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Dynamic causal modeling (DCM) provides a framework for the analysis of
effective connectivity among neuronal subpopulations that subtend invasive
(electrocorticograms and local field potentials) and non-invasive (electroencephalography
and magnetoencephalography) electrophysiological responses. This paper reviews
the suite of neuronal population models including neural masses, fields and
conductance-based models that are used in DCM. These models are expressed in
terms of sets of differential equations that allow one to model the synaptic underpinnings
of connectivity. We describe early developments using neural mass models, where
convolution-based dynamics are used to generate responses in laminar-specific
populations of excitatory and inhibitory cells. We show that these models, though
resting on only two simple transforms, can recapitulate the characteristics of both evoked
and spectral responses observed empirically. Using an identical neuronal architecture, we
show that a set of conductance based models—that consider the dynamics of specific
ion-channels—present a richer space of responses; owing to non-linear interactions
between conductances and membrane potentials. We propose that conductance-based
models may be more appropriate when spectra present with multiple resonances. Finally,
we outline a third class of models, where each neuronal subpopulation is treated as a
field; in other words, as a manifold on the cortical surface. By explicitly accounting for
the spatial propagation of cortical activity through partial differential equations (PDEs),
we show that the topology of connectivity—through local lateral interactions among
cortical layers—may be inferred, even in the absence of spatially resolved data. We also
show that these models allow for a detailed analysis of structure–function relationships
in the cortex. Our review highlights the relationship among these models and how the
hypothesis asked of empirical data suggests an appropriate model class.

Keywords: dynamic causal modeling, electroencephalography, magnetoencephalography (MEG), local field

potential (LFP), neural mass models

INTRODUCTION
Over the past two decades, BOLD neuroimaging techniques have
been successfully applied in human studies to identify regions
of functional specialization, to within a scale of a few millime-
ters (Ashburner, 2012). Electrophysiological recordings includ-
ing magneto- and electro-encephalography (M/EEG) offer an
aggregate measure of neuronal activity (in the order of hun-
dreds of thousands of neurons) but at a millisecond timescale
(Baillet et al., 2001; Nunez and Srinivasan, 2006). Though local-
izing activity is mathematically ill-posed in these electromagnetic
modalities, the wealth of spatial information from fMRI studies
can now support M/EEG as a powerful modality for the analysis
of functional integration in the human brain.

Dynamic causal modeling (DCM) is designed to probe the
mechanisms of effective connectivity (the influence of one brain
region on another) that underlie multi-region network responses
in neuroimaging (fMRI, M/EEG) data. The approach uses a
neurobiologically motivated model which is inverted or fitted
to empirical observations using Bayesian techniques (Daunizeau
et al., 2011). These comprise separate generative processes at the

neuronal level and at the observation level. For M/EEG, neural
mass and neural field models in particular are used, to sup-
port this analysis by quantifying the temporal and spatiotemporal
evolution of macroscopic brain activity, using physiologically
plausible dynamics. In DCM; as implemented in the SPM soft-
ware (Litvak et al., 2011), neural mass and field models are used
as generative models to infer the synaptic parameters and effective
connectivity that constitute active brain networks. More recently,
these models have been applied in (single-region) DCMs as a
“mathematical microscope”—to test synaptic hypotheses at the
level of specific laminae and receptors (Moran et al., 2011b),
and disambiguate between structural and functional hypotheses;
for example, explaining intersubject variations in gamma oscil-
lations (Pinotsis et al., 2013b). In this review, we summarize
the state-of-the-art in modeling such population-based activity
and demonstrate their use in the context of DCM. The devel-
opment of these modeling approaches has been underpinned by
pioneering developments several decades ago that produced gen-
erative models of EEG data characteristics based on neural masses
(Wilson and Cowan, 1972; Nunez, 1974; Freeman, 1975, 1987;
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Jansen and Rit, 1995; Valdes et al., 1999; Wendling et al., 2000).
These models have since been refined and extended (Wright and
Liley, 1996; Rennie et al., 2000) to examine a myriad of neurobi-
ological processes including anesthesia (Steyn-Ross et al., 1999),
epilepsy (Breakspear et al., 2006; Marten et al., 2009; Nevado-
Holgado et al., 2012), “resting state” brain dynamics (Deco and
Jirsa, 2012), and so on. The types of models we will review here
have played a direct implementational role in DCM and do not
represent an exhaustive overview—a non DCM-centric treatment
is provided in Deco et al. (2008). Here we consider, in par-
ticular, how DCM treats ensemble neuronal activity as a point
process (neural mass models) or explicitly incorporate a spatial
dimension (neural field models). Both types describe so-called
“mesoscopic” properties of neural activity, employing statisti-
cal mechanics to transform single unit activity into population
activity—where appropriate composites can be used to gener-
ate macroscopic data. Since this mesoscale is hidden from direct
observation, we demonstrate how these models rely upon and
exploit knowledge about synaptic and cell physiology, as well as
neuroanatomy.

Two distinct biological perspectives have informed the devel-
opment of neural models, leading to a taxonomy of “convolution”
or “conductance-based” models. These distinctions arose from
the consideration of cortical mesocolumns—convolution mod-
els (Freeman, 1975); and separately from the consideration of a
single cell’s electrophysiological properties—conductance mod-
els (Hodgkin and Huxley, 1952). Early work by Wilson and
Cowan (1973) derived a sigmoidal relationship for transforming
population membrane potential to an average population firing
rate. These models consisted of sigmoidal and convolution-based
operators and were refined on the basis of empirical observa-
tions by Freeman, Wendling and others (Freeman, 1987; Jansen
and Rit, 1995; Wendling et al., 2000). In contrast, conductance
based models were formulated as an equivalent circuit model of
an excitable cell membrane: Hodgkin–Huxley’s original descrip-
tion of the giant squid axon is the classical example of this
sort of model—and was reduced to a two dimensional form by
Morris and Lecar (1981). Their reduced circuit has been scaled
up for M/EEG analysis in DCM using the Fokker-Planck for-
malism (Breakspear et al., 2010) to describe the evolution of
population densities (Marreiros et al., 2009). In this setting,
when only the first order statistics (e.g., mean) of the popula-
tion density are considered, the model describes a neural mass
(where the population density can be regarded as a point of
mass). When higher order statistics are considered, we obtain a
“mean-field” model (where the full density of one population
depends on the mean of another). We note that the terminol-
ogy here is rather specific to DCM; the focus of this review.
In other settings, and in other treatments of neuronal activ-
ity (Coombes, 2010; Buice and Chow, 2013), mean-field mod-
els often refer to population dynamics with interacting means
only. However, here we use the term neural-mass to refer to
an interaction in population means and mean-field to higher-
order interactions to remain consistent with the DCM litera-
ture and to acknowledge the early neural-mass nomenclature
developed by Valdez-Sosa and other pioneering work in this
field (Valdes et al., 1999). Both neural mass and mean field

formulations can be applied to convolution and conductance
based models: The choice of either convolution or conductance
based model depends on the type of inference required (when
applying the model to real data), with the latter offering a
richer and biologically more realistic parameterization of synaptic
currents.

The deployment of neural mass (or mean field) models
of populations in DCM entails further neurobiological plausi-
bility, through a laminar specification of cell types and their
interconnectivity. For neocortical studies, a laminar architecture
is populated with neuronal ensembles, so that forward (e.g.,
thalamo-cortical), backward or lateral (e.g., inter-hemispheric)
extrinsic connections impinge upon pyramidal, spiny stellate or
inhibitory interneurons (David et al., 2006). This construction is
motivated by tracing studies in the macaque (Felleman and Van
Essen, 1991) and demonstrates the first constraint under which
these models were developed for DCM. Namely; that they con-
form to known physiological and anatomical principles. A second
constraint is that they must be able to generate stereotypical
features of empirical macroscopic measurements; for example,
dominant alpha rhythms (David and Friston, 2003) or late poten-
tials in evoked transients (Garrido et al., 2007a). In this sense,
none of the models are “right” or “wrong”—but can be usefully
compared to test a particular hypothesis (Box, 1976).

In addition to the distinction between neural mass and mean
field formulations of either convolution or conductance based
models, we also have to consider the distinction between models
based upon ordinary differential equations and partial differential
equations (PDEs) that endow neuronal populations with spa-
tial attributes: incorporating the spatial domain into DCM was
motivated by the advent of spatially resolved population record-
ing modalities (Pinotsis et al., 2012). This use of neural fields,
was proposed as a semi-quantitative treatment of electromag-
netic brain activity by Jirsa and Haken (1996, 1997) and Robinson
(2006). Crucially neural fields enable local axonal arborization
to be modeled directly and can generate topological data fea-
tures. These may be particularly resolved in high-density subdural
grid electrodes (electrocorticography) and optical imaging tech-
niques and also contribute to the topographical distribution of
sensor/scalp space measurements in M/EEG.

In this review, we hope to provide a didactic treatment of
the neural mass and neural field models available in DCM and
highlight application studies that exemplify their use. This com-
plements more general treatments of neural population modeling
(Deco et al., 2008). The first section considers convolution-based
neural mass models. We will demonstrate their use in inferring
causal interactions among multiple brain regions and highlight
the minimal assumptions needed to form—and test—competing
hypotheses. In this section, we will also introduce the impor-
tant distinction between different models and different data fea-
tures; noting that the same models can be used for (and indeed
should be capable of generating) different data features. We will
focus on the distinction between time and frequency domain
responses—highlighting the use of identical neural mass models
when modeling evoked and steady state responses. In the sec-
ond section, we examine conductance-based models and how
new currents can be added to enhance physiological detail at
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the synaptic level. We also examine the impact of second-order
interactions among neuronal ensembles in mean field models,
particularly in the spectral domain. The third section introduces
the spatial parameterization in the form of partial differential or
neural field equations—and how these have been applied to test
alternative explanations for gamma activity in the visual cortex.
In this example, we reconsider lateral connections and the role
of distinct pyramidal cell populations. This final model recapit-
ulates “a canonical microcircuit” and provides a framework for
investigating differences in directed oscillations. This develop-
ment was motivated by theoretical considerations about message
passing in the brain; namely predictive coding and implica-
tions for spectral asymmetries in laminar specific communication
(Friston, 2005, 2009). Important asymmetries of the sort are
evident in several recent empirical observations (Maier et al.,
2010; Buffalo et al., 2011; Bastos et al., 2012) on the laminar
specificity of oscillation frequencies. In principle, these sorts of
observations can be used with DCM, to address key questions
about reciprocal message passing in the brain and its hierarchical
architecture.

CONVOLUTION BASED NEURAL MASS MODEL
GENERATIVE MODELS OF EVOKED RESPONSES: THE ERP MODEL
In DCM, event related potentials are modeled as the response
of a dynamic input–output system to exogenous (experimental)
inputs (David et al., 2006; Kiebel et al., 2006; Garrido et al.,
2007b). The DCM generates a predicted ERP as the response
of a network of coupled sources to sensory (thalamic) input—
with the form of a narrow (16 ms) Gaussian impulse function
that accounts for some temporal smoothing in thalamic volleys.
Each source is modeled as a point source (c.f., equivalent cur-
rent dipole) comprising three subpopulations, each assigned to
a particular cortical layer. For simplicity, we place an inhibitory
subpopulation in the supragranular layer. This receives inputs
from excitatory deep pyramidal cells in an infra-granular layer
which are, in turn, driven by excitatory spiny cells in the gran-
ular layer; layer IV. These three subpopulations are connected
with intrinsic coupling parameters as shown in Figure 1. Though
these models operate as a point process, by specifying different
layers we can call on anatomical rules of extrinsic (region to
region) connectivity (Felleman and Van Essen, 1991). Specifically,

FIGURE 1 | Convolution-based neural mass models: “ERP” and “LFP”.

Neural mass model used to represent a cortical source. Three cell
subpopulations contribute to the ongoing dynamics. These include spiny
stellate cells in granular layer IV, pyramidal cells and inhibitory interneurons
in extra granular layers (II and III; V and VI). Intrinsic connections, γ1,2,3,4,5

link subpopulations in each source. Neuronal states include currents, i, and
membrane potentials v. Extrinsic connections enter at specific cortical

layers (see main text). Right: The functions controlling ongoing dynamics
and their parameterization are summarized by synaptic kernels, which are
used to convolve presynaptic (firing) input [a sigmoidal function of
presynaptic membrane depolarization σ(v)] to produce postsynaptic
depolarization (v), dependent on membrane time constants (1/ κe/i ) and
average post-synaptic depolarizations (He/i ) at excitatory (e) and inhibitory
(i ) synapses.
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the “ERP” and “LFP” convolution based models can be assem-
bled within a generative network using three distinct types of
connections. Forward connections correspond to afferent pyra-
midal axons and synapse on layer IV stellate cells, while back-
ward afferents impinge upon pyramidal and inhibitory interneu-
rons outside of layer IV. Lateral, inter-hemispheric connections
are modeled with a postsynaptic response that is elicited in
all layers.

The evolution of neuronal activity in this anatomical archi-
tecture is controlled by two simple operations following Jansen
and Rit (1995). The first is a convolution operation (Figure 1)
that lends the model its name and models the average mem-
brane depolarization response as a low-pass impulse response.
This transforms the average density of pre-synaptic firing arriv-
ing at the population into the average postsynaptic membrane
potential (PSP). This response is specified by two biologically
informed parameters; one tunes the maximum amplitude of
PSPs and represents the receptor density and the second is a
lumped representation of the sum of synaptic rate constants
(of passive membrane and other spatially distributed delays in
the dendritic tree). The output operator (Figure 1) then trans-
forms this average membrane potential into the average rate of
action potentials fired by the population. This transformation is
assumed to be instantaneous and is described by a sigmoid func-
tion with parameters that determine its shape and location. These
parameters model the voltage sensitivity or gain of the subpopu-
lation and its average threshold. It is this function that endows
the model with non-linear behaviors that are crucial for phe-
nomena like phase-resetting of the M/EEG. The sigmoid form
for these activation functions was originally motivated as aris-
ing from a unimodal distribution of threshold potentials within
a population of Heaviside response units (Wilson and Cowan,
1973). More recent formulations that connect directly to full
mean field (population density) treatments consider the sigmoid
form to arise from the distribution of depolarizations within
a population, under a fixed threshold. This output of this sig-
moid function (presynaptic input) is scaled by intrinsic and
extrinsic connectivity parameters from subpopulations within a
source or from pyramidal cell afferents that arise from other
sources in the network. Thus activity promulgates and reverber-
ates throughout the network (Figure 1). Delays along these con-
nections are also parameterized with values that correspond to
the time taken for axonal propagation between layers (∼2 ms) and
regions (∼16 ms).

A pair of ordinary differential equations completely describes
the dynamics of each subpopulation within a source (Figure 1).
These are deterministic and—for a DCM of ERPs—a thalamic
impulse timed to correspond to some experimental stimulus per-
turbs the sources. The spatial arrangement of pyramidal cell
dendrites (perpendicular to the cortical surface) renders them
the prominent sources of measurable electromagnetic signals and
are thus harvested from each source in the network and passed
through a lead field, to produce the spatiotemporal patterns
observed in M/EEG sensors.

Early applications of this model led to a series of EEG-based
investigations into oddball effects by Garrido et al. (2007a, 2008,
2009). The mismatch negativity (MMN) is a negative change

in the auditory evoked potential that occurs after an unpre-
dictable change in the acoustic stream. It is elicited, for example,
when deviant frequency tones are embedded in a stream of
repeated tones. The MMN has a fronto-temporal topology and
is thought to reflect the updating of an internal model of the
sensorium, where by a sensory prediction error is registered and
a new prediction formed (Näätänen et al., 2005). Competing
“ERP” neural mass models were compared (in terms of their
model evidence, using standard Bayesian techniques) to probe
the type of extrinsic connection changes that mediate the MMN.
Indicating both a bottom-up sensory prediction error and a top-
down change in predictions, a stimulus specific modulation of
both forward and backward connections among hierarchically
deployed sources exhibited trial specific (deviant compared to
standard) modulation (Garrido et al., 2007b). This network and
paradigm has since been investigated in pathological settings.
A striking example by Boly et al. (2011) used the same model
comparison procedure to distinguish between top-down and
bottom-up extrinsic connections and their changes with levels of
consciousness.

GENERATIVE MODELS OF EVOKED AND SPECTRAL RESPONSES: THE
LFP MODEL
A second convolution-based model, named the “LFP” model was
developed from the “ERP” model. The model was augmented
to address the neurotransmitter basis of changes in intracorti-
cal local field potentials from rat prefrontal cortex (Moran et al.,
2007)—and now also serves as a generative model for non-
invasive EEG and MEG studies (Boly et al., 2012). The model
differed from the “ERP” model in two ways: first, based on
biophysical models by Whittington et al. (1995) of gamma oscil-
lations in the hippocampus, the role of inhibitory interneurons
was augmented with recurrent self-connections (Figure 1). This
subtle addition was important from the perspective of a new set
of questions. Here our goal was to develop a generative model
of spectral responses can exhibit high-frequency oscillations. A
second extension refined the neurophysiological input-output
transforms; whereby spike-rate adaptation was modeled at the
input stellate cell population. This involves the addition of cur-
rents based on the phenomenological model described by Benda
and Herz (2003) and combined several ionic currents modulating
spike generation—including voltage-gated potassium currents
(M-type currents), the interplay of calcium currents and intracel-
lular calcium dynamics with calcium-gated potassium channels
(AHP-type currents) and the slow recovery from inactivation of
the fast sodium current.

Practically these additions lead to a larger dynamic repertoire
using an identical connectivity architecture (three subpopula-
tions within a source and extrinsic forward, backward and lateral
connections with laminar specificity) as that described above.
The focus of the LFP model was the reproduction of fast syn-
chronous activity as summarized with the steady-state spectral
density (Fourier transform) of time series data. In order to gen-
erate steady-state spectral responses, we linearized the model’s
differential equations around an equilibrium point. This equi-
librium or operating point is obtained by integrating the system
over a protracted time window. The linearity assumption will
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accommodate parameter spaces in the region of fixed points and
local bifurcations (Friston et al., 2012), known to emerge from
this sort of model (Grimbert and Faugeras, 2006). In DCM,
the neural masses are treated as a system that is perturbed by
white and pink noise; which is explicitly parameterized. This
provides a compact summary of the system, where the system’s
spectral responses can be obtained from its transfer functions,
which depend on the physiological parameters of the model (and
neural noise) (Nunez, 1974; Steyn-Ross et al., 1999; Robinson
et al., 2001; Moran et al., 2007). In other words, the transfer
function links unobserved physiological processes to measured
spectral responses and is an essential part of forward or gen-
erative models of spectral measures. This “LFP” neural mass
model was first used in a single-region DCM analysis to demon-
strate how one can make inferences about synaptic function at
the neuronal level, using macroscopic electrophysiological mea-
surements. This proof of principle used microdialysis measures
of extracellular neurotransmitter for validation (Moran et al.,
2008) and extended the breadth of applications of DCM—in
this case by inferring condition specific modulations of synaptic
parameters.

CONDUCTANCE BASED NEURAL MASS MODELS
THE NMM AND MFM
In DCM, the first biophysical model of ensemble activity to
receive the three-letter acronym “NMM” was described in
Marreiros et al. (2008, 2009). These models parameterize neu-
ronal dynamics at the level of a single neuron and employ density-
based flow (the time derivative of neural activity) mechanics to
represent the dynamics of a population of neurons. In coupling
multiple subpopulations with different characteristics within and
between regions, the framework used a mean-field reduction
(assumption); where each type of population comprises a prob-
ability density and is only affected by the main activity of
other neuronal populations or ensembles in the model. This
formal population treatment was applied in the context of a
conductance-based model predicated on the Morris–Lecar equiv-
alent RC-circuit description of oscillatory membrane properties
in barnacle muscle fiber (Morris and Lecar, 1981). These models
equate capacitive current (according to Kirchhoff ’s current law)
with the summed active and passive currents across the mem-
brane. Morris–Lecar models can be thought of as reductions of
Hodgkin and Huxley’s model of the squid axon. They include
active currents that describe ligand-gated excitatory (Na+) and
inhibitory (Cl−) ion flow, mediated through fast glutamatergic
and GABAergic receptors, with a potassium leak current used to
account for all passive ionic currents (Gutkin et al., 2003); where
the conductance of the active channels display first order dynam-
ics that depend on the time constant of the channel and their
current state (Figure 2).

It may seem that we are conflating the introduction of mean
field (versus neural mass) formulations with the introduction
of conductance-based models. However, there is a fundamen-
tal reason for doing this: in full mean field treatments, the
ordinary differential equations describe the dynamics of first
and higher-order statistics of population densities—such as the
covariance among neuronal states within a population. Crucially,

the covariance depends upon the mean of the neuronal states
when, and only when, the equations are non-linear in the
states (i.e., where the states interact multiplicatively). In other
words, the weakly non-linear (sigmoidal) equations of motion
of convolution-based models mean that the covariances are not
functions of the population averages and therefore do not change
with time. This is why one only has to consider first-order statis-
tics in neural mass models based upon (linear) synaptic convo-
lution operators. However, when we move to conductance-based
models, there is a necessary interaction between conductance and
depolarization, which renders the models intrinsically non-linear.
This means that the covariances depend upon the means (and
vice versa). It therefore only makes sense to consider mean field
treatments of conductance-based models.

Mean field treatments start with a description of a single
neuronal response in terms of stochastic differential equations
(presented in Figure 2) that accommodate noise or fluctuations
in neuronal states (Note: In physics generally a mean-field reduc-
tion refers to any statistical summary i.e., to first or higher order,
to describe population responses. In the context of neuronal pop-
ulation models of brain function, the literature has a adopted a
standard where a neural-mass refers to first order and a mean-
field; first and higher order interactions (Deco et al., 2008).
Marreiros et al. (2009) used these stochastic differential equa-
tions to form a set of non-linear ordinary differential equations by
applying the Fokker-Planck formalism using the Laplace assump-
tion (or method of moments). This meant that ensemble activity
could be modeled without the need to simulate individual unit
activity with noisy fluctuations—the neuronal fluctuations are
implicit in the population density dynamics. Heuristically, the
population density approach is important because it provides a
unique prediction or generative model of an empirical response.
Mean field formulations of conductance-based models are there-
fore invertible (can be fitted to data) in the setting of DCM. The
resulting expression for the population dynamics; the evolution of
the population’s mean and variance, decomposes into determinis-
tic flow and diffusion. In turn, these reduce to simple forms under
Gaussian (Laplace) assumptions about the population density—
where first order population dynamics are a function of flow
and the curvature of the flow, and the second order statistics a
function of the gradients of flow. However, a DCM of a single
source typically comprises three coupled populations (David and
Friston, 2003).

For conductance based models in DCM, we employed a similar
structure to the “ERP” and “LFP” mass models—with inter-
acting populations of excitatory spiny stellate cells, pyramidal
cells and inhibitory interneurons, coupled through intrinsic con-
nections (Figure 2). The mean field partition means that these
operations can be applied to each population in turn, and lead
to simple expressions; given that the gradient and curvature of
the equations of motion are only non-zero within a particu-
lar ensemble. These equations describe a mean-field model; the
“MFM,” in which the first and second order sufficient statistics
interact, influencing each other when the curvature (derivative
of the flow) is non-zero. The formally reduced model, where
only first order interactions are considered is termed the “NMM”.
This point mass interaction is identical to the ERP and LFP
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FIGURE 2 | Conductance-based neural mass models: “NMM” and

“MFM”. This figure shows Morris–Lecar-type differential equations
describing the time evolution of a single cell current (capacitance ×
change of membrane potential: CV̇ ) and conductance (g) at inhibitory
interneurons (extra granular layers), spiny stellate cells (granular layers) and
pyramidal cells (extra granular layers). In this model, all cell types possess
AMPA receptors, GABAA; with ion-channel time constants (1/ κe/i ). Layers

are connected with strengths parameterized by γ VL, VE, and VI are
reversal potentials for leak potassium channels, sodium, and chloride
channels, respectively, at VT is the threshold potential. NMDA receptors at
pyramidal cells and inhibitory interneurons can be added using a
conductance equation of similar form, weighted by a voltage dependent
switch (Moran et al., 2011a,b). For a full population Fokker-Planck
characterization see Marreiros et al. (2008).

models in terms of the effects different subpopulations exert on
others, but have a different dynamic form through the equiva-
lent RC circuit description. Unlike the NMM, the MFM allows
for expansion (dynamic increase in the variance of the state’s
associated probability distribution) and contraction (dynamic
reduction in the variance of the state’s associated probability dis-
tribution) of dispersed neuronal states to influence the average
flow.

Marreiros et al. (2010) compared DCM using mean-field mod-
els (MFM) with dynamically coupled means and variances to
a model where the variance was fixed (NMM). In the time
domain, a simulated evoked potential elegantly demonstrated
the effect of this coupling with the variance of the pyrami-
dal cell population’s depolarization contracting to close to zero
when the mean approaches its maximum. Within the spec-
tral domain, they similarly showed qualitative differences in
the dynamic repertoire—with the MFM displaying limit-cycle
attractors after bifurcation from a fixed-point (Marreiros et al.,

2009). In this setting, the mean-field model is inherently more
non-linear, because it entails non-linear interactions between
the first and second order statistics of the hidden states (i.e.,
dynamic processes that affect the observations, but cannot be
directly measured. the activity in interneurons affect signal prop-
agation within regions but due to the random pattern of their
dendrites do not directly contribute to the measured field).
This speaks to many similar investigations of non-linearity in
neural systems (Lopes Da Silva et al., 1989; Destexhe and
Babloyantz, 1991; Daffertshofer et al., 2000; Breakspear, 2002;
Breakspear and Terry, 2002; Stam, 2005), where the emer-
gence of quasiperiodic, chaotic and itinerant attractors belies a
rich set of dynamic phenomena with physiologically plausible
interpretations.

THE NMM AND MFM WITH VOLTAGE GATED NMDA RECEPTORS
An extension to the NMM and MFM was presented in Moran
et al. (2011a) through the inclusion of a third ligand-gated
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ion channel to model conductances controlled by the NMDA
receptor. NMDA receptor controlled ion channels were con-
sidered in a separate treatment since they are both ligand-
and voltage-gated. For an NMDA channel to open, following
the binding of glutamate, there must first be a large trans-
membrane potential to remove a magnesium ion blocking the
channel. Hence, the dynamics for this particular current are
given by an extended equation, which includes the magnesium
component using a voltage gated function (Figure 2). By intro-
ducing NMDA ion channels to pyramidal cells and inhibitory
interneurons (Brunel and Wang, 2001), we further constrained
and distinguished laminar specific responses. This type of chan-
nel afforded another source of non-linearity due to its voltage
dependency (Jahr and Stevens, 1990), and required an exten-
sion of the steady-state linearization, for both the NMM and
MFM case.

To characterize the dynamic repertoire of these models, we
examined steady-state responses in the frequency domain to iden-
tify regimes where the system settles to a fixed point (i.e., the
average activity reaches steady-state) or a limit cycle. In the first
regime the spectrum observed is generated by noise, where neu-
ronal populations act as a filter—shaping the noise spectrum to
produce a profile of output frequencies. In the second dynamic
regime, the average neuronal states themselves may oscillate. In
this situation, the system exhibits what is known as a quasiperi-
odic attractor and the frequency response to noise changes with
different points on the attractor (Moran et al., 2011a). This
means one has to take the average frequency response over the
attractor manifold (i.e., over the limit cycle). Crucially, the fre-
quencies that are preferentially passed by the system are also the
frequency of the oscillation (limit cycle). This means the pre-
dicted spectral responses to noise under steady state can be seen
(and treated mathematically) as a special case that obtains when
the attractor collapses to a fixed point. This second regime was
particularly evident in the MFM case, where attractor subspaces
characteristic of heteroclinic channels were observed—and pro-
duced bimodal spectral peaks from local and global state space
trajectories.

This richly parameterized neural mass model was then used
to examine distinctions among the type of receptors underly-
ing empirical neural activations in EEG and MEG. In Moran
et al. (2011b), we tried to recover pharmacologically induced
changes in receptor processing using MEG, during a visuo-spatial
working memory task. Specifically, parameter estimates from the
spectral response in superior frontal gyrus, disclosed an effect
of L-Dopa on delay period activity—in terms of how L-dopa
changed specific synaptic (connectivity) parameters (Figure 2).
These effects were exactly commensurate with predictions from
the animal and computational literature (Goldman-Rakic, 1996;
Durstewitz et al., 2000; Gorelova and Yang, 2000; Gonzalez-Islas
and Hablitz, 2003; Durstewitz and Seamans, 2008) and revealed
the dual mechanisms of dopaminergic modulation of gluta-
matergic processing; where L-Dopa increased the non-linearity
of post-synaptic responses mediated by NMDA receptors, and
decreased AMPA coupling between pyramidal cells and stellate
cells. In this study, we also found an L-Dopa-dependent change
in exogenous input into the frontal region, which effectively

suppresses this region during delay-related reverberatory pro-
cessing. Moreover, individual parameter estimates from the
DCM correlated with individual performance indices (Moran
et al., 2011b), a crucial finding that is often used to show
that parameter estimates from an NMM reflect real neuronal
processes.

SPATIAL HARMONICS AND THE NEURAL FIELD
THE NFM
Pinotsis et al. (Pinotsis and Friston, 2011; Pinotsis et al., 2012)
introduced the spatial domain into DCM with neural field mod-
els. Neural fields model current fluxes as continuous processes
on the cortical sheet, using PDEs. The key advance that neural
field models offer, over conventional neural mass models, is that
they embody spatial parameters (like the density and extent of
lateral connections). This means that, in principle, one can infer
the spatial parameters of cortical infrastructures generating elec-
trophysiological signals (and infer changes in those parameters
over different levels of an experimental factor) from empirical
data. This rests on modeling responses not just in time but also
over space. This sort of model should be ideally suited to exploit
the temporal dynamics of observed cortical responses with a high
spatial resolution; for example, with high-density recordings, at
the epidural or intracortical level. However, as demonstrated in
early DCM-NFM, the impact of spatially extensive dynamics is
not restricted to expression over space but can also have profound
effects on temporal (e.g., spectral) responses at one point (or
averaged locally over the cortical surface) (Pinotsis et al., 2012).
This means that neural field models may also play a key role in
the modeling of non-invasive electrophysiological data that does
not resolve spatial activity directly. Although, neural mass mod-
els can describe patterns in sensor space, the spatial attributes of
these patterns result from the coupling among states at different
points in source space and not from hidden states that are func-
tions space (i.e., they are described by equations that are time
dependent but not spatially dependent).

In terms of anatomical and physiological constraints, func-
tional specialization demands that cells with common functional
properties are grouped together. This architectural constraint
necessitates both convergence and divergence of cortical con-
nections (Zeki, 1990), of the sort that can be modeled with a
neural field model. To model these spatial aspects of connectiv-
ity one needs partial differential or integro differential equations
that accommodate lateral interactions over spatially extended
cortical manifolds. In Pinotsis and Friston (2011), the reper-
toire of steady state regimes engendered by sparse (patches of)
intrinsic connections was examined. Specifically, we considered a
bimodal, non-centric distribution and showed (through a Turing
instability analysis) that the dispersion relation from this par-
ticular arrangement of spatial delays leads to infinite branches
of complex spectra. These branches undergo similar conforma-
tional changes, under both increased propagation velocity and
decreased spatial separation (range) of lateral connections. The
resulting fall in the amplitude of high frequency oscillations was
also apparent in the spectral summaries of these responses, in
terms of cross spectral densities. For example, as the separation of
coupled neuronal populations increases, the total spectral power
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decreases and falls faster for higher frequencies in a manner simi-
lar to local coherence functions based on primate recordings (see
Leopold et al., 2003) In brief, both the spatial deployment and
the speed of lateral connections can have a profound effect on the
behavior of spatial harmonics over different scales. Interestingly,
it turned out that only synaptic gain was capable of producing
phase-transitions: when increasing gain, the system was driven to
an unstable regime and oscillations appeared as a result of a Hopf
bifurcation.

This neural field model was later extended to a three lay-
ered architecture comprising pyramidal cells, inhibitory interneu-
rons and spiny stellate cells (Figure 3), where spatial delays
result from signals propagating with finite conduction speeds
along axonal arbors (Pinotsis et al., 2012). These arbors were
arranged with a central distribution of synaptic densities, which
decayed exponentially in space. Spatial delays operated along the
same intrinsic connections used in ERP neural mass models:

the cortical micro circuitry in the “ERP” and “NFM” models.
This means that the neural mass and field models are essen-
tially the same; describing the same neurobiological dynamics
over time, but where the “NFM” is equipped with spatially
extended hidden states that characterize presynaptic input as a
spatially-extended process that is propagated along axonal arbors.
In contrast the hidden states in a neural mass model are a
function of time only. As with the “ERP” and “LFP” models,
this model (“NFM”) uses a convolution operator to characterize
post synaptic filtering and a sigmoid function to accommodate
the dispersion of the hidden states of the afferent population
(Figure 3).

The advantage of neural field models is that they can accom-
modate spatially extended activity on cortical manifold or patches
that endows the predicted responses with a complicated fre-
quency dependency. This allows one to distinguish between spa-
tial effects and other factors (such as intrinsic cell properties) on

FIGURE 3 | Canonical microcircuit neural field model: “CMC”. This figure
shows the evolution equations that specify a canonical microcircuit (CMC)
neural mass model of a single source. This model contains four populations
occupying different cortical layers: the pyramidal cell population of the Jansen
and Rit model is effectively split into two subpopulations allowing a
separation of the neuronal populations that elaborate forward and backward
connections in cortical hierarchies. As with the ERP and LFP models,
second-order differential equations (shown earlier in Figure 1 decomposed
into two first order ODEs), mediate a linear convolution of presynaptic activity

[a sigmoidal function of presynaptic membrane depolarization σ(v)] to
produce postsynaptic depolarization (v), dependent on membrane time
constants (1/ κe/i ) and average post-synaptic depolarizations (He/i ) at
excitatory (e) and inhibitory (i ) synapses. This depolarization gives rise to firing
rates within each sub-population that provide inputs to other populations.
Replacing connectivity parameters d, with a connectivity matrix over space
and time D(x,t) enables one to generalize the neural mass model to a neural
field model. This effectively converts the ordinary differential equations in this
figure into partial differential equations or neural field equations.
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the basis of observed (empirical) responses. The incorporation
of neural field models in the DCM framework allowed spatial
parameters of the sources—like the spatial decay rate of synap-
tic connections and intrinsic conduction speed—to be optimized
even using spatially unresolved data, like a time series from a sin-
gle LFP channel. For example, Bayesian model selection (BMS)
correctly distinguished between mass and field models. This type
of comparison was formalized using DCM and Bayesian model
evidence in the context of invasive local field potentials from rat
auditory cortex. With these invasive data, the neural-field model
had a much greater evidence than the equivalent neural mass
variant; this could be attributed to the increased repertoire of pre-
dictions that these models afford and indicates a key role for—and
parameterization of—spatial as well as temporal dynamics on the
cortical manifold.

STRUCTURE, FUNCTION, AND THE CANONICAL MICROCIRCUIT (CMC)
Pinotsis et al. (2013b) showed that DCM with neural fields
can provide a detailed analysis of correlations between cortical
structure and function. This analysis was motivated by previous
results suggesting two hypotheses regarding the biophysical basis
of inter-individual differences in peak gamma frequencies—one
based on functional differences and one based on structural dif-
ferences: Muthukumaraswamy et al. (2009) suggested that peak
gamma frequency is determined by the level of inhibition in
V1, as described by resting GABA concentration measured with
MR spectroscopy. Later, Schwarzkopf et al. (2012) found a cor-
relation between peak gamma frequency and the surface area
of primary visual cortex as measured with retinotopic mapping.
These authors suggested that the size of V1 and associated differ-
ences in structural microanatomy could be true determinants of
peak gamma frequency. The above two hypotheses suggest that
both GABA concentration and V1 size can influence gamma fre-
quency; however, these factors may or may not be causally linked.
In other words, a larger V1 may have a higher GABA concen-
tration that may or may not be due to a higher local GABA
density.

DCM with neural fields incorporate parameters pertaining to
both microanatomy and the density of GABA receptors (that
determine inhibitory intrinsic connection strengths) and allow
one to investigate alternative explanations for differences in
gamma peak frequency. These differences could be mediated by
either a kinetic (functional) parameter, summarizing the level
of cortical inhibition or the (structural) macrocolumn width
or both of these parameters. Pinotsis et al. (2013b) looked at
the correlations over subjects between peak gamma frequency,
V1 surface area and the Bayesian estimates of these structural
and functional parameters and found that both hypotheses were
confirmed. In brief, they found correlations between columnar
width, gamma peak and V1 size and also between the GABAergic
parameter and the gamma peak. This correlation remained sig-
nificant when controlling for V1 size and width. This suggests
that the correlation between gamma peak and V1 inhibition can-
not be accounted for completely by the spatial parameters (at the
microscopic or macroscopic level). Structural equation modeling
was used to characterize the causal dependencies among observed
quantities and the model parameters: in the winning structure

equation model, peak gamma frequency was mediated proxi-
mately by excitatory drive to inhibitory (GABAergic) interneu-
rons and the strength of this drive was determined, in part, by
the size of macrocolumns. In turn, the size of the macrocol-
umn was constrained by the macroscopic (retinotopic) size of
V1 (under the assumption that V1 size is determined geneti-
cally or epigenetically). These results suggested that both cortical
microstructure and excitability may be important for visual per-
ception and are in accord with empirical studies showing that the
size of V1 is negatively correlated with the strength of visual illu-
sions (Schwarzkopf et al., 2010)—and that GABA concentration
correlates with orientation discrimination ability (Edden et al.,
2009).

This work also introduced an expanded neuronal architecture
based upon the canonical microcircuit. These models comprise
four subpopulations (as opposed to three subpopulations in mass
and field models above, see Figure 3). The canonical microcircuit
or “CMC” models a refinement of the Jansen and Rit convolu-
tion models that explicitly accommodates the neuronal sources of
forward and backward connections in cortical hierarchies (Bastos
et al., 2012). These are distinct superficial and deep pyramidal
cell populations, respectively that, crucially, may exhibit differ-
ent spectral outputs. Specifically gamma responses have been
recorded in superficial layers, while slower dynamics (in the alpha
and beta range) arise concurrently in infra granular populations
(Maier et al., 2010; Buffalo et al., 2011; Bastos et al., 2012). The
CMC proposes an intrinsic connectivity architecture to account
for this non-linear transformation though dendritic and pop-
ulation effects (Bastos et al., 2012). The canonical microcircuit
model is based upon intracellular recordings in cat visual cor-
tex by Douglas and Martin (1991) who investigated the laminar
propagation of afferent signals and produced pathways that are
thought to reflect canonical input–output processing streams for
forward and backward signals throughout the cortex. These mod-
els are currently being used to test hypotheses about asymmetries
in forward and backward message passing that may shed light
on the distributed neural processing that underlies perceptual
synthesis and inference.

SUMMARY
The basic idea behind DCM is that neural activity propagates
through brain networks in a way that can be modeled as an
input-state-output-system, where causal interactions within the
system are mediated by unobservable (hidden) dynamics. The
resulting multi-input-multi-output (MIMO) neuronal model
is then supplemented with a observation model (e.g., classi-
cal electromagnetic forward model) that describes the mapping
from neural activity to observed responses (Daunizeau et al.,
2011). It is the dynamics of the hidden states that are pre-
scribed by the neural mass and neural field models outlined
above. The type of data and data features determine the com-
bination of neuronal and observation models. For example,
EEG and MEG data require a different observation model than
LFP data, while evoked responses necessitate a parameterized
Gaussian pulse input—in contrast with spectral density data
features that require parameterized neuronal noise spectra. In
all of these different applications, the underlying “LFP,” “ERP,”
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“NMM,” “MFM,” “NFM,” and “CMC” models are, in principle,
interchangeable.

The choice of the appropriate neuronal model should reflect
the research question at hand: for example, whether the focus is
on topographic as opposed to intrinsic neurotransmitter prop-
erties or drug effects etc. This choice may also be informed
by previous applications, where a particular model has already
proven useful within a DCM context (for example, fast oscilla-
tions in the gamma band for the “CMC” model). One generally
designs a DCM study to assess the effects of task manipula-
tion, group, pathology or drug on a particular parameter or set
of parameters of interest. In other words, the choice of model
should be evident at the outset and often conforms to the “mini-
mal model approach” necessary to access that parameter—this is
because, in general, a simpler model has more constraints and can
use the degrees of freedom in the data to estimate model parame-
ters and evidence more efficiently. For example, where differences
in effective extrinsic connectivity are of interest, a convolution
based model—that is agnostic to specific intrinsic ion channel
mediators—will suffice to address the hypothesis (Campo et al.,
2012). The direction of empirical research using DCM as a “math-
ematical microscope” of synaptic processes—where particular
receptor and neurotransmitter changes are important—may call
for the finer grained physiological details of the NMM or MFM
(Moran et al., 2011b). In other cases the form of the dynam-
ics, for example whether field (or propagation) effects should
be considered, may itself embody the central hypothesis. In this
case, as demonstrated in Pinotsis et al. (2013b), BMS may be
sufficient to disambiguate among competing hypotheses about
neuronal architecture (Penny et al., 2004). In effect, BMS usurps
all other arguments as the best method to test which model should
be applied to which data; though computational and time con-
straints, particularly as the suite of options in DCM is expanded,
may determine the extensiveness and overall feasibility of such a
search. In principle, researchers may employ their own neuronal
model (or feature extraction process) by compositing a parame-
terized state space and utilizing the modularity of SPM’s source

code. Wrapper routines which specify parameter priors, integra-
tion schemes and variational expectation maximization can be
applied to a function of neuronal activity that is user-specified (In
SPM’s DCM toolbox: http://www.fil.ion.ucl.ac.uk/spm/, The cur-
rent routines are described in files “spm_fx_nmm”) (Kiebel et al.,
2009; Litvak et al., 2011). Construct validity would then need to
be tested by simulating data from different regions of parameter
space and investigating parameter identify ability i.e., whether the
framework can recover the simulated parameters given different
initializations. These tests are particularly important in the case
of highly nonlinear state space models, given the potential of the
gradient ascent to converge to local maxima (Friston et al., 2012).

The models we have reviewed in this paper may also be use-
ful beyond the DCM inference framework. For example, in the
study of large scale generative processes underlying resting-state
networks in fMRI, neural mass (Deco and Jirsa, 2012) and neu-
ral field models (Pinotsis et al., 2013a) have been embedded
in anatomical graphs to study emergent behaviors and dynamic
properties (Gray et al., 2009; Robinson et al., 2009). This suggests
that these models may have some utility as neural state equations
in DCM for fMRI, though currently we deploy coarser models
with far less physiological detail (Daunizeau et al., 2011). The
field of inquiry using these types of models is varied and rich,
with DCM applications including the locus of consciousness and
unconsciousness in vegetative state patients (Boly et al., 2011),
diaschisis in temporal lobe epilepsy (Campo et al., 2012) and the
effects of ketamine on synaptic plasticity (Schmidt et al., 2012).
The set of distinct dynamics within which these types of effects
can be parameterized will no doubt grow beyond the current suite
of models available. Indeed their exchangeability within the DCM
framework allows researchers to define their own favorite or inter-
esting model and proceed in the usual Bayesian way (Friston et al.,
2003).
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