〈C1, 〈C1,1, C1,2〉, P, F 〉.

Then consider definition 11 that defines aconversation matrixC-Matrix, a structure

that can be used by an observer who oversees a conversation say in a termination

detection of procedure.

Definition 11 (C-Matrix). Let M be a matrix ofmi,j entries,1 < i ≤ n and 1 <

j ≤ n. Let eachmi,j entry be a tuple〈F, 〈Ck〉〉, F ∈ {0, 1} 1 < k ≤ m for some

m, where eachCk is an active conversation in definition 10 and〈Ck〉 is a vector of

root conversations. WriteMi,j 7→ F to referenceF at mi,j ( or equivalently just write

Mi,j = 1 or Mi,j = 0, or at a higher level, the notationMi,j 7→ F can be represented

by a predicate such ascomputeF (Mi,j) ).

Clearly regardingF , from definition 10 and 11,Mi,j 7→ F =
∧

1≤k≤n Ck 7→ F ( or

equivalentlycomputeF (Mi,j) =
∧

1≤k≤n computeF (Ck) ) for the conversations in the

vector〈Ck〉, i.e. F set when all the conversations have been completed.

84



Example 7. Figure 5.7 shows a representation of a c-matrix.mi,j in the matrix repre-

sents a registered interaction betweeni andj. A
⊗

at (i, j) represents flagF set, and

existence a non-empty vector〈Ck〉 of active conversations and a© at (i, j) represents

flag F unset for terminated set of conversations in the vector〈Ck〉. Conversations in

the vector〈Ck〉 are also flagged© and
⊗

as defined in definition 10 if the current

statet in the protocol execution is a terminal state, i.e.t ∈ T .
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Figure 5.7: Showing a c-matrix structure and flat independent, each conver-
sation in the vectorCk has no sub-conversations

Hierarchical conversations as diffusing computation trees As it is, example 7 on

the use of ac−matrix satisfies scenario 1 and scenario 2 above in page 83. To accom-
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modate further scenarios, consider the use of the recursivedefinition of conversations

in definition 10 to generalise the use of the conversation matrix ,c−matrix. We intro-

duce a diffusing computation7 tree of conversations, shown in Figure 5.8. Notice the

recursive representation of the conversations.

Definition 12. A diffusing computation tree for a conversation is a graph, apair G =

(V, E) of sets satisfyingE ⊆ V ×V , where the vertex setV = {Ci | ¬inactive(Ci)},
a set of active conversations, where the negation8 of the predicateinactive tests ex-

istence of an active protocol execution associated with theconversation. E is the

edge set, a binary relation, where an edgee = (ci, cj) indicates thatci triggeredcj,

E = {(ci, cj) | (ci, cj) ∈ R ⊂ V × V } whereV is the vertex set, the set of all

possible conversations,∴ elements ofE belong toV × V .

It then follows from the recursive definition of a conversation that a conversation graph

G is made up of subgraphsG
′

(V1, E1), G
′′

(V2, E2) . . . Gn(V1, E1) andV = ∪i∈IVi and

E = ∪i∈IEi, i.e. when a conversationCi triggers a sub-conversation9 Cj, a node

v = Cj and an edgee = (Ci, Cj) are added toV andE respectively to growG.

The reverse happens when a sub-conversation terminates, i.e. a node and an edge are

removed.

Figure 5.8 shows a diffusing computation tree representinga conversation, the root

designates the conversation that spawned other conversations. The original conversa-

tion is terminated when the computation collapses to the root node andG reduces to a

trivial graph of order10 |G| = 0 and||G|| = 0, anempty graph(∅, ∅).

Next, consider extending11 E ⊆ V × V relation to bereflexiveandtransitiveand not

7A variant of Dijkstra diffusing computation.
8Defined using negation this way to simplify our subsequent discussions.
9Strictly we should writeCi,j as defined, but we writeCj here for simplicity

10Order of a graph is the number of vertices, denoted|G|, equally number of edges is denoted||G||.
11We need to extend E toE

′

for use as a basis of a procedure used for concluding termination of con-
versations discussed later. These properties are useful because if we take the nodes to be computational
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tive maintains protocol execution or set of termination paths,TP . A termi-
nated conversation collapses to the root nodeCi
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symmetricto produce a relationE
′

. For example consider Figure 5.9.

1. Reflexivity, e.g. ifCi ∈ V , Cj ∈ V , Ck ∈ V etc. then(Ci, Ci) ∈ E
′

, (Cj, Cj) ∈
E

′

, (Ck, Ck) ∈ E
′

, i.e. Rreflexive = {(Ci, Cj) | (Ci, Cj) ∈ V × V ∧ ∀i ∀j i =

j}. Permitting reflexivity in the model allows a sub-conversation to report its

local termination12 and self removal from the set of active conversations as the

diffusing computation tree collapses.

2. Transitivity , i.e. if (Ci, Cj) ∈ E
′ ∧ (Cj, Ck) ∈ E

′ ⇒ (Ci, Ck) ∈ E
′

, or

more generally ,Rtransitive ⊆ V × V = {(Ci, Ck) | ∃ Cj ∈ V s.t Ci
∗7−→

Cj ∧ Cj
∗7−→ Ck } , where notationCj

∗7−→ Ck indicates an existence of

path fromCj to Ck. Allowing transitivity provides and additional safety check

before removing nodes, e.g. for some root conversationCi, test ifRtransitive =

{(Ci, Ck) ∈ E
′ | (Ci, Ck) ∈ E

′ ∀Ck ∈ V } = ∅ before removing anyCj in the

path toCk s.tCj , Ck ∈ E
′

andCi, Cj ∈ E
′

from V andCi from V , i.e. test if

there are no descendant conversations transitively related toCi.

3. Notsymmetricbecause clearly if a conversationCi triggers conversation aCj i.e.

(Ci, Cj) ∈ E
′

, it is not the case thatCj triggers conversationCi, i.e. (Cj, Ci) /∈
E

′

.

That is, we definereflexiveandtransitiveclosures ofG to be the graphG
′

=
(
V, E

′
)
,

whereE
′

= E ∪ Rreflexive ∪ Rtransitive, the idea is to use these extended properties

in a procedure that collapses the conversation tree safely when conversations (nodes)

complete and are removed from the tree until eventuallyG reduces to anempty graph

(∅, ∅).

as is the case with diffusing computations, then the nodes can have operations to remove themselves
from the computation tree. A data structure to represent thegraphG(V, E), can be maintained e.g. in a
form of an adjacency matrix and node can inspect and manipulate this data structure.

12Recall that these nodes are computational
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Example 8. Consider Figure 5.10 that shows a relation13 E
′

= R ⊂ V × V , an

extended edge setE
′

of conversationG
′

= (V, E
′

) representing set of pairs of con-

versations such that one conversation is triggered by another for the example diffusing

computation tree given in Figure 5.8. In this example assumethe diffusing computa-

tion tree presented in Figure 5.8 is given concrete labels such that the conversation

G = (V, E) is rooted atC1 with C1 triggering C2 andC5; C2 triggering C3 andC5;

C5 triggering C6 and C7. The original conversation,C1 completes when eventually

E
′

= ∅. Nodes designated by
⊗

show reflexivity of the RelationE
′

, i.e. we allow that

if a conversation is triggered by another, then we assume that the triggered conversa-

tion has also self triggered trivially , i.e.{(Ci, Cj) ∈ E
′ | Ci = Cj}, this can be used

in a heuristic to ensure that when a conversation is completed the edge is removed from

Rreflexive ⊂ E
′

and the node fromV . Alternatively for inspectingRreflexive ⊂ E
′

for

active conversations, checking set membership, without traversing the graph in an im-

plementation where the computational nodes update this setthemselves, for example.

The figure also shows relationRtransitive used in Algorithm 4.

13Grid used to show the cartesian productV ×V . Number labels on the axes for set elements represent
identifiersi for conversation nodes.
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Figure 5.9: Example conversationG = (V, E) showing transitivity and re-
flexivity of the edge setE after extending edge setE with Rreflexive and
Rtransitive to derive a relationE

′

= E ∪ Rreflexive ∪ Rtransitive
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sample elements for a conversationG = (V, E). In this example assume the
diffusing computation given in Figure 5.8 is given concretelabels such that
the conversationG = (V, E) is rooted atC1 with C1 triggeringC2 andC5; C2

triggering C3 andC5; C5 triggering C6 andC7. The original conversation,
C1 completes when eventuallyE

′

= ∅
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Procedure for local termination So the following procedure local termination14,

follows.

Consider a predicateinactiveraised in Definition 12 page 86 defined over conversa-

tions. It evaluates false for an active conversation that has anactiveassociated protocol

execution and its extended edge setE
′

is not empty, i.e. consider definition 13. Con-

sider also predicateinactiveProtocoldefined over protocols that tests whether a given

protocol execution has reached a terminal state, i.e. consider Algorithm 5

Definition 13. For a conversationCi = G(V, E
′

),

¬inactive (Ci) ⇔ active(P i) ∧ E
′ 6= ∅, where for an associated Protocol or

sub-protocol ,Pi, active(Pi) ⇔ currentstate(Pi) /∈ T

Given this discussion, a sub-conversationCj locally terminates when predicateinactive(Cj)

defined on conversations evaluates true and hence when its associated protocol execu-

tion completes andinactiveProtocol evaluates true. A protocol execution completes

when one of the terminal states is reached. The overall conversation is completed when

the root node is eventually removed fromV and last edge fromE andG reduces to a

empty graph(∅, ∅). When removing nodes, test to check existence of adjacent nodes

and transitively related nodes. appendix:termination.detection.for.protocol

Consider Algorithm 4 below suggested by the discussion so far.The algorithm traverses

the tree15 in breadth-first and at each node evaluating whether there are any descendants

conversation nodes i.e. evaluating ifRtransitive = ∅ , testing for if the protocol is active

usingactiveProtocol predicate and removing that node with a procedureremove if

the above is true. WhenG eventually becomes empty, the associated flagF ( defined

in Definition 10 in page 84) of a conversation can be set.

14Local because we refer to a conversation, not a set of all conversations an agent is engaged in.
15For further illustration of this algorithm, consider an example trace for execution of this algorithm

given in Appendix A, Figure A.1 in page 261.
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Also consider Algorithm 5 that specifies predicateinactiveProtocol defined over pro-

tocols.

Algorithm 4 Diffusing conversations algorithm

procedureinactive ( G)

INPUT: -ConversationG = (V, E) rooted atCi

OUTPUT: -BooleanT or F

DATA STRUCTURES: GraphG = (V, E), i.e. setsV andE
INIT : Initialise setsV andE to vertices and edges ofG. Initialise setsRreflexive,
Rtransitive and construct setE

′

= E ∪ Rreflexive ∪ Rtransitive

repeat
for all (Cj ∈ V | (Ci, Cj) ∈ E ∪ Rreflexive) do

if (R = {(Cj, Ck) | (∀k ∃Ck ∈ V ) ∧ (Ci, Ck) ∈ Rtransitive} = ∅) then
if ¬inactiveProtocol(Cj 7→ Pj) then

remove (G, Cj)
end if

else
active(Gj)

end if
end for

until (G = ∅, ∅)

procedureremove ( G, Cj)

INPUT: -ConversationG = (V, E) rooted atCi; vertexCj s.t(Ci, Cj) ∈ E
′

OUTPUT: -PrunedG = (V, E); UpdatedE
′

i.e. E, Rreflexive andRtransitive

ComputeV = V − Cj

ComputeE
′

= E
′ − {(Ck, Cj) | ∀k (Ck, Cj) ∈ E

′}
return G = (V, E)

93



Algorithm 5 Algorithm for predicateactiveProtocol

procedureinactiveProtocol ( P )

Let P be a protocol and letTP be the set ofshortest unique termination pathswith
observablesO ⊂ L, L set of all labels.

INPUT: A protocol trace, labell ∈ L or sequence [l]
OUTPUT: -BooleanT or F

DATA STRUCTURES: ∀ p = (s1, . . . , sn) ∈ TP , there is a statesi called current
execution state ofp.
INIT : ∀p = (s1, . . . , sn) ∈ TP initialise its current execution state tos1.
repeat

Let l be a message sent by an agent.
if l /∈ O then

for all p = (s1, . . . , sn) ∈ TP do
Setp′s current execution state tos1.

end for
else

for all p = (s1, . . . , sn) ∈ TP with current execution statesi do

if si
l7−→ si+1 then

p’s current execution state becomessi+1

if si+1 = sn then
set terminated to true. {-Specifically forp}

end if
end if
if si 6 l7−→ si+1 then

setp’s current execution state tos1

end if
end for

end if
until TERMINATED
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Discussion of the algorithm’s complexity If the algorithm has to visit all nodes and

all edges when testing and removing nodes from the computation tree, the time and

space complexity will be in the orderO (|V |+ |E|). Or equivalently , if thebranching

factor of the treeb and tree depthd were to be known at any time, then theoretically,

like the breadth-first-search, the time and space complexities can be expressed as

O
(
bd
)

[55, 134].

In practical terms, for the protocols we are considering in multiagent applications, it is

worth pointing out that the protocol graphs used in agent interactions as for example

given in the FIPA protocol suite [1], are not very big. For example, consider the

ContractNet protocol [215] given as an example illustration of an FSM representation

of a protocol in Figure 5.1 in page 70 or consider an equivalent FIPA Contact-Net

representation from the FIPA protocol suite in AUML notation shown in Figure 4.4 in

page 60. Both examples show typical graph sizes of the protocols that are considered

in multiagent applications.

In addition, if as it is, the implementation can be such that the nodes can individually

update the set data structure forE
′

, then an algorithm that then inspectsE
′

to answer

questions about the state of the diffusing computation treewill yield better complexity

thanO (|V |+ |E|) as it will just test set membership inE
′

. We give a further detailed

discussion of algorithms discussed in this chapter in Appendix A in section A.4, page

268.
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5.5 Distributed protocol for termination detection

Consider a small16 set of controllersC = {Cn | n ∈ N}modelled as a fully connected

network and consider a given agent whose protocol executions are observed by these

controllers. Recall from definition 11 that entriesmi,j are tuples〈F, 〈Ck〉〉, with F ∈
{0, 1} and withmi,j 7→ F written to referenceF . F indicates whether conversation

Ck is active or completed.

So one approach is for each controllerCn, to compute, based on thec − matrix it

maintains, for a givenith row, (agent),
∧

∀j mi,j 7→ F , i.e. check ifall flagsF are set

at each of themi,j entries in theith row. Also recall that eachmi,j 7→ F is in turn

computed from
∧

1≤k≤n Ck 7→ F where eachCk here refers to an entry in the vector

〈Ck〉 of active conversations atmi,j.

So consider some logical globalc−matrix M and definition 14 below.

Definition 14. Given an agenti and a setC = {Cn | n ∈ N} of controllers , let the

global conversation matrixM be partitioned across Controllers{Cn}, i.e. such that
⋂

n∈N
Cn
(
Mi,j

)
= ∅, whereCn

(
Mi,j

)
indicates a set of entries fromMi,j assigned

to controllerCn. Write
∧

∀j Mi,j 7→ F asCi
n 7→ F for

∧
∀j Mi,j 7→ F computed by

a controllerCn. Then
∧

n∈N
Ci

n 7→ F for all controllers in {Cn | n ∈ N} indicates

global termination for agent17 i if true

Example 9. Consider Figure 5.11 showing a global matrixM partitioned across con-

trollers in {Cn | n ∈ N}. If all the entriesMi,j 7→ F evaluate to true on rowi for

all columnsj, then all conversations associated withi have completed,i.e. because

all the Mi,js on rowi are partitioned across controllers{Cn} termination is global if
∧

n∈N
Ci

n 7→ F evaluates true.

16Observing that the number of connections is quadratic in number of nodes,n
2
−n
2

, orderO
(
n2
)
.

17The significance of "agent" here is that if we seek a global state where all agent interactions have
terminated, e.g. if we seek quiescence, each controller observing conversations for this agent have to
report termination.
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Now, there are various ways to implement a globalc−matrix M .

1. PartitionM logically by allowing each controller to manage a separate copy

of a c − matrix and using global identifiers and ensuring that conversations

for a particular pair of agents instantiations(i, j) are registered on a particular

controller, i.e.
⋂

n∈N
Cn

(
M i,j

)
= ∅ in line with definition 14, e.g. Figure 5.11,

i.e. there is no overlap.

2. AllocateM logically across controllers allowing each controller to manage a

separate copy of ac − matrix and using global identifiers but allowing that

some18conversations for a particular pair of agents instantiations(i, j) can reg-

istered on different controllers, i.e. allowing
⋂

n∈N
Cn

(
M i,j

)
6= ∅, e.g. Figure

5.12

Furthermore, Appendix A, page 263 discusses additional abstract configurations that

can be considered for implementing a globalc−matrix M .

Figures 5.11 and 5.12 next illustrate configurations one andtwo respectively as dis-

cussed above.

18But not the same conversation, i.e. some from the vectorCk atmi,j .
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. . . . . . . . .C1
(

Mi,j
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Ck

(

Mi,j

)

C2
(

Mi,j

)

Figure 5.11: Showing example global matrix partitioned across controllers
enforcing the condition

⋂
n∈N

Cn

(
Mi,j

)
= ∅

j

i

. . . . . . . . .C1
(

Mi,j

)

Ck

(

Mi,j

)

C2
(

Mi,j

)

Figure 5.12: Showing example global matrix allocated across controllers al-
lowing overlaps, i.e.

⋂
n∈N

Cn

(
Mi,j

)
6= ∅

98



Assuming setups1 and2 above, and a set of controllersC = {Cn | n ∈ N} modelled

as a fully connected network, the controllers can synchronise using message passing

to compute
∧

n∈N
Ci

n 7→ F for a given agenti to ascertain termination or compute
∧

n∈N
C∀i

n 7→ F if quiescence19 of the system is required.

A designated controller, sayC0, may propagatequery messages to other controllers

and aggregate to compute
∧

n∈N
Ci

n 7→ F from thereply messages carrying local val-

ues ofCi
n 7→ F , this at a cost of2× (n− 1) messages, orderO (n) 20.

Local computations by controllers inC = {Cn} to deriveCi
n 7→ F will involve tests

of the predicateinactive (defined in Algorithm 4) over all active conversations in the

vector〈Ck〉 at mi,j entries in a localc−matrix m at each controllerCn.

Consider Algorithm 7 below that implements the scheme above.

19No activity in the system, state of being quite will all protocol execution complete.
20O (n) because one controller sends and collates results to declare termination, clearly in the worst

case, theoretically if every controller was sending to other we will haveO
(
n2
)
.
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Algorithm 6 Global termination on controllers{Cn | n ∈ N}, reported byC0 for a
given agenti. C0 sendsquery messages and concludes termination by aggregating
results including its own

procedureglobaltermination ( i)

INPUT: -agent identifieri;
OUTPUT: -BooleanF = {0, 1}; c−matrix m

DATA STRUCTURES: C = {Cn | n ∈ N}

for all Cn ∈ C do
if Cn = C0 then

repeat
(Ci

0 7→ F )←− localtermination(m,i)
(Ci

n 7→ F )←− query (Cn, i)
until

∧
n∈N
Ci

n 7→ F
else

(Ci
n 7→ F )←− localtermination(m,i)

end if
end for

return (
∧

n∈N
Ci

n 7→ F )
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Algorithm 7 Local termination on controllerCn for agenti, handlesquery (Cn, i) mes-
sages fromC0, returnsCi

n 7→ F from this controller

procedurelocaltermination (m, i)

INPUT: -agent identifieri; c−matrix m
OUTPUT: -BooleanF = {0, 1}

DATA STRUCTURES: localc−matrix m

repeat
for all j do

for all m i,j 7→ Ck do
F ←− ∧1≤k≤n inactive (mi,j 7→ Ck)

end for
end for

until F

return (F )
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Procedure for global termination So given the discussion so far, we can summarise

the procedure for global termination. In addition considerthe following observations

and practical considerations regarding the procedure.

1. Define awave as the basic sequence of sending ofquerymessages followed by

the reception of associatedreply messages in line with the discussion in section

2.3, page 350.

2. Observe the symmetric nature of conversations, i.e. for apairAi, Aj ∈ A then

(Ai,Aj) ∈ A × A ⇐⇒ (Aj,Ai) ∈ A × A, so it is sufficient to maintain one

entry in thec−matrix for the pair(Ai,Aj).

3. All agentsAi ∈ A send partial protocols (termination paths) or full protocols as

payload forregistrationmessages toCn ∈ C andreply to querycontrol message

in wave with payload as protocol traces or labelsl ∈ L.

4. Designate one controllerC0 ∈ C to conclude termination using predicatelocal-

terminationtested on the globalc − matrix M cache.C0 sendssync control

signals to all controllersCn ∈ C, n 6= 0 to trigger cache updates. For failover,

this role can be transferred to anyCn as all controllers have the same instructions

apart from one being identified asC0 for this purpose.

5. Using a globalc−matrix M cache instead of the full use of bidirectional com-

munication to coordinate,reduces control message traffic to other controllers.

This can be reduced further if cache updates are made periodic on independent

controllers without the need forsync signals. Regarding potential failure of the

tuple spaces, standard replication and recovery mechanisms for shared memory

can be used. for example [182] discusses distributed sharedmemory issues.

6. We distinguish between two usage scenarios; global termination of an agentAi’s
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interactions orquiescenceof the system, i.e. considering global termination of

all agentsAi ∈ A.

7. While the procedure is configured to ascertain termination, it can be easily

adapted to provide continuous observation of protocol executions and be used

as a basis for some crash recovery mechanism for agents.

8. Furthermore as observed in Chapter section 2.1 page 16, the semantics of garbage

collection problem are fully contained in the semantics of the termination detec-

tion problem, hence we can a derive garbage collection scheme from the termi-

nation detection scheme. Therefore we could use this procedure as a basis for

marking terminated agents for garbage collection21.

Figure 5.13 summarises the discussion so far.

Note in that figure, that in the blockS2 regarding registration of active conversations,

this refers to conversations a particular agent embarks on and hence it is aware of

its conversation partners , its role and the protocol it participates in. At the start, if

(Ai, Aj) ∈ A×A are a pair of agents participating in a protocolP , whereA = {An}
is the set of all agents, then initiator of the conversation22 can register a conversation

with a controllerCi from the set of controllersC = {Cn}. For this registration, consider

a predicateregister(i, j, P, Cn) that can be implemented to send a control message to

some controllerCn ∈ C. The controllerCn handles this message by inserting an entry

23into thec−matrix M at (i, j).

Furthermore as remarked above (second point), because conversations are symmetric,

one entry need be maintained in thec−matrix M , i.e at(i, j) and not at(j, j) too in

M .
21This maybe an interesting research work to follow work discussed here.
22Recall that a conversation encapsulates a protocol execution
23A new conversation as given in Definition 10, a tuble〈C1, 〈〉, P, F 〉 with F = 0, empty sub conver-

sations initially, i.e〈〉
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Also note in Figure 5.13, that in the statement blockS4, regardingsync operation, this

is discussed above (fourth point). Consider a predicatesync(Cn) over all controllers

in Cn ∈ C. The implementation of this involves sending a control message to all

controllers by a designated controllerC0, querying for the flagF computed by all

other controllersCn ∈ C for a given agentAi. This is shown in thequery predicate in

within Algorithm 7 presented in page 101. Similarly see Algorithm 8 in Appendix A

in page 267 for the other configurations for distributing thec−matrix M .
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5.5.1 Evaluation of the distributed termination detectionprotocol

As discussed in section 2.4, page 34, a set of metrics can be considered regarding eval-

uation of distributed termination schemes, namelydetection latency, message com-

plexityandmessage-size complexity. Briefly;

1. Detection latency: Quantifying the period between when the underlying compu-

tation completes and when the termination algorithm actually announces termi-

nation.

2. Message complexity, also communication complexity, refers to the number of

control messages exchanged by the termination detection algorithm in order to

detect termination. In general, it is indicated by [153], that this is less significant

in a distributed algorithm unless the communication complexity causes sufficient

congestion to slow down processing. Clearly also in practice, say in an agent

platform, there will be an upper limit on the number of agentsa platform can

host and scalability issues naturally arise, but theoretically in a broadcast scheme

complexity is of the orderO (n) as discussed below.

3. Message-size complexityrefers to the size of the control data as payload on the

message by the termination detection algorithm, that is, how big the messages

are.

Regardingdetection latency, we investigate this extensively in the experimental setup

discussed in the next chapters for the prototype implementation.

Regardingmessage complexity, we do not assume a particular topology for the agents

in the multiagent system in that associations between agents are dynamic. One possi-

bility is to assume aclean graph, (see definition 16).
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In addition we can discount topologies that require agents to pass on control messages

to other agents en route to controller24.

Therefore we choose to use a broadcasting scheme (from controllers to agents), to

implement thewaves. Also in the broadcasting scheme, the total number of control

messages will be influenced by the periodicity parameter of the control waves, but the

message complexity for the wave isO(n).

Definition 15 (Broadcast). A broadcast operation is initiated by a single node , the

source, and the receivers are all other nodes in the system.

Remark 1 (Lower bound). Message complexity of the broadcast is at leastn−1, order

O(n).

Proof. The proof is trivial, every node must receive the message.

Definition 16 (Clean). A graph , system or network is clean if nodes do not know the

topology of the graph.

Regarding themessage-size complexity, query messages are light and as remarked

abovereply messages carry as payload25 protocol traces or labels and therefore are

equally light. Registration messages a heavier but sent only once for a given conversa-

tion, carrying partial protocol (termination paths) or full protocol graphs.

24There are notions of malicious agents in multiagent system that can manipulate messages. Consider
a scenario of an auction.

25Serialisation of structures can be used to implement this.
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REPEAT

REPEAT

tree of conversations computation

- With all agent Ais protocol snapshots,sequence

[l] of labels l ∈ L, test predicate activeProtocol
over registered full protocol or subprotocol
(termination paths) on nodes of the diffusing

-Remove complete conversations and collapse tree

S4.1.1

-∀Cn ∈ C with local c − matrix m test predicate localterminationS4.1

for agent Ai ∈ {An} or (∀Ai if quiescence is required).

-For an agent Ai ∈ {An} or for ∀Ai if quiescense
required, test predicate inactive over all root
conversations i.e

∀Cki ∈ mi,j 7→ 〈Ck〉 test inactive(mi,j 7→ Ck)

S4.1

- Derive global termination by testing predicate localtermination on cache M

INIT
S1

-∀Cn ∈ C initialise local c − matrix entries mi,j

- Controllers in C = {Cn|n ∈ N} register with each

other to create a fully connected network

- Designate controller C0 to report termination

∀Ci, Cj ∈ C, i 6= j, register(Ci, Cj)

to empty

-Initialise tuple space cache c − matrix M

entries Mi,j to empty

- Define A = {An}, set of all agents
-If (Ai, Aj) ∈ A×A is a pair of interacting

agents, then register the pair’s active conversations

S2

with any controller Cn ∈ C .

- Cn inserts into or updates a conversation in vector

〈Ck〉 at mi,j

using the register(i, j, P, Cn) predicate (pg. 103)

- Controllers in C = {Cn|n ∈ N} execute waves,

querying for protocol traces and receiving replies

with protocol traces from agents Ai ∈ A

S3

- Designated controller C0 = {Cn ∈ N} tests globaltermination predicate

for a given agent Ai ∈ {An} or ∀Ai if quiescence is tested.

S4

-∀Cn ∈ C synchronise to update cache M

using predicate sync(Cn) (pg. 104)

Figure 5.13: Showing the distributed termination detection protocol
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5.5.2 Proposed architecture for termination detection

Figure 5.14 illustrates how a termination detection mechanism may fit in with a generic

multiagent management architecture, not only to report termination, but also to pro-

vide continual observation of interactions and visualisation perhaps by driving a vi-

sualiser. Furthermore the mechanism can be used to drive an automatic garbage col-

lection scheme, for example in the mark phase of amark-and-sweeptype garbage

collection algorithm [130] that can be used to clear multiagent registries of terminated

agents26.

We implemented a prototype for aspect I and II for flat conversations27 in order to

evaluate the detection delays metric using an experimentalsetup based on simulated

execution of an arbitrary protocol to make the experiment asgeneral as possible and

generate large datasets. We propose aspect IV for further work, and III as in the cur-

rent setup we assume existence of the protocol libraries. Protocol libraries are also

discussed in existing literature, though the is no standardised implementation of such

libraries. We imagine that the core framework of the proposed set up can be imple-

mented with existing finite state machine libraries e.g. [5]or related languages.

Agent registries and some aspects of visualisation components are implemented on

most multiagent platforms and these visualisation components can be easily augmented

with protocol visualisation primitives.

Finally, Appendix A, page 268 gives a discussion of the algorithm complexity issues

for algorithms for predicates discussed in this chapter andthe associated data struc-

tures.

26As remarked, the discussion of garbage collection in agentsis outside the scope of this research,
but maybe an interesting and natural consequent follow on research work.

27Regarding implementation of nested conversations, this will be dependent of the agent platform,
for example JADE agent platform provides a construct calleda behaviours, a non-deterministically
scheduled multi-threaded construct, therefore this can beused.
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Figure 5.14: A proposed termination detection architecture for a multiagent system.
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5.6 Summary and Contributions

We adopted a computational model where agents are autonomous28, distributed, asyn-

chronous processes that use an agent communication language to communicate and

use interaction protocols for coordination and interaction with other agents in conver-

sations to achieve their goals. And, agents form societies called multiagent systems

that are modular distributed systems and have decentralized data and control.

We viewed protocols as behaviour specifications that are publicly viewable ( whereas

the individual agents’ strategies that generate response utterances are private) and as-

sume that protocols they are in the form of finite state machines, edge-labelled di-

rected graphs , and to support homogeneity in a heterogenousmultiagent environment,

assumed existence of unified protocol framework where thereare preserving transfor-

mations of other protocol specifications to finite state machines for the purposes of

termination detection.

In this context we have;

– i – Presented definitions in relation to protocol graphs leading to the definition

of minimal information in the form of shortest unique termination paths that

agents can register with an observer of interactions.

– ii – Presented an off-line procedure and concrete algorithms to take as input a given

protocol graph to produce a sub-protocol, a setTP of shortest unique termi-

nation paths given possibly multiple terminal state to represent this minimal

information.

– iii – Presented a termination detection model. In the modelwe defined the notion

of a conversation that encapsulates protocol execution as abasis of interactions

28With restrictions that agents have incentive to participate or there are enforceable conditions for
participation in the society.

110



from an agent’s perspective.

– iv – We modelled a branching conversation as a diffusing computation tree, and

provided a definition of a data structure, a conversation matrix, c-matrix, a

structure that can be used by controllers, entities that oversee conversations.

– v – Given this model and definitions, we presented a procedure for local termina-

tion of conversations and presented accompanying algorithms and some com-

plexity analysis.

– vi – Explored possibilities for distribution, and presented a distributed protocol for

termination detection over a cluster of controllers, either fully connected or

coordinated through shared memory, a tuple space. Furthermore discussed

practical considerations.

– vii – Identified the main metrics for evaluation and provided preliminary evalua-

tion of the protocol given these defined metrics for evaluating the termination

scheme.

– viii – Explored how the termination detection mechanism may fit in within a larger

generic multiagent systems management infrastructure, potentially driving garbage

collection of agent registries and interaction visualisation components.

– ix – Offered some perspective on the complexity issues of the algorithms proposed

herein

Following the discussion here, inPart III next,Chapter 6 next discusses the proto-

type implementation, simulation, experimental design andthe proposed data analysis

for the experimental part of this thesis for the flat conversational model used to eval-

uate the termination detection mechanism and its configurations in an existing agent

middleware implementation.
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ThenChapter 7, page 131, presents results for the partial protocol configuration of

the mechanism, followed byChapter 8, page 157 that presents results for the full

protocol configuration, followed byChapter 9, page 175 that offers some perspective

and exploration of the comparisons between these two setups.

Finally, Chapter 10, page 187 presents results for the distributed configuration.
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PART III

EXPERIMENTS AND RESULTS
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CHAPTER 6

Prototype implementation, experimental design and

data analysis

6.1 Introduction

We have discussed in the previous chapter,Chapter 5, a termination detection mech-

anism for making termination of agent interactions explicit in a distributed setting and

provided a general framework for implementation and definedthree standard metrics

for evaluating this mechanism.

This chapter follows this and discusses the prototype implementation , experimental

setup , experimental design and data analysis methods to be used in this research.

The chapter provides an overview of a set of experiments to beconsidered and also

discusses how the evaluation of these experiments will be done.

6.2 Overview

Section6.3 starts by presenting an experimental setup for exploring the termination

detection scheme. Here we present a sample protocol for the experiments and discuss

the setup for the simulation. A simulation was chosen to makethe evaluation as general

as possible and generate large datasets in a controlled environment to aid exploratory

comparisons between configurations. In addition this approach will provide a standard
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experimental environment for evaluating and comparison offuture work on further

mechanisms for termination detection.

The details of the prototype implementation are given inSection6.4, where a popular

FIPA compliant multiagent framework was chosen. The framework provides agent

containers, agent communication language (FIPA-ACL) based messaging , protocol

templates, distribution and inter-platform interoperability for agents.

Section6.5 discusses the experiments to be conducted on the prototype implementa-

tion within the experimental setup, detailing various levels of quantitative experiments

as briefly introduced in this section.

Section6.6 presents the data collection and data analysis methods adopted. We opted

to use resampling methods, e.g.the bootstrapfor analysis of data sets, the rationale

as explained in section 6.6 being that these methods do not make underlying distribu-

tional assumptions on the datasets ,e.g. normality, of the data sets, and also provide

robust confidence intervals and offer a mechanism for treating outliers. The main cost

however associated with these methods is that they are computationally intensive as

they involve resampling a dataset that is treated as population. A separate theoretical

overview of these methods is given in Appendix D or in the references provided.

Finally, Section6.8 then provides a summary to reflect on this chapter.

6.3 Experimental setup

Details of the implemented aspects in the prototype are given section 6.4, next. So this

section can be read in parallel with section 6.4.

For the experimental setup, consider a simulated scenario where agents execute a finite

state machine based protocol as depicted in Figure 6.1 below. For all intents and

purposes, this could equally have been any finite state machine representation of any
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protocol for any of the scenarios given in section 5.1, wheretransitions labels are ACL

messages that make sense in a given scenario’s protocol. In this example, protocol

labels depicts contents of ACL messages.
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(a) An arbitrary protocol for experimental analysis

Figure 6.1: An arbitrary protocol, showingobservable states, observablesand termi-
nation paths

Example 10.In protocol shown in Figure 6.1, observable states are in set{4, 9, 14, 15}
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Using this protocol graph as input to an implementation of the off-line shortest ter-

mination path procedure,stp, (Algorithm 1 sketched in page 80), produces a partial

protocol shown in Figure 6.2, a set of termination paths.

Example 11. Given the protocolP in Figure 6.1, then for example, pathsp1 =

(4, 8, 18), p2 = (4, 9, 11, 18), p3 = (14, 18), p4 = (15, 16, 17, 18) are valid termi-

nation paths with labels(b, c), (j, l, d), (g), (a, d, h). These are shown in Figure 6.2

18
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9

14

15

16

1711

b j

c

g

a

d

h

l

d

(a)

Figure 6.2: Showing unique termination paths for protocol in Figure 6.1

We implemented this protocol using JADE’s1 FSM behaviour template [24] that de-

fines;

1An agent framework introduced in page 119.
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1. MessageTemplate class which providesMessageTemplate.MatchContent(

Label) operation for pattern matching protocol labels, e.g.MessageTemplate

mt = MessageTemplate.MatchContent(label);

2. registerFirstState(StartState) , registerState(State),

registerTransition(Transition),registerLastState (LastState)

operations for the protocol fsm states and transitions. Theoperations accept

states and transitions as arguments and model an fsm. The states themselves

are modelled as JADE behaviours2, i.e. in the case of protocol state, these were

instances of a one off task implemented as instances of aOneShotBehaviour.

3. States process an incoming messages and match against a defined template, e.g.

ACLMessage msg = Agent.blockingReceive(mt) and return next tran-

sition.

We implemented a simulation environment that instantiatedagents and generated mes-

sages, protocol labels,l ∈ L to drive the agents. The simulation environment also

scheduled and repeated experimental cycles.

Agents register with controllers and register protocol information according to experi-

ments to be scheduled (see page 120 for various experiments), e.g. full protocol, partial

protocol.

For data collection purposes, agents collect data on their side about the protocol ex-

ecution, in particularstart andend times, using system calls. These local time mea-

surements form a basis for the detection delays metric used for the evaluation of the

termination detection mechanism.

Equally, controllers on the other side, collect data aboutendtimes for the protocol ex-

ecution as determined wheninactiveProtocol(Algorithm 5, page 94) predicate evalu-

2Tasks that can be run in parallel, as mentioned in page 274.
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ates to true for a given registered protocol or partial protocol.

In the implemented prototype, we consider a flat conversational scenario, given in

Example 7, page 85, where conversations do not have descendants, which is more

common usage scenario. Hierarchical scenarios using a diffusing computation tree to

model conversations and using predicateinactiveon the graph representing the dif-

fusing computation tree can be easily implemented by maintaining a graph structure

for JADE’s behaviours that gets executed and dequeued on completion and testing for

graph emptiness as for completion as discussed inAlgorithm 5, page 94.

In the currently implemented setup, the controllers co-register to create a fully con-

nected network3. Each controller maintains the data structures to store individual

agents registrations and their protocol information. The connections between con-

trollers allow individual controllers to forward agent registrations to other controllers

in the cluster for load balancing purposes. The details of the distribution setup are

given in chapter 10. Also because of the absence of global clocks in distributed sys-

tems, the issue of synchronisation is discussed together with that of network delays that

may affect the distribution of detection delays in the distributed setting. The approach

adopted for these issues is outlined in Appendix H.

6.4 Prototype implementation

An overview of the JADE agent framework used is given in Appendix B, page 273

Also a high level discussion of the prototype implementation is given in Appendix

B, section B.2, page 275. The discussion there describes implemented processes4.

Figures B.1, B.2, B.3 provide illustration of these variousprocesses executed by agents

3We propose to evaluate the use of a share memory tuple space alternative of the architecture in
future work.

4JADE provides a construct called abehaviourthat can implement these agent processes.
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and controllers.

6.5 Scheduled experiments

Overview The evaluation of termination detection schemes for multi-agent systems

will be performed at various levels.

Level 1 Here the evaluation is done using two standard approaches, namely;

1. Quantitative; Evaluation of the termination detection scheme through the use of

experiments for the defined detection delays metrics given the collected datasets

followed by statistical analysis (discussed in section 6.6). The results for the all

quantitative experiments are given in chapters 7, 8 and 10.

2. Qualitative; Evaluation of the termination detection through qualitative means,

exploring non functional requirements and, issues raised by the use of these

mechanisms , for example compromises in the agent autonomy assumptions,

effects on interactions if any. The qualitative evaluationis done in section 11.1,

page 230

Level 2 At this level the view is that of using the quantitative approach to explore

the two configurations or approaches to observing protocol executions for termination

detection, namely;

1. Thefull protocol scheme, where individual agents register with the monitor(s)

full protocol specifications of the interaction protocols they are executing. The

results for this are given in chapter 8.
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2. Thepartial protocol schemewhere agents only supply partial information about

their protocols, i.e. termination paths, with the monitors. The results of this view

are given in chapter 7.

Level 3 Here experiments can be viewed as coming from the two broad categories

according to whether the monitoring is done locally (centralised) or distributed, i.e.

1. Centralised, where agents register and are observed by a monitor that resides in

the same node as the agents and there is no network traffic for control messages.

The results are given in chapters 7 and 8. The centralised experiments were

done under a controlled setting on a dedicated host machine to allow exploratory

comparison of level 2 experiments above . This exploratory comparison is con-

sidered in chapter 9, page 175.

2. Decentralised(distributed) where agents can register with remote monitors, and

this involves message traffic over network interfaces. The results are given in

chapter 10.

Quantitative experiments The experiments in this category are aimed at exploring

termination detection schemes quantitatively to evaluatethe defining metric of detec-

tion delays. This is done by collectingdetection delaysdata for both co to highlight

the underlying distribution of the detection delays parameter. The experiments will

consider scalability to evaluate performance as the numberof agents hosted is varied

upwards.

Regarding the experimental setups, consider figures 6.3 and6.4 below for the cen-

tralised and distributed architectures and also consider figures B.1 and B.4 discussed

earlier. Agents execute an arbitrary public protocol. The individual agents record ter-

mination timesTais for the protocol they have registered to thelocal controller for
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monitoring and the controller records correspondingTcis , termination observed lo-

cally.

Agents

Local agent platform

registration

(sub)protocol specifications

query snapshots

Tci

snapshots / observables

Tai

〈PIDj, ..., Tai, T ci, ∆T, ...〉

〈AIDi, P IDj〉

Controller

Figure 6.3: Architecture for centralised experiments. Showing agents and the
controller hosted in the same local agent platform

Centralised In this setup, experiments are run under acontrolledenvironment on

a single machine. This to provide a way of making objective comparison mechanism

especially for scalability experiments.

Figure 6.3 gives the high level architectural setup for thisexperiments, showing agents

and the controller hosted on the same local agent platform and interacting as detailed

in figures B.1 to B.4. Detailed experimental results and analysis are given in chapters

8 and 7, and a comparison and hypothesis tests given in chapter 9.

Distributed In this setup experiments are run on hosts in a local area network with

controllers forming a cluster on which agents hosted on individual hosts can register.
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Figure 6.4 presents a high level architectural setup for this experiments where cluster

controllers interact as also detailed in Figure B.3 in Appendix B

profile

Load
Balancer

profile

Load
Balancer

profile

Load
Balancer

profile

Load
Balancer

Tai

Registration

registratiom

Tci

Controller cluster

query

snapshots

Network nodes

Node i

Foward

registration

Figure 6.4: Distribution architecture, showing nodes hosting agents in a local
area network and a cluster controllers in distributed agentplatforms.

The details of this setup, including possible data collection scenarios and experimental

results are presented in chapter 10.

Finally , some qualitative evaluation is given in section 11.1, page 230.
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6.6 Data collection

Regarding data collection, see figures 6.5 for centralised experiments5, where indi-

vidual agents and monitors use a relational database to store details of the protocol

execution.
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Figure 6.5: Data collection and analysis for scenario 1. Where the notation
〈Ni,j, Li〉 signifies data (detection delays) logged on a particular node by a
local controller. Each dataset is analysed separately by the bootstrap and
jackknife-after-bootstrap ( statistical procedures as described in section 6.7 )
to yield various results plots and tables shown in the figuresthat follow.

Also consider the following data collection setup, that describes various collection

scenarios for evaluating the distributed setting. Scenario 1 was used also in the setup

for the centralised experiments.

5And Figure C.3 in appendix C, page 284 for the distributed setting data collection setup.
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Data collection setup and scenarios Consider a set of controllersC = {Ri | i ∈
N} making up a cluster. Denote these asremotecontrollers. Also consider a setCL =

{Li | Li /∈ C, i ∈ N}, controllers not in the cluster. Denote theselocal controllers.

Consider a set of agentsA = {Ni | i ∈ N} and consider a set of agentsAL ⊂ A that

reside in the same host assomelocal controller, and consider a set of agentsALi ⊂ AL

be those agents registered with a local controllerLi.

Equally, consider also a set of agentsAR ⊂ A be agents registered withsomeremote

controller, and considerARi ⊂ AL be those agents that reside in the same host as a

controllerLi but registered with some controllerRi ∈ C

Finally, consider a set of agentsAC ⊂ A that reside in the same host as some remote

controller, and considerACi ⊂ AC be agents registered with anRi ∈ C.

Consider the illustration6 of this given below in example 12.

Example 12. Consider the setup below,

C = {R1, R2, R3, R4}, CL = {L1, L2},
A = {N1, N2, . . . , N13}
AL = {N1, N2, . . . , N8},
AR = {N4, N7, N8}, AL1 = {N5, N6, N7, N8},AL2 = {N1, N2, N3, N4}, andAR1 =

{N7, N8},AR2 = {N4},and

AC = {N9, N10, N11, N12, N13},AC1 = {N9, N10, N11, N12}, AC2 = {N13},AC3 =

∅,AC4 = ∅

With this background , consider the following data collection scenarios;

1. Scenario 1: Agents monitored by theirlocal controllers (dataset forALi).

6And an alternative graphical depiction is given in Figure C.1 on page 281.
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2. Scenario 2: A collective population of all agents monitored onall local con-

trollers (dataset for
⋃

∀iALi). This is used to give the distribution of detection

delays on local controllers.

3. Scenario 3: Agents from a specific host registered to be monitored remotely in

the clusterC (dataset forARi). This is used to give the distribution of detection

delays for the host’s agents and give a sense of the cluster’sC performance as

viewed from this host.

4. Scenario 4: A collective population ofall remotely monitored agents in the

cluster, (dataset for
⋃

∀iARi).

5. Scenario 5: A breakdownper cluster node of all agents monitored on that spe-

cific cluster node (dataset forACi). This to give aper cluster node centric view

of distribution of detection delays, and to a certain extentthe load characteristics

for that cluster controllerRi ∈ C.

Also regarding the simulation and experimental data collection, consider various sce-

narios for data collection during experimental cycles.

1. Individualdetection delays recorded for repeated execution of the protocol over

many cycles.

2. For every experimental cycle period, detection delays from the repeated execu-

tion of the protocol for that cycle recorded and some statistic calculated, i.e. treat

each cycle as an experiment.

3. Accumulateddetection delays recorded over the entire experiment for the re-

peated execution of the protocol and a statistic calculatedover each period and

the process repeated without discarding previous measurements but accumulat-

ing, see figure
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An illustration is given in Figure C.2 in page 283

6.7 Data analysis

Regarding data analysis for quantitative experiments, resampling methods7 were used,

in particular thebootstrap[83], and thejackknife-after-bootstrap[85]. These methods

are particulary relevant due to the non-normality of the detection delays data. These

resampling methods were used to determinedistributionsof location parameters, and

determinestandard errorsand calculate robustconfidence intervalsfor the detection

delays for all schemes . Appendix D provides the theoreticaldetails and background

for the bootstrap and justification of why these methods workand their suitability.

Briefly, procedures such as the bootstrap and jackknife are covered in discussions in

the general subject ofrobust statistical procedures[207, 119, 217, 216]. Robust sta-

tistical procedures refer to statistical procedures whichare not overly dependent on

critical assumptions regarding an underlying population distribution. [52] observes

that robustness is most commonly applied to methods that areemployed when the

normality assumption underlying an inferential statistical test is violated.

It is pointed out that though when sample sizes are reasonably large certain tests such

as thesingle-sample t-testand thet-testfor two independent samples are known to be

robust with respect to violation of the normality assumption (i.e., the accuracy of the

tabled critical alpha values for the test statistics are notcompromised), if the underlying

distribution is not normal, the power of such tests may be appreciably reduced [207],

p.327.

7Also referred to as computer-intensive methods. These methods are becoming increasingly attrac-
tive with improvement in computational resources and availability of their implementations in statistical
packages. Compared to Monte Carlo methods resampling methods use the available dataset and treat it
as a population from which samples can be taken, whereas by contrast in monte carlo methods samples
are drawn from theoretical probability distributions
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Related to this is the fact that, as observed in [219] regarding the power of commonly

employed goodness-of-fit tests for normality, unless a sample size is relatively large,

goodness-of-fit tests for normality (such as the Kolmogorov-Smirnov goodness-of-fit

test for a single sample or the chi-square goodness-of-fit test ) will generally not re-

sult in rejection of the null hypothesis of normality, unless the fit with respect to nor-

mality is dramatically violated. Consequently, some researchers conclude that most

goodness-of-fit tests are ineffective mechanisms for providing confirmation for the

normal distribution assumption that more often than not researchers assume character-

izes an underlying population.

It is also argued in [219] that as a result of the failure of goodness-of-fit tests to reject

the normal distribution model, procedures based on the assumption of normality all

too often are employed with data that are derived from non-normal populations. In in-

stances where the normality assumption is violated [219] the researcher is encouraged

to consider employing a robust statistical procedure (suchas the bootstrap) to analyze

the data. In accordance with this view [217] notes that the bootstrap will often yield a

more accurate result for a non-normal population than will analysis of the data with a

statistical test which assumes normality.

Another characteristic of data that is often discussed within the framework of robust

statistical procedures is the subject ofoutliers. Research has shown that a single outlier

can substantially compromise the power of a parametric statistical test. [219] provides

an excellent example of this involving the single-samplet-test. Various sources sug-

gest that when one or more outliers are present in a set of data, a computer-intensive

procedure (such as the bootstrap or jackknife) may provide more accurate information

regarding the underlying population(s) than a parametric procedure.

In the literature, bootstrap procedures and algorithms aredescribed in the standard

reference on the Bootstrap [83], the more practical aspectsare discussed in [69] while
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the more theoretical discussions can be seen in [204] and [105].

The general procedure for performing the bootstrap is shownin Appendix D, Algo-

rithm 9 in page 288 for example bootstrapping the mean. The algorithm repeats the

process of drawing samples with replacement from the data8 and calculating the re-

quired metric and displaying the distribution of the bootstrap replicates9.

Equally we can use the bootstrap to compute various types of bootstrap confidence

intervals, e.g.BCa(Bias corrected) andBootstrap-t, ABC. A review of bootstrap con-

fidence intervals in also given in Appendix D. In the literature treatment is given in

[84, 82] [74, 104, 104].

Statistical software routines exist in statistical packages likeR, Matlab , S-Plus and

others. Figure 6.5 shows the data analysis phase where data was retrieved by R and

Matlab engines for data analysis using resampling methods.

Chapters 7, 8 and 10 present experimental results and detailed analysis using the boot-

strap.

Finally as a result of the non normality of detection delay data, nonparametric hy-

pothesis tests were used when seeking to compare the two configurations in level 2

experiments, (full and partial protocol schemes). That is,a non-parametric equivalent

of the parametric t-test has been used, namely Kruskal-wallis. The details and results

of these test can be seen in chapter 9.

6.8 Summary and contributions

Following the discussion inChapter 5 on the proposed mechanism for termination

detection, this chapter has;

8That is treated as a population.
9Bootstrap "replicates" is the standard term used

129



– i – Presented an experimental setup for exploring the termination detection scheme,

a setup that can provide a basis for a standard experimental environment for

evaluating and comparisons of future work on further mechanisms for termi-

nation detection.

– ii – Presented a concrete prototype implementation based on a widely used FIPA

compliant multiagent framework.

– iii – Discussed the experiments to be conducted on the prototype implementation

within the given experimental setup, detailing various levels of quantitative

experiments and metrics to be evaluated.

– iv – Discussed data collection scenarios for the centralised and distributed config-

urations and proposed data analysis methods to be adopted, detailing the use

resampling methods, e.g.the bootstrapfor analysis of datasets and for provid-

ing robust confidence intervals.

Chapter 7 next presents results for partial protocol experiments, i.e. experiments

where agents register minimal information, sub-protocolsor shortest termination paths

about their protocol execution to controllers.
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CHAPTER 7

Partial Protocol Results

The previous chapter,Chapter 6 presented an experimental setup, prototype imple-

mentation, experimental design and data analysis following the discussion inChapter

5 of a termination detection mechanism for agents.

7.1 Introduction

This chapter presents results for the partial protocol experiments as described in section

6.5, page 121. Recall that these were a set of controlled experiments1 where and

increasing number of agents were hosted and monitored on a local controller. Agents

register and submit partial information about the public protocol being executed. The

chapter provides detailed exploratory data analysis of thedatasets and proceeds to

performing bootstrap analysis and then derives robust bootstrap confidence intervals

for the detection delays metric in this experimental set. The next chapter, chapter 8

provides the corresponding results for the full protocol setup.

A note on data analysis and presentation This chapter first conducts exploratory

data analysis, on the dataset. For basic summary statisticsof the datasets, tables of the

type shown in Table 7.1 are presented to summarise results for all agent experiments.

The summary statistics were calculated using DATAPLOT statistical package [90].

1Conducted on a dedicated host machine.
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Regardingexploratory data analysis, typically the relevant graphs are those shown in

a 4-plot e.g. Figure 7.1 used for initially testing whether the four underlying initial

assumptions2 of a typical measurement process hold. The plot consists of;

• A run sequence plot(time series), to give an indication of any significant shiftin

location or scale of the data over the period of the experiment and identify any

outliers.

• The lag plot can be used to check the randomness of the time series data. Ran-

dom structure of the data indicates that the underlying datais randomly gener-

ated by a random process. This is not particulary important for our purposes

as we are not evaluating the randomness of the measured detection delays time

series. We include this here for completeness of the standard 4-plot.

• Histogram[43] To visualise the distribution of data and explore the symmetry

(skewness), spread, center and check for heavy tails and outliers. Symmetrical

data with no significant outliers and heavy tails may indicate normality. The

histogram can also show the presence of multiple modes in thedata. All these

can give an idea of an appropriate distributional model if required.

• Normal probability plot[43]. Used to verify any assumptions of normality of

the data. The data are plotted against a theoretical normal distribution in such a

way that the points should form an approximate straight line. Departures from

this straight line indicate departures from normality.

We have performed standard normality tests on the datasets,see Appendix E, page,

308 and Table 7.2, page 143. These tests confirm that the detection delays dataset is

non-normal, as could also confirmed by visual inspections ofqqplots and histograms.

2For example fixed distribution, location, variance etc.
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Therefore we have as discussed in chapter 6, decided not to make distributional as-

sumptions about the data and instead use non-parametric andre-sampling methods

such as the bootstrap for all statistical analysis in these datasets.

The bootstrap procedure was performed using the statistical packageR [122, 197] and

its librariesbootandbootstrap.

For the bootstrap results, we present;

1. Figures of the type shown in figures 7.6 displaying distributions of bootstrap

replicates of the mean detection delays.

2. Corresponding qqplots for these bootstrap replicates.

3. A summary table for the bootstrap analysis for all experiments with agent num-

bers varied. The table shows numerical results for parameter and error and bias

estimation. It also shows results for the non-parametric bootstrap confidence

intervals. Bootstrap confidence intervals were calculatedusing theR package

bootstrap[40].

7.2 Results: Exploratory Data Analysis

As a starting point, Figure 7.1 shows the4-plot for an experiment where 5 agents were

instantiated for this partial protocol scheme where all measurements are inmillseconds

as obtained from a unix system call. Inspection of the plots can be used to test under-

lying assumptions about the data. As it is, the figure shows the data to benon-normal

as highlighted by the skewness in the histogram (c), fat tails and departures from the

straight line in the normal probability plot (d). The data are randomas there is no

inherent structure in the lag plot (b). Inspecting the time series run plot (a) The data

seems not to have a fixed variation when observed across long periods of time as was
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done in the experiments and as plotted here.
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Figure 7.1: Figures a-d show elements of the 4-plots for the purposes of exploratory
data analysis for centralised experiments using the partial protocol scheme where 5
agent were hosted. All measurements are inmilliseconds.
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The rest of the 4-plots for other experiments with agent numbers varied from 10 to 100

are given in Appendix in figures F.1 and F.2 from page 321. Again the figures there

confirm the observations highlighted above.

Furthermore we can consider additional plots for descriptive statistics, such as the

boxplot [234] to give the5-numbersummaries3 given in Table 7.1 in a graphical format

for visual inspection and also to see outliers, and get a sense of the data dispersion.

Boxplots can also be used for comparison between datasets.

We can also present the plot of the cumulative density function that describes the prob-

ability density function of random variableX.

x 7→ FX(x) = P (X ≤ x) =

∫ x

−∞

f (t) dt (7.1)

As example consider Figure 7.2 showing the box plots and the cdf plots given together

with the histogram and series data plots for the agent experiment where 5 agents were

hosted. Again, a quick inspection confirms non normality andthe presence of outliers.

The rest of the figures for other experiments are given in figures 7.3 to 7.4.

A note about those figures;

1. The parameter for agent numbers was chosen for the experiments to explore

scalability as discussed in the experimental design, That is, we wish to explore

how detection delays vary with an increase in the number of agents hosted in the

agent platform, i.e. to explore whether it is linear , exponential, etc.

2. Regarding the histograms in the figures, the bin size chosen affects the visual

appearance of the distribution of the data, therefore visual inspection alone is

not sufficient to establish the underlying normality of the data. This can only be

3Minimum, Mean, Maximum,Median, Quartiles.
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verified by standard normality tests [131, 222, 229]. The results of the normality

tests4 are shown in Table 7.2
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Figure 7.2: Showing plots for descriptive statistics and exploratory data anal-
ysis for centralised experiments using the partial protocol scheme for the ex-
periment with 5 agents hosted. For example, the Box plot shows the 5 number
summary, e.g. Median of around 2200 ms, and upper and lower quartiles on
either side of the Median, and Maximum and Minimum values. Also showing
outliers. All measurements are inmilliseconds.

4All quantities for normality test are standard and definitions can be found in the given references
together with interpretation of results. Most statisticaltools provide implementation.
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(a) 10 agent experiment
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(b) 15 agent experiment
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(c) 20 agent experiment
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(d) 25 agent experiment

Figure 7.3: Figures (a)-(d) show plots for descriptive statistics and exploratory data
analysis for centralised experiments using the partial protocol scheme where agent
numbers were varied from 10 through to 25. All measurements are in milliseconds
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(d) 100 agent experiment

Figure 7.4: Figures (a)-(d) show plots for descriptive statistics and exploratory data
analysis for centralised experiments using the partial protocol scheme where agent
numbers were varied from 30 through to 100. All measurementsare in milliseconds
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Table 7.1 presents summary statistics for all experiments in this setup. The table

presents;location measures; to find a central value that describes the data,disper-

sion measures;to capture the spread in the data;randomness measures,distributional

measures; The third and fourth moments are the skewness and kurtosis of the distri-

bution. The table also complements 4-plot figures above by exploring properties of

the detection delays data by presenting some distributional measures5. For exam-

ple, the probability plot correlation coefficient, PPCC [91] can be used to identify the

shape parameter for a distributional family that best fits the data [181]. DATAPLOT

TMproduces PPCC values for the distributions shown under distributional measures in

Table 7.1. Again, the distributional measures strongly point to the fact that the detec-

tion delays data are not from a normal distribution.

Regarding repeatability of experiments, how many experiments were carried out, de-

tailed analysis of variance and comparisons between experiments, these are all dis-

cussed in detail in chapter 9, but briefly, for each experiment, 10 experimental runs

with each experimental run spanning an experimental periodof about 10 hours parti-

tioned into experimental cycles of about 10 mins.

For completeness, additional standard normality tests6 were carried out and results are

given in Table 7.2. All quantities for normality tests as presented in Table 7.2 are stan-

dard and their definitions can be found in [131, 222, 229], together with interpretation

of results. All tests show that the data is non-normal.

5To characterise properties of the data, e.g. shape.
6Most statistical tools implement these tests.
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SUMMARY STATISTICS

AGENT EXPERIMENTS

5 10 15 20 25 30 40 50 100

LOCATION MEASURES

Midrange 0.2615 0.3966 0.5406 0.6264 0.6544 1.170 2.3002 2.8856 5.3735

Mean 0.2347 0.3118 0.4406 0.5419 0.6392 0.7959 2.2309 2.5469 4.7220

Midmean 0.2286 0.3162 0.4334 0.5615 0.6486 0.7384 2.2826 2.4961 4.7301

Median 0.2257 0.3096 0.4338 0.5313 0.6309 0.7555 2.1874 2.5298 4.5053

DISPERSIONMEASURES

Range 0.2149 0.4246 0.5925 0.6695 0.5271 1.486 3.1345 2.4870 7.2360

Stand. Dev 0.03363 7.2346 9.4198 0.1155 0.1100 0.2490 0.5009 0.4203 0.88013

Av. Ab. Dev 0.2555 0.5850 0.7227 0.09032 0.09057 0.1669 0.3788 0.3389 0.6533

Minimum 0.1541 0.1843 0.2443 0.2917 0.39090 0.4270 0.7329 1.6421 1.7555

Lower Quart 0.2134 0.2543 0.3712 0.4569 0.5581 0.6406 1.9477 2.2201 4.1030

Lower Hinge 0.2134 0.2543 0.3712 0.4571 0.5582 0.6407 1.9482 2.2211 4.1033

Upper Hinge 0.2539 0.3567 0.4942 0.6118 0.7206 0.8659 2.5424 2.8251 5.1080

Upper Quart 0.2539 0.3567 0.4944 0.6118 0.7207 0.8663 2.5426 2.8251 5.1084

Maximum 0.3690 0.6089 0.8368 0.9612 0.9180 1.913 3.8674 4.1291 8.9915
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RANDOMNESS MEASURES

Autoco coef 0.4599 0.4923 0.3192 0.2968 0.02397 0.7335 0.7816 0.53977 0.2018

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DISTRIBUTIONAL MEASURES

St. 3rd Mom 0.9998 0.4268 0.9279 0.7934 0.1413 1.7548 -0.2721 0.3794 0.1187

St. 4th Mom 4.2160 2.8806 4.7044 3.8961 2.3011 6.8150 3.8474 2.8459 4.6144

St Wilk-Sha 63.5385 -23.675 -51.244 -43.0298 -15.749 -178.219 -29.879 -11.825 -88.798

Uniform ppcc 0.9405 0.9800 0.9434 0.9560 0.9913 0.8692 0.9496 0.9805 0.9239

Normal ppcc 0.9703 0.9886 0.9759 0.9803 0.9941 0.9194 0.9852 0.9936 0.9558

Tuk -.5 ppcc 0.7746 0.7450 0.7862 0.7681 0.7275 0.7605 0.7844 0.7583 0.7783

Cauchy ppcc 0.3472 0.3182 0.3529 0.3333 0.2905 0.3415 0.3423 0.3259 0.3732

Table 7.1: Summary statistics for all agents experiments inthe centralised setup for partial protocol scheme, showinglocation, dispersion

and distributional measures
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DISTRIBUTIONAL NORMALITY TESTS

ANDERSON-DARLING A = −n− 1
n

∑n
i=1[2i− 1][ln(p(i)) + ln(1− p(n−i+1))]

Statistic A 26.99178 6.518426 11.87086 11.07163 4.86468 68.7629 11.86567 4.23203 43.77127

P-value 3.160e-61 5.45e-16 1.80e-28 1.23e-26 4.85e-12 1.68e-132 1.85e-28 1.61e-10 3.00e-93

Conclusion REJECT

WILKSON-SHAPIRO

Statistic W 0.94143 0.97707 0.95221 0.96082 0.98741 0.84531 0.97045 0.98697 0.91408

p-value 1.71e-25 6.40e-16 3.27e-23 4.30e-21 4.58e-11 5.90e-38 2.85e-18 2.57e-11 4.23e-30

Conclusion REJECT

SHAPIRO-FRANCIA W =
(∑n

i=1 aix(i)
)
/
∑n

i=1(xi − x)

Statistic W 0.941533 0.977359 0.95234 0.96110 0.98803 0.84541 0.97064 0.98726 0.91364

p-value 3.34e-23 1.45e-14 3.70e-21 3.17e-19 5.60e-10 2.60e-34 1.03e-16 2.21e-10 2.20e-27

Conclusion REJECT

L ILLIE (KOLG-SMIR) D+ = maxi=1,...,n i/n − p(i),D
− = maxi=1,...,n p(i) − (i− 1)/n

Statistic D 0.107311 0.040742 0.041497 0.04118 0.03484 0.14700 0.05665 0.034663 0.10399

p-value 2.25e-53 5.61e-07 2.98e-07 3.89e-07 4.96e-05 2.10e-102 5.55e-14 5.61e-05 5.35e-50

Conclusion REJECT

JARQUE-BERA JB = n
6

(
S2 + (K−3)3

4

)

1
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Statistic X2 391.5488 53.03562 453.9846 237.4310 40.43232 1920.713 72.68503 42.78078 589.0186

p-value 0 3.04e-12 0 0 1.66e-09 0 1.11e-16 5.13e-10 0

Conclusion REJECT

PEARSON P =
∑

(Ci − Ei)
2/Ei

Statistic P 520.8587 231.6351 142.4349 166.3462 98.1617 625.0502 205.6223 108.9965 465.7974

p-value 1.06e-86 5.15e-30 2.72e-14 2.53e-18 1.92e-07 6.05e-108 2.91e-25 5.07e-09 1.37e-75

Conclusion REJECT

CRAMER-VON M ISES W = 1
12n +

∑n
i=1(p(i) − 2i−1

2n )

Statistic W 4.648875 0.655082 1.28574 1.29745 0.73091 10.99672 1.54436 0.58801 7.43111

p-value 6.91e+51 1.35e-07 3.75e-10 3.70e-10 3.87e-08 Inf 6.43e-10 4.60e-07 7.29e+197

Conclusion REJECT

Table 7.2: Showing results of a number of normality tests on all datasets for experiments where the agent numbers monitored was

varied from 5 to 100. All normality tests reject the hypothesis that the data is normally distributed as evidenced by low p-values, i.e.

p− values≪ 0.05. All quantities for normality test are standard and definitions can be found in [131, 222, 229]
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7.3 Confidence intervals, standard errors and the Bootstrap

Summary statics as given in Table 7.1, give point estimates of the statistic of interest,

e.g. mean of detection delays for a given experiment.

We are not only interested in obtaining a point estimate of a statistic but also thecon-

fidence intervalfor the true value of the parameter and some estimate of thevariation

in this point estimate. For example, we wish to calculate notonly a sample mean , but

also the standard error of the mean and a confidence interval for the mean.

Commonly, data analysis has relied on thecentral limit theorem[89] 7 and normal

approximations to obtain standard errors and confidence intervals.

But as discussed earlier, the available literature stipulates that these techniques are

valid only if the statistic, or some known transformation ofit, is asymptoticallynor-

mally distributed. Hence, if the normality assumption doesnot hold as we have just

seen on the normality tests, then the traditional methods should not be used to obtain

confidence intervals.

A major motivation for the traditional reliance on normal-theory methods was been

computationaltractability. Now, with the high availability of computational resources,

there is an alternative to using asymptotic theory to estimate the distribution of a statis-

tic. This alternative is resampling methods8 which can be used to return inferential

results for either normal or non-normal distributions.

In this section we would like to determine the confidence intervals and standard er-
7CLT is a profound result in statistics, simply put, it stipulates that the distribution of the mean tends

to benormal, even when the distribution from which the mean is computed is decidedlynon-normal.
The closer the parent distribution is to a normal distribution, the smaller is the required sample size for
this to hold. Larger sample sizes are required from parent distributions with strongskewnesss and/or
strongkurtosis.

8Estimating the precision of sample statistics (medians, variances, percentiles) by using subsets of
available data (jackknife) or drawing randomly with replacement from a set of data points (bootstrap-
ping).
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rors of the mean for the delays data without making any assumptions9 regarding such

statistics. Resampling10 methods such as "The Bootstrap" and "The Jackknife" allow

this to be done. These methods provide estimates of the bias,standard error, confi-

dence intervals, and distribution for any statistic. A selfcontained review of bootstrap

procedures is given Appendix D.

For the confidence intervals, we have explored theBCaand Bootstrap-t bootstrap con-

fidence intervals [74]. The general procedure for bootstrapconfidence intervals is also

given in Appendix D in pages 293-293.

7.3.1 Bootstrap results

Replicates distributions Figure 7.5 shows the distribution of bootstrap replicates

for the mean for an experiment in which the number of agents was set to 5. Figures

7.6 and 7.7 present the plots for the rest of the experiments with agent numbers varied

from 10-100.

9The only assumption here is that the data is representative of the underlying population.
10Resampling refers to the process of drawing samples from original data.
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(a) 5 agent experiment

Figure 7.5: Figures shows bootstrap replicates of the mean for centralised experiments
using the partial protocol scheme where 5 agent were hosted (in milliseconds)
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(d) 25 agent experiment

Figure 7.6: Figures (a)-(d) show bootstrap replicates of the mean for centralised ex-
periments using the partial protocol scheme where agent numbers were varied from 10
through to 25 (in milliseconds)
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Figure 7.7: Figures (a)-(d) show bootstrap replicates of the mean for centralised ex-
periments using the partial protocol scheme where agent numbers were varied from 25
through to 100
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(a) 5 agent experiment

Figure 7.8: Figures shows QQ plot of the bootstrap replicates of the mean for cen-
tralised experiments using the partial protocol scheme where 5 agent were hosted
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Figure 7.9: Figures (a)-(d) show qqplots of bootstrap replicates of the mean for cen-
tralised experiments using the partial protocol scheme where agent numbers were var-
ied from 5 through to 25
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Figure 7.10: Figures (a)-(d) show qqplots of bootstrap replicates of the mean for cen-
tralised experiments using the partial protocol scheme where agent numbers were var-
ied from 25 through to 100.
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Regarding the above figures, note that the distribution of the replicates is confirmed as

from a normal distribution, this it to be expected, i.e. distribution of themeanof the

samples is normal.

Confidence Intervals Table 7.3 presents example bootstrap confidence intervals for

the 5 agent experiment. to determine the 95% confidence limits, we inspect the row en-

try for α = 0.975 and forα = 0.025 giving upper and lower limits[2349.54, 2399.037]

msfor this detection delays metric in this setup.

Table 7.4 presents calculations for the rest of the experiments, as agent numbers are

increased.
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The Bootstrap
Statistic θ̂ ˆbias ŝe

2368.7 -0.1252 9.5650

BCA CONFIDENCE INTERVALS

α 0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 zo ahat
2349.540 2353.661 2357.764 2361.228 2385.452 2389.277 2394.028 2399.037 0.030084 0.011023

BOOTSTRAP-T CONFIDENCE INTERVALS

2372.321 2378.683 2364.194 2366.829 2389.747 2395.564 2399.318 2406.109 N/A N/A

Table 7.3: Results of the Bootstrap : showing parameter and confidence interval estimates and errors for the 5 agent partial
protocol experiment
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The Bootstrap
Agent Experiments

Statistic 5 10 15 20 25 30 40 50 100

θ̂ 2368.7 3276.6 4.4387 5494.0 6.6525 8.7102 2323.5 25881 50245

ˆbias -0.1252 -0.0551 0.0547 -0.1657 14.9021 -0.0910 3.5600 0.8322 -1.3729

ŝe 9.5650 8.0808 7.472 8.5910 0.0182 29.2004 49.4293 51.9828 164.0740

α BCA CONFIDENCE INTERVALS

0.025 2351.298 3254.18 4413.420 5472.743 6607.26 8602.914 23120.31 25775.31 49738.4

0.05 2355.748 3257.527 4416.714 5475.863 6611.46 8613.277 23143.15 25796.98 49785.46

0.1 2359.919 3260.786 4420.286 5479.788 6617.996 8625.625 23163.14 25817.84 49866.36

0.16 2363.233 3263.537 4423.535 5482.699 6623.039 8635.785 23180.06 25835.93 49922.65

0.84 2387.173 3282.660 4444.921 5505.597 6660.774 8709.68 23305.07 25961.35 50335.21

0.9 2390.904 3285.649 4447.842 5508.922 6665.891 8720.07 23322.24 25978.27 50401.8

0.95 2395.835 3289.220 4452.419 5513.014 6672.447 8734.115 23343.92 26004.42 50490.48

0.975 2399.491 3292.459 4455.826 5516.398 6678.548 8747.263 23364.43 26023.57 50563.98

z0 -0.008773312 -0.01128007 0 -0.042625 0.023815 -0.056429 -0.048898 -0.0501535 0.04011681

ahat 0.010340 0.003990 0.002510 0.0005407 0.007535 0.004789 0.0005907 0.001648 0.0079676

α BOOTSTRAP-T CONFIDENCE INTERVALS

0.25 2355.215 3271.297 4438.064 5486.136 6630.281 8695.599 23192.12 25808.98 50215.2
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0.5 2362.165 3277.688 4445.646 5493.074 6645.079 8722.06 23239.52 25853.75 50339.33

0.1 2348.396 3265.342 4430.27 5478.616 6619.187 8666.96 23161.44 25773.42 50083.86

0.16 2351.85 3267.964 4434.654 5483.248 6624.685 8681.778 23177.58 25788.92 50172.58

0.84 2373.611 3287.029 4455.322 5505.508 6667.146 8752.567 23296.21 25902.67 50562.23

0.9 2376.067 3290.984 4458.773 5507.355 6672.376 8761.062 23313.79 25925.31 50608.76

0.95 2380.804 3294.424 4463.995 5513.72 6678.142 8781.134 23329.67 25960.83 50685.08

0.975 2385.228 3296.151 4467.794 5516.016 6685.014 8796.38 23350.32 25988.21 50756.23

Table 7.4: Bootstrap : showing parameter and confidence interval estimates and errors for agents monitored locally at given nodes
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7.4 Summary

This chapter has presented detailed results and exploratory data analysis for the partial

protocol experiments discussed in chapter 6.

The analysis verifies that the detection delays data are not normally distributed as was

observed from the4-plot and confirmed by normality test results in Table 7.2. There-

fore the non parametric bootstrap method was used for parameter estimation and cal-

culation of confidence intervals. That is, normality is important to us because we wish

to derive robust confidence intervals for the detection delays statistic.

The bootstrap BCa confidence intervals in Table 7.4 show thatthe detection delays (at

95% confidence) range from[2351.298, 2399.491]msfor 5 agent experiments to

[49738.4, 50490.48]msfor 100 agent experiments.

Also examining the results in view of scalability there is concern with detection delays

for large number of agents, e.g. the 100 agents experiment with delays approaching

close to a minute in the worst case. This may suggest an upper limit in the number of

agent hosted, for an agent platform like the one used for these experiments. Clearly

maybe a concern in applications where there are strict time constraints for resources

used by terminated agents to be reclaimed, but less so in those where detection just has

to eventually succeed. In distributed systems , a standard approach to improving the

scalability is to consider distribution of the service, this is explored in chapter 10 from

page 187.

Chapter 8 next however considers thefull protocol experiments as introduced in the

experimental design. The chapter considers a similar data analysis procedure for the

datasets as has been done here and also the discussion is similar to that given here
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CHAPTER 8

Full Protocol Results

8.1 Introduction

Following on from the previous chapter, this chapter presents briefly the corresponding

results for the full protocol experimental setup as described in the experimental design,

section 6.5, page 120. Recall that these were a set of controlled experiments where an

increasing number of agents were hosted and monitored on a local controller. Agents

in this setup register and submit full information about thepublic protocol they are

executing and are then monitored.

The next chapter,Chapter 9 provides an exploratory comparative analysis of the

datasets of this setup and the partial protocol discussed inthe previous chapter.
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8.2 Results: Exploratory Data Analysis

SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 5317

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.3564000E+04 * RANGE = 0.2470000E+04 *

* MEAN = 0.2921928E+04 * STAND. DEV. = 0.4257777E+03 *

* MIDMEAN = 0.2882001E+04 * AV. AB. DEV. = 0.3228591E+03 *

* MEDIAN = 0.2795000E+04 * MINIMUM = 0.2329000E+04 *

* = * LOWER QUART. = 0.2597000E+04 *

* = * LOWER HINGE = 0.2597000E+04 *

* = * UPPER HINGE = 0.3158000E+04 *

* = * UPPER QUART. = 0.3158000E+04 *

* = * MAXIMUM = 0.4799000E+04 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.4246227E+00 * ST. 3RD MOM. = 0.1471157E+01 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.5648685E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.3380893E+03 *

* = * UNIFORM PPCC = 0.9070824E+00 *

* = * NORMAL PPCC = 0.9325916E+00 *

* = * TUK -.5 PPCC = 0.6920604E+00 *

* = * CAUCHY PPCC = 0.2227653E+00 *

***********************************************************************

Figure 8.1: Showing detection delays summary statistics for the 5 agent ex-
periment calculated using DATAPLOT

The analysis and data presentation is the same as the previous chapter where;

• Figure 8.1 shows summary statistics of the detection delay metric for an example

experiment where 5 agents were hosted.

• Figures 8.2 to 8.4 show the 4-plots for all agent experimentsfor exploratory data

analysis purposes.

• Table 8.1 shows the rest of the summary statistics for all experiments with agent

numbers varied.

• Table E.1 in Appendix E, page 316 shows results of normality tests for these

dataset. Inspection of the table shows that the data fail normality tests.
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• Regarding the bootstrap, figures 8.5, to 8.7 show bootstrap replicates for the

mean of detection delays.

• Figures 8.8 to 8.10 shows the corresponding qqplots for the bootstrap replicates.

• Tables 8.2 presents results for bootstrap parameter estimates and detailedBCa

andBootstrap-tconfidence intervals.
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Figure 8.2: Figures a-d show elements of the 4-plots for the purposes of exploratory
data analysis for centralised experiments using the full partial protocol scheme where
5 agent were hosted. All measurements are inmilliseconds
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Again, as in the previous chapter, Table 8.1 presents summary statistics for all exper-

iments in this setup. The table presentslocation measuresto find a central value that

describes the data,dispersion measuresto capture the spread in the data,randomness

measuresand distributional measures. The third and fourth moments are the skewness

and kurtosis of the distribution.

The table also complements 4-plot figures, i.e. figures 8.2 to8.4 by exploring prop-

erties of the detection delays data by presenting some distributional measures. Again,

the distributional measures strongly indicate that the detection delay data for the full

protocol experiments are also not from a normal distribution.
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(a) 10 agent experiment
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(b) 20 agent experiment
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(c) 30 agent experiment
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(d) 40 agent experiment

Figure 8.3: Figures (a)-(d) show 4-plots for the purposes ofexploratory data analysis
for centralised experiments using the full protocol schemewhere agent numbers were
varied from 10 through to 25. All measurements are inmilliseconds
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(a) 50 agent experiment
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(b) 60 agent experiment
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(c) 70 agent experiment
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(d) 100 agent experiment

Figure 8.4: Figures (a)-(d) show 4-plots for the purposes ofexploratory data analysis
for centralised experiments using the full protocol schemewhere agent numbers were
varied from 50 through to 100. All measurements are inmilliseconds
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SUMMARY STATISTICS

AGENT EXPERIMENTS

5 10 20 30 40 50 60 70 100

LOCATION MEASURES

Midrange 0.3564 0.7022 0.1336 0.1715 0.2415 0.3152 0.3425 0.4061 0.4940

Mean 0.2921 0.5628 0.1237 0.1760 0.2338 0.2918 0.3462 0.4032 0.5080

Midmean 0.2882 0.5644 0.1238 0.1762 0.2341 0.2919 0.3464 0.4054 0.5052

Median 0.2795 0.5395 0.1214 0.1712 0.2287 0.2954 0.3497 0.4019 0.5079

DISPERSIONMEASURES

Range 0.2470 0.6155 0.7295 0.1207 0.2167 0.2075 0.2189 0.3793 0.6254

Stand. Dev 0.4257 0.9632 0.9852 0.1411 0.2435 0.2817 0.3305 0.4198 0.7051

Av. Ab. Dev 0.3228 0.6999 0.8050 0.1167 0.2120 0.2275 0.2619 0.3201 0.5334

Minimum 0.2329 0.3945 0.9717 0.1111 0.1331 0.2114 0.2330 0.2164 0.1813

Lower Quart 0.2597 0.4950 0.1161 0.1651 0.2128 0.2748 0.3284 0.3798 0.4730

Lower Hinge 0.2597 0.4950 0.1161 0.1651 0.2128 0.2748 0.3284 0.3798 0.4730

Upper Hinge 0.3158 0.6074 0.1321 0.1904 0.2571 0.3137 0.3705 0.4299 0.5537

Upper Quart 0.3158 0.6074 0.1321 0.1904 0.2571 0.3137 0.3705 0.4299 0.5537

Maximum 0.4799 0.1010 0.1701 0.2319 0.3498 0.4190 0.4520 0.5958 0.8067
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RANDOMNESS MEASURES

Autoco coef 0.4246 0.7945 -0.3532 -0.2015 -0.1445 0.1621 0.2307 0.2472 0.3237

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DISTRIBUTIONAL MEASURES

St. 3rd Mom 0.1471 0.14051 0.6062 0.4725 0.3875 -0.4408 -0.5565 0.2060 -0.5456

St. 4th Mom 0.564 0.5350 0.3205 0.2211 0.2782 0.2420 0.2742 0.4255 0.3907

St Wilk-Sha -0.3380 -0.5873 -0.3354 -0.4984 -0.4959 -0.3858 -0.3651 -0.1803 -0.2048

Uniform ppcc 0.9071 0.9122 0.9707 0.9714 0.9786 0.9809 0.9734 0.9556 0.9512

Normal ppcc 0.9326 0.9451 0.9767 0.9635 0.9678 0.9799 0.9817 0.9869 0.9875

Tuk -.5 ppcc 0.6921 0.6660 0.6588 0.6231 0.6320 0.6121 0.6199 0.7210 0.7004

Cauchy ppcc 0.2227 0.1550 0.1502 0.1427 0.1418 0.1181 0.1137 0.1933 0.1686

Table 8.1: Summary statistics for all agents experiments inthe centralised setup for full protocol scheme, showing location, dispersion

and distributional measures
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8.2.1 Bootstrap results

Replicates distributions The bootstrap was also carried out on the full protocol ex-

periments datasets. Figure 8.5 shows the distribution of bootstrap replicates for the

mean for an experiment in which the number of agents was set to5. Figures 8.6 and

8.7 present the plots for the rest of the experiments with agent numbers varied from

10-100.
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Figure 8.5: Figures shows bootstrap replicates of the mean for centralised experiments
for the full protocol setup where 5 agent were hosted

165



5600 5610 5620 5630 5640 5650 5660
0

10

20

30

40

50

60

70

80

90

100
Bootstrap Replicate

Mean

F
re

qu
en

cy

(a) 10 agent experiment

1.2355 1.236 1.2365 1.237 1.2375 1.238 1.2385 1.239 1.2395 1.24 1.2405

x 10
4

0

10

20

30

40

50

60

70

80

90
Bootstrap Replicate

Mean

F
re

qu
en

cy

(b) 20 agent experiment

1.757 1.758 1.759 1.76 1.761 1.762 1.763 1.764

x 10
4

0

10

20

30

40

50

60

70

80

90
Bootstrap Replicate

Mean

F
re

qu
en

cy

(c) 30 agent experiment

2.334 2.335 2.336 2.337 2.338 2.339 2.34 2.341 2.342 2.343 2.344

x 10
4

0

10

20

30

40

50

60

70

80
Bootstrap Replicate

Mean

F
re

qu
en

cy

(d) 40 agent experiment

Figure 8.6: Figures (a)-(d) show bootstrap replicates of the mean for centralised ex-
periments using the full protocol scheme where agent numbers were varied from 10
through to 40
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Figure 8.7: Figures (a)-(d) show bootstrap replicates of the mean for centralised ex-
periments using the full protocol scheme where agent numbers were varied from 50
through to 100
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(a) 5 agent experiment

Figure 8.8: Figures shows QQ plot of the bootstrap replicates of the mean for cen-
tralised experiments using the full protocol scheme where 5agent were hosted

168



−4 −3 −2 −1 0 1 2 3 4
5600

5610

5620

5630

5640

5650

5660

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a) 10 agent experiment

−4 −3 −2 −1 0 1 2 3 4
1.2355

1.236

1.2365

1.237

1.2375

1.238

1.2385

1.239

1.2395

1.24

1.2405
x 10

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b) 20 agent experiment

−4 −3 −2 −1 0 1 2 3 4
1.757

1.758

1.759

1.76

1.761

1.762

1.763

1.764
x 10

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(c) 30 agent experiment

−4 −3 −2 −1 0 1 2 3 4
2.334

2.335

2.336

2.337

2.338

2.339

2.34

2.341

2.342

2.343

2.344
x 10

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal
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Figure 8.9: Figures (a)-(d) show qqplots of bootstrap replicates of the mean for cen-
tralised experiments using the partial protocol scheme where agent numbers were var-
ied from 5 through to 25
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Figure 8.10: Figures (a)-(d) show qqplots of bootstrap replicates of the mean for cen-
tralised experiments using the partial protocol scheme where agent numbers were var-
ied from 25 through to 100
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THE BOOTSTRAP
Statistic θ̂ ˆbias ŝe

2921.9 -0.1355 5.7427

BCA CONFIDENCE INTERVALS

α 0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 zo ahat
2911.449 2913.017 2915.459 2917.579 2932.65 2934.920 2937.318 2939.172 0.005013 0.004118

BOOTSTRAP-T CONFIDENCE INTERVALS

2910.406 2915.466 2906.191 2907.716 2922.859 2924.821 2926.756 2928.058 N/A N/A

Table 8.2: Results of the Bootstrap: showing parameter and confidence interval estimates and errors for the 5 agent partial
protocol experiment
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THE BOOTSTRAP

AGENT EXPERIMENTS

Statistic 5 10 20 30 40 50 60 70 100

θ̂ 2921.9 5628.1 12378 17604 23389 29182 34620 40328 50802

ˆbias -0.1355 0.0675 -0.0539 -0.1703 0.2829 0.2786 -0.0249 0.2946 1.108

ŝe 5.7427 7.1345 6.7262 9.3927 15.1439 15.1500 18.8177 33.8798 49.22

BCA CONFIDENCE INTERVALS

0.025 2906.491 5610.928 12358.17 17578.95 23365.79 29160.62 34573.32 40198.16 50731.81

0.05 2909.073 5613.733 12360.10 17583.12 23371.86 29166.20 34579.56 40207.29 50752.74

0.1 2911.269 5617.496 12363.35 17587.13 23378.35 29173.00 34587.53 40223.12 50775.32

0.16 2913.235 5620.099 12365.75 17590.40 23384.30 29178.39 34593.61 40235.18 50794.06

α 0.84 2927.572 5638.16 12382.56 17613.48 23421.14 29216.92 34639.48 40315.38 50915.34

0.9 2929.336 5640.67 12385.04 17616.66 23426.1 29223.20 34646.05 40326.9 50934.47

0.95 2932.1 5643.975 12387.93 17621.1 23432.39 29229.65 34652.57 40342.91 50955.93

0.975 2934.693 5646.726 12390.66 17624.62 23438.29 29237.13 34659.53 40355.27 50975.58

z0 0.01880082 -0.01629380 0.007519956 0.03008408 -0.015040 0.010026 -0.017547 -0.021307 0.002506

ahat 0.004241 0.002223 0.0008736 0.000656 0.000483 -0.000515 -0.000646 0.000314 -0.000776

BOOTSTRAP-T CONFIDENCE INTERVALS

0.25 2911.418 5620.909 12374.19 17594.53 23393.67 29162.04 34618.29 40305.35 50828.32
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0.5 2916.186 5626.214 12379.72 17600.44 23404.59 29176.78 34634.62 40327.38 50870.38

0.1 2907.302 5615.322 12368.59 17587.30 23379.13 29153.53 34606.42 40282.18 50789.62

0.16 2909.011 5617.324 12371.72 17590.51 23389.45 29156.82 34611.70 40287.34 50811.06

α 0.84 2923.899 5635.363 12389.17 17613.29 23424.81 29193.99 34658.33 40365.11 50931.26

0.9 2926.192 5637.218 12392.49 17616.56 23427.65 29199.36 34661.78 40380.38 50951.45

0.95 2928.504 5641.817 12395.95 17619.62 23434.68 29205.86 34670.39 40391.95 50967.11

0.975 2931.67 5644.654 12396.84 17622.21 23444.42 29214.42 34682.38 40396.86 50990.37

Table 8.3: Bootstrap results: showing parameter and confidence interval estimates and errors for centralised experiments in the full

protocol scheme agents numbers ranging from 5 to 100.

1
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8.3 Summary and observations

This chapter has presented detailed results and exploratory data analysis for the full

protocol scheme. As in the previous chapter, detection delays data are not normally

distributed as shown by all tests and exploratory data analysis diagrams. Therefore as

in the previous chapter, the non parametric bootstrap method was used for parameter

estimation and calculation of confidence intervals.

The bootstrap BCa confidence intervals in Table 8.3 in page 173 shows that the de-

tection delays (at 95% confidence) range from[2911.449, 2939.172]ms for 5 agent

experiments to

[50731.81, 50975.58]msfor 100 agent experiments.

Regarding scalability, there are similar concerns as thoseexpressed in the previous

chapter 7, page 156, i.e. for large agent numbers, the delaysas delays approach a

minute.

Following on from this discussion, the next chapter,Chapter 9 provides a detailed

exploratory comparative analysis of the datasets of this setup, thefull protocoland the

partial protocoldiscussed in the previous chapter.
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CHAPTER 9

Comparisons

9.1 Introduction

The previous two chapters,Chapter 7 andChapter 8 presented and analysed datasets

for the partial and full protocol schemes. This chapter aimsto provide a exploratory

comparative analysis of those two datasets. The chapter also provides results of the

nonparametric hypothesis tests on the location parameter of the two datasets, e.g. mean

detection delays. Non-parametric tests were chosen again because the normality and

homogeneity of variances assumptions do not hold and cannotbe justified fully for

these datasets.

This chapter also presents results of the scalability experiments, showing how both the

partial and full protocol schemes scale with increasing number of agents monitored.

In addition, regarding repeatability of experiments, results of the non parametric anal-

ysis of variance (ANOVA) and multiple comparison tests of experimental runs for a

given experiment are presented in Appendix E, page 318.

A note on datasets and data analysis and figuresThe datasets analysed here are

those considers in chapter 7 and chapter 8 and in addition, for comparisons we will

consider datasets for data collection criteria2 and3 below. Recall the data collection

criteria introduced in chapter 6, page 175 for experimentalcycles data collection, i.e.
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1. Individualdetection delays recorded for repeated execution of the protocol over

many cycles.

2. For every experimental cycle period, detection delays from the repeated execu-

tion of the protocol for that cycle recorded and some statistic calculated, i.e. treat

each cycle as an experiment.

3. Accumulateddetection delays recorded over the entire experiment for the re-

peated execution of the protocol and a statistic calculatedover each period and

the process repeated without discarding previous measurements but accumulat-

ing.

And recall that an illustration for these scenarios was given in Appendix C, figures C.2

(a) to (c) respectively in page 283.

We can use these to evaluate differences across experimental cycles and runs and in-

vestigate variations and repeatability of these experiments.
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Regarding the presentation, figures and tables, consider

1. Figures showing time series plots for the above datasets for selected experiments

e.g. Figure 9.1 shows plots for the 100 agent experiment withthe error bars de-

rived from the above confidence intervals for the 100 agent experiment. Note

that in Figure 9.1, the scale is104 milliseconds therefore the values are consis-

tent with the confidence intervals calculated in the previous chapters forpartial

protocolandfull protocolschemes.

2. Corresponding tables e.g. Table 9.1 presenting 95% non parametric confidence

intervals for the cyclic and accumulated datasets. Inspecting these tables indi-

cates little differences in the cyclic datasets and the cumulative datasets in the

confidence intervals.

BOOTSTRAP CONFIDENCE INTERVALS

AGENT EXPERIMENTS

10 20 30 40 50 70 100

α FULL PROTOCOL CONFIDENCE INTERVALS

0.025 3179.829 5449.963 8546.278 22914.46 25994.38 49484.24 41173.35

0.975 3372.211 5635.5 10048.27 24162.62 26696.33 50061.83 46026.54

α PARTIAL PROTOCOLCONFIDENCE INTERVALS

0.025 3185.246 5406.278 8274.083 22799.43 25731.95 49456.42 39468.48

0.975 3365.526 5583.806 9813.204 24025.67 26442.18 50105.94 44283.94

Table 9.1: BCa Confidence intervals for the cyclic datasets

BOOTSTRAP CONFIDENCE INTERVALS
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AGENT EXPERIMENTS

10 20 30 40 50 70 100

0.025 4940.808 12409.70 34326.23 23173.17 29220.01 40257.03 63309.14

0.975 4998.555 12429.27 35431.32 23211.35 29268.05 40326.01 63489.35

α PARTIAL PROTOCOLCONFIDENCE INTERVALS

0.025 3252.303 5376.824 8093.37 22855.9 25760.06 49528.07 44041.75

0.975 3293.456 5413.694 8302.37 23030.87 25949.57 49622.07 44318.33

Table 9.2: BCa Confidence intervals for cumulative data sets

9.2 Hypothesis testing

Though the work here was exploratory, we can compare, test hypothesis and make

statements about the partial and full protocol data sets. Inparticular statements about

the location parameters e.g. means or the medians of detection delays in the data sets.

Recall that for doing comparisons and hypothesis testing1 on independent samples for

example, testing if the samples represent underlying populations with different mean

values (but assuming equal variances and normal distribution), a standard approach is

to use the t-test [207]2

But given the discussion earlier in chapters 7 and chapter 8 about the distribution of

1Hypothesis testing is a mechanism for determining if an assertion about a characteristic of a popu-
lation is reasonable.

2The most common is the two sample t-test that tests whether ornot two independent populations
have different mean values on some prescribed measure. The t-test uses a t-test statistic to determine a
p-value that indicates how likely we could have gotten theseresults by chance. By convention, if there
is a less than 5% chance (for 95%confidence) of getting the observed differences by chance, we reject
the null hypothesis and say we found a statistically significant difference between the two groups.
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(a) 100 agent experiment

Figure 9.1: Showing superimposed time series plots to compare partial protocol and
full protocol schemes for experiments with agent numbers set to 100. Showing error
bars with width computed from non parametric confidence intervals. NB, on the y-axis,
the scale is104 millisecondsso the values are consistent with the bootstrap confidence
intervals calculated in previous chapters forpartial protocolandfull protocolschemes
respectively.

detection delays not being normally (gaussian) distributed, and failed test for equality

of variances, in order to do hypothesis tests regarding the partial and full protocol

schemes, we explored the use of non-parametric tests which do not make distributional

assumptions.

Non-parametric statistical methods and non-parametric statistical inference are dis-

cussed in [110, 95] and [207]. For example the Kruskal-Wallis test originally discussed

in [138] is a non-parametric test for equality of the location parameter (e.g. median)

among datasets or groups (i.e.N ≥ 2) , I used this test for example in analysing re-
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peated experimental runs and to make comparisons across theruns to test repeatability.

If only two datasets are considered and we are interested in whether the two sam-

ples come from the same distribution then the Mann-Whitney U-test [155] is the non-

parametric alternative to the two-sample t-test.

Regarding implementation of these tests, the R Statisticalenvironment [225] provides

implementation of the Kruskal-Wallis test procedure and Mann-Whitney test.

We can do hypothesis testing on the partial and full protocoldatasets on the differences

of the location parameters, e.g. mean, median of detection delays, see Table E.2 in

Appendix E , page 317. Alternatively we can visually inspectthe box plots as they

also give a nonparametric mechanism for comparing populations. These are shown in

Figure 9.2.
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Figure 9.2: Figure shows box plots for partial and full protocol experiments for various
agents experiments. This accompanies the non parametric hypothesis tests about the
location parameter.
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9.3 Scalability Results

To explore how both setups scaled, consider Figure 9.3 showing the boxplot generated

by the kruskal-wallis test3 on datasets for all agent experiments with numbers varied

from 10 through to a 100. Also consider Figure 9.4 showing an equivalent line plot

of the mean detection delays for each experiment against agent numbers,i.e. showing

how detection delays vary with the number of agents monitored in both the partial and

full protocol schemes. This figure also shows error bars around values as an indicator

error margins derived from confidence intervals.

3Implemented bymultiple comparein Matlab.
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Figure 9.3: Box plots for full protocol and partial protocolschemes for all agent exper-
iments. Figure generated as part of the non parametric analysis of variance Kruskal-
Wallis procedure
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Figure 9.4: Plots for full protocol and partial protocol schemes for all agent experi-
ments.
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Figure 9.5: Showing box plots for 9 experimental run for the 10 and 70 agent full
protocol experiment
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9.4 Summary

This chapter has presented some exploratory comparative exploration of the partial

and full protocol datasets. The data in both setups in non normal and variances are not

homogeneous. The non parametric one sided two sample Wilcoxon (Mann-Whitney)

tests, Table ( E.2 page 318 in Appendix E) for all experimentsprovide strong evidence

against (as given by extremely low p-values) the hypothesisthat the location parame-

ters are equal and therefore very likelihood that the location parameter for the partial

protocol dataset is lower than that of the full protocol datasets. Inspecting other fig-

ures, e.g. side by side Boxplots also provide supporting visual evidence that even for a

small sized protocols as one used in the simulation, using the partial protocol scheme

should yield better results

On repeatability of experiments, it is worth reporting thatthe analysis of variance tests

do show some notable variation between experimental runs. The scalability experi-

ments also demonstrate that across all experiments where agent numbers were varied

from low to high, the partial protocol scheme records low values of detection delays.

This results are fairly significant given that the depth and size of the protocol used

in this experiments was small. Analytically, the differences will be even more pro-

nounced for the large protocol graphs, the variance maybe explained by the underlying

agent middleware and scheduling of agents behaviours in a framework.
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CHAPTER 10

Distribution

10.1 Introduction

This chapter presents experimental results for the distributed setting as described in

section 6.5, page 122. The chapter starts by providing an overview of the architecture

and the experimental setup as discussed there.

Experiments in the setup necessarily have to consider network delays, to get a distri-

bution profile of these delays as they have a bearing on detection delays distributions.

Regarding the well known problem of the absence of global clocks in distributed sys-

tems, the approach we followed was to choose a practical synchronisation mechanism

and synchronise hosts using network time protocol, NTP, a distributed time protocol

available as a network service on an operating system.

Therefore in Appendix H we present an experiment for determining distribution of

network delays and in this chapter summarise the results forthis additional experiment.

Experimental Architecture The architecture for distribution was discussed in the

experimental design, section 6.5, page 123 and shown in Figure 6.4 there, where at the

core are a number of peer to peer interconnected nodes that act as redundant controllers
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1. For practical considerations, each controller executes asimpleload balancer2. Each

node maintains aprofile structure which provides an up-to-date data on number of

locally registered. At the outer second tier of that figure areclient nodes3.

Dynamics On initialisation, the controllers in the cluster execute a simplecontroller

cluster registration protocolto register with each other, in the process making avail-

able their profile information. Atruntime, controllers routinely update their remotely

cached profiles if local conditions change, consider for example, when local load ex-

ceeds the declared threshold (e.g. if the limit of registered agents is reached) or if a

controller becomes unavailable. Note that to scale, the cluster is easily extendable to

include the second tier client nodes by allowing them to execute thecontroller cluster

registration protocol.

Agents in the network participate in aagent registration protocolshown in Figure

10.1. Agents always attempt first to register with the immediate local controller4

if one exist. A local controller mayforward registration details of newly registering

agents to suitable controller(s) in the cluster after consulting updated cached profiles

of peer controllers.

Data and Data collection Each local controller monitors locally registered agents

and records detection delays for these agents. Remotely registered agents are moni-

tored bycluster nodesand the detection delays are recorded by these cluster nodesfor

each agent registered with them.

1Controller is arole assigned to an agent providing the protocol monitoring service in the cluster,
we can use monitor and controller interchangeably.

2load here refers to the number of agents monitored, the threshold can be set or determined dynam-
ically.

3Agents being monitored.
4Controller executing in the same machine.
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<LC: ACK>

<LC: Refuse>

KEY: A      Agent
LC    Local Controller

RC    Remote Controller

1 2 3

<RC: ACK>

<RC: Refuse>

<LC: Forward><A:Register>

Figure 10.1: Registration protocol executed by client agents to register with monitor-
ing controllers

Data collection setup and scenarios For the data collection setup and scenarios,

recall and consider the discussion in the experimental design, section 6.6, pages 125

to 126.

Regarding the hardware configuration for these distributedsetup experiments, consider

Table C.1 in appendix C.3, page 286.

The scheduled experiment was for the following configuration. 6 host machines in a

local area network, each hosting onelocal controller,Li ∈ CL and 20 agents (|ALi| =
20), with 15 locally registered, (therefore|ARi| = 5) and a clusterC of 3 remote

controllers, (|C| = 3). Each cluster controller hosted 20 agents,|ACi| = 20, therefore

giving a total number of agents,|A| = 180. This is summarised in Table 10.1 below.

CL 6
ALi 15

⋃ALi 6× 15 = 90
ARi 5

⋃ARi 6× 5 = 30
|C| 3
ACi 20
|A| = |⋃ALi|+ |

⋃ARi|+ |
⋃ACi| 180

Table 10.1: Showing experimental setup
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section 10.2 next presents experimental results and plots for the network latency data

and section 10.3 presents experimental results and plots for detection delays data.

10.2 Experimental Results and Analysis

This section presents experimental results for the distributed setting and results for

experiments exploring the all issues discussed in this chapter, namelynetwork delays

10.2.1 A note on the presentation of results

When presenting results in this section , for each experiments, all orsomeof the fol-

lowing will be shown :

1. A histogram to show thedensity distributionof the data to highlight the general

shape and any show any outliers.

2. In the case of network delays experiment, atime seriesand various aprobability

density function fitsand a table showing correspondingparameterandMaximum

likelihood estimation, MLE 5 are presented.

3. For thebootstrapestimation of a statistic, the density distribution of the repli-

cates is shown in a figure followed by the correspondingQQ plotof the replicates

againstnormal quartiles.

4. A table presenting numerical results for the bootstrap. The table shows;

• The bootstrap estimate of a statistic,e.g. mean and the related bias and

standard error.
5MLE is a statistical method used to determine a mathematicalmodel to fit some data.
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• Results of the nonparametric bootstrap confidence intervalestimates as dis-

cussed in section 7.3. TheBootstrap-tand the more accurateBCa type

confidence intervals are presented.

5. Regarding the jacknife-after-bootstrap we have observed (as it has also been

documented elsewhere [83] pp 279-280, [107, 237] that the jackknife-after-

bootstrap technique grosslyover-estimates this error, but that the accuracy in-

creases (and the estimate converges) with the increase inB, i.e. the jackknife-

after-bootstrap method is only reliable for large values ofB [83] p. 280. Im-

provements on this in the form of theWeighted jackknife-after-bootstrap[237],

have to my knowledge not been implemented in statistical software packages in

use today. Therefore we do not use the procedure, the bootstrap estimates are

sufficient for our purposes. In Appendix D, page 303 however,we experimented

with the experimental implementations of the procedure available and present

Figure D.1 page 307 showing results of an experiment to investigate the effect

of increasing the number of bootstrap replicates,B, on theaccuracyof the error

estimates. Therefore we do not use this procedure.

10.2.2 Results for network latency

The time series and the distribution of thenetwork latencyquantity∆t, as determined

by experiment is shown in Figure 10.2 (a). Figure 10.2 (b) shows various probability

distribution fits on the data. Observation of these figures and the table suggest that the

lognormal, log logisticor poissonprobability distributions possibly provide the best

fits for the distribution of network delays in these experiments. This comparable with

other results done elsewhere in [123].

Furthermore, Table H.1 in Appendix H, page 345 shows parameter estimates for vari-

ous hypothesised distributions and the maximum likelihoodestimators to accompany
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these distribution fits.

The next set of plots in Figure 10.3 are for the bootstrap analysis of the network delays

data. Figurea) shows the distribution of bootstrapped means for network delays and

b) shows the corresponding QQ plot.

Table 10.2 gives numerical results for the bootstrap, showing for example confidence

intervals of(2.746, 2.958) at 95% confidence for theBCaand(2.845, 2.956) at 95%

for theBootstrap-ttype confidence intervals.
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The Bootstrap

Statistic θ̂ ˆbias ŝe
1660.953 0.1510 8.5083

BCa Confidence Intervals
α 0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 zo ahat

2.719 2.746 2.771 2.787 2.913 2.935 2.958 2.988 0.01504 0.0120

Bootstrap-t Confidence Intervals
2.800 2.845 2.774 2.783 2.918 2.940 2.956 2.970

Table 10.2: Results of the Bootstrap showing parameter and confidence interval estimates and errors for the network delays
experiments
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10.3 Results for detection delays in the distributed setting

This section presents a summary of the main results for the detection delays experi-

ments in the distributed setting (recall the distribution architecture in Figure 6.4, page

123) and the data collection setup and scenarios discussed in the experimental design,

section 6.6 in page 125.

The scheduled experiments used the experimental setup as summarised in Table 10.1,

page, 189.

10.3.1 Results for scenario 1

The next set of figures and tables present results forscenario 1( recall that this is where

all detection delays are recorded by each local controller as discussed in experimental

design, section 6.6 page 125.

Figure 10.4 shows distributions of detection delays for a selection of instances of this

scenario, i.e. six controllers.

For each dataset, (i.e. data for every client node) anonparametric bootstrap6 of the

mean of the detection delays was performed, and Figure 10.5 shows the distributions

of the resulting bootstrap replicates for the mean of detection delays for each of the

nodes. The numerical bootstrap estimates of the mean and itsrelatedbiasandstandard

statistics are presented at the top of Table 10.3, where alsoresults of the other five

nodes can be seen.

Figure 10.6 then presents the corresponding QQ plots, showing bootstrap replicates

against normal quartiles. These figures demonstrate that apart from deviations at the

tails the replicates of the mean are normally distributed.

6No assumption is made of the underlying probability distribution.
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In addition, thebootstrap confidence intervals, (both theBCa and theBootstrap-t)

were also computed. The numerical results are shown in the middle part of Table 10.3,

where the second column shows theα value for the confidence limits. For example, to

determine the 95% confidence limits, we inspect the row entryfor α = 0.975 and for

α = 0.025 giving upper and lower limits[1677.886, 1646.089] msfor the client node

nsqa0412a017 in this experiment.

7Hostnames used as identifiers of machines running agent containers instead of generic labels like
L1 discussed in the data collection setup.
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Figure 10.4: Detection delays, (inms) for locally monitored agents at each node. Each
node has a unique identifier
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Figure 10.5: Bootstrap Replicates Density Estimation: Detection delays for locally
monitored agents
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Figure 10.6: Showing the bootstrap replicates’ qqplots. The figure shows that apart
from some deviations at the tails, the replicates arenormallydistributed.

200



The Bootstrap

Nodes

Statistic nsqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsqa0413l01

θ̂ 1660.953 1685.893 1659.375 1854.178 1851.977 1847.672

ˆbias -0.0755 -0.0551 0.11069 -0.6033 -0.102 0.381

ŝe 8.484 13.158 7.472 33.325 21.35 49.569

Confidence Intervals

α

0.025 1646.089 1663.014 1644.897 1798.309 1812.624 1772.723

0.050 1648.32 1666.385 1647.012 1806.002 1818.275 1782.276

0.100 1650.648 1670.137 1649.868 1816.397 1825.107 1796.012

BCapoints

0.16 1653.206 1673.422 1651.928 1825.247 1831.454 1806.606

0.84 1669.553 1698.932 1666.977 1893.080 1872.956 1907.023

0.9 1672.190 1703.182 1669.099 1904.864 1879.848 1927.294

0.95 1675.384 1708.713 1672.056 1920.293 1888.257 1956.207

0.975 1677.886 1713.793 1675.284 1934.157 1894.522 1985.674

z0 0.003759951 0.002506631 -0.003759951 0.05893987 -0.02506891 0.05893987

ahat 0.01254519 0.0251825 0.01165997 0.03240697 0.01921675 0.06216931

0.25 1655.620 1679.916 1654.137 1828.536 1838.525 1825.699

2
0
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0.5 1660.612 1687.441 1659.257 1857.283 1851.336 1857.199

0.1 1650.106 1671.303 1650.396 1807.367 1825.623 1803.543

Bootstap− t

0.16 1653.558 1675.754 1652.46 1818.486 1831.434 1811.687

0.84 1670.000 1700.852 1666.666 1894.468 1873.574 1916.205

0.9 1672.985 1704.029 1669.423 1905.653 1877.411 1955.739

0.95 1676.172 1708.785 1672.324 1921.87 1884.27 1996.275

0.975 1679.208 1718.862 1674.188 1932.500 1891.330 2035.485

Table 10.3: Bootstrap : showing parameter and confidence interval estimates and errors for agents monitored locally at given nodes
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Summary Recall that these werenot controlled experiments, i.e., local conditions

(e.g. load profile) could potentially vary significantly as nodes were machines ran-

domly chosen in the network. Inspecting Table 10.3 we can observe across the given

nodes comparable detection delays in the approximate range[1600, 1900]ms, a range

also suggested by results of theBootstrap-tandBCaconfidence intervals.

Experiments on errors associated with the bootstrap show that error estimates converge

and also bias estimates converge.
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10.3.2 Results for scenario 2

The next set of figures and tables present results for this scenario (Recall that this

is where all detection delays recorded by local controllersare collated into a single

dataset to give a combined density distribution for all locally monitored agents as dis-

cussed in experimental design, section 6.6 page 125.

Figure 10.7 shows the distribution of detection delays and the distribution of bootstrap

replicates for the mean for this dataset
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(a) Distribution of detection delays.
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(b) Distribution of the bootstrap replicated of the
mean of detection delays

Figure 10.7: (a) This figure shows the distribution of the detection delays. As it is
outliers were not filtered out hence the skewed distribution. (b) Showing the distribu-
tion of bootstrap replicates for the mean for scenario 1 (alldata for locally monitored
agents), showing a peak at≈ 1750ms for this dataset.
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The Bootstrap

Statistic θ̂ ˆbias ŝe

1746.241 -0.759 12.64

BCa Confidence Intervals

α 0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 zo ahat

1725.492 1728.414 1731.976 1734.778 1760.379 1764.624 1770.299 1775.161 0.06270678 0.04326342

Bootstrap-t Confidence Intervals

1738.187 1744.887 1731.876 1734.896 1761.116 1766.963 1772.215 1777.454 n/a n/a

Table 10.4: Bootstrap : showing parameter and confidence interval estimates and errors for the experiments in the distributed setting for

all locally monitored agents

2
0

6



Summary For the combined datasets for all locally monitored agents the mean de-

tection delay is≈ 1750ms and the 95% BCa confidence intervals are[1725.49, 1775.16]ms

and the Bootstrap-t intervals are[1738.18, 1766.96]ms
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10.3.3 Scenario 3

The next set of figures and tables present results for scenario three (where detection de-

lays were recorded byall remote controllers on theclusterfor eachgivenclientnode).

The data collection and analysis for this scenario is again as discussed in experimental

design, section 6.6 page 125.

Figure 10.8 then shows the distribution of detection delaysfor each client node and

the corresponding distributions of bootstrap replicates are shown in Figure 10.9. Table

10.5 presents the numerical results for the data analysis, showing bootstrapping results

for the mean of detection delays and confidence intervals estimates
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Figure 10.8: The figure shows distributions of detection delays for remotely monitored
agents for each client node. Again, outliers were not filtered off.
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Figure 10.9: Corresponding bootstrap replicates distribution and density estimation
for detection delays for remotely monitored agents
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The Bootstrap

Nodes

Statistic nsqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsqa0413l01

θ̂ 21014.247 42842.209 47695.460 3635.9723 4223.7275 30961.2054

ˆbias 51.965 47.55 10.090 0.98048 -0.1222 -167.291

ŝe 1349.443 2119.74 2310.266 88.6217 77.441 2046.201

Confidence Intervals

α

0.025 18654.67 38856.86 43016.82 3452.742 4067.49 27007.01

0.05 19039.60 39474.62 43784.95 3485.913 4090.035 27613.62

0.1 19440.13 40260.12 44824.36 3522.030 4122.482 28338.01

BCapoints

0.16 19777.15 40861.48 45395.45 3545.667 4146.643 28899.34

0.84 22466.95 44970.21 50086.39 3724.099 4307.125 33073.9

0.9 22947.30 45586.77 50763.75 3756.524 4330.23 33687.00

0.95 23515.15 46292.75 51749.55 3790.276 4361.541 34537.89

0.975 23972.88 46877.04 52472.67 3811.732 4385.44 35077.86

z0 0.04011681 0.02130795 -0.003759951 -0.001253314 0.01002668 0

ahat 0.01365313 0.006024687 0.006568672 0.008712242 0.00681802 0.01123875

0.25 20295.79 41437.27 46664.93 3576.712 4162.32 29873.07

2
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0.5 21042.62 42874.71 48076.17 3624.043 4225.289 31285.93

0.1 19259.52 40046.58 44874.92 3531.034 4118.288 28808.95

Bootstap− t

0.16 19666.10 40831.58 45980.25 3553.07 4135.384 29460.45

0.84 22579.15 45156.83 50092.87 3727.483 4298.497 33457.34

0.9 22999.31 45685.71 50804.87 3771.143 4319.887 33913.49

0.95 23347.34 46335.24 51781.79 3804.642 4348.613 34641.12

0.975 23826.83 46953.61 52145.7 3854.531 4371.131 34987.83

Table 10.5: Bootstrap: showing parameter and confidence interval estimates and errors for the experiments in the distributed setting for

remotely monitored agents2
1
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Summary For the datasets in this scenario , mean detection delays as shown in Ta-

ble 10.5 were computed to range from≈ 21014ms and 95% BCa confidence intervals

[18654, 23972]ms and Bootstrap-t intervals[21042, 23826]ms at the lower end (for

nodensqa0412a01), and at the extreme end (for nodensqa0413g01) mean detection

delays was at≈ 47695ms with the corresponding 95% BCa confidence intervals com-

puted as[43016, 52472]ms and Bootstrap-t intervals of[46664, 52145]ms.

As these were not controlled experiments, the differences could be attributed to dif-

ferences in load profiles at the local nodes or cluster nodes.This assumption can be

easily checked by inspecting recorded resource utilisation measures during the periods

of the experiments.
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10.3.4 Scenario 4

The next set of figures and tables present results for this scenario, where detection

delays were recorded byall remote controllers on theclusterand the data pooled, i.e.

a collective population ofall remotely monitored agents in the cluster as discussed in

experimental design, section 6.6 page 125.
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Figure 10.10: Profile of detection delays in the cluster. Showing Detection delays from
all controllers in the cluster. The various peaks observed represents possibly various
cluster’s node mean delays
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Figure 10.11: Bootstrap distribution of the mean
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The Bootstrap

Statistic θ̂ ˆbias ŝe

22179.746 43.307 560.3515

BCa Confidence Intervals

α 0.025 0.050 0.100 0.160 0.840 0.900 0.950 0.975 zo ahat

21138.68 21294.12 21455.25 21627.1 22808.43 22989.61 23190.45 23345.21 0.03760829 0.004951631

Bootstrap-t Confidence Intervals

21825.62 22214.53 21502.96 21682.53 22740.81 22894.61 23189.48 23450.35

Table 10.6: Bootstrap: showing parameter and confidence interval estimates and errors for the experiments in the distributed setting for

all cluster remotely monitored agents
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Summary For the combined datasets of all cluster (remotely) monitored agents,

the mean detection delay was of the order22100ms as shown by the peak in Fig-

ure 10.11 and computed in Table 10.6 to be≈ 22179ms. The 95% BCa confidence

intervals were computed to be[21138, 123345]ms and the Bootstrap-t intervals to be

[21825, 23450]ms The results show that apart from the odd case as observed in the re-

sults in the last scenario due to local conditions, on average most remotely monitored

agents experience similar detection delays when monitoredby the cluster.
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10.3.5 Scenario 5

Figures 10.12 and 10.14 below present a view of the results for scenario five, i.e.

detection delays as logged by each cluster node. The data collection and analysis for

this scenario is discussed in experimental design, section6.6 page 125.

In these figures, the distributions of detection details foreachclient nodeon a given

cluster node, 8 e.g. cluster node (cruncherandcomas) is shown.

Figures 10.13 and 10.15 shows the corresponding bootstrap replicates for the mean for

each client node agent of each cluster controller node.

One way to interpret the figures is to say they reflect some quality of service profile

for a given client node. In ideal cases that should be comparable across clients, but

in reality it is affected by local load at the clients for example.Recall that these are

not controlled experiments. Additionally results are affected to some extent by non-

uniform network delays.

Tables 10.7 and 10.8 presents results for the computations of bootstrap mean and boot-

strap confidence and associated error for each client node per cluster controller node.

8Cluster nodes identified by hostname in the network instead of using generic labels likeC∞.
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(f) Node:nsqa0412l01

Figure 10.12: Detection delays for remotely monitored agents on cluster controller
cruncher
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Figure 10.13: Bootstrap replicates for the mean of detection delays for remotely mon-
itored on cluster controller cruncher
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Figure 10.14: Detection delays for remotely monitored agents on cluster controller
comas
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Figure 10.15: Bootstrap replicates for the mean of detection delays for remotely mon-
itored on cluster controller comas
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The Bootstrap

Nodes

Statistic nsqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsqa0413l01

θ̂ 28691.497 41052.367 46305.60 6674 14667.08 32767.42

ˆbias -76.598 -56.78 -2.046 -5.897 -65.039 110.52

ŝe 2135.18 2772.45 3075.30 388.47 1584.28 2702.07

Confidence Intervals

α

0.025 24533.41 35571.46 40389.22 5987.66 11931.89 27284.54

0.05 25156.18 36479.31 41269.12 6087.349 12388.15 28154.51

0.1 25899.59 37506.07 42477.02 6216.473 12768.95 29086.30

BCapoints

0.16 26484.49 38307.57 43397.29 6313.37 13202.36 29819.09

0.84 30854.5 43815.97 49517.75 7076.519 16428.66 35523.70

0.9 31393.01 44680.02 50375.42 7235.276 16996.99 36359.89

0.95 32268.92 45868.88 51661.99 7422.498 17684.99 37396.93

0.975 33043.07 46595.32 52609.35 7610.075 18248.88 38291.39

z0 -0.01378689 0.008773312 0.01880082 0.01629380 0.05768443 -0.02256157

ahat 0.01364055 0.008926957 0.007788226 0.03491712 0.02480227 0.01418406

0.25 27047.47 39258.10 44379.32 6497.768 13749.38 31284.46

2
2

3



0.5 28634.5 41393.6 46489.78 6742.566 14706.24 32744.7

0.1 25651.54 37614.12 42229.45 6264.196 13128.66 29707.79

Bootstap− t

0.16 26266.64 38238.8 42986.22 6343.522 13434.85 30363.3

0.84 31202.68 44375.83 49889.02 7177.005 16537.25 35604.18

0.9 31854.44 45139.06 50623.25 7347.719 17166.49 36437.92

0.95 32554.42 46078.71 51737.33 7456.396 17953.28 38372.22

0.975 33731.72 47341.16 52921.75 7547.386 18432.07 38777.18

Table 10.7: Bootstrap results: showing parameter and confidence interval estimates and errors for the experiments in the distributed

setting for remotely monitored agents on cluster controller cruncher2
2
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The Bootstrap

Nodes

Statistic nsqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsqa0413l01

θ̂ 10664.53 44895.797 49257.51 8446.14 11592.38 28631.69

ˆbias -6.490 251.62 181.93 -19.98 -32.661 68.057

ŝe 1252.97 3078.94 3562.800 965.33 1339.85 2974.52

Confidence Intervals

α

0.025 8596.055 38955.98 42644.98 6753.435 9248.765 23231.22

0.05 8906.755 40078.96 43709.33 7000.375 9631.675 24003.64

0.1 9268.717 41158.53 44833.58 7302.225 10048.24 24978.87

BCapoints

0.16 9575.844 41920.83 45771.72 7580.372 10331.89 25833.67

0.84 12024.71 48078.25 52870.39 9478.053 12904.63 31767.01

0.9 12447.32 48883.65 54008.45 9843.472 13361.22 32634.6

0.95 12996.56 50044.43 55421.23 10187.13 13898.74 33933.07

0.975 13601.4 51129.11 56962.32 10540.89 14461.99 34929.55

z0 0.02256157 0.01880082 0.03384594 0.01128007 0.01504034 0.02381522

ahat 0.03669208 0.008033102 0.01061637 0.04691313 0.02750070 0.01825531

0.25 10071.60 42890.27 46983.35 7777.008 10952.49 26909.94

2
2

5



0.5 10836.68 44675.04 49064.95 8449.172 11789.81 28878.78

0.1 9475.183 40920.41 44845.75 7278.35 10146.07 24212.03

Bootstap− t

0.16 9715.518 41946.14 45846.17 7547.332 10652.36 25493.22

0.84 11974.66 47508.51 53041.9 9474.949 13000.57 31892.13

0.9 12353.53 48431.78 54796.74 9792.755 13378.07 32740.77

0.95 13398.39 49250.12 56553.38 10105.18 13882.79 33930.96

0.975 13941.58 50851.99 56771.18 10467.46 14534.01 34732.48

Table 10.8: Bootstrap results: showing parameter and confidence interval estimates and errors for the experiments in the distributed

setting for remotely monitored agents cluster controller comas2
2
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Finally Figure 10.16 shows the detection delays distributions and corresponding dis-

tributions for bootstrap replicates of the mean for all detection delays recorded on a

given cluster node. Table 10.16 then gives the corresponding numerical results for the

computations of the bootstrap mean and bootstrap confidenceintervals and associated

estimates of errors.

Discussion Again Recall that these werenot controlled experiments, i.e., local con-

ditions (e.g. load profile) on each cluster controller node could potentially vary signif-

icantly as cluster nodes were server machines in the network. Nevertheless inspecting

tables we can observe across the given nodes the computed mean detection delays and

corresponding BCa and Bootstrap-t confidence intervals percluster node. Also note

that in the computation in these table raw data was used, i.e.outliers were not removed.
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Figure 10.16: Figure (a-c) show the distribution of detection delays for remotely mon-
itored agents on each cluster controller and figures (d-f) show the corresponding dis-
tributions for bootstrap replicates of the mean
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10.4 Summary

The purpose of the chapter was to investigate the benefits of distribution of the man-

agement and monitoring scheme. The immediate benefits that were expected were

those to be accrued from the notion ofdistributed control, for example in a distributed

setting there is no one central point of control and a decentralised management scheme

is in place and each node is independent. The particular advantages that I emphasise

in this scheme are increased scalability (in that more agents can be monitored by the

cluster) and redundancy of the setup, (in that a cluster nodefailure is not catastrophic).
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CHAPTER 11

Conclusion

11.1 Discussion of other issues

Regarding the termination detection mechanism proposed, we considered the quantita-

tive aspects in preceding chapters. We can also consider some further issue. For these,

consider the following issues;

–i– In an approach where agents are given a detection protocol, and can compose

their behavior with the detection protocol, it can be observed that if the detection

protocol assumes correct participation by agents, a unilateral (or even strategic)

deviation from the detection protocol by any agent may jeopardize the detection

process. Our approach considers interactions at a protocollevel, with the mon-

itor having some awareness of the agreed protocol specification, say through a

protocol libraryP. One of the ways agents can put at risk the detection process

is by communicating false information about protocols, or by opting not to com-

municate this information. One way is to enforce some norms in the society ,

e.g. a marketplace/auction house can stipulate and enforcerules of participation

to nullify agents’ incentives to deviate.

–ii– Regarding termination, other issues that need considering include detection de-

lays, the maximum time that can elapse between termination and its detection.

This has been evaluated in Chapters 7, 8, 10 for the various setups. Considera-
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tions have to be made on how this delay can be minimized for anyspecific de-

tection mechanism adopted. In our framework the parametersfor control waves

can be adjusted for example. Other issues arise if agents execute multiple pro-

tocols. This has been considered in the conversation model given in Chapter

5. The setup will also need to consider the fact that agents may be executing

different stages of the protocol, so that generalised society wide control waves

may not useful in minimising detection delays. In future work we can consider

modifying the framework to allow a given monitor to maintainagent groups and

associations depending on protocols used, stages in the protocol and conversa-

tion partners for example.

–iii– Another issue relates to structuring the detection mechanisms such that there is

no adverse effect on the execution of underlying protocols and that no unneces-

sary bottlenecks are introduced in the infrastructure of the society. The frame-

work we describe does not require that we modify the protocols, e.g. augment

or embed in the protocol some control messages. The main possible bottleneck

would be the use of a single entity, the monitor, in detectingtermination. We

have proposed possible distribution possibilities inChapter 5 and evaluation of

various scenarios inChapter 10 for the distributed configuration. Indeed dis-

tribution is a general problem for most services in distributed systems, services

such as directory , naming services and is also well studied in distributed sys-

tems. There , there exists a number of approaches and solutions to address this

concern, for example distribution, hierarchical setups e.g. as used in the Do-

main Name Service, DNS, group communications etc. Finally,we argue that in

addition to detecting termination, with relatively simpleextensions, our mech-

anism can also be used to provide some level visibility of theprocess of agent

interactions which may be of value in high level management of agent societies
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in practical applications.

11.2 Summary

Research in multiagent systems is diverse and varied, encompassing and drawing from

many fields of research. There has been some progress made in the theoretical foun-

dations of agents and multiagent system, agent communication languages, interaction

protocols, social semantics, methodologies, multiagent frameworks and others. How-

ever while progress has been made, challenges exists all round, especially in the prac-

tical aspects of development and deployment of agents and the support frameworks of

management and control of agent societies say compared to work done in grid com-

puting.

Experiments and experiences with an attempt to deploy agents for services on a global

network called AgentCities [66] are recounted in [242] and [67] lists concrete chal-

lenges for this service environment, quote;

–i– Automation, i.e. management of autonomy: Understanding how to effectively

automate systems in an open environment, how to control and manage deployed

automated systems. This must draw on work from mathematicalcontrol theory

to distributed systems and agent technology.

–ii– Interoperability, i.e. communication:- How to enableon-line software systems

to interact with one another in increasingly flexible ways: configurable interac-

tion sequences, communication about arbitrary domains.

–iii– Coordination:- Putting in place frameworks that enable automatic creation, main-

tenance, execution and monitoring of contracts and agreements between auto-

mated systems to fulfil their business objectives.
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–iv– Knowledge acquisition (interfaces between worlds): Putting in place frame-

works that enable automatic creation, maintenance, execution and monitoring

of contracts and agreements between automated systems to fulfil their business

objectives.

We positioned our research to make a contribution to the firstpoint above, observing

that multiagent systems are inherently distributed and areimplemented on distributed

systems infrastructures, and noting (as has been elsewhere[247]) that research efforts

in agents infrastructure support should necessarily draw upon experiences and coordi-

nate with distributed systems research.

11.3 Contributions

We claim to have made a number of contributions as discussed in chapter 1, page 9.

On atheoretical level, we have considered the distributed termination detectionprob-

lem and research from distributed systems and considered itin the agent model and

used this a basis for developing a class of agent control mechanisms.

1. To this end, inChapter 5, section 5.6 page 110 we listed contributions towards

a termination detection model for agents, where we presented definitions related

to protocols and defined minimal information agents can register with interaction

observers.

2. We presented an agent conversation model, defined some predicates and pre-

sented algorithms for their implementation.

3. combining all these we presented distributed a distributed protocol for termina-

tion detection and considered distribution possibilities.
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On apractical level, we have offered a structured and systematic, methodical experi-

mental, data collection and analysis framework, i.e.

1. In Chapter 6 we have offered a prototype implementation and used it not only to

evaluate the proposed mechanism and two configurations but to explore the use

of an implementation in agent middleware.

2. In Chapter 6 we defined an extensive experimental and data analysis framework

that uses robust resampling methods for quantitatively evaluating a prototype in

this research that can also be used evaluating future contributions.

3. The experimental work here can also set a benchmark for future work.

Aspects of these contributions have been previously published in [174] and docu-

mented [171] and is subject of papers in progress [173, 172] resulting from research

discussed in this thesis.

11.4 Critical Review

The ideal definition of an agent is that of an entity that is autonomous. And, an ideal

multiagent system is one with no global control. It is worth noting that the work dis-

cussed in this thesis treads on these aspects to a certain degree. We have put forward a

proposal for a mechanism that contribute towards management of agents by requiring

as part of society rules for participation, for agents to register partial behaviour speci-

fications. This is not so much a problem as in multiagent agentsystems, protocols are

deemed public and individual agent strategies are necessarily private.

Regarding scalability, as the numbers of hosted agents increase, there are a number of

issues:
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–i– The size of thec−matrix data structure and cost of searching it will necessarily

increase. But as discussed the best solution will be in distribution and possibly

exploring more efficient procedure for organising searching matrix type struc-

tures.

–ii– Regarding the controlwaves(page 106) , there maybe concerns regarding mes-

sage complexity depending on the scale required and on the frequency of the

generated waves.

–iii– Regarding graph algorithms for protocol graphs therewill be issues with large

protocol graphs as discussed in section A.4, as there is onlyso much graph

algorithms can be improved as for graph traversal either breadth-first or depth-

first search are used as a basis.

Regarding the quantitative experiments, the results and the analysis are as quoted in

Part III , Chapters 7 to 10. In the experimental observations, there were instances

of high variability and outliers in recorded data presumably due possibly to the un-

derlying agent framework middleware and network delays, and these were considered

by scheduling a number of experimental runs, using robust resampling methods (see

chapter 6, page 114) that incorporates outliers and in the distributed setting, conducting

experiments to estimate distributions of network delays (see chapter 10, page 191 and

Appendix H, page 342) to factor into the experimental results. With the quantitative

experiments we have explored and have a sense of how the mechanisms perform in

an existing agent middleware, results that can also interest researchers of these agent

frameworks.
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11.5 Directions for future work

In addition to addressing issues raised above in the qualitative evaluation and the crit-

ical review, as discussed before, results from the area of termination detection may be

used in the related area of garbage collection. We propose future work to consider a

follow up and consider how to derive timely garbage collection schemes for multiagent

interactions.

And evidently lurking behind is the issue how much degree of autonomy do agents

really have in real applications and how much of this autonomy need be constrained

when dealing with issues surrounding infrastructure support for agents, assuming that

the notion of autonomy can be captured in some way. There are research efforts in the

area of agents autonomy [180] and some attempts at capturingautonomy [240] that

may give some directions for future work in this direction.

11.6 Related Work

The work on this thesis was inspired by a short paper [241] that discussed distributed

quiescencedetection in a multiagent negotiation and posited a solution there based

on the Dijkstra and Scholten’s algorithm (example of a tracing algorithm, see section

2). The work was specific to multiagent negotiation, and the algorithm there is used a

basis of a quiescence detection protocol, a protocol that operates as a layer on top of

an underlyingmediatednegotiation protocol.

The first contribution of that work was a formulation of the distributed quiescence

detection problem in multiagent, multi-issue negotiation. The negotiation considered

there is mediated, i.e. the negotiation model comprises of agents and mediators. Medi-

ators facilitate the negotiation by managing information flow and enforcing negotiation

rules [241].
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The negotiation protocol comprises two general type of messages, namely OFFER

(sent by agents to mediators) and NOTIFY (sent by mediators to agents). The form

and content of these messages varies according to domain specific rules enforced by

mediators and negotiation policies of the agents [241].

Applying the Dijkstra and Scholten’s algorithm to the negotiation model involves re-

quiring that agents augment their behaviors by passing and tracking ACK messages

according to the detection protocol, i.e. their overall behavior is then a composition of

their basic negotiation behavior with the transition diagram representing the algorithm

[241].

As a second contribution, the work identifies and discusses circumstances under which

agents may have incentives to deviate from the basic protocol and discusses a modi-

fication to the negotiation framework that is argued to present limited incentive for

agents to deviate [241], this is because they compose their behavior with the detection

protocol and hence unilateral deviation from the detectionprotocol by any agent may

jeopardize the detection process.

The wider area of monitoring throughoverhearing1 assuming petri-nets is discussed

in [103, 101], where the work focuses on and explores the use of colored petri-nets

to represent legal joint conversation states and messages and considers the general

overhearingapproach and provides a formalisation and the building blocks for the

overhearing.

We have focused our work on termination detection and provided a runtime mechanism

for making this explicit. We considered a distributed systems centric view to design

a class of controllers and an architecture for termination detection and provided an

extensive experimental framework to provide benchmarks for this and future work.

We viewed protocols as finite state machine graphs. Finite state machine formalism is

1Origionally discussed by [183] within BDI frameworks and by[38].
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by far the most widely used with interaction protocols, and exploring and working with

graphs brings the benefits of results and techniques from algorithmic graph theory.

Termination detection is semantically related to problemslike garbage collection and

so we can position our future work to venture into that area further enhancing research

effort in multiagent infrastructures.
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APPENDIX A

Termination Detection for protocols

A.1 Illustration for the diffusing conversations algorithm

Consider Figure A.1 showing the execution trace of Algorithm 4 discussed in section

5.4 in page 93. This trace illustrates that the algorithm traverses the tree in breadth-first

and at each node evaluating whether there are any descendants conversation nodes i.e.

evaluating ifRtransitive = ∅ , testing for if the protocol is active usingactiveProtocol

predicate and removing that node with a procedureremove if the above is true. When

G eventually becomes empty, the associated flagF ( defined in Definition 10 in page

84) of a conversation can be set.
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Figure A.1: Showing example trace of executing Algorithm 4 of a diffusing
computation tree for a conversationG = (V, E) rooted atC0.
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A.2 Other possible implementations of a global c-matrix

There are various other possibilities for logically implementing the a globalc−matrix

M , namely;

1. Consider a set of controllers coordinating via atuple space. The tuple space

functioning as ashared memoryfor global c-matrix structure allowing overlap

over controllers, i.e. allowing
⋂

n∈N
Cn

(
M i,j

)
6= ∅, and providing an update

protocol for the tuple space by controllers, e.g. Figure A.2.

2. Consider a combination of2 and3, i.e. divideM logically by allowing each

controller to manage a separate copy of ac − matrix and allow overlaps, and

consider controllers coordinating via atuple spacethat functions as ashared

cachefor the global c-matrix structure, e.g. Figure A.3.

Figures A.2 and A.3 next illustrate configurations one and two respectively as dis-

cussed above.
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. . . . . . . . .C1
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Figure A.2: Showing example global matrix allocated acrosscontrollers al-
lowing overlaps, i.e.

⋂
n∈N

Cn

(
Mi,j

)
6= ∅

using a tuple space
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Figure A.3: Showing example global matrix allocated acrosscontrollers al-
lowing overlaps, i.e.

⋂
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(
Mi,j

)
6= ∅

, using localc−matrix structures and tuple as cache
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A.3 Algorithms

Considering setup3, M in the tuple space is treated as a local matrix by controllersin

{Cn | n ∈ N} with theupdate protocol providing a concurrent1 write mechanism to

the structure. In this setup then, the procedure for global termination involves a test of

thelocaltermination predicate onM in the tuple space.

In setup4, the update protocol can be extended to provide a mechanism to replicate

entries of localc−matrix structures held by controllers onM in the tuple space in a

cache update2. Therefore in this setup the procedure for global termination involves a

cache update and a test of thelocaltermination on the cache. Consider Algorithm 8

that implements this scheme.

1Though concurrency control is not strictly necessary if we introduce a constraint that even though
⋂

n∈N
Cn

(
M i,j

)
6= ∅ may hold, controllersC2 andC2 say, will work with different conversations in

the vector〈Ck〉.
2The update can be periodic or triggered by a designated controller C0 with async signal say.
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Algorithm 8 Algorithm for synchronisation of cache updates across controllers in
{Cn | n ∈ N}, with global termination reported by controllerC0 for agenti

procedureglobaltermination ()

INPUT: - M in the tuple space;

DATA STRUCTURES: localc−matrix m; C = {Cn | n ∈ N}

for all Cn ∈ C do
if Cn 6= C0 then

sync(Cn)
else

cacheupdate(M , m)
F ←− localterminantion (M , i)

end if
end for

procedurecacheupdate ()

INPUT: - M c−matrix in the tuple space;m local c−matrix
for all mi,j do

(M i,j 7→ F )←− ∧1≤k≤n inactive(mi,j 7→ Ck)

append(mi,j 7→ 〈Ck〉, M i,j 7→ 〈Ck〉)
end for
return (F )
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A.4 Discussion and complexity analysis

Algorithms discussed in Chapter 5 primarily worked on graphs and used set operations

extensively. For graphs, complexity in primarily influenced by the number of nodes

and branching factor.

Consider the graph traversal algorithm that performs areachability analysis(Algo-

rithm 2 in page 81) invoked by Algorithm 1,stp, page 80 which computes shortest

unique termination paths on a given protocol graph.

Theupdateprocedure, Algorithm 3 in page 82 is of orderO(n×K ×m), wheren is

the number of elements ofTP , K is the number of elements ofA andm is the number

of elements ofAk

But as remarked, the procedure for computing shortest unique termination pathsstp

can be performed off-line, and is only performed once given aprotocol and can be

performed only once on a set of protocols,P, a protocol library if one exists. Further-

more, the interaction protocol graphs for agents are invariably not very large, e.g. the

contract-netprotocol given as an example in section 5.3, page 70 or consider the FIPA

agent interaction protocol suite. For large protocol graphs, there exist a lot of work in

the area of parallel graph algorithms [13, 194, 94] or [7] that can be explored in future

work.

Regarding set operations used in these algorithms, much will depend on their imple-

mentation and data structures used. [55] explains that a binary search tree of heighth

can implement any of the basic dynamic set operations3 in O(h) time. This is clearly

reasonable for small graphs (smallh), and performance maybe no better than with a

linked list[55] if heighth is large.

Again most of the protocol graphs are small. For large graphs, Red-Black trees [100]

3SEARCH, INSERT,DELETE, MAXIMUM,MINIMUM,SUCCESSOR, PREDECESSOR.
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that guarantee that basic dynamic-set operations takeO(log n) in the worst case [55]

can be used. Regarding implementation, there are programming languages libraries

that implement container data structures and efficient operations on them.

In section 5.4, page 85, we modelled conversations as diffusing computation trees,

however, we can add another conversation scenario to the scenarios in section 5.4.1

page 83 and extend the conversation model to model some dependencies between con-

versations involving a particular agenti and different agentsj andk. For example, see

Figure A.4 where completion ofC0,1 depends onC1,1,1, and in that case the diffusing

computation for the conversation is no longer a tree but a general graph.

(i, j) (i, k)

C0 C1

C1,1C0,1

C1,1,1

Figure A.4: Showing an extended model for conversations, with dependencies between
computation trees

Computational complexities of procedures on graph structures are well known and

briefly discussed next and summarised in Table A.1 below.

In general, a common way of representing graphs as data structures is to consider an

adjacency matrix [47], and its representational data structures. An analysis of the com-

plexity issues in algorithmic graph theory is given in [96] and summarised in Appendix

J, page 372 and we cite the analysis there.
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i.e. Let G = (V, E) be a graph whose vertices have been (arbitrarily) ordered

v1, v2, . . . vn. The adjacency matrix(M) = (mi,j) of G is ann× n matrix with entries

mi,j =





0 if vivj /∈ E

1 if vivj ∈ E

for example consider Figure A.5, then the adjacency matrixM is given by

mi,j =





0 1 1 0 0

0 0 1 0 0

1 1 0 1 1

0 0 1 0 0

1 0 0 1 0





1

4

3

2

5

(a) G
3

Λ

2Vertex 1

4

3Vertex 2 Λ

Λ

Λ

4Vertex 5

3Vertex 4

2Vertex 3 1 Λ5

(b) adjacency lists of G

Figure A.5: G

and can be represented as a an adjacency list4 of G given in Figure J.1 (b).

4Regarding adjacency lists, for each vertexvi of G an adjacency listadj (vi) can be created, con-
taining those vertices adjacent tovj .
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Adjacency matrix
stored as an array

Adjacency sets
stored as lists

Adjacency sets
stored sequen-
tially

Is vivj an edge? O (1) O (di)
∗ O (di)

∗

Mark each vertex which
is adjacent tovi

O (n) O (di) O (di)

Mark each edge O (n2) O (e) O (e)
Add an edgevivj O (1) O (1)∗∗ O (e)
Erase an edgevivj O (1) O (d∗

i ) O (e)

Table A.1: Some typical graph operations and their complexity with respect to three
data structures. If the adjacency sets are sorted then the starred entries can be reduced
toO (log di) using a binary search, but the double starred entry will increase toO (di)
[97]

[96] reasons that, by definition, the main diagonal of M is allzeros, and M is symmetric

about the main diagonal if and only if G is an undirected graph5 and if M is stored as

a 2-dimensional array, then only one step (more preciselyO (1) time) is required for

the statements "isvivj ∈ E? or "erase the edgevivj . An instruction such as "mark

each vertex which is adjacent tovj" requires scanning the entire columnj and hence

takesn steps. Similarly, "mark each edge" takesn2 steps. The space requirement for

the array representation isO (n2).

Table A.1 above discussed in [97] and in Appendix J in page 372show some typical

graph operations and their complexity with respect to threedata structures, where n is

the number of vertices, e is the number of edges ,di is the degree of vertexvi.

Regarding thec−matrix data structure we introduced in section 5.4, page 84 if say for

a particular applications the data structure has some properties, perhaps by the nature

of the interactions type and agents relationships if any, e.g. if the matrix is sparse say,

there is even more possibilities for efficient algorithms for searching it. These search

5But in our discussion of the diffusing computation though weextendedE with some closure, e.g.
reflexive so the graph is acyclic.
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algorithms can useful if say thequiescenceis required (i.e. if the objective is to check

if all agents or a group of agents have terminated conversations).

Regarding the logical globalc−matrix M introduced in Definition 14 in page, 96,as

an implementation point for the shared memory based alternative of the distributed

termination detection protocol , the globalc −matrix M can be mapped directly to

existing agent registries. This will optimise procedures such as garbage collection that

may follow the termination detection procedure to avoid duplicating agent registration

on registries and controllers.
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APPENDIX B

Prototype Implementation

B.1 Java Agent Development Framework

The prototype and experiments were developed within the JADE agent platform [23].

In principle the ideas discussed in this research could be prototyped in other tools and

platforms which supports and provide mechanisms for engineering agent interaction

protocols. JADE has emerged as a popular choice and is in widespread use in the

research community as an implementation framework for javabased agents and has

success in large testbed project like Agentcities [66].

The details of the JADE platform and its design philosophy are discussed in detail in

[24] and I summarise them here.

JADE [23], is a software framework fully implemented in Javalanguage. Its goal is to

simplify the development of multi-agent systems while ensuring standard compliance

through a comprehensive set of system services and agents incompliance with the

FIPA1 specifications:, i.e. naming service and yellow-page service, message transport

and parsing service, and a library of FIPA interaction protocols ready to be used.

In complying to FIPA specifications, JADE includes all thosemandatory components

that manage the platform, i.e. the ACC, the AMS, and the DF. All agent commu-

1The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to produce software
standards for heterogeneous and interacting agents and agent-based systems.
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nication is performed through message passing, where FIPA ACL is the language to

represent messages.

The agent platform can be distributed on several hosts. Onlyone Java application, and

therefore only one Java Virtual Machine (JVM), is executed on each host. Each JVM

is basically a container of agents that provides a complete run-time environment for

agent execution and allows several agents to concurrently execute on the same host.

The communication architecture offers flexible and efficient messaging, where JADE

creates and manages a queue of incoming ACL messages, private to each agent; agents

can access their queue via a combination of several modes: blocking, polling, time-

out and pattern matching based. The full FIPA communicationmodel has been im-

plemented and its components have been fully integrated: interaction protocols, en-

velope, ACL, content languages, encoding schemes, ontologies and finally, transport

protocols.

The transport mechanism can be adapted to each situation, bytransparently choosing

the best available protocol. Java RMI, event-notification,HTTP, and IIOP are cur-

rently used,but more protocols can be added. Most of the interaction protocols defined

by FIPA are already available and can be instantiated after defining the application-

dependent behaviour2 of each state of the protocol.

In the jade execution model agents are implemented as one thread per agent, but

agents often need to execute parallel tasks. In addition to the multi-thread solution,

offered directly by the JAVA language, JADE also supports scheduling of cooperative

behaviours. The run-time includes also some ready to use behaviours for the most

common tasks in agent development.

2The computational model of an agent is multitask, where tasks (or behaviours) are executed con-
currently.
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B.2 Implementation

The finite state machine based interaction protocols were implemented using JADE’s

FSM behaviour template. In the experimental setup, a numberagents executing a

protocol are instantiated. Figures B.1, B.2, B.3 B.3 show various processes executed

by agents and controllers. JADE provides a construct calleda behaviourthat can

implement these agent processes.

a

c

b

executeProtocols

handleSnapshotQueries

deriveTerminationPaths

handleRegistration

querySnapshots

registration

Poll()

d

e

f

g

SnapShots

AppendSnapShot()

A1

registerPaths()

registerProtocols()

Agents Controller

〈AIDi, 〈Ai, 〈Pj〉〉〉

〈AIDi, 〈Ai, 〈TPj〉〉〉

〈AIDi, 〈Ai, 〈Sj〉〉〉

Figure B.1: Showing processes executed by agents and the controllers for reg-
istration, derivation of termination paths and collectionof protocol execution
traces

Figure B.1, shows;

I – A process for executing protocols given protocol specifications.

II – A process for registration. Depending on the experimentto be run, agents can

register their full protocol specifications to the controller, or the sub-protocol
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comprising ofterminations paths3.

III – A process for deriving termination paths given protocol specifications. This can

be done off line from protocol specification from the protocol library or done on

agent initialisation.

IV – A process for maintaining protocol execution snapshots. This handles queries

from the controllers on protocol execution.

V – A process to handle protocols or sub-protocol registration. The process main-

tains data structures. The tuple notation〈AIDi, 〈Ai, 〈Pj〉〉〉 for shows that an

agent has an identifier,AIDi. An agent has anagent proxyAi that encapsu-

lates protocol specifications〈Pj〉 for that agent. Similarly if only sub-protocols

or termination paths were registered,〈AIDi, 〈Ai, 〈TPj〉〉〉, represents the tuple

where〈TPj〉 represents the specifications of the sub-protocols or termination

paths.

Figure B.2 completes Figure B.1 by showing;

VI – A process for collecting protocol execution snapshots.The process buffers pro-

tocol execution traces, and maintains data structures for organising and main-

taining protocol execution snapshots for agents monitored.

VII – A process for monitoring protocols and making termination explicit given pro-

tocol or sub-protocol or termination paths specifications and protocol execution

snapshots.

3For experimental setup purposes it does not really matter how the protocol or subprotocols are
obtained, in reality there will be a protocol library that the controllers can access as proposed in Chapter
5, page 109 in Figure 5.14.
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b

a

c

A1

executeProtocols

e

f

querySnapshots

SnapShots

detection

d

g

g d

g d a

query()

handleSnapshotQueries

handleRegistration

ControllerAgents

〈AIDi, 〈Ai, 〈Pj〉〉〉

〈AIDi, 〈Ai, 〈TPj〉〉〉

〈AIDi, 〈Ai, 〈Sj〉〉〉

Pj

Si

Sj

S∗j

Si

evaluateAgainst(Sj, TPj|Pj)

AppendSnapShot(Si, Sj)

Figure B.2: Showing processes executed by agents and the controllers for
monitoring protocol execution and termination detection.

Figure B.3 on the other hand shows processes involved incontroller-to-controllerin-

teractions in the decentralised setup. Controllers maintain profiles and can register

with each other and use a load balancing mechanism. The figureexplicitly shows for

each controller;

VIII – A process for registering with remote controllers. Each controller maintains a

data structure to represent itsprofilePfishown as a tuple〈CIDi, 〈Ld, Cp, 〈AIDi〉〉〉
whereCIDi is the controller identifier,Ld is metric representing local load,Cp

represents capacity, i.e. threshold load and〈AIDi〉 a sequence agent identifiers

for registered agents registered with this controller.

IX – A process for handling registration requests by remote controllers. This hosts re-

mote controllers’s profile representations against controller identifiers as shown

in the diagram as the tuple〈CIDid, P fi〉
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agentRegistration

controllerRegistration

controllerRegistration

loadBalance

agentRegistration

loadBalance

registration

register

ControllerController

〈AIDi, 〈Ai, 〈Pj〉〉〉

〈CIDi, Pfi〉

updateProfile(Pfi)

fowardRegistration(AIDi, 〈Pi〉|AIDi, 〈TPi〉)

updateAgentRegistration(AIDi, 〈Pi〉|AIDi, 〈TPi〉)
fowardRegistration(AIDi, 〈Pi〉|AIDi, 〈TPi〉)

updateProfile(Pfi)

updateAgentRegistration(AIDi, 〈Pi〉|AIDi, 〈TPi〉)

〈AIDi, 〈Ai, 〈Pj〉〉〉

〈AIDi, 〈Ai, 〈TPj〉〉〉

〈CIDi, Pfi〉
〈CIDi, 〈Ld,Cp, 〈AIDi〉〉〉

〈CIDi, 〈Ld,Cp, 〈AIDi〉〉〉

〈AIDi, 〈Ai, 〈TPj〉〉〉

Figure B.3: Showing processes for controller-controller interaction in the dis-
tributed setup. Processes are for registration, load balancing

X – A load balancing process. This for forwarding agent registrations to available

remote controllers in the cluster. This is triggered if local load exceeds a de-

fined threshold. The process also refreshes the local controller’s profile stored

remotely and updates agent registration data structures onreceiving forwarded

agents registration requests.

For experimental data Figure B.4 introduces a data collection process for agents and

controllers . There are entries for agents and the protocol(s) being executed, this repre-

sented as a tuple〈AIDi, P IDi〉. For each protocol execution a tuple〈PIDj, Taj, T cj, ∆T, R, Ec〉
is given, representing a protocol identifierPIDj. Each agent marks and records the

start and end of protocol execution,Taj . The controller recordsTcj the termination

time of the monitored protocol on the controller’s side.∆T then is the detection delay.
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, R is a computational resource utilisation metric4. The experimental cycle is recorded

asEc.

b

c

a

e

f

detection

d

g

g d

SnapShots

dataCollection

resourceProfiler

aquery()

querySnapshots

handleSnapshotQueries

g d

AppendSnapShot($S_{i},S_{j}$)

handleRegistration
executeProtocols

Si

ControllerAgents

Pj

S∗j

evaluateAgainst(Sj, TPj|Pj)

〈AIDi, 〈Ai, 〈Sj〉〉〉
Sj

Si

〈AIDi, 〈Ai, 〈Pj〉〉〉

〈AIDi, 〈Ai, 〈TPj〉〉〉

〈AIDi, P IDj〉

〈PIDj, Taj, T cj, ∆T,R,Ec〉

Figure B.4: Showing agents-controller interaction processes for data collec-
tion and resource profiling

4derived from the operating system function calls to give cpuand memory utilisation, e.g. through
Linux function calltop
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APPENDIX C

Experimental design and data analysis

C.1 Data collection setup

Figure C.1 gives an illustration of the data collection scenarios discussed inExample

12 in page 125, where we considered a set of agentsAC ⊂ A that reside in the same

host as some remote controller, and considerACi ⊂ AC be agents registered with an

Ri ∈ C.
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R1

Cluster, C

R3

R2

R4

N7

N9

N10

N8

N5

N6

N6

N6

L1

N11

N1

N3

N4

N2

L2

Figure C.1: Data collection setup, showing local and remotecontrollers in a
distributed setting
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C.2 Data collection during experimental cycles

An illustration figure for experimental data collection. This illustrates various ways

data collected during experimental cycles as discussed in page 175.
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τ0
τ2

τ1
τn

cycle 2 time series

Detection delays Dataset D

cycle 1 time series cycle 2 time series

Plot (D)

(a) Time series dataset

τ0
τ2

τ1
τn

cycle 1 time series

Dataset, Dn

Calculate statistic θ̂ (D1)

Dataset, D1Dataset, D1 Dataset, D2

Calculate statistic θ̂ (D2)

Plot

(
θ̂ (Dn)

)

Calculate statistic θ̂ (Dn)

cycle 1 time series cycle 1 time series

(b) Cyclic dataset

τ0
τ2τ1 τn

cycle 2 time series

Dataset,
∑

Dn

Calculate statistic θ̂ (D1)

Dataset, D1Dataset, D1 Dataset, D1 + D2

Calculate statistic θ̂ (D1 + D2)

Plot

(
θ̂ (Dn)

)

Calculate statistic θ̂ (
∑

Dn)

cycle 1 time series cycle n time series

(c) Accumulated dataset

Figure C.2: Figures a-c show various data collection scenarios for time series data
over experimental cycles
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Data Analysis

Results

Data Data

Cluster controller nodes

...........

.........

N_{n}N_{2}N_{1}

Data

......... .........

Nodes

C1
CnC2

〈Ci, Nj〉

Figure C.3: Data collection and analysis for the distributed setting
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C.3 Hardware used in experiments

Regarding the hardware configuration in the distributed setup experiments, consider

Figure C.1 below.
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Os Arch & Kernel Cpu(s)(Ghz) Cache (KB) Ram (GB) Swap (GB)
Core Cluster Nodes

Controller ,Ri GNU/Linux 32 bit i686,
2.4.20-8 SMP

4× 2.4 Intel Xeon 512 1.03 2.09

Controller ,Ri GNU/Linux 32 bit i686,
2.4.22 SMP

2 × 0.866 Pentium III
(Coppermine)

256 0.904 1.06

(Coppermine) 256 0.513 1.05
Controller ,Ri SunOS 5.9 64 bit 4-way

Superscalar
SPARC V9

4 × 1.6 SUNW
UltraSPARCIIIi

1000 8.2 37

Client Nodes
Clients ,Li GNU/Linux 32 bit i686,

2.4.20-8 SMP
1× 3.20 Pentium IV 1024 0.512 8.03

Table C.1: The hardware specifications for machines used in the experiments for the distributed setting. The first four
machines are controllers in the cluster as described in the experimental architecture

2
8
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APPENDIX D

Tutorial on resampling statistical methods

D.1 The Bootstrap

The Bootstrap ( see [81]1 [69, 211, 204] for details) refers to the process of repeatedly

drawing samples, with replacement, from data collected2. Instead of trusting theory to

describe the sampling distribution of an estimator (e.g. mean), we estimate that distri-

bution empirically. Drawingk bootstrap samples of sizen (from an origional sample

of also sizen) yield k new estimates. The distribution of these bootstrap estimates

provides an empirical basis for estimating standard errorsor confidence intervals. The

bootstrap essentially "simulates" repeating the experiment however many times as re-

quired.

Detailed bootstrap procedures and algorithms are described in the standard reference

on the Bootstrap [83]. The general procedure for performingthe bootstrap can be

written as follows;

More formally [83] pp. 44,

• Consider a random sample x= (x1,x2,...,xn) from an unknown probability distri-

butionF . We wish to estimate a parameter of interestθ = t(F ) on the basis ofx

Typically for this purpose we calculate the estimateθ̂ = s(x).

1Brad Efron wrote the key paper rediscovering the bootstrap and his famous 1979 paper in the Annals
of Statistics.

2Unlike monte carlo simulations which fabricate their data,bootstrapping works with real data.
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Algorithm 9 The Bootstrap algorithm

SetB > 1000
repeat
• Draw a resample with replacement from the data.
• Calculate the resample mean.
• Save the resample mean into a variable.

until B TIMES
•Make a histogram and normal quartile plot of the B means.
• Calculate the standard deviation of the B means.

• Bootstrap methods depend on thebootstrap sample. Define F̂ to be the em-

pirical distribution, putting the probability1/n on each of the observedxi, i =

1, 2, ..., n. A bootstrap sample is then defined to be a random sample of size n

drawn fromF̂ , sayx∗ =x∗
1, x∗

2,...,x
∗
n, written3

F̂ → (x∗
1, x

∗
2, ..., x

∗
n) (D.1)

D.1 can also be understood to mean that the bootstrap data pointsx∗
1, x∗

2,...,x
∗
n

are a random sample of sizen drawnwith replacementfrom the population ofn

objects (x1,x2,...,xn).

• Corresponding to a bootstrap datasetx∗ is a bootstrap replication of̂θ

θ̂∗ = s(x∗) (D.2)

The quantitys(x∗) is the result of applying the same function s(.) to x∗ as was

applied tox, e.g. if s(x) is the sample mean̄x thens(x∗) is the mean of the

bootstrap dataset,̄x =
n∑

i=1

(x∗
i /n)

3The star notation indicates thatx∗ is not the actual data setx but rather the randomized, or resam-
pled version ofx.
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• The bootstrap estimate ofseF (θ̂), the standard error of a statisticθ̂, is a plu−in

estimate that uses the empirical distribution functionF̂ in place of the unknown

distribution F. Specifically the bootstrap estimate ofseF (θ̂) is defined by

seF̂ (θ̂∗) (D.3)

i.e. the bootstrap estimate ofseF (θ̂) is the standard error of̂θ for data set of size

n randomly sampled from̂F .

• Recalling that the standard error of the meanx̄, writtenseF (x̄) is the square root

of the variance ofx

seF (x̄) = [varF (x̄)]1/2 =
σF√

n
(D.4)

and that apart from the mean, there exist no formulae to compute numerical

values of the ideal estimates exactly. The bootstrap algorithm below is a compu-

tational way of obtaining a numerical value ofseF̂

(
θ̂∗
)

PROCEDURE - BASIC BOOTSTRAP

1. Given a random sample,x= (x1,x2,...,xn) , calculateθ̂.

2. Sample with replacement from the original sample to getx∗ =x∗
1, x∗

2,...,x
∗
n

3. Calculate the same statistic using the bootstrap sample in step 2 to get,̂θ∗.

4. Repeat steps 2 through 3, B times.

5. Use this estimate of the distribution ofθ̂ (i.e., the bootstrap replicates) to obtain

the desired characteristic (e.g., standard error, bias or confidence interval).
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B is generally a large number, typically≥ 10004

Bootstrap Estimate of Standard Error When our goal is to estimate the standard

error of using the bootstrap method, we proceed as outlined in the previous procedure.

Once we have the estimated distribution forθ̂, we use it to estimate the standard error

for . This estimate is given by

ˆSEB

(
θ̂
)

=

{
1

B − 1

B∑

b=1

(θ∗b − ¯̂
θ∗)2

} 1

2

(D.5)

where

¯̂
θ =

1

B

B∑

b=1

θ∗b (D.6)

It is worth observing that Equation D.5 is just the sample standard deviation of the

bootstrap replicates, and Equation D.6 is the sample mean ofthe bootstrap replicates.

[83] show that the number of bootstrap replicatesB should be between 50 and 200

when estimating the standard error of a statistic. Often thechoice ofB is dictated by

the computational complexity of̂θ, the sample size n, and the computer resources that

are available.

PROCEDURE - BOOTSTRAP ESTIMATE OF THE STANDARD ERROR

1. Given a random samplex = x1, . . . , xn calculate the statistiĉθ.

2. Sample with replacement from the original sample to getx∗b =x∗b
1 ,. . . ,x∗b

n .

4Even larger value if for example more accurate estimates arerequired, e.g. if narrower bands of
confidence intervals are desirable.
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3. Calculate the same statistic using the sample in step 2 to get the bootstrap repli-

cates,θ̂∗b.

4. Repeat steps 2 through 3,B times.

5. Estimate the standard error of using Equations D.5 and D.6.

Estimates of bias The standard error of an estimate discussed above is one measure

of its performance. Bias is another quantity that measures the statistical accuracy of

an estimate. The bias in an estimator gives a measure of how much error we have, on

average, in our estimate when we useT to estimate our parameterθ.

Bias is defined as the difference between theexpected valueof the statistic and the

parameter,

Bias (T ) = E [T ]− θ. (D.7)

clearly if the estimator isunbiased, then the expected value of our estimator equals

the true parameter value, so(E) = θ. Normally in order to determine the expected

value in Equation D.7, thedistributionof the statistic T must be known, i.e. the expec-

tation in Equation D.7 is taken with respect to the true distribution F. In these situations,

the bias can be determined analytically [156]. When the distribution of the statistic is

not known, then we can use methods such as the jackknife and the bootstrap discussed

in this section to estimate the bias ofT . To get the bootstrap estimate of bias, we use

the empirical distribution as before. We resample from the empirical distribution and

calculate the statistic using each bootstrap resample, yielding the bootstrap replicates

θ̂∗b. We use these to estimate the bias from the following:

ˆ
biasB =

¯̂
θ∗ − θ̂ (D.8)
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where ¯̂
θ∗ is given by the mean of the bootstrap replicates (Equation D.6). We are

interested in the bias in order to correct for it. The bias−corrected estimator is given

by

θ̂ = θ̂ − ˆbiasB (D.9)

and using Equations D.8 D.9 we have

θ̂ = 2θ̂ − ¯̂
θ∗ (D.10)

More bootstrap samples are needed to estimate the bias, thanare required to esti-

mate the standard error. [83] recommend thatB ≥ 400.

The procedure for estimating the bias is given below.

PROCEDURE - BOOTSTRAP ESTIMATE OF THE BIAS

1. Given a random sample,x = (x1, . . . , xn), calculate the statistiĉθ.

2. Sample with replacement from the original sample to getx∗b = x∗b
1 , . . . , x∗b

n .

3. Calculate the same statistic using the sample in step 2 to get the bootstrap repli-

cates,θ̂∗b.

4. Repeat steps 2 through 3,B times.

5. Using the bootstrap replicates, calculate¯̂
θ∗.

6. Estimate the bias of using Equation D.8.
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D.2 Bootstrap confidence intervals

Bootstrap allows calculation of confidence intervals in a number of ways, namely the

standard interval, thebootstrap-t intervaland thepercentilemethod.

Bootstrap Standard Confidence Interval This is based on the parametric of the

confidence interval. It can be shown that the(1− α) .100% confidence interval for the

mean can be found using

P

(

X̄ − z(1−α
2
) σ√

n
< µ < X̄ − z(α

2
) σ√

n

)

= 1− α (D.11)

Similarly, the bootstrap standard confidence interval is given by

(
θ̂ − z(1−α/2)SEθ̂, θ̂ − z(α/2)SEθ̂

)
(D.12)

whereSEθ̂ is the standard error for the statistiĉθ obtained using the bootstrap

[170]. The confidence interval in Equation D.12 can be used when the distribution for

θ̂ is normally distributed or the normality assumption is plausible.

Bootstrap-t Confidence Interval for this type of intervals, first generate B boot-

strap samples, and for each bootstrap sample the following quantity is computed:

z∗b =
θ̂∗b − θ̂

ˆSE∗B
(D.13)

As before,θ̂∗b is the bootstrap replicate of̂θ, but ˆSE∗B is the estimated standard

error of for that bootstrap.

Once we have theB bootstrapped values from Equation D.13, the next step is to es-
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timate the quantizes needed for the endpoints of the interval. The α/2−th quartile,

denoted by ˆtα/2 of thez∗b, is estimated by

α/2 =
#
(
z∗b ≤ ˆtα/2

)

B
(D.14)

This is then used to calculate the bootstrap−t confidence interval, which as a result

is given by

(
θ̂ − t(1−α/2) · ˆSEθ̂, θ̂ − t(α/2) · ˆSEθ̂

)
(D.15)

whereŜE is an estimate of the standard error ofθ̂. The bootstrap−t interval is

reported to be suitable forlocation statisticssuch as the mean or quantizes. How-

ever, its accuracy for more general situations is questionable [83]. The procedure for

determining the bootstrap-t intervals is outlined below:

PROCEDURE - BOOTSTRAP-T CONFIDENCE INTERVAL

1. Given a random sample,x = (x1, . . . , xn) , calculatêθ.

2. Sample with replacement from the original sample to getx∗b = x∗b
1 , . . . , x∗b

n .

3. Calculate the same statistic using the sample in step 2 to get θ̂∗b.

4. Use the bootstrap samplex∗bto get the standard error of̂θ∗b. This can be calcu-

lated using a formula or estimated by the bootstrap.

5. Calculatez∗b using the information found in steps 3 and 4.

6. Repeat steps 2 through 5, B times, whereB ≥ 1000.

7. Order thez∗b’s from smallest to largest. Find the quantizeŝt(1−α/2) and ˆt(α/2).
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8. Estimate the standard error̂SEθ̂ of θ̂ using the B bootstrap replicates of̂θ∗b

(from step 3).

9. Use Equation D.15 to get the confidence interval.

[156] observes that the number of bootstrap replicates thatare needed is quite large

for confidence intervals. It is recommended thatB ≥ 1000. If no formula exists for

calculating the standard error of̂θ∗b, then the bootstrap method can be used. This

means that there are two levels of bootstrapping: one for finding the ˆSE∗b and one for

finding thez∗b, which can greatly increase the computational burden. For example,

say thatB = 1000 and we use 50 bootstrap replicates to find̂SE∗b, then this results in

a total of 50,000 resamples.

Bootstrap Percentile Interval This is an improved bootstrap confidence interval

based on the quantizes of the distribution of the bootstrap replicates. This technique

has the benefit of being more stable than the bootstrap−t, and it also enjoys better

theoretical coverage properties [83].

The bootstrap percentile confidence interval is given by:

(
ˆ

θ
∗(α/2)
B ,

ˆ
θ
∗(1−α/2)
B

)
(D.16)

where
ˆ

θ
∗(α/2)
B is theα/2 quartile in the bootstrap distribution ofθ∗. For example, if

α/2 = 0.025 andB = 1000, then
ˆ

θ
∗(0.025)
B is theθ̂∗b in the 25th position of the ordered

bootstrap replicates. Similarly,
ˆ

θ
∗(0.975)
B is the replicate in position 975. The procedure

is the same as the general bootstrap method, and is outlined in the steps below.

PROCEDURE - BOOTSTRAP PERCENTILE INTERVAL
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1. Given a random sample,x = (x1, . . . , xn) , calculatêθ. .

2. Sample with replacement from the original sample to getx∗b = x∗b
1 , . . . , x∗b

n .

3. Calculate the same statistic using the sample in step 2 to get the bootstrap repli-

cates,θ̂∗b.

4. Repeat steps 2 through 3, B times, whereB ≥ 1000.

5. Order theθ̂∗b from smallest to largest.

6. Calculate andB · (α/2) andB · (1− α/2).

BCa Intervals TheBCa (bias-corrected and accelerated) bootstrap confidence in-

terval is an improvement on the bootstrap percentile interval and is superior to all the

other intervals discussed here. As discussed above, the upper and lower endpoints of

the bootstrap percentile confidence interval are given by:

PercentileInterval :
(

ˆθLo, ˆθHi

)
=

(
ˆ

θ
∗(α/2)
B ,

ˆ
θ
∗(1−α/2)
B

)
(D.17)

where (if for example we are considering 90% intervals),ˆθLo is the bootstrap repli-

cate in the 5th position and of the ordered list of replicates. Similarly inthis example,

ˆθHi is the bootstrap replicate in the 95th position.

TheBCa interval adjusts the endpoints of the interval based on two parameters,a and

zo. The(1− α) .100% confidence interval using the method is

PercentileInterval :
(

ˆθLo, ˆθHi

)
=

(
ˆ

θ
∗(α1)
B ,

ˆ
θ
∗(α2)
B

)
(D.18)

where
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α1 = Φ

(
ẑ0 +

ẑ0 + z(α/2)

1− â (ẑ0 + z(α/2))

)

(D.19)

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â (ẑ0 + z(1−α/2))

)

In Equation D.20Φ denotes thestandard normalcumulative distribution function,

therefore0 ≤ α1 ≤ 1 and0 ≤ α2 ≤ 1. Therefore the end points of the interval in

Equation D.18 are adjusted using the information from the distribution of the bootstrap

replicates(instead of basing the endpoints on the confidence level1− α).

Note from Equation D.20 that if botĥa andẑo theBCa is the same as the bootstrap

percentile interval.

α1 = Φ

{

0 +
0 + z(α/2)

1− 0 (0 + z(α/2))

}

= Φ
(
z(α/2)

)
= α/2

The factorsẑ0 and â are bias correction and acceleration respectively [156] The

bias-correction is based on the proportion of bootstrapθ̂∗b replicates that are less than

the statistiĉθ calculated from the original sample. It is given by

ẑ0 = Φ−1




#
(
θ̂∗b < θ̂

)

B



 (D.20)

whereΦ−1 denotes the inverse of the standard normal cumulative distribution func-

tion. The acceleration parameterâ is obtained using the jackknife procedure as fol-

lows,
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â =

n∑

i=1

{
¯̂

θ(j) − ˆθ−i

}3

6

{
n∑

i=1

(
¯̂

θ(j) − ˆθ(−i)

)2}3/2
(D.21)

where ˆθ−i is the value of the statistic using the sample with thei−th data point

removed (thei−th jackknife sample) and

¯̂
θ(j) =

n∑

i=1

ˆθ(−i) (D.22)

More theoretical details can be seen in see Efron and Tibshirani [1993] and Efron

[1987].

D.3 The Jackknife

Jacknife ( also referred to as Quenouille−Tukey Jackknife) is another resampling tech-

nique, developed before the Efron’s bootstrap5. Like the bootstrap, it also aims at pro-

viding a computational procedure to estimate and compensate for bias and to derive

robust estimates of standard errors and confidence intervals. Jackknife though is a less

general technique than the bootstrap, and it explores the sample variation in a different

way from the bootstrap. Jackknifed statistics are developed by systematically dropping

out subsets of data one at a time and assessing the resulting variation in the studied pa-

rameter [170]. We discuss it here because in practise jackknife is typically used in

conjunction with the bootstrap in a technique termedJackknife-After-Bootstrap, which

we have used in our analysis.

Regarding jackknife, suppose we wish to estimate the bias and the standard error of

5First introduced by Quenouille in 1949 and later developed by John W. Tukey in 1958.
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θ̂. θ̂ might be the mean, the variance, the correlation coefficientor some other statistic

of interest, then consider the following definition;

Definition 17. Jackknife

Suppose we have a samplex = x1, . . . , xn and an estimator̂θ = s (x). The jackknife

focuses on the samples that leave out one observation at a time:

x (i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) (D.23)

for i = 1, 2, . . . , n called jackknife samples. Theith jackknife sample consists of

the data set with theith observation removed. let

ˆθ(i) = s
(
x(i)

)
(D.24)

be theith jackknife replication of̂θ.

The jackknife estimate of bias is defined by

̂biasjack = (n− 1)
(
θ̂(.) − θ̂

)
(D.25)

where

θ̂(.) =
1

n

n∑

i=1

ˆθ(i) (D.26)

the jackknife estimate of standard error defined by

ŝejack =

{
n− 1

n

n∑

i=1

(
ˆθ(i) − θ̂(.)

)2
} 1

2

(D.27)

Theoretical details of the jacknife especially justification of the factorn−1
n

in Equation

D.27 can be seen in [83].
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The procedure for the jackknife is summarised below.

PROCEDURE - JACKKNIFE

1. Leave out an observation.

2. Calculate the value of the statistic using the remaining sample points to obtain

ˆθ(i).

3. Repeat steps 1 and 2, leaving out one point at a time, until all n ˆθ(i) are recorded.

4. Calculate the jackknife estimate of the bias ofθ̂ using Equation D.25.

5. Calculate the jackknife estimate of the standard error ofT using Equation D.27.

Comparisons between the bootstrap and jackknife are also discussed in [83] pp. 145,

to advise how to chose between the two methods. What is worth noting is that the

jackknife can be viewed as a simple approximation of the bootstrap for the estimation

of standard errors and bias. It is also worth noting that the jackknife can fail badly if

the statistiĉθ is not "smooth"6, such as is the case with the median ( median is not a

diffentiable,or smooth function ofx)

As stated before it is common practise to use the jackknife inconjunction with the

bootstrap in a technique termedJackknife-After-Bootstrapwhich we discuss next.

D.3.1 Jackknife-After-Bootstrap

When using the bootstrap to get estimates of standard error and bias, the values ob-

tained are also estimates, therefore they also have error associated with them. This

error arises from two sources, one of which is the usual sampling variability because

6Intuitively the idea of smoothness is that small changes in the data set cause only small changes in
the statistic.
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we are working with the sample instead of the population. Theother variability comes

from the fact that we are working with a finite number B of bootstrap samples.

The so calledjacknife-after-bootstraptechnique can be used to estimate this variability.

The technique allows us to obtain estimates of variation in functionals7 of a bootstrap

distribution without performing a second level bootstrap.The characteristic of the

problem and the procedure is similar to that of the bootstrap, the main difference

being that the resampling is donewithoutreplacement [156].

For example, suppose a bootstrap estimate of some statistic(e.g. estimate of standard

error) has been obtained. Denote this estimate asγ̂B.

To obtain the jackknife-after-bootstrap estimate of thevariability of γ̂B, one data

point at a time is left out and using the bootstrap method calculateγ
(−1)
B on the re-

maining data points. We continue in this way until we have then values ofγ(−1)
B . An

estimate of the variance of̂γB using theγ(−1)
B values, is as follows

ˆvarjack (γ̂B) =
n− 1

n

n∑

i=1

(γ
(−i)
B − ¯̂γB)2 (D.28)

where ¯̂γB = 1
n

n∑

i=1

γ
(−i)
B

[156] and [83] give details and discuss an efficient way of performing the jackknife-

after-bootstrap summarised in the procedure below.

PROCEDURE - JACKKNIFE-AFTER-BOOTSTRAP

1. Given a random samplex = (x1,x2,...,xn), calculate a statistic of interestθ̂.

2. Sample with replacement from the original sample to get a bootstrap sample

x∗b = x∗
1, x∗

2,...,x
∗
n.

7Such as bias and standard error of a statistic.
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3. Using the sample obtained in step 2, calculate the same statistic that was deter-

mined in step one and denote bŷθ∗b.

4. Repeat steps 2 through 3, B times to estimate the distribution of θ̂.

5. Estimate the desired feature of the distribution of (e.g., standard error, bias, etc.)

by calculating the corresponding feature of the distribution of θ̂∗b. Denote this

bootstrap estimated feature asγ̂B.

6. Now get the error inγ̂B. For i = 1, ..., n, find all samplesx∗b = x∗
1, x∗

2,...,x
∗
n that

do not contain the pointxi. These are the bootstrap samples that can be used to

calculateγ(−i)
B .

7. Calculate the estimate of the variance of using Equation D.28.

The procedure can also provide information on the influence of each observation on the

functionals [83]. Regarding the JAB, it is also worth mentioning one caveat; simulation

studies have shown that, in general, jackknife after bootstrap standard error estimates

tend to be too large. This especially true for where bootstrap samples was not large.

The JAB estimates were inflated and performed poorly A technique called weighted

jackknife after bootstrap [237] have been proposed resolvesome of these difficulties.

For our purpose we use large bootstrap samples≥ 1000, to mitigate these effects.

D.4 Computational statistical tools support for resampling tech-

niques

DATAPLOT, R, SPLUSTMand MATLABTMand other modern tools provide computa-

tional in-built statistical functions or contributed scripts for performing the bootstrap

and jacknife-after-bootstrap capabilities which collectively can be used to perform the

bootstrap and the jackknife-after-bootstrap as describedin the above discussion.
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We have used these tools to perform analysis. Table 1-5 present a summary of the

results of the analysis for various experiments.

The bootstrap plot that results from plotting the bootstrapreplicates

Below we present results obtained using these tools. Appendix A presents scripts

written for these purposes.

The detailed procedure and algorithms for the bootstrap is outlined in Efron and Tib-

shirani. For determining estimates for the standard errors,the procedure is as follows:

• What does the sampling distribution for the statistic look like?

• What is a 95 percent confidence interval for the statistic?

• Which statistic has a sampling distribution with the smallest variance? That is,

which statistic generates the narrowest confidence interval?

D.5 Experiences with jacknife-after-bootstrap

Recall that as the bootstrap estimates8 have an associated uncertainty as they are esti-

mates. Thejackknife-after-bootstrapmethod provides a mechanism for giving a mea-

sure of this uncertainty, in particular the uncertainty in their standard errors.

In addition,it is worth noting though ( as also discussed earlier ) , the jackknife-after-

bootstrap procedure tends to over-estimate these errors, especially for small values of

B (the number of bootstrap replicates chosen).

Figure D.1 below shows results of thejackknife-after-bootstrapexperiment in which

the number of bootstrap samples was varied in order to observe the effect it had on the

estimate of the error. The dataset used for this example is just one of six datasets in

8Are by definition themselves estimates.
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Table 10.3 (table has 6 columns,one for each node),page 202 therefore this experiment

can be easily repeated for the other datasets. As can be observed from the figure, the

estimate of theStandard errorconverges and becomes more accurate with an increase

in bootstrap samples. Therefore the values quoted in thejackknife-after-bootstrapsec-

tion of Table D.1 are taken from the last experiment with the largest valueof B.

the jacknife-after.bootstrap procedure is described in the appendix ,where for every

selected

1. ˆBiasB = θ̂∗b − θ̂, the bootstrap estimate of bias of the mean.

2. γ̂B = V ar (θ) is the bootstrap estimate of the variance of the mean.

3. SE (γ̂B) is the bootstrap estimate of the standard error in the estimate of γ̂B.
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The Bootstrap

Nodes

Statistic nsqa0412a01 nsqa0413b01 nsqa0413g01 nsqa0413g03 nsqa0413j02 nsqa0413l01

θ̂ 1660.953 1685.893 1659.375 1854.178 1851.977 1847.672

ˆbias -0.0755 -0.0551 0.11069 -0.6033 -0.102 0.381

ŝe 8.484 13.158 7.472 33.325 21.35 49.569

Confidence Intervals

α

0.025 1646.089 1663.014 1644.897 1798.309 1812.624 1772.723

0.050 1648.32 1666.385 1647.012 1806.002 1818.275 1782.276

0.100 1650.648 1670.137 1649.868 1816.397 1825.107 1796.012

BCapoints

0.16 1653.206 1673.422 1651.928 1825.247 1831.454 1806.606

0.84 1669.553 1698.932 1666.977 1893.080 1872.956 1907.023

0.9 1672.190 1703.182 1669.099 1904.864 1879.848 1927.294

0.95 1675.384 1708.713 1672.056 1920.293 1888.257 1956.207

0.975 1677.886 1713.793 1675.284 1934.157 1894.522 1985.674

z0 0.003759951 0.002506631 -0.003759951 0.05893987 -0.02506891 0.05893987

ahat 0.01254519 0.0251825 0.01165997 0.03240697 0.01921675 0.06216931

0.25 1655.620 1679.916 1654.137 1828.536 1838.525 1825.699

3
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0.5 1660.612 1687.441 1659.257 1857.283 1851.336 1857.199

0.1 1650.106 1671.303 1650.396 1807.367 1825.623 1803.543

Bootstap− t

0.16 1653.558 1675.754 1652.46 1818.486 1831.434 1811.687

0.84 1670.000 1700.852 1666.666 1894.468 1873.574 1916.205

0.9 1672.985 1704.029 1669.423 1905.653 1877.411 1955.739

0.95 1676.172 1708.785 1672.324 1921.87 1884.27 1996.275

0.975 1679.208 1718.862 1674.188 1932.500 1891.330 2035.485

Table D.1: Bootstrap : showing parameter and confidence interval estimates and errors for agents monitored locally at given nodes

3
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Figure D.1: (a) Showing how the estimate of thestandard error in the bootstrap
estimate of the variance of the mean,SE (γ̂B) vary with an increase in number
of bootstrap replicates,B. (b) The bootstrap estimate of the variance of the mean,

(γ̂B = V ar
(
θ̂
)

) and (d) the bootstrap estimate of the bias, (̂BiasB = θ̂∗b − θ̂) in

the same experiment
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APPENDIX E

Statistical tests

E.1 Goodness of fit tests

A note on distributional measures and goodness of fit test Parametric statistics

simplifies description of data, but recall that they requirethe assumption of normality

of the data being investigated to hold. If it can be established that the data follows a

normal distribution, then we can safely assume that a particular set of measurements (

e.g. moments,variations) can be properly described by its mean and standard deviation

for example, otherwise any conclusions drawn may be meaningless. So the first task

was to ascertain this assumption of normality for the detection delays datasets.

Often transformation of the original data can be used to allow the use of parametric

statistics, i.e. under a mathematical transformation (e.g. logarithm), the resulting data

may be normally distributed1. These transformations can be viewed as entirely legit-

imate as they only change the scale on which the analysis is being done. And inverse

transform can then be used to get to the original scales.

If normality test fails, for example in skewed or peaked distributions, other theoretical

parametric models can befitted for example , log-normal, gamma, logistic etc. To

assess how well a particular model fits, firstly, a visual inspection of the frequency

histogram with an overlaid plot of the desired distributioncan be made, and secondly

1This data is then said to be lognormal
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a goodness-of-fit test can be conducted to test the hypothesis that the data comes from

a given distribution. In essence, the normality test is a special case of goodness-of-fit

test.

A detailed discussion of goodness-of fit and normality can beseen in [131] [65] and

[181].

For testing the normality of the detection delays data sets Iused the tests below2.

Each test defines a statistic and calculates a p-value. Whileone test would suffice, I

considered all these test for completeness and comparativepurposes. [229] discusses

and compares the power of some of these standard normality tests procedures.

The lower half of table presents the results.

1. Anderson-Darling test [9], Statistic,A, is calculated as

A = −n− 1

n

n∑

i=1

[2i− 1][ln(p(i)) + ln(1− p(n−i+1))] (E.1)

wherep(i) = Φ([x(i) − x]/s). Here,Φ is the cumulative distribution function of

the standard normal distribution andx ands are mean and standard deviation of

the data values. The p-value is computed from

Z = A(1.0 + 0.75/n + 2.25/n2) (E.2)

2. Shapiro-Wilks [205]. The statistic ,W , is calculated as

W =
( n∑

i=1

aix(i)
)
/

n∑

i=1

(xi − x) (E.3)

Wherexi are ordered sample values.

2As implemented in the RTM , MatlabTMand DATAPLOTTMsoftware packages .
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3. Lillie test [149]. The statistic,D is calculated asD = max D+, D−

D+ = max
i=1,...,n

i/n− p(i) D− = max
i=1,...,n

p(i) − (i− 1)/n (E.4)

where againp(i) = Φ([x(i) − x]/s). Here,Φ is the cumulative distribution func-

tion of the standard normal distribution. The p-value is computed from the dis-

tribution of the modified statisticZ = D(
√

n − 0.01 + 0.85/
√

n) as described

in [221]

4. Jarque-Bera [125]. The statistic,JB , is calculated as

JB =
n

6

(
S2 +

(K − 3)3

4

)
(E.5)

WhereS is the sample skewness ,K sample kurtosis both defined as usual in

terms of third and forth central momentsµ3, µ4 i.e. asS = µ3/σ
3 andK =

µ4/σ
4

5. Pearson test [49, 192]. The statistic.P , is calculated as

P =
∑

(Ci − Ei)
2/Ei (E.6)

WhereCi is the number of counted andEi is the number of expected observa-

tions (under the hypothesis) in classi.

6. Cramer-von Mises test [8]. The test statistic,W , is calculated as

W =
1

12n
+

n∑

i=1

(p(i) −
2i− 1

2n
) (E.7)

wherep(i) = Φ([x(i) − x]/s), andΦ is the cumulative distribution function of
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the standard normal distribution.

I have also performed some data transformations and conducted normality tests on

the resulting data, see appendix All test confirm that the normality assumption cannot

really be made for the detection delays data.

For exploratory purposes , I have also fitted some theoretic parametric distributions to

the data. The results are shown in appendices.

A note on distributional measures and goodness of fit test Parametric statistics

simplifies description of data, but recall that they requirethe assumption of normality

of the data being investigated to hold. If it can be established that the data follows a

normal distribution, then we can safely assume that a particular set of measurements (

e.g. moments,variations) can be properly described by its mean and standard deviation

for example, otherwise any conclusions drawn may be meaningless. So the first task

was to ascertain this assumption of normality for the detection delays datasets.

Often transformation of the original data can be used to allow the use of parametric

statistics, i.e. under a mathematical transformation (e.g. logarithm), the resulting data

may be normally distributed3. These transformations can be viewed as entirely legit-

imate as they only change the scale on which the analysis is being done. And inverse

transform can then be used to get to the original scales.

If normality test fails, for example in skewed or peaked distributions, other theoretical

parametric models can befitted for example , log-normal, gamma, logistic etc. . To

assess how well a particular model fits, firstly, a visual inspection of the frequency

histogram with an overlaid plot of the desired distributioncan be made, and secondly

a goodness-of-fit test can be conducted to test the hypothesis that the data comes from

3This data is then said to be lognormal.
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a given distribution. In essence, the normality test is a special case of goodness-of-fit

test.

A detailed discussion of goodness-of fit and normality can beseen in [131] [65] and

[181].

For testing the normality of the detection delays data sets Iused the tests below4.

Each test defines a statistic and calculates a p-value. Whileone test would suffice, I

considered all these test for completeness and comparativepurposes. [229] discusses

and compares the power of some of these standard normality tests procedures.

The lower half of table presents the results.

1. Anderson-Darling test [9], Statistic,A, is calculated as

A = −n− 1

n

n∑

i=1

[2i− 1][ln(p(i)) + ln(1− p(n−i+1))] (E.8)

wherep(i) = Φ([x(i) − x]/s). Here,Φ is the cumulative distribution function of

the standard normal distribution andx ands are mean and standard deviation of

the data values. The p-value is computed from

Z = A(1.0 + 0.75/n + 2.25/n2) (E.9)

2. Shapiro-Wilks [205]. The statistic ,W , is calculated as

W =
( n∑

i=1

aix(i)
)
/

n∑

i=1

(xi − x) (E.10)

Wherexi are ordered sample values.

4As implemented in the RTM , MatlabTMand DATAPLOTTMsoftware packages.
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3. Lillie test [149]. The statistic,D is calculated asD = max D+, D−

D+ = max
i=1,...,n

i/n− p(i) D− = max
i=1,...,n

p(i) − (i− 1)/n (E.11)

where againp(i) = Φ([x(i) − x]/s). Here,Φ is the cumulative distribution func-

tion of the standard normal distribution. The p-value is computed from the dis-

tribution of the modified statisticZ = D(
√

n − 0.01 + 0.85/
√

n) as described

in [221]

4. Jarque-Bera [125]. The statistic,JB , is calculated as

JB =
n

6

(
S2 +

(K − 3)3

4

)
(E.12)

WhereS is the sample skewness ,K sample kurtosis both defined as usual in

terms of third and forth central momentsµ3, µ4 i.e. asS = µ3/σ
3 andK =

µ4/σ
4

5. Pearson test [49, 192]. The statistic.P , is calculated as

P =
∑

(Ci − Ei)
2/Ei (E.13)

WhereCi is the number of counted andEi is the number of expected observa-

tions (under the hypothesis) in classi.

6. Cramer-von Mises test [8]. The test statistic,W , is calculated as

W =
1

12n
+

n∑

i=1

(p(i) −
2i− 1

2n
) (E.14)

wherep(i) = Φ([x(i) − x]/s), andΦ is the cumulative distribution function of
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the standard normal distribution.

I have also performed some data transformations and conducted normality tests on

the resulting data, see appendix All test confirm that the normality assumption cannot

really be made for the detection delays data.

For exploratory purposes , I have also fitted some theoretic parametric distributions to

the data. The results are shown in appendices.
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DISTRIBUTIONAL NORMALITY TESTS

ANDERSON-DARLING A = −n− 1
n

∑n
i=1[2i− 1][ln(p(i)) + ln(1− p(n−i+1))]

Statistic A 26.99178 6.518426 11.87086 11.07163 4.86468 68.7629 11.86567 4.23203 43.77127

P-value 3.160e-61 5.45e-16 1.80e-28 1.23e-26 4.85e-12 1.68e-132 1.85e-28 1.61e-10 3.00e-93

Conclusion REJECT

WILKSON-SHAPIRO

Statistic W 0.94143 0.97707 0.95221 0.96082 0.98741 0.84531 0.97045 0.98697 0.91408

p-value 1.71e-25 6.40e-16 3.27e-23 4.30e-21 4.58e-11 5.90e-38 2.85e-18 2.57e-11 4.23e-30

Conclusion REJECT

SHAPIRO-FRANCIA W =
(∑n

i=1 aix(i)
)
/
∑n

i=1(xi − x)

Statistic W 0.941533 0.977359 0.95234 0.96110 0.98803 0.84541 0.97064 0.98726 0.91364

p-value 3.34e-23 1.45e-14 3.70e-21 3.17e-19 5.60e-10 2.60e-34 1.03e-16 2.21e-10 2.20e-27

Conclusion REJECT

L ILLIE (KOLG-SMIR) D+ = maxi=1,...,n i/n − p(i),D
− = maxi=1,...,n p(i) − (i− 1)/n

Statistic D 0.107311 0.040742 0.041497 0.04118 0.03484 0.14700 0.05665 0.034663 0.10399

p-value 2.25e-53 5.61e-07 2.98e-07 3.89e-07 4.96e-05 2.10e-102 5.55e-14 5.61e-05 5.35e-50

Conclusion REJECT

JARQUE-BERA JB = n
6

(
S2 + (K−3)3

4

)
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Statistic X2 391.5488 53.03562 453.9846 237.4310 40.43232 1920.713 72.68503 42.78078 589.0186

p-value 0 3.04e-12 0 0 1.66e-09 0 1.11e-16 5.13e-10 0

Conclusion REJECT

PEARSON P =
∑

(Ci − Ei)
2/Ei

Statistic P 520.8587 231.6351 142.4349 166.3462 98.1617 625.0502 205.6223 108.9965 465.7974

p-value 1.06e-86 5.15e-30 2.72e-14 2.53e-18 1.92e-07 6.05e-108 2.91e-25 5.07e-09 1.37e-75

Conclusion REJECT

CRAMER-VON M ISES W = 1
12n +

∑n
i=1(p(i) − 2i−1

2n )

Statistic W 4.648875 0.655082 1.28574 1.29745 0.73091 10.99672 1.54436 0.58801 7.43111

p-value 6.91e+51 1.35e-07 3.75e-10 3.70e-10 3.87e-08 Inf 6.43e-10 4.60e-07 7.29e+197

Conclusion REJECT

Table E.1: Showing results of a number of normality tests on all datasets for experiments where the agent numbers monitored was

varied from 5 to 100. All normality tests reject the hypothesis that the data is normally distributed as evidenced by low p-values, i.e.

p− values≪ 0.05
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E.2 Hypothesis Tests

Regarding the hypothesis to be tested, we can consider a two sided test with the null

hypothesis being that thelocation parameters for the partial and full protocol datasets

are equal, and with the alternative hypothesis just being thatthere is a difference be-

tween the location parametersi.e.

H0 : µ1 = µ2, H1 : µ1 6= µ2 (E.15)

But a more relevant test is the one sided hypothesis test given that we suspect the partial

protocol datasets to have lower location parameter than thefull protocol datasets.

H0 : µ1 = µ2, H1 : µ1 ≤ µ2 (E.16)

i.e. the null hypothesis can be stated as: "There is no difference in the location

parameter for the partial protocol and full protocol datasets. The corresponding alter-

native hypothesis can be stated as: "The location parameter for the partial protocol

dataset is less than that of the full protocol dataset.

I ran thewilox.test procedure with the data vectors from the two data sets and for

each of the experiments when the agent numbers were varied from 10 through to a

100. Results are shown in Table E.2. The results show that theis a strong evidence

across all experiments against the null hypothesis, as shown by the very low p-values,

and by extension a strong evidence toward alternative hypothesis.
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Wilcoxon rank sum test
Data: Pproto.data and Fproto.data

10 agents experiments
W = 93638, p-value< 2.2e-16

alternative hypothesis: true location shift is less than 0
30 agents experiments

W = 26503.5, p-value< 2.2e-16
alternative hypothesis: true location shift is less than 0

50 agents experiments
W = 693222.5, p-value< 2.2e-16

alternative hypothesis: true location shift is less than 0
100 agents experiments

W = 1008896, p-value< 2.2e-16
alternative hypothesis: true location shift is less than 0

Table E.2: Showing results of the non parametric Wilcoxon hypothesis test for the
partial and full protocol datasets for experiments with agent numbers varied from 10 to
100. The very low p-value are a strong evidence against accepting the null hypothesis
and strong evidence for considering the alternative

E.3 Repeatability of experiments

A note on repeatability of experiments and analysis of variance To check whether

experiments were repeatable, for every experiment, a number of runs were scheduled.

For example Figure E.1 shows the box plots of the data for experimental runs for the 10

and 70 agents experiments. The corresponding, Table E.3 shows results of the Kruskal-

Wallis test (a non parametric equivalent of the ANOVA test ) for these experimental

runs. The related results for the multiple comparison procedure are shown in Figure

E.1

KRUSKAL-WALLIS ANOVA TABLE

SOURCE SS DF MS CHI-SQ PROB > CHI-SQ

10 AGENTS

Columns 2.1750e+09 1 2.1750e+09 2.2230e+03 0
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Error 1.1760e+09 3424 3.4347e+05

Total 3.3510e+09 3425

70 AGENTS

Columns 2.4878e+08 1 2.4878e+08 254.2751 0

Error 3.1023e+09 3424 9.0604e+05

Total 3.3510e+09 3425

Table E.3: Results for the non-parametric anova using Kruskal-Wallis test

The sensitive multiple comparisons test results as shown inFigure E.1 and the kruskal-

wallis tests results in Table E.3 do show differences in the location parameter across

the experimental runs, but the boxplots indicate that the differences are reasonable.
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(b) 70 agent experimental runs

Figure E.1: Showing plot for the multiple comparison tests for 9 experimental runs for
the 10 and 70 agent full protocol experiment
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APPENDIX F

All summary statistics

F.1 Partial Protocol data sets
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(a) 10 agent experiment
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(b) 15 agent experiment
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(c) 20 agent experiment
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(d) 25 agent experiment

Figure F.1: Figures (a)-(d) show 4-plots for the purposes ofexploratory data analysis
for centralised experiments using the partial protocol scheme where agent numbers
were varied from 10 through to 25
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(a) 30 agent experiment
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(b) 40 agent experiment
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(c) 50 agent experiment
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(d) 100 agent experiment

Figure F.2: Figures (a)-(d) show 4-plots for the purposes ofexploratory data analysis
for centralised experiments using the partial protocol scheme where agent numbers
were varied from 30 through to 100
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F.2 Full Protocol datasets
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 5317

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.3564000E+04 * RANGE = 0.2470000E+04 *

* MEAN = 0.2921928E+04 * STAND. DEV. = 0.4257777E+03 *

* MIDMEAN = 0.2882001E+04 * AV. AB. DEV. = 0.3228591E+03 *

* MEDIAN = 0.2795000E+04 * MINIMUM = 0.2329000E+04 *

* = * LOWER QUART. = 0.2597000E+04 *

* = * LOWER HINGE = 0.2597000E+04 *

* = * UPPER HINGE = 0.3158000E+04 *

* = * UPPER QUART. = 0.3158000E+04 *

* = * MAXIMUM = 0.4799000E+04 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.4246227E+00 * ST. 3RD MOM. = 0.1471157E+01 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.5648685E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.3380893E+03 *

* = * UNIFORM PPCC = 0.9070824E+00 *

* = * NORMAL PPCC = 0.9325916E+00 *

* = * TUK -.5 PPCC = 0.6920604E+00 *

* = * CAUCHY PPCC = 0.2227653E+00 *

***********************************************************************

(a) 5 Agent Experiment

SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 16910

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.7022500E+04 * RANGE = 0.6155000E+04 *

* MEAN = 0.5628141E+04 * STAND. DEV. = 0.9632474E+03 *

* MIDMEAN = 0.5644754E+04 * AV. AB. DEV. = 0.6999647E+03 *

* MEDIAN = 0.5395000E+04 * MINIMUM = 0.3945000E+04 *

* = * LOWER QUART. = 0.4950000E+04 *

* = * LOWER HINGE = 0.4950000E+04 *

* = * UPPER HINGE = 0.6074000E+04 *

* = * UPPER QUART. = 0.6074000E+04 *

* = * MAXIMUM = 0.1010000E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.7945901E+00 * ST. 3RD MOM. = 0.1405107E+01 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.5350581E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.5873189E+03 *

* = * UNIFORM PPCC = 0.9122940E+00 *

* = * NORMAL PPCC = 0.9451001E+00 *

* = * TUK -.5 PPCC = 0.6660264E+00 *

* = * CAUCHY PPCC = 0.1550779E+00 *

***********************************************************************

(b) 10 Agent Experiment

Figure F.3: Showing summary statistics for 5, 10 agent experiments
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 21424

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.1336450E+05 * RANGE = 0.7295000E+04 *

* MEAN = 0.1237764E+05 * STAND. DEV. = 0.9852908E+03 *

* MIDMEAN = 0.1238323E+05 * AV. AB. DEV. = 0.8050829E+03 *

* MEDIAN = 0.1214500E+05 * MINIMUM = 0.9717000E+04 *

* = * LOWER QUART. = 0.1161900E+05 *

* = * LOWER HINGE = 0.1161900E+05 *

* = * UPPER HINGE = 0.1321100E+05 *

* = * UPPER QUART. = 0.1321100E+05 *

* = * MAXIMUM = 0.1701200E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = -0.3532879E-01 * ST. 3RD MOM. = 0.6062595E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.3205218E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.3354115E+03 *

* = * UNIFORM PPCC = 0.9707130E+00 *

* = * NORMAL PPCC = 0.9767389E+00 *

* = * TUK -.5 PPCC = 0.6588120E+00 *

* = * CAUCHY PPCC = 0.1502470E+00 *

***********************************************************************

(a) 20 Agent Experiment

SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 23314

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.1715650E+05 * RANGE = 0.1207500E+05 *

* MEAN = 0.1760411E+05 * STAND. DEV. = 0.1411312E+04 *

* MIDMEAN = 0.1762307E+05 * AV. AB. DEV. = 0.1167766E+04 *

* MEDIAN = 0.1712900E+05 * MINIMUM = 0.1111900E+05 *

* = * LOWER QUART. = 0.1651300E+05 *

* = * LOWER HINGE = 0.1651300E+05 *

* = * UPPER HINGE = 0.1904900E+05 *

* = * UPPER QUART. = 0.1904900E+05 *

* = * MAXIMUM = 0.2319400E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = -0.2015251E+00 * ST. 3RD MOM. = 0.4725470E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.2211800E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.4984297E+03 *

* = * UNIFORM PPCC = 0.9714868E+00 *

* = * NORMAL PPCC = 0.9635677E+00 *

* = * TUK -.5 PPCC = 0.6231364E+00 *

* = * CAUCHY PPCC = 0.1427646E+00 *

***********************************************************************

(b) 30 Agent Experiment

Figure F.4: Showing summary statistics for 20, 30 agent experiments
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 27413

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.2415050E+05 * RANGE = 0.2167700E+05 *

* MEAN = 0.2338939E+05 * STAND. DEV. = 0.2435642E+04 *

* MIDMEAN = 0.2341896E+05 * AV. AB. DEV. = 0.2120906E+04 *

* MEDIAN = 0.2287900E+05 * MINIMUM = 0.1331200E+05 *

* = * LOWER QUART. = 0.2128000E+05 *

* = * LOWER HINGE = 0.2128000E+05 *

* = * UPPER HINGE = 0.2571200E+05 *

* = * UPPER QUART. = 0.2571200E+05 *

* = * MAXIMUM = 0.3498900E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = -0.1445579E-01 * ST. 3RD MOM. = 0.3875467E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.2782674E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.4959662E+03 *

* = * UNIFORM PPCC = 0.9786684E+00 *

* = * NORMAL PPCC = 0.9678799E+00 *

* = * TUK -.5 PPCC = 0.6320242E+00 *

* = * CAUCHY PPCC = 0.1418798E+00 *

***********************************************************************

(a) 40 Agent Experiment

SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 31882

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.3152500E+05 * RANGE = 0.2075400E+05 *

* MEAN = 0.2918180E+05 * STAND. DEV. = 0.2817885E+04 *

* MIDMEAN = 0.2919943E+05 * AV. AB. DEV. = 0.2275700E+04 *

* MEDIAN = 0.2954800E+05 * MINIMUM = 0.2114800E+05 *

* = * LOWER QUART. = 0.2748400E+05 *

* = * LOWER HINGE = 0.2748400E+05 *

* = * UPPER HINGE = 0.3137600E+05 *

* = * UPPER QUART. = 0.3137600E+05 *

* = * MAXIMUM = 0.4190200E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.1621292E+00 * ST. 3RD MOM. = -0.4408322E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.2420063E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.3858649E+03 *

* = * UNIFORM PPCC = 0.9809257E+00 *

* = * NORMAL PPCC = 0.9799967E+00 *

* = * TUK -.5 PPCC = 0.6121349E+00 *

* = * CAUCHY PPCC = 0.1181198E+00 *

***********************************************************************

(b) 50 Agent Experiment

Figure F.5: Showing summary statistics for 40, 50 agent experiments
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 31897

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.3425250E+05 * RANGE = 0.2189700E+05 *

* MEAN = 0.3462034E+05 * STAND. DEV. = 0.3305890E+04 *

* MIDMEAN = 0.3464385E+05 * AV. AB. DEV. = 0.2619900E+04 *

* MEDIAN = 0.3497700E+05 * MINIMUM = 0.2330400E+05 *

* = * LOWER QUART. = 0.3284000E+05 *

* = * LOWER HINGE = 0.3284000E+05 *

* = * UPPER HINGE = 0.3705400E+05 *

* = * UPPER QUART. = 0.3705400E+05 *

* = * MAXIMUM = 0.4520100E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.2307196E+00 * ST. 3RD MOM. = -0.5565903E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.2742768E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.3651406E+03 *

* = * UNIFORM PPCC = 0.9734833E+00 *

* = * NORMAL PPCC = 0.9817482E+00 *

* = * TUK -.5 PPCC = 0.6199930E+00 *

* = * CAUCHY PPCC = 0.1137837E+00 *

***********************************************************************

(a) 40 Agent Experiment
SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 16477

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.4061300E+05 * RANGE = 0.3793400E+05 *

* MEAN = 0.4032761E+05 * STAND. DEV. = 0.4198260E+04 *

* MIDMEAN = 0.4054351E+05 * AV. AB. DEV. = 0.3201970E+04 *

* MEDIAN = 0.4019000E+05 * MINIMUM = 0.2164600E+05 *

* = * LOWER QUART. = 0.3798700E+05 *

* = * LOWER HINGE = 0.3798700E+05 *

* = * UPPER HINGE = 0.4299400E+05 *

* = * UPPER QUART. = 0.4299500E+05 *

* = * MAXIMUM = 0.5958000E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.2472570E+00 * ST. 3RD MOM. = 0.2060684E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.4255906E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.1803309E+03 *

* = * UNIFORM PPCC = 0.9556414E+00 *

* = * NORMAL PPCC = 0.9869096E+00 *

* = * TUK -.5 PPCC = 0.7210979E+00 *

* = * CAUCHY PPCC = 0.1933749E+00 *

***********************************************************************

(b) 50 Agent Experiment

Figure F.6: Showing summary statistics for 40, 50 agent experiments
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SUMMARY STATISTICS

NUMBER OF OBSERVATIONS = 20522

***********************************************************************

* LOCATION MEASURES * DISPERSION MEASURES *

***********************************************************************

* MIDRANGE = 0.4940700E+05 * RANGE = 0.6254400E+05 *

* MEAN = 0.5080186E+05 * STAND. DEV. = 0.7051735E+04 *

* MIDMEAN = 0.5052490E+05 * AV. AB. DEV. = 0.5334674E+04 *

* MEDIAN = 0.5079550E+05 * MINIMUM = 0.1813500E+05 *

* = * LOWER QUART. = 0.4730225E+05 *

* = * LOWER HINGE = 0.4730300E+05 *

* = * UPPER HINGE = 0.5537600E+05 *

* = * UPPER QUART. = 0.5537675E+05 *

* = * MAXIMUM = 0.8067900E+05 *

***********************************************************************

* RANDOMNESS MEASURES * DISTRIBUTIONAL MEASURES *

***********************************************************************

* AUTOCO COEF = 0.3237467E+00 * ST. 3RD MOM. = -0.5456704E+00 *

* = 0.0000000E+00 * ST. 4TH MOM. = 0.3907562E+01 *

* = 0.0000000E+00 * ST. WILK-SHA = -0.2048621E+03 *

* = * UNIFORM PPCC = 0.9512460E+00 *

* = * NORMAL PPCC = 0.9875441E+00 *

* = * TUK -.5 PPCC = 0.7004446E+00 *

* = * CAUCHY PPCC = 0.1686039E+00 *

***********************************************************************

Figure F.7: Showing detection delays summary statistics for the 5 agent ex-
periment

329



APPENDIX G

Partial Protocol experimental runs results

To check repeatability, for each number of agents several experimental runs were

made. Tables below presents results for example for the 70 agents experiments.
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The Bootstrap
Experimental Runs

Statistic 1 2 3 4 5 6 7 8 9

θ̂ 40434.99 40436.47 45425.46 42701.33 52765.26 52295.44 52322.59 40503.44 40186.41
Confidence Intervals

BCa

blo 40385.82 40391.19 45338.68 42613.78 52667.94 52210.67 52234.37 40446.68 40135.91
bhi 40482.52 40480.54 45517.59 42778.27 52876.83 52388.56 52410.85 40559.74 40237.42
zo -0.01 0.02 0.03 -0.01 -0.01 0.00 0.00 -0.03 0.01
ahat -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00

Percentile
phi 40365.76 40387.85 45316.20 42643.30 52668.22 52218.43 52228.84 40457.01 40127.81
plo 40501.04 40486.53 45551.85 42757.99 52855.40 52373.52 52410.31 40552.70 40240.10

Percentile-t
p-lo 40384.81 40389.05 45333.98 42622.16 52665.52 52206.22 52237.56 40448.84 40136.19
pthi 40482.82 40482.14 45516.86 42780.11 52862.93 52382.95 52402.87 40565.09 40237.86

Hybrid
hblo 40390.66 40393.33 45335.93 42620.95 52668.58 52207.82 52238.48 40442.07 40133.11
hbhi 40481.26 40482.77 45521.42 42771.81 52867.27 52380.03 52404.50 40557.23 40236.27

Table G.1: Bootstrap : showing parameter, confidence interval estimates,errors for 70 agent experimental runs, whereθ is
the sample mean

3
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The Bootstrap
Experimental Runs

Statistic 1 2 3 4 5 6 7 8 9

θ̂ 29200.66 29201.13 29629.02 29121.28 29008.43 29342.12 37147.58 37146.98 36085.56
Confidence Intervals

BCa

blo 29163.56 29163.67 29580.78 29078.53 28970.18 29298.02 37094.76 37095.10 36016.50
bhi 29242.54 29242.42 29680.17 29157.78 29047.69 29384.65 37196.58 37196.17 36162.14
zo 0.04 0.03 -0.01 -0.03 -0.02 -0.01 -0.05 -0.04 0.04
ahat 0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00

Percentile
phi 29156.38 29162.64 29588.56 29092.97 28969.07 29299.46 37079.24 37083.89 36004.01
plo 29249.72 29241.01 29673.55 29149.41 29046.98 29388.92 37214.09 37212.18 36162.69

Percentile-t
p-lo 29163.44 29160.02 29578.14 29080.10 28968.12 29295.25 37094.16 37094.55 36017.61
pthi 29239.90 29239.09 29676.95 29160.74 29047.30 29385.12 37197.35 37197.19 36149.10

Hybrid
hblo 29163.65 29161.73 29577.71 29080.22 28964.72 29298.59 37095.36 37094.35 36012.22
hbhi 29242.35 29242.69 29679.13 29161.21 29044.75 29383.65 37199.09 37196.30 36150.14

Table G.2: Bootstrap : showing parameter and confidence interval estimates and errors for 50 agent experimenta1 runs

3
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Figure G.3 below show density distributions of the bootstrap replicate of the men for

the 9 experiments for the 70 agent centralised experiments.QQ plots of the replicates

are also presented.

Figure G.2 shows QQ plot of the replicate for the 9 experiments for the 70 agent cen-

tralised experiments. these plots suggests that the replicates are normally distributed

1

1This is not surprising given the central limit theorem.
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Figure G.1: Bootstrap replicates for each of the 9 70 agents experiments: Showing
distribution of the mean
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Figure G.2: Bootstrap replicates for each of the 9 70 agents experiments: Showing
qqplots
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G.1 Resampling, Bootstrap confidence intervals
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Figure G.3: Bootstrap replicates for each of the 9 70 agents experiments: Showing
distribution of the mean
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Figure G.4: Bootstrap replicates for each of the 9 70 agents experiments: Showing
qqplots of the mean
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APPENDIX H

Network latency and Synchronisation

The notion of time in distributed systems and the resulting inherent limitations of a

distributed system relating in particular to the absence ofa common (global) clock

and the difficulty in reasoning abouttemporal orderingof events are well studied in

distributed systems research with early work published in [146].

The area of clock synchronisation is also well researched with early notable work

done by [147] [148, 62, 63, 157].

To address these problems, a number of algorithms for clock synchronisation have also

been published in [106, 152, 218, 137, 235],

Extended surveys of these algorithms and synchronisation protocols can be seen in

[208] and [195].

In the paragraphs that follow I only give a brief overview of these topics, sufficient

only in providing context for this research when dealing with time and synchronisation

related issues while conducting experiments in the distributed setting. Full details can

be seen in the original papers and surveys mentioned above.

Overview In generalwhen dealing with time in a distributed system;

• We may need to know the time someeventhappened on a specific node. For

this, one approach is to synchronise that node’s clock with some externalau-
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thoritativesource of time. The main issue with this approach is to consider how

difficult it is to achieve this synchronisation.

• We may need to know the time interval, orrelative order, between two events

that happened on different nodes.

– The observation here is that, if their clocks are synchronised to someknown

degree of accuracy, we can measure time relative to each local clock. The

issue here is whether this (accuracy) is always consistent.

• We cannot ignore the network’sunpredictability.

To relate all these issues to the experiments I conducted in the distributed setting ,

I was specifically interested in determiningdetection delaysas discussed throughout

this thesis, but this time with the observation delegated toa remote node, the controller.

Theevent, (termination), occurslocally and is detectedremotely.

Generally dealing with time in distributed systems requires consideration of mainly

three aspects;physical clocks, coordinated universal timeandsynchronisation. Since

there is no common clock in this case, one standard approach used is to employ atomic

clocks to minimise clock drift and synchronise with time servers that havecoordinated

universal time, UTC receivers, to try to compensate for unpredictable network delays.

H.1 Clock synchronisation algorithms

A large number of algorithms for clock synchronisation havebeen proposed in the

literature. In general, because of the variable and unknowncommunication delays

between processors, there are limits imposed on the extent to which processor local

clocks can be synchronised. In addition, there is need to consider failures, and also

complications do arise especially when arbitrary failuresare considered. Therefore
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there has been work done in these areas. In particular a few theoretical results are

known that study the limitations of clock synchronisation under different system mod-

els, e.g. [152, 79, 147].

These clock synchronisation algorithms discussed in the literature differ from each

other in their assumptions about theclock hardware, network topology, and failure

models. The algorithms take either a software or a hardware centricview of clock

synchronisation [195]. All these algorithms provide internal clock synchronisation.

External synchronisation is provided if one of the clocks isconsidered as the external,

real-time reference.

The basic idea of software synchronisation algorithms is that each processor peri-

odically corrects its local clock value according to the values of other clocksit re-

ceives throughmessage passing. [195] discusses various classes of software based

synchronisation protocols, namely,convergence function with averagingexemplified

by [147, 152],convergence function without averaging[218],consistency-based[145].

For the purposes of experiments described in this chapter regarding clock synchroni-

sation I used a software based protocol, NTP, (discussed below) widely implemented

and available in UNIX based operating systems.

Network Time Protocol, NTP [166]is example of adistributed algorithmfor time

synchronisation is the famous

NTP has been implemented as an internet protocol1 2. The protocol can be used to

synchronise clocks on apacket switchednetwork with variable latency. It uses the

User Datagram Protocol, UDP [193], at the transport layer and has been designed

1NTP is documented in the standard internet protocol requestfor comments (RFC) document
RFC1305)

2And also refers to a program (ntp daemon with utilities.) that implements the protocol and controls
the computer clock.
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particularly to resist the effects of variable latency.

NTP utilises a hierarchical network of servers, withprimary serversconnected directly

to a time source, andsecondary serversconnected to the primary servers in a hierarchy.

Servers higher up are presumed to be more accurate than at lower levels.

NTP uses Marzullo’s algorithm [158, 157] with the UTC3 time scale. The more recent

implementation of NTP, NTPv4 [165] is reported to be capableof maintaining time to

within 10 ms over the public internet, and can achieve accuracies of 200µs or better

in local area networks under ideal conditions [166].

NTP provides several synchronisation modes, namely;multicast mode, used mainly

in local area networks;procedure call mode, which provide high accuracy and mainly

used in file servers, and asymmetric modewhere there is an exchange of detailed

messages and history is maintained.

H.2 Network latency experiments

As discussed, the physical clocks on the cluster nodes were synchronised using the

NTP protocol as described above4, hence we assumed common time and negligible

drift. To determine network latency experienced by controlmessages in the distributed

setting, an experiment was also conducted.

Figure 10.2 presents an event diagram for the procedure followed when determining

the distribution of the network latency and the clock drift.The experimental setup

and an algorithm as suggested by the diagram is as follows; Atvarious points in the

running of overall experiments, a local timet11 is recorded and timer started and aping

3High-precision atomic time standard.
4And the experiments conducted in the distributed setting did not span exceedingly longs period to

warrant concern about clock drifts.
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message sent from nodeN1 to N2. On arrival, local timet22 5 is recorded and aping

message sent back to nodeN1. On arrival at nodeN1 local timet13 is recorded.

��
��
��

��
��
��

t11

t12

t13

t21

t22

t23

N1 N2

∆t

glob
al

tim
e

Figure H.1: Event diagram for network delays

To determine the estimate oft23, time on nodeN1 corresponding tot13 we use equation

H.1

t23 ≈ t22 +
1

2
∆t (H.1)

where clearly

∆t ≈ t13 − t11 (H.2)

5As determined by javaSystem.currentTimeMillis()system call.
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is thenetwork latencyincurred by messages between nodes.
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Probability Density Function Parameter Estimation

Distribution Prob.Plot Estimate MLE MLE Err MLE CL MLE CU Est.cov. of parameter est.

Normal

µ 3.01696 52.637 25739 25945 µ σ

σ 14.6407 37.2252 3753 3899 µ 2770.65 1.13476E-12

Log Likelihood -4231.87 σ 1.13476E-12 1385.72

Poisson

µ 10.1491 0.00200282 10.1452 10.1530 µ σ

σ 0.145532 0.00141641 0.1428 0.1484 µ 4.01127e-06 3.0558e-19

Log Likelihood -50902.2 σ 3.0558e-19 2.00621e-06

Lognormal

a 47.0423 0.912333 45.2877 48.8649 µ σ

b 549.33 10.7105 528.7335 570.7281 a 0.832352 -9.71967

Log Likelihood -50931.1 b -9.71967 114.715

Log Logistic

µ 25652.5 51.361 25552 255753 µ σ

σ 2142.23 24.5086 2095 2191 µ 2637.95 39.1888

Log Likelihood -51021.3 σ 39.1888 600.673

Table H.1: Showing parameter estimate and Maximum Likelihood estimates

3
4
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APPENDIX I

Distributed Termination detection

I.1 Tracing Algorithms

Dijkstra-Scholten algorithm A formalisation of this algorithm in given in ([226]),

and proceeds a follows; Consider the stateZp of a process partitioned into two subsets,

passiveandactive. Also consider a setP of all processes an setE of all message

channels between any given pair of processes.

Then consider a predicateterm given in theorem 1

Theorem 1. Theorem

term⇐⇒ (∀p ∈ P : statep = passive)
∧

(∀p ∈ E : Mpq does not contain〈mes〉 a message.)

Proof. If all processes are passive, no internal or send event is applicable. If, more

over no channel contains a〈mes〉 message, no receive event is applicable, hence no

basic event is applicable at all. If some process is active, asend or internal event is

possible in that process and if some channel contains a〈mes〉message the receipt of a

message is applicable.

During the distributed computation, consider that there isa special node,an initiator

,po and that the detection algorithm maintains a computation treeT = (VT , ET ) with
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the following properties:

1. EitherT is empty, orT is a directed tree with the rootp0 as the initiator

2. The set VT includes all processes and all basic messages (messages sent by the

underlying computation) in transit.

That is, the vertices are nodes of the network and messages intransit. Steps of the

computation trigger updates.

The initiator,P0, callsAnnouncewhenP0 /∈ VT ; By the first property,T is empty in

this case, and by the second property,term holds.

To preserve the properties of the computation tree when the basic computation evolves,

T must be expanded when a basic message is sent or when a process, not in the tree,

becomes active.

When a processp sends a basic message〈mes〉, 〈mes〉 is inserted into a tree and the

father of〈mes〉 is p.

When a processp, not in the tree, becomes active by the receipt of a message from

some processq, q becomes the father ofp.

To represent the sender of a message explicitly, a basic message〈mes〉 sent byq will

be denoted as〈mes, q〉 [226].

The removal of nodes fromT is also necessary, for two reasons. First a basic message

is deleted when it is received. Second, to ensure progress ofthe detection algorithm

the tree must collapse within a finite number of steps after termination. Messages are

the leaves ofT ; processes maintain a variable that counts the number of their sons in

T . The deletion of a son of processp occurs in a different processq; it is either the

receipt of a son message, or the deletion of a son processq. To prevent corruption of
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p’s son count, a signal message〈sig, p〉 can be sent top when a son ofp is deleted.

This message replaces the deleted son ofp, and its deletion, i.e., its receipt, occurs in

processp andp decrements its son count when its receives a signal.

The Dijkstra-Scholten algorithm achieves an attractive balance between the control

communication and the basic communication; for each basic message sent fromp to q

the algorithm sends exactly one control message fromp to q [226].

The Dijkstra-Scholten algorithm was generalised to decentralized basic computations

by [206] to give a Shavit-Franchez algorithm. In that algorithm, the computation graph

is a forest1 of which each tree is rooted at an initiator of the basic computation. The

tree rooted atp is denotedTp. The algorithm maintains a graph F = (VF , EF ) such that

1. either F is empty or F is a forest of which each tree is rootedin an initiator; and

2. VF includes all active processes and all basic messages.

As in the Dijkstra-Scholten algorithm, termination is detected when the graph becomes

empty. Unfortunately, in the case of a forest it is not trivial to see whether the graph is

empty. Details of this algorithm can be seen in [206, 226]

I.2 Some Selected Algorithms, some optimisations and robustness

considerations

To expand on the various schemes for detecting termination,below is a discussion of

a selection of algorithms.

1) An (N -1)-Resilient Algorithm for Distributed Terminati on Detection

[144] presents a fault-tolerant termination detection algorithm based on a previous

1A forest is a disjoint union of trees.
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fault-sensitive scheme by [78]. The proposed algorithm cantolerate any number of

crash failures. It runs as efficiently as its non fault-tolerant predecessor if no process

actually fails during the computation, and otherwise incurs only a small amount of

cost for each actual failure. It is assumed that the underlying communication network

provides such services are reliable end-to-end communication, failure detection, and

fail flush.

2) Detecting Termination of Distributed Computations By External Agents [118]

presents two algorithms for detecting termination of distributed computations moni-

tored by an external controlling agent. The first algorithm is based on theweighted

throw countingscheme [118]. Weights are assigned to each active process and to each

message in transit. The agent has a weight, too. The algorithm maintains an invariant

that the sum of all the weights equals one. The agent concludes the termination when

its weight equals one. A space-efficient encoding of the weights is also proposed.

The second algorithm adopts the distributed snapshots scheme. When a process be-

comes idle, it takes a local snapshot and sends the snapshot to the agent. The agent puts

the local snapshots together to form a global snapshot and determines the termination

by checking the recorded state in the global snapshot.

[117] observes that by comparison, the first one is better if storage space is the ma-

jor consideration, while the second is more suitable for real-time systems, because no

waiting is employed on the processes due to termination detection. The second al-

gorithm is also optimal in minimizing the message complexity: only one additional

message carrying the local snapshot is needed per idleness [117]

3) A Distributed Termination Detection Scheme [250] proposes a fully distributed

scheme for detecting the termination of distributed computations. The scheme does not
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require a pre-defined detector, and takes into account problems such as network delay

and the non-order-preserving arrival of messages. It is claimed that the scheme can be

applied to any kind of connection topology. The correctnessof the scheme is presented

in terms of showing that the global stable condition holds when the scheme declares

the termination of the computation. The upper bound of the number of the messages

which are used to detect termination is also discussed [250].

I.3 Static and dynamic termination algorithms

[37] then discusses details of the static and dynamic termination algorithms following

the above termination definition (static and dynamic).

In the static termination case a control processCi called a controller is associated with

each application processPi. The role ofCi is to observe the behaviour ofPi and to

cooperate with other controllersCj to detect occurrence of the predicateSterm. In

order to detect static termination, a controller, e.g.Ca, initiates detection by sending a

control message query to all controllers,including itself. A controller sayCi responds

with a message(ldi) whereldi is abooleanvalue. Ca then combines all the boolean

values received in reply messages to computetd :=
∧

1≤i≤n(ldi).

If td is true,Ca concludes that termination has occurred, otherwise it sends new query

messages. The basic sequence of sending of query messages followed by the reception

of associated reply messages is called awave.

In the static termination algorithm, to ensure safety when the controllerCi computes

the valueldi sent back in a reply message, the valuesld1, ....., ldn must be such that
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∧
1≤i≤n ldi⇒ Sterm

⇒ ∀Pi ∈ P : passivei ∧ (NEi = ∅) ∧ ¬fulfilledi(ARRi)

A controllerCi delays a response to a controlquerymessage as long as the following

predicate that can be evaluated locally is false;

passivei ∧ (noacki = ∅) ∧ ¬fulfilledi(ARRi)

When this predicate is false, the static termination cannotbe guaranteed. Regarding

correctness, the values reported by the wave must no miss theactivity of processes in

the wake of the wave. [4] proposes that this could be accomplished in the following

manner; Each controllerCi maintains a boolean variable,cpi, initialised to trueiff Pi

is initially passive in the following way

• WhenPi becomes active,cpi is set to false.

• WhenCi sends a reply message toCα it sends the current value ofcpi with this

message, and then setscpi to true

Thus if a reply message carries value true fromCi to Cα, it means thatPi has been

continuously passive since the previous wave and the messages arrived and not yet

consumed are not suffice to activatePi and all output channels ofPi are empty. Figure

graphically illustrates this algorithm. Furthermore, presented below is a sequence of

statements executed by controllers. The statements are labelled S1 to S6, with S5 only

executed byCα. In these statementsmessagerefers to any message of the underlying

computation, whilstqueriesandrepliesare control messages.
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Compute

Ci Cj

Pi Pjchannel ci,j

Compute ldi

1

3

2

wave

reply〈ldi〉

query

5

∧
1≤i≤n(ldi)4

Conclude termination

Figure I.1: An algorithm for static termination

S1: whenPi sends a message toPj

notacki := notacki + 1

S2: when a message fromPj arrivesPi

sendack to Cj

S3: whenCi receives ack fromCj

notacki := notacki − 1
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S4: whenPi becomes active

cpi := false

S5: WhenCi receives query fromCα

(S5 is only executed byCα) wait until

((passivei ∧ (notacki = ∅)) ∧ ¬fulfilledi(ARRi);

ldi := cpi;

cpi := true;

sendreply(ldi) to Cα

S6: When controllerCα decides to detect static termination

repeat send query to allCi;

receivereply(ldi) from all Ci;

td :=
∧

1≤i≤n(ldi)

until td

claim static termination

Regarding dynamic termination, recall that dynamic termination can occurbeforeall

messages computation has arrived, because of this, termination of a computation can

be detected sooner than in static termination. For the dynamic termination algorithm,

considerCα to denote the controller that launches the waves.

In addition tocpi each controllerCi,has two vector variables, say denotedsi ri, that

count messages respectively sent to and received from everyother process, i.e. repre-

sent

• si[j] denotes the number of messages sent byPi to Pj;
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• ri[j] denotes the number of messages received byPi to Pj;

Compute
i

Ci Cj

msg〈S[., i]〉

n

Pi Pj

Compute

ANEi = {ci,j|ci,j 6= 0}

channel ci,j

update(S[i, ], si)
S[i, j]

...

1

...

n

1 j . . .. . .

1

msg〈ldi, si〉

2

4

5

6

3 Compute ldi

∧1≤i≤n(ldi)

Figure I.2: An algorithm for dynamic termination

First, Cα sends to eachCi a query message containing the vector(S[1, i], .., S[n, i]),

denoted byS[., i]. Upon receiving this query message,Ci computes the setANEi of

its non-emptychannels. This is an approximate knowledge but is sufficientto ensure

correctness.

ThenCi computesldi, which is trueif and only if Pi has been continuously passive

since the previous wave and its requirement cannot be fulfilled by all the messages

arrived and not yet consumed (ARRi) and all messages potentially in its input channels
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(ANEi). Ci sends toCα a reply message carrying the valuesldi and vectorsi. Vector

si is used byCα to update rowS[i, ] and thus gain more accurate knowledge.

Vector variablessi andri allowCα to update its (approximate) global knowledge about

messages sent by eachPi to eachPj and get an approximate knowledge of the set

of non-empty input channels. I have used figure do depict the main aspect of this

algorithm and steps.

Also consider the formalisation of the algorithm below, where all the controllersCi

execute statementsS1 to S4 as defined below and where onlyCα executesS5.

S1: whenPi sends a message toPj

si[j] := si[j] + 1

S2: when a message fromPj arrives atPi

ri[j] := ri[j] + 1

S3: whenPi becomes active

cpi := false

S3: whenCi receivesquery(V [1..n]) from Cα (where

V [1..n] = S[1..n, i] is the ith column of S)

ANEi := {Pj : V [j] > ri[j]} ;

ldi := cpi ∧ ¬fulfilledi(ARRi ∪NEi)

cpi := (statei = passive); sendreply(ldi, si)toCα
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S5: when controllerCα decides to detect dynamic termination

repeat for eachCi

sendquery(S[1..n, i]) to Ci (i.e. theith column of S sent toCi)

receivereply(ldi, si) from all Ci;

∀i ∈ [1..n] : S[i, .] := si;

td :=
∧

1≤i≤n(ldi)

until td;

claim dynamic termination

I.4 Contemporary taxonomy for algorithms

Recent research activity Research in the field was very active in the 1980’s 1990’s

with vast number of algorithms proposed. Research output has since slowed down

with one or two algorithms proposed per year in recent times.In the recent research

work;

1. [169] (Mittal & Vankatesan, 2008), presents a transformation that can be used to

convert any fault-sensitive termination detection algorithm (for a fully connected

network topology) into fault-tolerant termination detection algorithm capable

of coping with process crashes. The transformation assumesa perfect failure

detector. It is also shown there that under the assumptions made the scheme is

optimal in terms of message complexity

2. [17] (Bapat & Arora, 2008) proposes a message efficient termination detection

in a wireless sensor network ,WSN. The topology assumed there is that of a

multi-hop network of WSN nodes each with a unique identifier.The wireless

communication links between the nodes is bidirectional andthe reliability either
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way is not necessarily the same. The algorithm assumes a special role for a base

station node and assume unique identifiers for nodes hence itis asymmetric.

The algorithm is no message optimal but claimed to be messageefficient as it

detects termination from reports of only a subset of nodes inthe network. The

discussion of the proposed algorithm does not cover fault tolerance, but evidently

the algorithm suffers the same fault tolerance issues applicable to schemes with

central entities.

3. [71], (DeMara et al ) presents a tiered algorithm claimed to be time-efficient

and message-efficient for process termination. The algorithm uses a global in-

variant of equality between process production and consumption at each level of

process nesting to detect termination regardless of execution interleaving order

or network transit time. Then correctness of the algorithm is validated for ar-

bitrary process launching hierarchies. Regarding performance, the algorithm is

compared to existing schemes including credit terminationalgorithms.

4. [70], (De et al, 2007) proposes an application layer basedmodified weight-

throwing protocol for the distributed termination detection problem. The proto-

col is proposed for a purely mobile distributed environmentwith no static hosts.

The mobile hosts are considered with limited functionality. The discussion of

the effect of mobility on the proposed algorithm and is given.

5. [238] (Wang & Mayo, 2004) proposes a symmetric algorithm,assuming asyn-

chronous communication. The algorithm assumes a more general network topol-

ogy of a combination of a logical ring for the initial processes and a number of

computation trees Efficiency gains are made by circulating controlling messages

at most once around the ring. The algorithm assumes there arenot faulty pro-

cesses, but that processes can be created and accepts external processes during

the computation.
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In the tables that follow, I update Matocha’s taxonomy with these and other algorithms

that have since been published to incorporate current trends. For example a large

proportion of recent algorithms have been in mobile and wireless networks area and

are flexible when it comes to topology assumptions. Most algorithms are asynchronous

and have no restrictions when considering message arrival.

The taxonomy and its element are depicted in Figure 2.1.

algorithm type

DTD Algorithms

communication
protocol

symmetry

algorithm

topology
network

message

optimality

process
knowledge

communication
channel

tolerance

fault

{e.g synchronous ‖ asynchronous ‖... }

{e.g FIFO ‖ non-FIFO ‖.. }

{e.g symmetric ‖ token ‖... }

{e.g fault tolerant ‖ non-fault tolerant ‖... }

{e.g successors ‖ node information ‖... }

{e.g tree ‖ hamiltonian cycle ‖ ring ‖... }

{e.g optimal ‖ non-optimal ‖.. }

{e.g cyclic wave ‖ Tree wave ‖... }

Figure I.3: A taxonomy for distributed termination detection suggested

Tables I.1 through to I.7 show the classification for each of categories of the taxonomy.
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Algorithm Cyclic

wave

Tree

wave

General

wave

Non-repetitive

wave

Parental re-

sponsibility

Credit re-

covery

Other

(Francez,1980) X

(Dijkstra & Scholten,1980)

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Wang and Mayo, 2004) X

(De et al, 2007) X(not clear!)

(Mittal & Vankatesan, 2008) X(not clear!)

continued on next page ...

3
5
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TableI.1 ... continued from previous page

Algorithm Cyclic

wave

Tree

wave

General

wave

Non-repetitive

wave

Parental re-

sponsibility

Credit re-

covery

Other

(Bapat & Arora, 2008) X(not

clear!)

Table I.1: DTD algorithms and their associated type, adapted from [159]

3
6

0



Algorithm Hamiltonian

cycle

Computation

tree

Spanning

tree

No require-

ment

Other

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Mattern 1987) X X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989)

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Wang and Mayo, 2004) X (logical ring)

(De et al, 2007) (mobile hosts)

continued on next page ...

3
6

1



TableI.2 ... continued from previous page

Algorithm Hamiltonian

cycle

Computation

tree

Spanning

tree

No require-

ment

Other

(Mittal & Vankatesan, 2008) (fully connected

network)

(Bapat & Arora, 2008) (multihop network)

Table I.2: DTD algorithms and their necessary topology , adapted from [159]

3
6

2



Algorithm Specialized p0 only p0 at run time Token Symmetric

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) (central entity)

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Wang and Mayo,2004) X

(Mittal & Vankatesan, 2008) (failure

detector)

continued on next page ...

3
6

3



TableI.3 ... continued from previous page

Algorithm Specialized p0 only p0 at run time Token Symmetric

(Bapat & Arora, 2008) X(unique

ids)

Table I.3: DTD algorithms and their process symmetry, adapted from [159]

3
6

4



Algorithm Successors Node information Upper bound on net di-

ameter

Other None

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Rana,1983) X logical clocks

(Arora and Sharma,1983) X distance function

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Shavit and Francez, 1986) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) (list of pis)

(Huang, 1989) (central entity)

(Mattern, 1989) X

continued on next page ...
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TableI.4 ... continued from previous page

Algorithm Successors Node information Upper bound on net di-

ameter

Other None

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Mayo and Kearns,1994) X logical clocks

(Wang and Mayo,2004) X(in ring) process can’t leave or be de-

stroyed before termination

(Mittal & Vankatesan, 2008) X X

(Bapat & Arora, 2008) X(base station)

Table I.4: DTD algorithms and their process knowledge, adapted from [159]

3
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Algorithm Synchronous Communication Asynchronous Communication

(Francez,1980) X(CSP)

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X(CSP)

(Misra & Chandy, 1982) X(CSP)

(Dijkstra et. al.„1983) X

(Rana,1983) X(CSP) "can be modified for"

(Arora and Sharma,1983) X

(Misra, 1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X(though in CSP)

(Szymaski et. al, 1985) X

(Shavit and Francez, 1986) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Mayo and Kearns,1994) X

(Wang and Mayo, 2004) X

(De et al, 2007) X

(Mittal & Vankatesan, 2008) X

(Bapat & Arora, 2008) X

Table I.5: DTD algorithms and their communication protocol, adapted and extended [159]
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Algorithm FIFO No restriction

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Rana,1983) X

(Arora and Sharma,1983) X

(Misra, 1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Shavit and Francez, 1986) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Mayo and Kearns,1994) X

(Wang and Mayo, 2004) X

(De et al, 2007) X

(Mittal & Vankatesan, 2008) X

(Bapat & Arora, 2008) X(not stated explicitly)

Table I.6: DTD algorithms and their restrictions on messagearrival , adapted and extended

[159]
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Algorithm Fault tolerant Not fault tolerant

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Rana,1983) X

(Arora and Sharma,1983) X

(Misra, 1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Shavit and Francez, 1986) X

(Mattern 1987) X

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) X

(Lai et al.,1992) X

(Mayo and Kearns,1994) X

(Wang and Mayo, 2004) X

(De et al, 2007) X

(Mittal & Vankatesan, 2008) X(assumes perfect failure detector)

(Bapat & Arora, 2008) X

Table I.7: DTD algorithms and their fault tolerance, adapted and extended [159]
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Algorithm Optimal Not optimal

(Francez,1980) X

(Dijkstra & Scholten,1980) X

(Francez et. al, 1981) X

(Misra & Chandy, 1982) X

(Dijkstra et. al.„1983) X

(Rana,1983) X

(Arora and Sharma,1983) X

(Misra, 1983) X

(Kumar, 1985) X

(Chandy &Misra, 1985) X

(Szymaski et. al, 1985) X

(Shavit and Francez, 1986) X

(Mattern 1987) X(If star or complete graph) X(Otherwise)

(Muller, 1987) X

(Huang, 1988) X

(Mattern, 1989) X

(Vankatesan, 1989) XIf constant number of failures) X(Otherwise)

(Lai et al.,1992) X

(Mayo and Kearns,1994) X

(Wang and Mayo, 2004) X(“close to“)

(De et al, 2007) X

(Mittal & Vankatesan, 2008) X

(Bapat & Arora, 2008) X(but efficient)

Table I.8: DTD algorithms and their message optimality, adapted and extended [159]

370



371



APPENDIX J

Graphs, representation and complexity of algorithms

In general a common way of representing graphs as data structures is to consider an

adjacency matrix [47], and its representational data structures. An analysis of the

complexity issues is given in [96] and summarised here.

i.e. Let G = (V, E) be a graph whose vertices have been (arbitrarily) ordered

v1, v2, . . . vn. The adjacency matrix(M) = (mi,j) of G is ann× n matrix with entries

mi,j =





0 if vivj /∈ E

1 if vivj ∈ E

for example consider Figure J.1, the adjacency matrixM is given by

mi,j =





0 1 1 0 0

0 0 1 0 0

1 1 0 1 1

0 0 1 0 0

1 0 0 1 0





and can be represented as a an adjacency list of G given in Figure J.1 (b). [96] reasons

that, by definition, the main diagonal of M is all zeros, and M is symmetric about the

main diagonal if and only if G is an undirected graph. If M is stored as a 2-dimensional

array, then only one step (more preciselyO (1) time) is required for the statements "Is

vivj ∈ E or "Erase the edgevivj An instruction such as "mark each vertex which is

372



1

4

3

2

5

(a) G
3

Λ

2Vertex 1

4

3Vertex 2 Λ

Λ

Λ

4Vertex 5

3Vertex 4

2Vertex 3 1 Λ5

(b) adjacency lists of G

Figure J.1: G

adjacent tovj requires scanning the entire columnj and hence takesn steps. Similarly,

"mark each edge" takesn2 steps. The space requirement for the array representation is

O (n2).

Some of the performance figures above can be improved upon when the density of M

is low. We use the term sparse to indicate that‖E‖ ≪ n2, i.e., the number of edges is

much less thann2. One of the most talked about classes of sparse graphs are theplanar

graphs1 for which Euler proved that‖E‖ < 3n− 6.

Regarding adjacency lists, for each vertexvi of G an adjacency listadj (vi) can be

created, containing those vertices adjacent tovj . The adjacency lists are not necessarily

sorted although one might wish them to be (see Figure J.1). The space requirement for

the adjacency list representation of a graph withn vertices ande edges is

O (
∑

[1 + di]) = O (n + e)

1A graph that can be embedded on a plane.
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wheredi denotes the degree ofi Thus, from storage considerations, it is usually more

advantageous to use adjacency lists than the adjacency matrix to store a sparse graph.

Often, it is also advantageous from time considerations to store a sparse graph using

adjacency lists. For example, the instruction "mark each vertex which is adjacent to

vj requires scanning the listAdj (vi) and hence takes dj steps. Similarly, "mark each

edge" takesO (e) steps using adjacency lists, a substantial saving over the adjacency

matrix for a sparse graph. However, erasing an edge is more complex with lists than

with the matrix as shown in Table 2.2. Thus there is no representation of a graph that is

best for all operations and processes. Since the selection of a particular data structure

can noticeably affect the speed and efficiency of an algorithm, decisions about the rep-

resentation must incorporate a knowledge of the algorithmsto be applied. Conversely,

the choice of an algorithm may depend on how the data is initially given. For exam-

ple, an algorithm to set up the adjacency lists of a sparse graph will take longer if we

are initially given its adjacency matrix as ann × n array rather than as a collection

of ordered pairs representing the edges. A graph problem is said to be linear in the

size of the graph, or simply linear, if it has an algorithm which can be implemented

to run inO (n + e)0 steps on a graph withn vertices ande edges. This is usually the

best that one could expect for a graph problem. By a careful choice of algorithm and

data structure a number of simple problems can be solved in linear time; these include

testing for connectivity, biconnectivity , and planarity [96]
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