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1. Introduction

The maximally supersymmetric theory N = 4 SYM is dual to type II superstring on

AdS

5

� S

5 and plays a central role in the AdS/CFT correspondence [1]. The existence

of a strong-weak coupling duality links the integrability properties on the string side [2]

to a well-known form of internal integrability in the superconformal theory [3]. At one-

loop, the scale dependence of renormalized composite operators is governed in the planar

limit by a local integrable super spin-chain Hamiltonian [4]. At higher loops, integrability

persists and is described by a long-range lattice Hamiltonian whose interaction range in-

creases with the loop order [5]. In particular, AdS/CFT duality has been crucial in prompt-

ing the higher loop proposal for the S-matrix of N = 4 SYM theory [6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16].

The energy levels of the integrable spin-chain compute the anomalous dimension of

scaling fields in the superconformal theory, i.e. the energies of would-be dual string states.

For a given specific operator, the calculation amounts to finding the relevant solution of

a rather complicated set of Bethe Ansatz equations. Of course, finding a closed formula

for a class of operators is a more difficult task. In some applications, aimed at accurate

tests of AdS/CFT duality, one considers operators which are gauge invariant single traces

with varying length. In the large length limit, the size corrections can be computed by a

thermodynamical analysis of the Bethe Ansatz equations [17, 18]. In exceptional cases, it is

also possible to exhibit closed formulae for the anomalous dimensions at finite length [19].

Here, we shall be interested in the class of so-called quasipartonic twist operators [20].

They have a basically fixed field content, but are constructed with an arbitrary number of

covariant derivatives distributed among the fields. The twist operators are characterized

by a simple control parameter which is the total number of derivatives, simply related to

the total Lorentz spinN . From the spin-chain point of view, they are associated with fixed

length states, at least in the one-loop description of mixing. The thermodynamical limit

of a large number of Bethe roots is nothing but the large spin limit N ! 1 and in this

regime it is possible to derive integral equations computing the roots distribution at all

orders in the gauge coupling [11, 16, 21].

Surprisingly, in some cases it is also possible to provide closed multi-loop expressions

for the anomalous dimension (N) of special twist operators as functions of the Lorentz

spin N [7, 22, 23, 24, 25, 26]. Currently, it is not known how to derive systematically the

functions (N) beyond the one-loop level although some progress can be done exploiting

the Baxter approach 1. Recent analytical attempts are discussed in [27, 28].

The anomalous dimensions (N) are expected to contain important information en-

coded in their dependence onN . The physical content of this information can be extracted

by exploiting known facts valid for similar twist operators arising in the QCD analysis of

deep inelastic scattering (DIS) [29, 30]. In that context, one can consider the leading twist-2

1A. V. Kotikov, private communication.
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contributions and connect the total spinN to its dual, in Mellin space, which is the Bjorken

variable x. Two opposite regimes emerge in a natural way, each carrying its lore of ap-

proximations. The first is small x ! 0 and is captured by the BFKL equation [31]. It can

be analyzed by considering the Regge poles of (N) analytically continued to negative

(unphysical) values of the spin. A recent detailed example of such analysis is discussed

in [22].

Here, we shall be interested in the properties of the second quasi-elastic regime which

is x ! 1, i.e. large N . The following general features can be inferred from the large N

behavior of known three loops twist-2 QCD results as well as from general results valid

at higher twist [32]

1. The leading large N behavior of the anomalous dimensions (N) is logarithmic

(N) = 2�(�

s

) log N +O(N

0

); N !1: (1.1)

The function �(�

s

) is a universal function of the coupling related to soft gluon emis-

sion [33, 32, 34]. It appears as a cusp anomalous dimension governing the renor-

malization of a light-cone Wilson loop describing soft-emission processes as quasi-

classical charge motion.

2. The subleading terms in the largeN expansion of (N) obey (three loops) hidden re-

lations, the Moch-Vermaseren-Vogt (MVV) constraints [35, 36]. Recently, they have

been extended to an infinite set of higher orders relations in the 1=N expansion [37].

Basically, they predict that roughly half of the 1=N expansion is completely deter-

mined by the other half.

A very promising strategy is certainly that of investigating these features in the con-

text of planar N = 4 SYM, where integrability techniques afford a relatively painless

multi-loop analysis. This approach could shed light on the otherwise elusive beautiful

structures found in the closed expressions of twist anomalous dimensions.

¿From this point of view, we can reconsider point 1. in the above list. It is well

known that an integral equation has been derived providing the all-order weak coupling

expansion of �(�
s

) [11, 16]. The calculation has been extended at strong-coupling in the

explicit case of the sl(2) sector [38] and is amenable to wide generalizations [39]. Thus,

our attitude is that the general remark 1. is a strong check for any guessed expression

(N) describing a particular class of twist operators.

Concerning 2., the understanding of MVV relations is instead more intriguing and

less conclusive. In the twist-2 QCD context, it is known that the existance of MVV rela-

tions is related with space-time reciprocity of DIS and its crossed version of e+e� annihi-

lation into hadrons (see [40] for a very clear pedagogical discussion). This is a non-trivial

all-order generalization of the one-loop Gribov-Lipatov (GL) reciprocity [41]. Positive

three loops tests for QCD and for the universal twist-2 supermultiplet in N = 4 SYM are

discussed in [37, 42]. Technically, reciprocity in the twist-2 case holds for the Dokshitzer-

Marchesini-Salam (DMS) evolution kernel governing simultaneously the distribution and

fragmentation functions [43]. The MVV relations follow as a straightforward corollary.
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The formalism of the DMS reciprocity respecting kernel can be extended to higher

twists and in particular to various twist-3 sectors where closed formulae for the anoma-

lous dimensions are available inN = 4 SYM. Remarkably, the generalized Gribov-Lipatov

reciprocity works perfectly. The first example is the relatively simple sl(2) sector [25],

where a 4 loops complete proof is available. Additional evidences of reciprocity for

fermionic and gauge operators (both at three loops) have been later discussed in [26, 24].

Here, we present a complete analysis of a nested gluonic sector [26, 44] that we study

at four loops. Our main result is that reciprocity holds rigorously even in this case, modulo

possible wrapping effects.

This paper is organized as follows: In Sec. (2), as a reminder, we recall the main QCD

facts concerninig the generalized Gribov-Lipatov reciprocity. In Sec. (3) we present the

suitable extension toN = 4 SYM theory with a summary of known successfull reciprocity

tests. In Sec. (4) we discuss in details the class of operators studied in this paper. The four

loop anomalous dimension is presented in Sec. (5), and a complete proof of its reciprocity

properties is derived in Sec. (6). Finally, Sec. (7) contains a discussion of the relation be-

ween reciprocity and wrapping. In Appendix (A), we collect several tests of our results

related to the largeN expansion. Appendix (B) is a short primer on nested harmonic sums

collecting useful definitions and formulae.

2. Reciprocity of twist-2 anomalous dimensions in QCD

2.1 Gribov-Lipatov reciprocity

The scale dependence of QCD parton distribution functions in deep inelastic scattering

is governed by the the DGLAP evolution equations [41, 45, 46]. The non perturbative

ingredients are the space-like (S) splitting functions P
S

(x), related to the anomalous di-

mensions of twist-2 operators [47] through a Mellin transformation. Three loop results

for the anomalous dimensions 
S

(N) governing the evolution of singlet and non-singlet

unpolarized distributions have been obtained in [35, 36].

The related crossed process of e+e� annihilation into hadrons involves the non per-

turbative fragmentation functions. In their scale evolution the role of splitting functions is

played by the so-called time-like (T) splitting functions P
T

(x), which allow to define time-

like anomalous dimensions 
T

(N) again by a Mellin transformation. A basic question is

then: What is the relation between space and time-like kernels P
S

and P
T

?

A first relation between P
S

(x) and P
T

(x) is the Drell-Levy-Yan relation [48]

Drell-Levy-Yan : P

T

(x) = �

1

x

P

S

�

1

x

�

: (2.1)

This is an analytic continuation from one kernel to the other which passes through the

singular point x = 1 at the border of the respective disjoint physical regions. It is a relation

trivial at one-loop and full of subtleties at higher orders. A discussion at two loops is

presented in [49].

A second equation has been proposed by Gribov and Lipatov [41], that reads

Gribov-Lipatov : P

T

(x) = P

S

(x) � P (x): (2.2)
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Assuming this result and the (true) Drell-Levy-Yan relation, we get the following reci-

procity for the common function P (x)

Gribov-Lipatov reciprocity : P (x) = �xP

�

1

x

�

: (2.3)

In Mellin space 2, it can be shown that this means (in the sense of asymptotic expansions

at large N)

P (N) = f(J

2

); J

2

= N (N + 1); N !1: (2.4)

Gribov-Lipatov reciprocity holds at one-loop, but fails at two loops [50, 51]. The explicit

violation can be written as

1

2

h

P

(2)

T;qq

(x)� P

(2)

S;qq

i

=

Z

1

0

dz

z

�

P

(1)

qq

�

x

z

��

+

P

(1)

qq

(z) log z: (2.5)

It is kinematic in the sense that it is entirely expressed in terms of the one-loop kernel. A

deep explanation for this naive observation is illustrated in the next section.

2.2 Reciprocity respecting evolution equations

The evolution equations for the parton distributions or fragmentation functionsD
�

(x;Q

2

)

(� = S; T ) take the standard convolution form

�

�

D

�

(x;Q

2

) =

Z

1

0

dz

z

P

�

(z; �

s

(Q

2

))D

�

�

x

z

;Q

2

�

; (2.6)

where P
�

are the space or time-like splitting functions and � = log Q

2. Mellin transform-

ing, this reads

�

�

D

�

(N;Q

2

) = �

1

2



�

(N;�

s

(Q

2

))D

�

(N;Q

2

); (2.7)

where

D

�

(N;Q

2

) =

Z

1

0

dx

x

x

N

D

�

(x;Q

2

); 

�

(N;Q

2

) = �

1

2

Z

1

0

dx

x

x

N

P

�

(x; �

s

(Q

2

)): (2.8)

Based on several deep physical ideas, it has been proposed to rewrite the evolution equa-

tion in a way that aims at treating the DIS and e+e� channels more symmetrically, in the

spirit of Gribov-Lipatov reciprocity [52, 43]. The reciprocity respecting evolution equa-

tions take the form

�

�

D

�

(x;Q

2

) =

Z

1

0

dz

z

P(z)D

�

�

x

z

; z

�

Q

2

�

; (2.9)

where � = �1; 1 for the space and time like channels respectively. In the equation above

we have not written in details the scale dependence of the coupling for reasons to be

explained later.

The crucial point is that the evolution kernel P(z) is the same in both channels. As an

immediate check, one recovers for the non-singlet quark evolution the Curci-Furmansky-

Petronzio relation Eq. (2.5). Other features related to the Low, Burnett, Kroll theorems [53]

are discussed in [43]. A successfull three loop check using the 
T

evaluated by Drell-

Levy-Yan analytic continuation is described in [54] for the non-singlet QCD anomalous

dimensions.
2The Mellin transform F(N) of f(x) is defined by F(N) =

R

1

0

dx x

N�1

f(x).

– 5 –



2.3 Moch-Vermaseren-Moch relations and reciprocity of the kernel P

An important test of Eq. (2.9) can be done in the x ! 1 limit. To explain it, let us briefly

recall what are known as the Moch-Vermaseren-Moch (MVV) relations for twist-2 anoma-

lous dimensions in QCD. The large spinN expansion of the (unpolarized) 3 loops anoma-

lous dimensions [35, 36] starts with a leading logarithm behavior 2�

usp

(�

s

) log N . The

subleading � log

p

N=N

q corrections are found to obey special relations first investigated

by MVV in [35, 36] (see also, at two loops, [50]). Roughly speaking, these relations predict

the three loop 1=N terms in terms of the N0 two loop ones.

Neglecting effects due to the running couplings, one immediately derives from Eq. (2.9)

the non-linear relation (after a rescaling of P)



�

(N) = P

�

N �

1

2

� 

�

(N)

�

: (2.10)

In the spirit of the derivation of the reciprocity respecting evolution equation Eq. (2.9) it is

natural to guess that the kernel P obeys the Gribov-Lipatov reciprocity relation

P(x) = �xP(1=x): (2.11)

As an immediate corollary, the following general parametrization of the large N expan-

sion of 
�

(we define N = N e



E and A = 2�

usp

)



�

(N) = A log N +B + C

�

log N

N

+

�

D

�

+

1

2

A

�

1

N

+ � � � ; (2.12)

must satisfy the constraints

C

�

= �

1

2

� A

2

; D

�

= �

1

2

� AB; (2.13)

which are highly non-trivial since A;B;C and D are functions of the gauge coupling. The

first relation in (2.13) is indeed verified at three loops by the explicit evaluation of 
�

. The

second (subleading) relation requires, in QCD, a correction related to the non-zero value

of the � function, as discussed in [37]. For twist-2 operators in the finite N = 4 SYM

theory, it is correct as it stands.

Thus, the two MVV relations in Eq. (2.13) strongly suggest that the reciprocity relation

Eq. (2.11) holds. In N-space, it is equivalent to the claim that the kernel P(N) has a large

N expansion in integer powers of J2 of the form

P(N) =

X

n

a

n

(log J)

J

2n

; (2.14)

where J2 = N (N + 1), and a

n

are polynomials which can be computed in perturbation

theory as series in �
s

. The expansion Eq. (2.14) can be read as a parity invariance under

N ! �N � 1, although this must be considered only around N = 1 and not in strict

sense because of the Regge poles at negative N .

The property Eq. (2.14), or its equivalent form Eq. (2.11), has indeed been checked at

three loops in [37] for several classes of twist-2 operators in QCD. It generates an infinite

set of MVV-like relations for all the subleading terms in the large N expansion of the

anomalous dimensions. The previous relations Eq. (2.13) are just the first cases.
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3. Generalized reciprocity in N = 4 SYM

A generalization of Eq. (2.14) has also been proposed based on the analysis [56, 34] of the

one-loop anomalous dimensions of maximal helicity quasipartonic operators [20] built

with (collinear) twist-1 fundamental fieldsX (scalars, gauginos or gauge fields) and light-

cone projected covariant derivatives.

Such operators can be written in a general non-local form as

O(z

1

; : : : ; z

L

) = Tr
�

X(z

1

n) � � �X(z

L

n)

	

; (3.1)

where z n� is the light-like ray and X can be a (suitable) N = 4 scalar field ', gaugino

component �, or holomorphic combination A of the physical gauge field A

�

?

. We shall

denote generically such operators as O
', O�, and O

A. Linear combinations of such local

fields provide eigenstates of the dilatation operator.

At one-loop, these operators do not mix and transform under the collinear conformal

group as [s℄
L where [s℄ is the infinite dimensional sl(2) representation with collinear spin

s(') =

1

2

; s( ) = 1; s(A) =

3

2

: (3.2)

At more than one loop, the operators O
' and O

� continue to scale autonomously. The

reason is that O
' belongs to the N = 4 sl(2) subsector which is closed at all orders.

Also, O� appears in the closed sl(2j1) subsector where there is mixing between scalars

and fermions, but not for the maximally fermionic component [58]. In the case of OA,

the description as a gluonic operator is only correct at one-loop [44] with mixing effects at

higher orders (see the discussion in [26]).

Let us now illustrate the correct extension of Eq. (2.14) valid in the N = 4 context

for the operators (3.1). Since the � function is identically zero, the kernel P(N) for the

space-like ordinary anomalous dimensions obeys the relation

(N) = P

�

N +

1

2

(N)

�

: (3.3)

The one-loop anomalous dimensions of O
';�;A can be computed as energies of XXX

�s

integrable chains and in particular can be studied at large Lorentz spin. The analysis

of [56, 34] suggests that reciprocity takes the form

P(N) =

X

n

a

n

(log J)

J

2n

; (3.4)

where J is obtained by replacing N(N + 1) with the suitable Casimir of the collinear

conformal subgroup SL(2;R) � SO(4; 2)

J

2

= (N + Ls� 1) (N + Ls): (3.5)

If the expansion (3.4) holds, we shall say that P is a reciprocity respecting (RR) kernel. Be-

yond one loop, a test of reciprocity requires the knowledge of the multi-loop anomalous

dimensions as closed functions of N . These are currently available in the cases of twist-2

and 3, as discussed in the following sections.
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3.1 Twist-2 universal supermultiplet

As a first example, we discuss twist-2 operators. Due to supersymmetry, the collinear

conformal spin (3.2) is irrelevant and we can consider the simplest case of operators built

with scalar fields. These are described by non-nested sl(2) Bethe equations [7]. In this

case, we have, as in QCD,

J

2

= N (N + 1): (3.6)

Let us briefly recall how the reciprocity property Eq. (3.4) of a generic function f(N) trans-

lates into the GL reciprocity of its Mellin transform F (z) defined by

f(N) =

Z

1

0

dz

z

z

N

F (z): (3.7)

This is a useful exercise since we shall generalize it to other cases later. Here, we follow

the method by [37]. With the change of variable

z = e

��x

; � =

�

J

2

+

1

4

�

�1=2

=

1

N +

1

2

; (3.8)

we can write

f(N) = �

Z

1

0

dx e

�x

e

�x=2

F (e

��x

): (3.9)

Reciprocity means that the integrand is locally odd under � ! �� in a neighborhood of

� = 0. This gives

e

�x=2

F (e

��x

) = �e

��x=2

F (e

�x

); (3.10)

which means

F (z) = �z F (1=z): (3.11)

In the paper [42], this relation is proved for the known three loops anomalous dimen-

sions derived by the Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) maximum

transcendentality principle [57]. The method exploits several properties of the nested har-

monic sums (see App. (B)) which are the building block for the perturbative result. The

same conclusion is also obtained in [37] by directly checking the expansion Eq. (3.4).

3.2 Twist-3 operators with scalar fields

Again, these are described by non-nested sl(2) Bethe equations. We have

J

2

= 4

N

2

�

N

2

+ 1

�

+

3

4

: (3.12)

The constant 3=4 is irrelevant to the proof of reciprocity and one can define

J

2

def

=

N

2

�

N

2

+ 1

�

: (3.13)

Four loops closed expressions for (N) have been obtained in [23, 22]. They involve har-

monic sums evaluated at
e

N =

N

2

: (3.14)

Since J2 =

e

N(

e

N + 1), the reciprocity proof can be done with the methods used in the

twist-2 case with scalar fields. This calculation is done in [25].
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3.3 Twist-3 operators with gauginos

This case has been treated in [24] where the following result was obtained



���

(N) = 

''

(N + 2): (3.15)

Here, 
���

is the anomalous dimension in this sector and 
''

is the one for twist-2 opera-

tors with scalar fields.

¿From the two relations



''

(N) = P

''

�

N +

1

2



''

(N)

�

; (3.16)



���

(N) = P

���

�

N +

1

2



���

(N)

�

; (3.17)

we deduce

P

���

(N) = P

''

(N + 2): (3.18)

Since P
''

(N) is reciprocal with respect to J2 = N(N + 1) we conclude that P
���

(N) is

reciprocal with respect to

J

2

= (N + 2)(N + 3): (3.19)

This is precisely the Casimir in this sector (L = 3, s = 1), showing that again reciprocity is

respected.

3.4 Twist-3 operators with gauge fields

For this case, three loop anomalous dimensions are known and a few MVV relations have

been tested [26]. Since we are going to extend the calculation and the reciprocity proof to

the more difficult four loop case, we devote to this sector the next Section.

4. Gluonic operators

As we mentioned in Section 3, we are interested in single-trace maximal helicity quasi-

partonic operators which in the light-cone gauge take the form

O
A

N;L

=

X

n

1

+���n

L

=N

a

n

1

;:::n

L

Tr
�

�

n

1

+

A(0) � � � �

n

L

+

A(0)

	

; n

i

2 N; (4.1)

where A is the holomorphic combination of the physical gauge degrees of freedom A

�

?

and �

+

is the light-cone projected covariant derivative (in light-cone gauge the gauge

links are absent). The coefficients fang are such that OA

N;L

is a scaling field, eigenvector

of the dilatation operator. The total Lorentz spin is N = n

1

+ � � �n

L

. The number of

elementary fields equals the twist L, i.e. the classical dimension minus the Lorentz spin.

At one-loop, the anomalous dimensions of the above operators can be found from the

spectrum of a non-compact XXX
�3=2

spin chain with L sites. At higher orders we aban-

don the quasipartonic detailed description and work in terms of superconformal mul-

tiplets. The first step is to identify the psu(2; 2j4) primary of the multiplet where such
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operators appear as descendant. In full generality such multiplets in twist-3 appear in the

decomposition of the symmetric triple tensor product (V
F


 V

F


 V

F

)

S

where V
F

is the

singleton infinite dimensional irreducible representation of psu(2; 2j4).

Following [59], we have a detailed decomposition

(V

F


 V

F


 V

F

)

S

=

1

M

n=0

k2Z



n

[V

2k;n

+ V

2k+1;n+3

℄ ; (4.2)

where 
n

are suitable multiplicities and V
n;m

well defined modules. In particular, for even

N and m = 2, the one-loop lowest anomalous dimension in V

2;N

is associated with an

unpaired state and has been proposed to be [59]



2;N

=

�

8�

2

�

2S

1

�

N

2

+ 1

�

+ 2S

1

�

N

2

+ 2

�

+ 4

�

=

�

8�

2

�

2S

1

�

N

2

+ 1

�

+

4

N + 4

+ 4

�

;

(4.3)

where g2 = �=(8�

2

) = g

2

YM

N



=(8�

2

) is the scaled ’t Hooft coupling, fixed in the planar

N



! 1 limit. This result is in agreement with the analysis of maximal helicity 3 gluon

operators in QCD [60] and identifies the module V
2;N

with the one containing the consid-

ered operators. The second expression in (4.3) fully reveals the violation of the maximum

transcendentality principle [57], a novel feature of the gauge sector already discussed in [26].

4.1 Long-range Bethe equations

The long-range (asymptotic) Bethe equations for the full psu(2; 2j4) theory have been for-

mulated in [5] in 4 equivalent forms. The most convenient one has the following degree

assignment for the module V
2;N

♥�❅ ♥ ♥�❅
N + 3

♥
+1

N + 4

♥�❅
N + 2

♥

1

♥�❅ (4.4)

A detailed description of the perturbative solution of the associated Bethe equation has

already been illustrated in [26]. The only new ingredient at four loops is the dressing

phase which we have taken from [16]. It gives a contribution which in the notation of that

paper can be written



4

= 

no dressing

4

+ � 

dressing

4

: (4.5)

The correct value is � = �

3

. As we shall discuss, the dressing contribution is separately

reciprocity respecting, precisely as it happens in the case of twist-3 operators built with

scalar fields [25]. Therefore, we shall keep it separate in the following discussion.

4.2 Three loop results

The results obtained in [26] at three loops can be summarized in the following closed

expressions



1

= 4S

1

+

2

n+ 1

+ 4; (4.6)
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2

= �2S

3

� 4S

1

S

2

�

2S

2

n+ 1

�

2S

1

(n+ 1)

2

�

2

(n+ 1)

3

+ (4.7)

�4S

2

�

2

(n+ 1)

2

� 8;



3

= +5S

5

+ 6S

2

S

3

� 4S

2;3

+ 4S

4;1

� 8S

3;1;1

(4.8)

+

�

4S

2

2

+ 2S

4

+ 8S

3;1

�

S

1

+

�S

4

+ 4S

2;2

+ 4S

3;1

n+ 1

+

4S

1

S

2

+ S

3

(n+ 1)

2

+

2S

2

1

+ 3S

2

(n+ 1)

3

+

6S

1

(n+ 1)

4

+

4

(n+ 1)

5

�2S

4

+ 8S

2;2

+ 8S

3;1

+

4S

2

(n+ 1)

2

+

4S

1

(n+ 1)

3

+

6

(n+ 1)

4

+8S

2

+ 32;

where n =

N

2

+ 1 and S
a

� S

a

(n) are nested harmonic sums (see App. (B)).

4.3 Some structural properties

Before attacking the problem of deriving a four loop expression for the anomalous dimen-

sion, it is convenient to pause and illustrate some structural properties of the three loop

result. The general form of 
n

obeys at three loops the generalized KLOV structure



n

=

2n�1

X

�=0



(�)

n

; (4.9)



(�)

n

=

X

k+`=�

H

�;`

(n)

(n+ 1)

k

;

where H
�;`

(n) is a combination of harmonic sums with homogeneous fixed transcenden-

tality `. The terms with k = 0 have maximum transcendentality , all the others have

subleading transcendentality . Some structural properties that emerge are the following.

1. sl(2) limit. The maximum transcendentality terms without 1=(n + 1) factors are

those already computed in the sector with L = 3 and scalar fields [23, 22]

H

2n�1;2n�1

= identical to L = 3, s = 1=2 sector: (4.10)

2. Minimal transcendentality 1 terms. With the exception of 
1

we have



(1)

n

= 0: (4.11)

3. Inheritance. Write the maximum transcendentality H
2n�1;2n�1

(n) in the canonical

basis of harmonic functions (see App. (B)). Consider the expression

1

2

[H

2n�1;2n�1

(n) +H

2n�1;2n�1

(n+ 1)℄ ; (4.12)
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and expand the second term using recursively the relations

S

a;b(n+ 1) �!

�

(n+ 1)

a

Sb(n+ 1) + S

a;b(n); (4.13)

where � is an auxiliary counting variable. When the process of expansion is com-

pleted we have

1

2

[H

2n�1;2n�1

(n) +H

2n�1;2n�1

(n+ 1)℄ = H

2n�1;2n�1

(n)+ (4.14)

+

X

jaj+k=2n�1

Pa;k(�)

Sa(n)

(n + 1)

k

;

where

a = fa

1

; : : : ; a

p

g �! jaj = a

1

+ � � �+ a

p

; (4.15)

and Pa;k(�) is a polynomial. Then, we have



(2n�1)

n

= H

2n�1;2n�1

(n) +

X

jaj+k=2n�1

Pa;k(�) linear

Sa(n)

(n+ 1)

k

+ (4.16)

+

X

jaj+k=2n�1

Pa;k(�) nonlinear

a;k

Sa(n)

(n+ 1)

k

;

where a;k are undetermined constants. This inheritance principle fixes many of the

maximum transcendentality terms of 
n

. The terms with undetermined coefficients

are in any case a subset of all the possible terms.

Let us illustrate two examples of the inheritance property. At one-loop, we start from

the sl(2) result



sl(2)

1

= 4S

1

; (4.17)

and consider the sum
1

2

[4S

1

(n) + 4S

1

(n+ 1)℄ : (4.18)

Expanding using the rule Eq. (4.13), we find

4S

1

(n) +

2 �

n+ 1

: (4.19)

Thus, inheritance fully predicts the transcendentality 1 terms

4S

1

(n) +

2

n+ 1

; (4.20)

in agreement with Eq. (4.6).

At two loops, we start from the sl(2) result that we write in canonical form



sl(2)

2

= �2S

3

� 4S

1

S

3

= �4S

1;2

� 4S

2;1

+ 2S

3

; (4.21)
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and consider the sum

1

2

[�4S

1;2

(n)� 4S

2;1

(n) + 2S

3

(n) � 4S

1;2

(n+ 1)� 4S

2;1

(n+ 1) + 2S

3

(n+ 1)℄ : (4.22)

This gives back the sl(2) result computed at n plus various induced terms that are

�

2 �

n+ 1

S

2

(n) �

2 �

(n+ 1)

2

S

1

(n) + �(1 � 4 �)

1

(n + 1)

3

: (4.23)

The prediction from inheritance is now

�

2

n+ 1

S

2

(n)�

2

(n+ 1)

2

S

1

(n) +



(n+ 1)

3

; (4.24)

where  is an undetermined constant. Without resorting to the inheritance property, we

should have needed four coefficients for the possible allowed terms

S

2

n+ 1

;

S

1;1

n+ 1

;

S

1

(n+ 1)

2

;

1

(n+ 1)

3

: (4.25)

5. The four loop anomalous dimension

We have computed a long list of values of 
4

(n) as exact rational numbers obtained from

the perturbative expansion of the long-range Bethe equations. We have matched them

against the general Ansatz Eq. (4.9). A very large number of possible terms appear with

unknown coefficients. To reduce them, we have imposed the inheritance property de-

scribed in Sec. (4.3) as well as the condition Eq. (4.11). The resulting reduced Ansatz

matches the list f
4

(n)g with rather simple integer coefficient. Our list is longer than the

number of coefficients and we checked that it is perfectly reproduced. Also, we extended

the list to even larger values of nwhere we only have a (very long) decimal approximation

to 
4

(n) again in agreement with the solution found.

We use the notation of Eq. (4.9) to present our result. We begin with the non-dressing

contributions to 
4

. The terms with maximal transcendentality are

H

7;7

=

S

7

2

+ 7S

1;6

+ 15S

2;5

� 5S

3;4

� 29S

4;3

� 21S

5;2

� 5S

6;1

� 40S

1;1;5

� 32S

1;2;4

+ 24S

1;3;3

+

+32S

1;4;2

� 32S

2;1;4

+ 20S

2;2;3

+ 40S

2;3;2

+ 4S

2;4;1

+ 24S

3;1;3

+ 44S

3;2;2

+ 24S

3;3;1

+

+36S

4;1;2

+ 36S

4;2;1

+ 24S

5;1;1

+ 80S

1;1;1;4

� 16S

1;1;3;2

+ 32S

1;1;4;1

� 24S

1;2;2;2

+ 16S

1;2;3;1

+

�24S

1;3;1;2

� 24S

1;3;2;1

� 24S

1;4;1;1

� 24S

2;1;2;2

+ 16S

2;1;3;1

� 24S

2;2;1;2

� 24S

2;2;2;1

+

�24S

2;3;1;1

� 24S

3;1;1;2

� 24S

3;1;2;1

� 24S

3;2;1;1

� 24S

4;1;1;1

� 64S

1;1;1;3;1

;

H

7;6

=

7S

6

2

� 20S

1;5

� 16S

2;4

+ 12S

3;3

+ 16S

4;2

+ 40S

1;1;4

� 8S

1;3;2

+ 16S

1;4;1

� 12S

2;2;2

+ 8S

2;3;1

+

�12S

3;1;2

� 12S

3;2;1

� 12S

4;1;1

� 32S

1;1;3;1

;

H

7;5

= �

15S

5

2

+ 14S

1;4

+ 10S

2;3

+ 14S

3;2

+ 14S

4;1

� 12S

1;2;2

� 16S

1;3;1

� 12S

2;1;2

+

�12S

2;2;1

� 12S

3;1;1

;
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H

7;4

= �

3S

4

2

+ 12S

1;3

+ 4S

2;2

+ 4S

3;1

� 12S

1;1;2

� 12S

1;2;1

� 12S

2;1;1

;

H

7;3

= 11S

3

� 9S

1;2

� 9S

2;1

� 12S

1;1;1

;

H

7;2

= 4S

2

� 24S

1;1

;

H

7;1

= �

39S

1

2

;

H

7;0

= �

39

4

: (5.1)

The other terms with lower transcendentality read

H

6;6

= 7S

6

� 40S

1;5

� 32S

2;4

+ 24S

3;3

+ 32S

4;2

+ 80S

1;1;4

� 16S

1;3;2

+ 32S

1;4;1

� 24S

2;2;2

+

+16S

2;3;1

� 24S

3;1;2

� 24S

3;2;1

� 24S

4;1;1

� 64S

1;1;3;1

;

H

6;5

= �20S

5

+ 40S

1;4

� 8S

3;2

+ 16S

4;1

� 32S

1;3;1

;

H

6;4

= 10S

4

+ 4S

1;3

� 12S

2;2

� 12S

3;1

;

H

6;3

= 14S

3

� 12S

1;2

� 12S

2;1

;

H

6;2

= �9S

2

� 12S

1;1

;

H

6;1

= �22S

1

;

H

6;0

= �

37

2

;

H

5;5

= �20S

5

+ 40S

1;4

� 8S

3;2

+ 16S

4;1

� 32S

1;3;1

;

H

5;4

= 20S

4

� 16S

3;1

;

H

5;3

= 4S

3

;

H

5;2

= �4S

2

;

H

5;1

= 0;

H

5;0

= �2;

H

4;4

= 20S

4

� 16S

2;2

� 32S

3;1

;

H

4;3

= 0;

H

4;2

= �4S

2

;

H

4;1

= �8S

1

;

H

4;0

= 2;

H

3;1

= �8S

1

;

H

3;0

= 4;

H

2;2

= �32S

2

;

H

2;1

= 0;

H

2;0

= 8;

H

0;0

= �160: (5.2)

Finally, the dressing contribution reads



dressing

4

= �8S

3

S

1

�

8S

1

(n+ 1)

2

�

4S

1

(n+ 1)

3

�

4S

3

n+ 1

� 8S

3

+
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�

8

(n+ 1)

2

�

8

(n+ 1)

3

�

2

(n+ 1)

4

; (5.3)

and, multiplied by �
3

, consistently shows the proper generalized transcendentality .

It is not difficult to immediately check that the correct universal cusp anomalous di-

mension �

usp

(g) at four loops is reproduced by the leading large N expansion of the

formulas above. While all the terms with 1=(n + 1) factors are suppressed in the large

N limit, those with maximum transcendentality and without those factors are in fact the

same as in the L = 3 scalar sector, where it has been already checked [23] that



no dressing

4

+ �

3



dressing

4

= �

 

73�

6

630

+ 4�

2

3

!

logN +O(N

0

); at N !1: (5.4)

6. Proof of reciprocity

This section contains the complete proof of reciprocity of the four loop anomalous dimen-

sion. It is organized as follows. In Sec. (6.1) we derive the correct reciprocity in Mellin

x-space for this sector. In Sec. (6.2) we present some useful technical result. In Sec. (6.3)

we illustrate a reduction algorithm to write explicitly and in an automatic way the sepa-

rately reciprocity respecting structures. Finally, in Sec. (6.4) we collect the results.

6.1 Reciprocity condition from Mellin transformation

The quadratic Casimir is

J

2

= N

2

+ 8N +

63

4

= 4n(n + 2) +

15

4

: (6.1)

The effective J2 can be defined as

J

2

def

= n (n+ 2): (6.2)

Let us consider now the Mellin transformation of a function which is expressed as de-

pending on n

f(n) =

Z

1

0

dz

z

z

n

F (z); (6.3)

Let us define

z = e

��x

; � =

�

J

2

+ 1

�

�1=2

=

1

n+ 1

; (6.4)

and write

f(n) = �

Z

1

0

dx e

�x

e

�x

F (e

��x

): (6.5)

The absence of half-integer powers of J2 at large n is equivalent to the requirement that

the integrand is locally odd under �! �� in a neighborhood of � = 0. This gives

e

�x

F (e

��x

) = �e

��x

F (e

�x

); (6.6)

or

F (z) = �z

2

F (z

�1

): (6.7)

¿From this, a useful theorem follows
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Theorem 6.1 Let f(n) be reciprocal with respect to J2 = n(n+ 1). Then, the combination

e

f(n) = f(n) + f(n+ 1); (6.8)

is reciprocal with respect to J2 = n(n+ 2).

Proof: We simply write

e

f(n) = f(n) + f(n+ 1) =

Z

1

0

dz

z

z

n

F (z) +

Z

1

0

dz

z

z

n+1

F (z) = (6.9)

=

Z

1

0

dz

z

z

n

(z + 1)F (z); (6.10)

which means
e

F (z) = (z + 1)F (z): (6.11)

Using now F (z) = �z F (1=z) we find

e

F (z) = (z + 1)F (z) = �z (z + 1)F (1=z) = �z

2

e

F (1=z): (6.12)

�

This theorem can be used as follows. We compute the four loop function P(N) and

express it in terms of n =

N

2

+ 1. Then we rewrite it using symmetric combinations of

harmonic terms which are reciprocal with respect to n(n + 1). These have been classified

and listed in [25]. The next section summarizes what we need.

6.2 Reciprocity respecting combinations with respect to n(n+ 1)

Let us consider the following linear map defined on linear combinations of simple S sums

by

�

a

(S

b;c) = S

a;b;c �

1

2

S

a+b;c: (6.13)

Define also

I

a

= S

a

; (6.14)

I

a

1

;a

2

;:::;a

n

= �

a

1

(�

a

2

(� � � �

a

n�1

(S

a

n

) � � � ): (6.15)

For instance,

I

a;b

= S

a;b

�

1

2

S

a+b

: (6.16)

Then, we have the following important result

Theorem 6.2 ([25]) The combinations I
a

1

;:::;a

n

with odd a
1

; : : : ; a

n

have a large N reciprocity

respecting expansion

I

a

1

;:::;a

n

=

1

X

`=0

P

`

(log J

2

)

J

2`

; (6.17)

where J2 = N(N + 1) and P
`

is a polynomial.
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6.3 Reduction algorithm

The general strategy to prove reciprocity is as follows. Let us consider a nested harmonic

sum Sa(n) with a = (a

1

; : : : ; a

k

) and all a
i

odd. The sum Sa(n) is the unique maximal

depth term appearing in the expansion of the invariant Ia defined in Sec. (6.2). Examples

are:

I

1;3

= S

1;3

�

1

2

S

4

; (6.18)

I

1;1;3

= S

1;1;3

�

1

2

S

2;3

�

1

2

S

1;4

+

1

4

S

5

:

This means that we can write

Sa(n) = Ia(n) +Ra(n); depth(Ra) < k: (6.19)

¿From Theorem (6.2), we know that Ia(n) is reciprocity respecting with respect to the

combination n (n + 1). We then write

Sa(n) =

Ia(n) + Ia(n+ 1)

2

+

Ia(n)� Ia(n+ 1)

2

+Ra(n): (6.20)

We rename the first term
e

Ia(n) = Ia(n) + Ia(n+ 1); (6.21)

and we know from Theorem (6.1) that it is reciprocity respecting with respect to the com-

bination n (n + 2). Both the remaining two terms in Eq. (6.20) have depth strictly smaller

than k. For example

S

1;3

(n) =

1

2

e

I

1;3

�

1

2

S

3

(n)

n+ 1

+

1

2

S

4

(n)�

1

4

1

(n+ 1)

4

: (6.22)

The algorithm can now be iteratively applied to the generated terms of depth k � 1.

This strategy can be used to prove reciprocity (with respect to n (n + 2)) of a generic

linear combination of products of nested harmonic sums with possible (n+1)

�p factors. To

this aim, we first combine all products of nested harmonic sums using the general shuffle

algebra relation Eq. (B.10). Then the algorithm is applied up to depth 0. The final result is

a combination of invariants eIa and factors (n+ 1)

�p. If all the indices in the invariants eIa
are odd and all the exponents p are even, the initial expression is automatically reciprocity

respecting with respect to n (n + 2). The constraint on p is due to the relation

n+ 1 =

q

n (n+ 2) + 1: (6.23)

6.4 Results for P at four loops

The P function reads at four loops and in terms of n =

N

2

+ 1 (� � �

n

)

P(n) =

1

X

k=1

1

k!

�

�

1

4

�

�

k�1

[(n)℄

k

= (6.24)
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=  �

1

8

(

2

)

0

+

1

96

(

3

)

00

�

1

1536

(

4

)

000

+ � � � :

Replacing the perturbative expansions

P =
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we find
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These expressions can be computed taking derivatives using the results of Sec. (B.4). Ap-

plying the algorithm for the reduction to invariants we find immediately the one-loop

result in manifestly reciprocity respecting form
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At two loops, the same calculation gives
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At three loops, we obtain the result
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Factors 1=(n + 1) with even exponent appear and do not spoil reciprocity as discussed

above.

The non-dressing four loop result is rather long but can be obtained in a straightfor-

ward way in the reciprocity respecting form
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Notice that we did not attempt to rearrange it in any minimal form.

Finally, the dressing contribution reads

P

dressing

4

= �4

e

I

1;3

� 4

e

I

3;1

� 4

e

I

3

� 4

e

I
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�
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2
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and, as anticipated, is separately reciprocity respecting.

As a consequence of reciprocity, it is possible to analyze the large N expansion of the

four loop anomalous dimension and of P in view of the MVV relations. This is a technical

issue which is presented in Appendix (A).

7. Reciprocity and wrapping

We have presented our multi-loop result and its analysis without much worry about pos-

sible wrapping problems. In this brief section, we make a few remarks about this impor-

tant issue.

It is well-known that the long-range Bethe Ansatz equations are only asymptotic [5].

The length of the chain (and thus of the operator) is assumed to exceed the range of the

interaction (and thus the order in perturbation theory), reaching the asymptotic condi-

tions by which the S-matrix can be defined according to the perturbative Bethe Ansatz

technique [7].

If the interaction range of the dilatation operator reaches or exceeds the length of the

operator under study, the Bethe ansatz might break down [61, 62, 22]. In special subsec-

tors, as su(2), higher order expressions of the dilatation operator are known and this issue

can be checked in full details [63, 64]. In other cases, like in the sl(2) sector, supersymme-

try can be invoked to explain special delays of the wrapping phenomenon [7].

In our calculation, such tools are not (yet) available and we cannot prove nor exclude

wrapping effects at 3 or 4 loops 3. What we have proved rigorously is that the asymptotic

Bethe Ansatz predicts a result which is reciprocity respecting. We believe that this is an inter-

esting result per se, pointing toward hidden properties of the Bethe equations. Besides, we

3The two loop case seem reasonably safe for length 3 states, in that interactions are still only between

next-to-nearest neighbors.
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emphasize that it would be incorrect to believe that a reciprocity respecting result means

that wrapping effects are absent. If one believes that reciprocity is a physically meaning-

ful property, it could simply be that the (yet to be quantified) wrapping-correction is also

reciprocity respecting.

As a sort of example of this phenomenon we can exhibit a case where the asymptotic

Bethe Ansatz provides a result which is certainly wrong, i.e. misses the wrapping contri-

butions, but nevertheless is reciprocity respecting. This is the four loop prediction for the

Konishi operator reported in [22] and known to violate the BFKL equation as well as both

of the recent (not coinciding) field theoretical calculations [65, 66].

For the first three loops, it has been proved that the P function satisfies reciprocity in

all orders [42]. In terms of a series expansion in 1=J

2 and for the first few orders, it reads 4
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At four loops, starting from [22], we derived a series expansion for P
4

that reads
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(7.4)

Only integer negative powers of J2 appear (even extending the series by many orders)

proving (empirically) that reciprocity holds.

8. Conclusions

We have considered a special class of scaling composite operators in N = 4 SYM which

at one-loop admits a simple description as gluonic quasipartonic twist operators. We

have been able to compute their anomalous dimension at 4 loops in the framework of the

asymptotic long-range Bethe Ansatz. This has been possible by formulating a suitable

4Notice that the notation adopted in [22], in which g

2

=

�

16�

2

, differs from the one used here.
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generalized transcendentality principle leading to an inspired Ansatz in terms of nested

harmonic sums. The main test of our result has been to show that it respects the gener-

alized Gribov-Lipatov reciprocity recently discovered in other sectors for the Dokshizter-

Marchesini-Salam evolution kernel.

Going back to our initial motivations, we see that the large spin analysis of twist op-

erators is indeed rich and somewhat surprising. The general structure of the expansion

has a well understood leading logarithmic term which can be resummed in terms of the

physical coupling governing soft radiation effects. The physical coupling must emerge

in a universal way in all conformal sectors (scalars, gauginos or gauge fields) and, pre-

sumably, for all twists (with positive checks in the L = 2; 3;1 cases). The mechanism

is also clear on the AdS side, as explained for instance in [32] and in the recent analy-

sis [67, 68, 39], although a better identification of the string solution dual to the minimal

gluonic operator would be welcome. Indeed, It is known that anomalous dimensions of

operators with twist higher than two occupy a band [32], whose lower bound is the one of

interest in this paper. The spiky strings proposed in [67] are dual to higher twist operators

with maximal anomalous dimension. In addition, a more general problem of identifi-

cation follows from the fact that the field strength does not carry R-charge. While it is

natural to guess that operators built out of many covariant derivatives and field strength

components should correspond to strings stretched in AdS having large spin, it is not

clear how one could distinguish between scalars, fermions or the field strength without

the guidance from some extra charge easily visible on both sides of the AdS/CFT.

On the other hand, the constraints on the subleading terms at large N implied by

reciprocity have a much less clear origin. In particular, it seems that a general reciprocity

proof is missing in the gauge theory. Indeed, we have found empirically that reciprocity

holds in many cases with various conformal spins and twists, but the details of the deriva-

tion are drastically non-universal. The reason is that the reciprocity proofs heavily rely on

the detailed (closed) form of the spin dependent anomalous dimensions. Unfortunately,

we miss a unifying principle treating uniformly the various known cases. Also, what is

the dual counterpart of reciprocity? In [37], reciprocity is tested at strong coupling for the

semiclassical string configuration dual to the minimal anomalous dimension sl(2) twist-L

operator. This is the folded string rotating with angular momentum N on AdS
3

and with

center of mass moving with angular momentum L on a big circle of S5 [69, 70]. An ex-

tension to string states dual to other reciprocity respecting gauge theory operators would

certainly be welcome.

As a final comment, we emphasize that the observed four loop reciprocity for gauge

operators must still pass the test of wrapping effects, as discussed in Sec. (7). Nevertheless,

it certainly suggests some important structure built in the Bethe Ansatz and deserving a

deeper understanding. As we learn from the twist-2 QCD lesson, the attempts to extend at

higher loop orders the Gribov-Lipatov relation led to the discovery of the DMS reciprocity

respecting kernel. This innovative rewriting of parton evolution revealed new relations

between space and time-like anomalous dimensions. In perspective, we believe that the

observation of an intrinsic reciprocity in the asymptotic Bethe Ansatz equations of N = 4

SYM should not be regarded as a mere technical feature. Instead, it could be a starting
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point to constrain the still elusive wrapping corrections.
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A. Large N expansions and reciprocity

¿From reciprocity of P one immediately proves that (basically) half of the terms in  are

truly independent in the spirit of the MVV constraints. This is discussed in [37] that

we now follow. The relation between  and P can be formally solved by means of the

Lagrange-Bürmann formula leading to

(N) =
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If we separate
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then it can be shown that a reciprocity respecting kernel leads to the constraint
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Expanding in loops, we find
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However, these relations are of little practical use. They are completely equivalent to

MVV relations that are more transparent since directly connect specific terms in the large

N expansion of . To this aim it is convenient to rewrite the most difficult 
4

piece in terms

of S
1

and harmonic sums which are convergent as N !1.
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A.1 Reversed form of 
4

, suitable for the large N expansion

Using the shuffle algebra we rewrite the maximal transcendentality term in 
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The other pieces of 
no dressing
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A.2 Large N expansion of 

Starting from this form of 
4

we can easily compute the large N expansion by expanding

each nested sum starting from the most inner index. The procedure is described in full

details in the Appendix of [23]. We always write the results in terms of n =

N
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+ 1 and

also define n = ne



E . The one-loop result is
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The two loop results has single logarithms in all terms
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At three loops, we find quadratic logarithms starting from the 1=n

2 term
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The non-dressing four loops anomalous dimension has a quadratic logarithm in the 1=n

2

term and cubic logarithms in all the subsequent ones. It reads
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Finally, the dressing part has the expansion
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A.3 MVV-like relations

For simplicity we set 
E

! 0, which does no loose information since all logarithms have

as a natural argument the combination n = n
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where L
ij

and 
i

are functions of the coupling.

The most general expansion of a reciprocity respecting P(N) compatible with the

large N expansion of  is
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Matching the above two expansions in the relation
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we determine all the coefficients in the expansion of P and also find a set of constraints

on the coefficients of the expansion of . These constraints give all the terms of the form

(log n)

p

=n

2 q+1 in terms of those of the form (log n)

p
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2 q. The precise relations are the

following lowest order MVV relations
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and the successive ones
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The explicit values of these coefficients for the canonical choice � = �

3

, i.e.
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Notice that the four loop contribution to 
0

does not enter the above relations but only

higher order ones. Also, the relations are true irrespectively on � since the dressing part

is separately reciprocity respecting.

It is a straightforward exercise to check that these expressions indeed obey the MVV

relations.

A.4 Large N expansion of P

In the spirit of the analysis of [42] and [25] we present the large N expansion of P once it

is re-expanded in terms of the physical coupling g2
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which reads at 4 loops
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The reciprocity respecting kernel P can be re-expanded in the physical coupling

P =
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The large n expansion at four loops reads
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Hence, we see that the large logarithmic terms are all hidden in the one-loop physical

kernel. The next logarithmic enhancement is down by two powers of n and starts at

four loops. This is in nice agreement with what is found in the twist-3 scalar operators

analyzed in [25] .

B. Some technical remarks concerning harmonic sums

We collect in this Appendix some useful properties of (nested) Harmonic sums that we

have used in this paper. Very useful references are [71].

B.1 Definition

The basic definition of nested harmonic sums with positive indices S
a
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;:::;a

n

is recursive
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Given a particular sum Sa = S
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depth (Sa) = n; (B.3)
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: (B.4)

For a product of S sums, we define transcendentality to be the sum of the transcendental-

ities of the factors.

B.2 Shuffle algebra and canonical basis

The basic shuffle algebra relation is
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It conserves the total transcendentality . A very useful special case is

S

a

S

b

= S

ab

+ S

ba

� S

a+b

: (B.6)

– 28 –



Applying it iteratively we can reduce sums of the form S

a���a

to products of simple sums

of depth 1. In particular, we list
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A more general shuffle relation is
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One can apply the basic shuffle relation iteratively and prove that any product of S sums

can be written as a linear combination of S sums with the same total transcendentality .

Thus, a basis of fixed transcendentality � products of sums can be reduced to single

sums with varying depth. The number of such sums can be shown to be 2

��1.

The first cases are � = 1 with the single sum S

1

, � = 2 with the sums

S

2
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11

; (B.11)

and � = 3 with the sums
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Of course, the shuffle algebra can be exploited to reduce the number of independent sums

as well as to permute partially the index sets. This is useful to isolate the large N singu-

larities of sums like S
1;:::;1;a in terms which are powers of S

1

.

B.3 Asymptotic values

Often, it is necessary to compute Sa(1) which exists if a
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> 1. To this aim, we define
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The values of H at N =1 are the so-called multiple � values

Ha(1) � �a: (B.14)

The multiple zeta values are known to a large extent and are tabulated as exact combina-

tions of elementary � functions. The relation between them and Sa(1) is simple from the

definition. The first cases at depth 1, 2, 3 are
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The general case is obtained by summing over all possible �a obtained by splitting the

multiindex of S in order-respecting groups (i.e. taking partitions) and taking the sum

within each group. For instance
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B.4 Derivatives

The analytic continuation of Sa(N) can be obtained from
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which can be differentiated with respect to N . This can be used to take derivatives of S

sums.

An equivalent practical method starts from
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Taking a derivative and summing we find
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where 
a;b is a constant to be determined by the condition S0

a;b
(1) = 0. By induction over

the depth, one obtains all the desired derivatives. For instance

S

0

a

(N) = �aS

a+1

+ 

a

= a (�

a+1

� S

a+1

): (B.22)

S

0

a;b

(N) = �aS

a+1;b

+

N

X

n=1

1

n

a

S

0

b

(n) + 

a;b

= (B.23)

= �aS

a+1;b

� b S

a;b+1

+ b S

a

�

b+1

+ 

a;b

; ;

with



a;b

= aS

a+1;b

(1) + b S

a;b+1

(1)� b �

a

�

b+1

: (B.24)
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