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Abstract Neural rhythms or oscillations are ubiquitous in

neuroimaging data. These spectral responses have been

linked to several cognitive processes; including working

memory, attention, perceptual binding and neuronal coor-

dination. In this paper, we show how Bayesian methods can

be used to finesse the ill-posed problem of reconstructing—

and explaining—oscillatory responses. We offer an over-

view of recent developments in this field, focusing on (i) the

use of MEG data and Empirical Bayes to build hierarchical

models for group analyses—and the identification of

important sources of inter-subject variability and (ii) the

construction of novel dynamic causal models of intralami-

nar recordings to explain layer-specific activity. We hope to

show that electrophysiological measurements contain much

more spatial information than is often thought: on the one

hand, the dynamic causal modelling of non-invasive (low

spatial resolution) electrophysiology can afford sub-mil-

limetre (hyper-acute) resolution that is limited only by the

(spatial) complexity of the underlying (dynamic causal)

forward model. On the other hand, invasive microelectrode

recordings (that penetrate different cortical layers) can

reveal laminar-specific responses and elucidate hierarchical

message passing and information processing within and

between cortical regions at a macroscopic scale. In short, the

careful and biophysically grounded modelling of sparse data

enables one to characterise the neuronal architectures gen-

erating oscillations in a remarkable detail.

Keywords Dynamic causal modelling � Intersubject

variability � Connectivity � Microelectrodes � Laminar

responses � Compartmental models � Hierarchical Bayesian

models

Introduction

Neural rhythms have been associated with a variety of

cognitive functions; including working memory (Pesaran

et al. 2002; Siegel et al. 2009), visual attention (Buschman

and Miller 2007; Fries 2009; Kornblith et al. 2015;

Womelsdorf et al. 2006), cortical representations (Buzsáki

and Chrobak 1995; Schoffelen et al. 2005), feature binding

(Tallon-Baudry et al. 1996) and information propagation in

feedforward/feedback directions in cortical hierarchies

(Bastos et al. 2012; Friston et al. 2015). Oscillatory activity

is also thought to be the signature of aberrant neuronal

processing in psychiatric diseases (Uhlhaas and Singer

2012), such as autism (Dickinson et al. 2015) or

schizophrenia (Gonzalez-Burgos and Lewis 2008) and can

be used to disclose mechanisms underlying intersubject

variability (Pinotsis et al. 2013). Gamma band responses in

particular, have been shown to reflect various input attri-

butes, like the size of visual objects (Pinotsis et al. to

appeara; Perry et al. 2013), luminance (Swettenham et al.

2013) and contrast (Pinotsis et al. 2014; Ray and Maunsell

2010; Roberts et al. 2013). Here, we consider powerful

tools from Bayesian inference to illustrate the wealth of

information about brain function that neural rhythms and

electrophysiological responses afford. In this setting,
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Bayesian deconvolution and empirical Bayes are used to

finesse the ill-posed problem of reconstructing and

explaining electromagnetic sources and oscillatory

responses. In this setting, neural activity is described by

probability densities parameterized by physiological or

anatomical (lead field) parameters and hyper-parameters

that embody assumptions about random effects. This

description provides a generative model of how underlying

signals are caused, which can be used to optimise the

model—and its (physiological) parameters. This approach

calls on a combination of forward and backward modelling

that involves simulating predicted responses (using bio-

logically plausible anatomical models) and Bayesian

inversion to estimate cortical structure and function. We

will showcase two applications of Variational Bayes to

extract information from neuroimaging data, see also

(Pinotsis and Friston 2014a): First, we will illustrate the

richness of non-invasive recordings by reviewing recent

studies that use parametric empirical Bayes (PEB) to

characterise intersubject variability—in cortical function—

using non-invasive electrophysiology. Second, we will

preview a new study that uses laminar data and Bayesian

model comparison to analyse oscillatory recordings

obtained from the prefrontal cortex during a delayed sac-

cade task. These complementary examples show how

biologically informed modelling of electrophysiological

measurements can, on the one hand, allow questions about

microcircuitry to be answered using macroscopic (non-in-

vasive) data, while on the other hand microscopic (inva-

sive) data can be used to inform hypotheses about neuronal

interactions at a macroscopic scale.

Hierarchical Bayesian Models and the Analysis
of Neuroimaging Data

In this section, we summarize some theoretical results and

show how (i) parametric empirical Bayes (PEB) can be

used to quantify group effects in multi-subject studies—by

optimizing hierarchical Bayesian models and (ii) how

Bayesian model comparison allows us to reconcile for-

mally distinct (compartmental and mean field) models and

construct DCMs of laminar probe data.

The first application provides a fresh perspective on the

use of non-invasive electrophysiology: M/EEG are often

thought to have excellent temporal but limited spatial

resolution, see e.g., (Lütkenhöner 2003). However, in

previous work we have shown how variational Bayesian

inference can be used as a mathematical microscope to

yield non-invasive estimates of cortical anatomy, structure

and function, see e.g., (Pinotsis et al. 2013). At the same

time, M/EEG responses can illuminate the neurobiological

mechanisms underpinning neural rhythms (Friston et al.

2015; Pinotsis et al. 2014). Here, we present further results

that illustrate the rich spatial information in non-invasive

data and argue that this richness is (only) bounded by the

models used to explain empirical data—and the experi-

mental design used to elicit those state (e.g., experimental

artefacts, number and location of the sensors, length of

recording sessions etc.), see also (Troebinger et al. 2014).

Exploiting this rich spatial information rests upon formu-

lating appropriate hierarchical Bayesian models that gen-

erate predictions of neural activity and group effects

(Friston et al. 2016). A general form of these models

accommodates both within and between subject effects.

For example:

yi ¼ Ciðhð1ÞÞ þ eð1Þi

hð1Þ ¼ Cðhð2ÞÞ þ eð2Þ

hð2Þ ¼ gþ eð3Þ

ð1Þ

where yi is a matrix of i-th subject responses, Ciðhð1ÞÞ
represents the (differential equation or dynamic causal)

model that generates these responses with parameters hð1Þ,

Cðhð2ÞÞ is the between subject (second level) model that

describes intersubject variability in the parameters of the

first level model. The second level maps second to first

level parameters (e.g., group means to subject-specific

parameters), where eðiÞ represent random effects at each

level (e.g., intersubject variability and observation noise).

Below, we combine these second level models with models

of brain activity that make predictions about the dynamics

of coupled excitatory and inhibitory populations. In these

applications, Ciðhð1ÞÞ captures biophysical (see e.g. (Deco

et al. 2008; Pinotsis and Friston 2014a) behaviours that are

caused by key architectures and (synaptic) connectivity

parameters of interest. Bayesian procedures allow us to

identify the form of hierarchical models and estimate their

(hidden) parameters using observed responses and Varia-

tional Bayesian inference (Friston et al. 2007, 2008).

In the context of non-invasive electrophysiology, the

hierarchical model (2) poses the difficult inversion problem

of finding neural source estimates in the context of inter-

subject variability. This involves (i) partitioning the

covariance of observed data into observation error and

components that can be explained in terms of neuronal

responses, that themselves entail components due to second

level (between-subject) level variability; (ii) exploiting

differential equation models to provide anatomical and

physiological constraints on the explanation for first level

(within subject) responses—usually in terms of (synaptic)

connectivity estimates. The second level covariance com-

ponents specify whether the parameters of the dynamical

model at the first level are random or fixed effects, while

dynamical models provide predictions of the dynamics at
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source and sensor space, which depend upon cortical

anatomy and physiology.

In summary, hierarchical or empirical Bayesian mod-

elling of the sort implied by Eq. (2) allows us to perform

efficient source reconstruction and obtain connectivity esti-

mates by replacing phenomenological constraints (e.g.,

based on autoregressive modelling and temporal smoothness

considerations) by spatiotemporal constraints based on

models of neuronal activity. This can be thought as an

alternative to autoregressive models, which model statistical

dependencies among measured signals—as opposed to the

neuronal processes generating measurements. In dynamic

causal modelling, one uses a forward or generative model of

distributed processing to estimate the (coupling) parameters

of that model. Inference then proceeds assuming nonlinear

within-subject effects and linear between subject effects.

This allows one to distinguish among competing hypotheses

about the mechanisms and architectures generating the data

and the nature of group effects in multiple subject studies

(Friston et al. 2015, 2016; Pinotsis et al.; to appear).

Crucially, the use of Bayesian model reduction (BMR)

allows one to reduce the computational burden of inverting

PEB models from multiple subjects and enables an efficient

scoring and averaging of large sets of (nested) models

(Friston and Penny 2011). Bayesian model reduction

entails the estimation of a posterior density over hidden

model parameters for a reduced model (defined in terms of

a prior density) using just the posterior density estimated

from a full model (with a complete set of parameters). We

can express the generative model in Eq. 1 in terms of a

likelihood model and the implicit (empirical) priors:

ln pðy; hð1Þ; hð2ÞjmÞ ¼
X

i
ln pðjhð1ÞÞ þ ln pðhð1Þjhð2ÞÞ

þ ln pðhð2ÞjmÞ

p yijhð1Þ;m
� �

¼ NðCiðhð1ÞÞ;Riðhð1ÞÞÞ

p hð1Þjhð2Þ;m
� �

¼ NðCðhð2ÞÞ;Rðhð2ÞÞÞ

p hð2Þjm
� �

¼ Nðg;RÞ

ð2Þ

Here, y denotes the data obtained from all subjects (in-

dexed by i) and the generative model Ci is a function of

model parameters at the first or within-subject level: hð1Þ.
These parameterize the connectivity architecture mediating

responses, the observation function u � hð1Þ and the

spectra of the inputs and channel noise,

fan; au; bn; bug � hð1Þ. Gaussian assumptions about sam-

pling errors eð1Þ provide the likelihood model at the first

(within-subject) level: pðyijhð1ÞÞ. To explain intersubject

variability this model is supplemented with a mapping

from group means to subject-specific estimates:

hð1Þ ¼ ðX � IÞhð2Þ þ eð2Þ, where eð2Þ are random effects (at

the between–subject level) and X is a design matrix con-

taining between-subject explanatory variables. Below,

using Bayesian model reduction, we adjudicate among

competing hypotheses about the intrinsic connections that

show intersubject variability. Effectively, this involves

comparing the evidence for random effects models with

and without (combinations of) between subject effects on

(combinations) of connectivity parameters.

In this hierarchical model, constraints on the posterior

density over model parameters are provided by the level

above. In variational Bayesian inference, the approximate

posterior over the second level parameters is obtained by

optimising its sufficient statistics (i.e., mean and covari-

ance) with respect to a (second level) free energy:

q
_ð1Þ� ¼ arg max

q

_ð1Þ
Fð1Þðp_F ; q

_ð1ÞÞ

q
_ð2Þ� ¼ arg max

q

_ð2Þ
Fð2Þðp_ð2Þ

; q
_ð2Þ

; q
_ð1Þ�Þ

Fð1Þðp_R; q
_ð1ÞÞ ¼ Eqð1Þ ½ln pðyjhð1Þ;mÞ�

� DKL½qðhð1Þjq_
ð1ÞÞjjpðhð1Þjp_RÞ�

Fð2Þðp_ð2Þ
; q
_ð2Þ

; q
_ð1Þ�Þ ¼ Eqð2Þ ½Fð1Þðp_R; q

_ð1ÞÞ�

� DKL½qðhð2Þjq_
ð2ÞÞjjpðhð2Þjp_ð2ÞÞ�

p
_

R ¼ ðCðhð2ÞÞ;Rðhð2ÞÞÞ
ð3Þ

The key thing about this free energy is that it can be

evaluated (using BMR) without optimising the first level

posterior. This means the second level parameters (e.g.,

group means) can be optimised or estimated, for any given

model of priors, without reinventing the model at the first

level. Technically, the inversion of the hierarchical or

empirical Bayesian model only requires the posterior

density from the inversion of each subject’s DCM. In short,

the use of BMR allows one to make inferences at the group

level without having to re-estimate subject-specific

parameters; see (Friston et al. 2015, 2016) for details and a

study of robustness of this scheme—and (Litvak et al. in

press) for a reproducibility study using independent data

under formally distinct models. Finally, after obtaining

optimized second level estimates, these can be used as

empirical priors to recursively optimize densities over

parameters at the first level. The latter approach is not

necessary but can finesse the local minima problem

inherent in nonlinear (dynamic causal) modelling at the

first level and allows one to estimate subject—or trial—

specific parameters when a subset of subjects (or trials)
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provide more informative data than others (e.g. because of

differences in lead fields), see (Friston et al. 2016).

The second application of (approximate) Bayesian

inference considered below uses posterior means obtained

from compartmental (conductance based) models (Jones

et al. 2007; Mainen and Sejnowski 1996; Prinz et al. 2003;

Traub et al. 1991) as empirical priors. We first obtain sim-

ulated responses from a compartmental model that has been

previously shown to faithfully represent the cortical

microarchitecture—and has been used to model MEG

responses during a tactile stimulation paradigm (Bush and

Sejnowski 1993; Jones et al. 2007). We then use these sim-

ulated data to optimize the mean-field (lumped) parameters

of a homologous neural mass model. The resulting param-

eters provide prior constraints on neural mass models that

can be used for subsequent dynamic causal modelling of

empirical responses. This approach ensures the neural mass

model has construct validity, in relation to more detailed

(compartmental) models of cortical microcircuitry; see

Fig. 1 for a summary of this approach.

Our aim, in this second study, is to make inferences

using data collected with laminar probes (see below). The

first level generative model makes predictions of layer

specific responses, where we eschew the difficult problem

of inverting detailed (compartmental) models (due model

complexity and conditional dependencies) by using simu-

lated data obtained with a microscopic (compartmental)

model mCM to inform a (mean field) neural mass model

mMF of empirical data. In other words, we consider the

joint optimization of compartmental and neural mass

models, assuming they are homologous (i.e., they explain

the same underlying cortical function and structure, see

Pinotsis et al. under review, for more details). Effectively,

we use the conditional densities obtained after fitting

simulated data as empirical priors for subsequent analyses

of empirical data. In what follows, we illustrate this

approach after first describing a study of individual dif-

ferences in gamma oscillations.

Neural Models and Their Inversion
with Variational Bayes

Neural models describe brain activity at different scales,

ranging from single cells to whole brain networks. In this

review, we consider both population and compartmental

models. In the first application using Bayesian model

reduction, we consider a neural field model with a canonical

cortical microcircuitry following (Bastos et al. 2012; Pinot-

sis et al. 2014). In the second application—that focuses on

the analysis of interlaminar data—we consider a compart-

mental model that follows the microcircuitry introduced in

(Bush and Sejnowski 1993) and its neural mass counterpart

introduced in (Pinotsis et al. under review), see Fig. 2.

Population models come in different flavours, for a

review see (Deco et al. 2008; Moran et al. 2015) with some

cardinal distinctions; namely the distinction between con-

volution and conductance dynamics, the distinction

between neural mass and mean field formulations and the

distinction between point sources and neural field models.

The first distinction pertains to the dynamics or equations

of motion within a single population. Convolution models

formulate synaptic dynamics in terms of a (linear) convo-

lution operator; whereas conductance based models con-

sider the (non-linear) coupling between conductance and

voltage. The second distinction is between the behaviour of

a neuronal population or ensemble of neurons—as descri-

bed with their mean or a point probability mass over state

space. This contrasts with mean field approaches that

model the ensemble density, where different ensemble

densities are coupled through their expectations and

covariances; in other words, these models include a non-

linearity that follows from the interaction between first and

second order moments. This extra realism allows them to

reproduce faster population dynamics; for example,

somatosensory evoked potentials (Marreiros et al. 2010;

Pinotsis et al. 2013b). Finally, there is a distinction

between models of populations as point sources (c.f.,

equivalent current dipoles) and models that have an explicit

spatial domain over (cortical) manifolds that call on neural

fields. Neural field models are defined in terms of (integro-)

differential equations that describe cortical dynamics in

terms of (spatially) distributed sources sending afferent

connections, conduction delays and lumped synaptic time

constants (Pinotsis and Friston 2014b). These equations

prescribe the activity in neuronal populations occupying

bounded manifolds (patches) in different layers that lie

beneath the cortical surface. In summary, field and mass

models offer a coarse-grained description of spatiotempo-

ral dynamics of brain sources in terms of smooth (analytic)

connectivity matrices that also depend on time (and per-

haps space).

Compartmental models on the other hand, operate at the

single cell level. They yield precise descriptions of the

anatomy, morphology and biophysical properties of the

neurons that constitute populations. These models provide

detailed descriptions of intracellular (longitudinal) currents

within the long apical dendrites of synchronized cortical

pyramidal cells, see e.g. (Bazhenov et al. 2002; Einevoll

2014; Krupa et al. 2008; Lindén et al. 2010; Ramirez-

Villegas et al. 2015; Roth and Häusser 2001; Santaniello

et al. 2015). These models embody the laminar structure of

a cortical column and can characterize the cellular and

circuit level processes that are measured with multielec-

trode arrays, MEG or electrocorticography. They provide
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characterizations of neuronal morphology and how neu-

rons are grouped together to form spatially extended

networks with well-behaved intrinsic (inter-and intra-

laminar) connectivity. In the analysis of microelectrode

data below, we employ a compartmental model that was

originally used to explain somatosensory evoked respon-

ses measured with MEG during a tactile stimulation

paradigm (Jones et al. 2007), and its neural mass ana-

logue. Having specified the particular generative or for-

ward model of observed that physiological responses the

next step is to estimate the evidence and parameters of

competing models; usually using dynamic causal mod-

elling (DCM).

DCM offers a framework for the inversion of state space

models using a Variational Bayesian algorithm known as

Variational Laplace. This is based on the optimization of a

cost function called variational Free Energy, F . This pro-

vides a bound on the model log-evidence that—under

Gaussian assumptions about the posterior density and

random effects—acquires a simple form: see (Friston et al.

2007) for details. A standard model inversion corresponds

to the case when F is given by Eq. (3), while the empirical

Bayesian approach used here considers the case where F is

defined at the first and second level on a hierarchical model

(within and between subject respectively)—and is opti-

mized with respect to first and second level posteriors

(Eq. 3). Crucially, this optimization is computationally

efficient, because the second level free energy receives a

contribution from the first level that can be computed easily

for any (reduced) priors, given the (pre-computed)

• SP-IN

• DP-IN

• SP-IN

• DP-IN

• SP-IN

• DP-IN

• SP-IN

• DP-IN

• SP-IN

• DP-IN

• SP-IN

• DP-IN

A 
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C 
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ω
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Fig. 1 Schematic of the validation steps. a We first establish the

functional equivalence between the model of Jones et al. (2007) and

its symmetric variant. Here, horizontal arrows of different widths in

the left panel denote asymmetric connectivities and delays between

mini-columns—depicted as rectangles containing superficial and

deep pyramidal cells (SP and DP) and inhibitory interneurons (II). In

the right panel a mean field reduction of the model (and the symmetry

assumptions about lateral connections) reveals a setup similar to that

adopted in neural mass models. b We then establish the construct

validity of the corresponding mass model in relation to mean field

model above. This is achieved by fitting the model to synthetic data

obtained from its compartmental homologue. c Finally, we show how

this model can distinguish between superficial and deep responses

obtained with laminar probes. We exploit Bayesian model selection

and compute the relative log-evidence for plausible (left) and

implausible (right) experimental setups, where the probes of laminar

sensors are placed in the correct and inverted locations, see below
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posterior under full priors: see Friston et al. (2015, 2016)

and subsequent applications for more details.

Compartmental models usually include a large number

of parameters that renders the (ill-posed) inverse problem

of mapping responses to laminar-specific neuronal sources

quite hard. This mapping has been addressed using meth-

ods like current source density (Freeman and Nicholson

1975; Koo et al. 2015; Mitzdorf and Singer 1977; Saka-

moto et al. 2015) and more recently Laminar population

analysis (Einevoll et al. 2007; Ness et al. 2015). We show

below that this problem can be bypassed using an alter-

native approach. This approach uses Bayesian model

comparison and predictions from a compartmental model

to establish a formal equivalence with a population model.

After the this equivalence or construct validity has been

established, variational Bayes can be used to invert the

population model as described above. Bayesian model

selection is based on the (variational free energy approxi-

mation to the) relative log-evidence of competing models

(Bayes factor):

Bij ¼ ln
pðyjmiÞ
pðyjmjÞ

ð4Þ

If Bij [ 3, we can say that model mi is better than mj—or

more exactly, there is strong evidence for the i-th model

relative to the j-th model.

Explaining Intersubject Variability in Gamma
Responses Using Neural Fields

Neural rhythms are thought to reflect summed activity from

excitatory and inhibitory pools of neurons under various

input stimuli and in several cortical sources, e.g. (Hauck

et al. 2007; Xing et al. 2009). We show below that by

analysing such responses with neural field models and

PEB, we can understand which mechanisms (manifested in

the dynamics of coupled populations and lateral connec-

tions) are important for explaining individual differences in

local gamma responses (or other phenotypes). In the fol-

lowing, we consider a particular form of Eq. (1) where

Ciðhð1ÞÞ is a likelihood model that produces observed (cross

spectral) responses at sensors l and m (Pinotsis et al. 2014):

Ciðhð1ÞÞ ¼ Ciðhð1Þ;xÞ ¼ g
_

lmðxÞ þ gnðxÞ þ eð1Þ

g
_

lmðxÞ ¼
X

k
Tlðk;xÞguðk;xÞTmðk;xÞy

Trðk;xÞ ¼ Lrðk;uÞQ � Tðk;x; hð1ÞÞ
gnðxÞ ¼ an þ bn=x

guðxÞ ¼ au þ bu=x

Reðeð1ÞÞ �N ð0;Rðx; kÞÞ Imðeð1ÞÞ �N ð0;Rðx; kÞÞ

ð5Þ

41a 14a

32a

Deep pyramidal cells in infragranular  layers (3)   

( )2
3 3 3 3 3 3 32 2 31 1 33 3 34 42 ( ) ( ) ( ) ( )v v v a v a v a v a vκ κ κ σ σ σ σ+ + = − ⋅ − ⋅ − ⋅ + ⋅&& &
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2
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2
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Inhibitory cells in infragranular layers (2)   

34a

Fig. 2 The Bush and Sejnowski

mass model. This figure shows

the evolution equations that

specify a neural mass of a single

source. This model contains

four populations occupying

different cortical layers: the

pyramidal cell population of the

Jansen and Rit model is here

split into two subpopulations

allowing a separation of the

sources of forward and

backward connections in

cortical hierarchies. Firing rates

within each sub-population

provide inputs to other

populations and subsequent

convolution of presynaptic

activity generates postsynaptic

depolarization. We treat the

activity in superficial and deep

populations as separate

predictors—as opposed to

common neural mass model

applications that use weighted

mixtures of activity from all

subpopulations. Excitatory

connections are in black and

inhibitory connections are in red
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Here, Lrðk;uÞ is the Fourier transform of the lead field of

the q-th sensor, y denotes the conjugate transpose matrix

and Q ¼ ½q1; q2; q3; q4� is a vector of coefficients that

weights the contributions of each neuronal population to

the observed MEG signal. Here, guðxÞ is a spatiotemporal

representation of fluctuations or inputs driving induced

responses, which we assume to be a mixture of white and

pink temporal components. These contributions are based

on anatomical properties and the lead field configuration of

each population (e.g. inhibitory neurons do not generate a

large dipole), where each electrode or sensor has its own

sensitivity profile, reflecting the topographic structure of

the underlying cortical source.

Equation (5) describes the predicted cross spectra as a

function of the power of underlying neuronal fluctuations

guðxÞ and transfer functions Tðk;x; hð1ÞÞ that depend upon

model parameters at the first or within-subject level: hð1Þ,
see Table 1. For the explicit form of the transfer functions

Tðk;x; hð1ÞÞ we refer the interested reader to (Pinotsis et al.

2014).

Below we use the likelihood model given by Eq. (5) and

PEB to study intersubject variability in (stimulus-locked)

oscillations recorded with MEG during a visual perception

paradigm (Perry et al. 2013). Technical details of this

analysis can be found in (Pinotsis et al. to appear). Here,

our focus is on explaining these results from the vantage

point of hierarchical Bayesian inference (see above). We

used cross spectral densities as data features that were

taken from observed responses, while the subject was

looking at stationary, vertically oriented bars. These spec-

tral responses showed sustained activity in the 30–80 Hz

range that varied across individuals with stimulus size:

these responses either showed an approximately linear

(monotonic) increase in the gamma-band response or a

saturating response with increasing size, akin to surround

suppression. So what are the key mechanisms that could

explain these individual differences?

As intimated earlier, inferences and Bayesian model

comparison at the group level necessitate the use of hier-

archical models. In other words, Cðhð2ÞÞ ¼ ðX �WÞb,

where X and W are design matrices describing group and

within subject effects respectively. In our application, we

assume (for simplicity), W ¼ I and consider three proxies

to describe phenotypic variations between subjects;

namely, the change in amplitude of gamma responses with

increasing stimulus size, the peak frequency over all

stimuli and the amplitude of gamma responses averaged

over stimuli (Perry et al. 2013). These proxies or pheno-

types enter the design matrix X, creating the model space

depicted in Fig. 3. First, we fit the (first level) model to

individual subject data as in standard DCM approach.

Then, we use Bayesian model reduction to invert the

hierarchical model (2). The Kronecker tensor product with

the identity matrix X � I means that we have a second level

parameter for every second level (phenotypic) variable and

every first level (connectivity) parameter. This means one

can identify the combination of connectivity parameters

and phenotypic variables that best explains intersubject

variability. This model space corresponds to all combina-

tions of between subject effects. Having defined the hier-

archical model we can now establish the significance of

any group effects using Bayesian model reduction over

(second level) models; see Fig. 3.

Having established the importance of the (between

subject) explanatory variables, we can now focus on the

main question; in particular, which factors mediate inter-

subject variability in gamma band responses. To address

this question, we performed an exhaustive search over

combinations of second level parameters, that is, the 30

parameters describing the effects of the three explanatory

Table 1 Neural field model parameters

Parameter Physiological interpretation Prior mean

j1;j2;j3;j4 Postsynaptic rate constants 1/2, 1/35, 1/35, 1/2 (ms-1)

a11; a14; a12

a22; a21; a23; a33

a41; a32; a44

Amplitude of intrinsic connectivity kernels (9103) 108, 45, 1.8

9, 162, 18, 45 (a.u)

36, 18, 9

cab Spatial decay of connectivity kernels 0:6 a 6¼ b

2 a ¼ b

�
(mm-1)

r; g Parameters of the postsynaptic firing rate function .54, 0 (mV)

s Conduction speed .3 m/s3

/

q1; q2; q3; q4

Dispersion of the lead field

Neuronal contribution weights

ffiffiffi
2

p
=16 (mm)

.2, 0, .2, .6

au; an Exogenous white input, channel-specific white noise (log–scale) 0, 0

bu;bn Exogenous pink input, channel-specific pink input (log–scale) 0, 0

Brain Topogr

123



variables on the ten intrinsic connections of our neural field

model. Using BMR, we scored every combination of

parameters and identified key connections explaining

intersubject variability in gamma responses. Bayesian

model averages of these parameters are shown in Fig. 4:

interestingly, individual differences can be explained by

connections to and from inhibitory interneurons within a

local source in the visual cortex. This speaks to crucial rule

of fast inhibitory interneurons for the genesis of gamma

rhythms—often referred to as the ING hypothesis (Lytton

and Sejnowski 1991; Whittington et al. 2000). This

example shows how one can obtain mechanistic explana-

tions for intersubject variability in the peak gamma fre-

quency, observed during visually induced oscillations and

follows a similar study that asked whether this variability

can be attributed to cortical structure or function (Pinotsis

et al. 2013a). In contrast to the earlier paper—that used a

summary statistic approach—the current study used a

purely probabilistic approach based on empirical Bayesian

models.

In short, this example shows how non-invasive

(macroscopic) data can be used to make inferences at a

microcircuitry level. In this instance, we have taken the

opportunity to highlight inferences in the setting of hier-

archical or empirical Bayesian models that accommodate

intersubject variability. Our conclusion is that intersubject

variability in visually induced gamma responses is best

explained by differences in the intrinsic (laminar) con-

nectivity to and from inhibitory interneurons.

Modelling Layer-Specific Activity Using Neural
Mass Models

We now turn to our second example that involves laminar

responses and a slightly different neural circuitry that

follows the architecture used in (Bush and Sejnowski

1993). We consider two versions of Eqs. (1); these cor-

respond to a compartmental and a neural mass model

respectively
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Fig. 3 Above design matrix

containing the between subject

effects; these include a constant

term and three parametric

variables based upon

electrophysiological

characterisations of each

subject. Left model space

comprising second level effects

encoded by the design matrix.

Right posterior probability over

models shows all three between

subject effects are necessary to

explain between subject gamma

response variability
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The first of the above models is a well-known con-

ductance based (microscopic) model (Bush and Sej-

nowski 1993). In this model, neurons and their

constituent parts (axonal arbours, soma etc.) are con-

sidered as cylindrical conductors (segments) and trans-

membrane potentials are given by aggregates of Ohmic

currents. These currents flow across the compartment,

forming an RC circuit and obey Kirchhoff’s law. Lim are

lead field coefficients for each compartment and sensor,

Am; lm are the cross-sectional area and the length of

compartment m (projected in a direction perpendicular to

apical dendrites). qm, cm are the axial resistivity and

membrane capacitance and JmðtÞ is the longitudinal

current density. This model yields detailed descriptions

of intracellular longitudinal currents—within the long

apical dendrites of synchronized cortical pyramidal

cells—that follow from cable theory. Neuronal popula-

tions are modelled as spatially organised networks with

the soma of principal cells in supragranular and infra-

granular layers. This model captures the laminar struc-

ture of cortical columns and can characterize the cellular

and circuit level processes that are measured with multi-

electrode arrays or MEG. It also provides a model of

neuronal morphology and how neurons are grouped

together to form spatially extended networks, with pre-

cise connectivity.

The second model considered above is the neural mass

variant of the Bush and Sejnowski 1993) model, see Fig. 2.

The crucial difference between the two models in Eq. (6) is

that the latter operates at the mesoscale and cannot describe

microscopic effects like dendritic delays or back propaga-

tion. However, by fitting responses generated by its

homologous microscopic model (using DCM), we obtain a

prior distribution of neural mass model parameters that can

faithfully explain responses recorded with laminar probes,

see also Pinotsis et al. under review. In other words, we can

establish a mapping between detailed compartmental

models based upon conductances and simpler neural mass

models based upon (implicit) synaptic convolutions. This

mapping uses exactly the same inference machinery used

to analyse empirical data but, in this instance, we are fitting

neural mass models to responses that are generated by

detailed compartmental models.

Superficial pyramidal 
 
 
 
Spiny stellate 
 
Inhibitory interneurons 
 
Deep pyramidal 

Fig. 4 Posterior estimates obtained using BMR. Second level effects

comprised differences in gamma responses with stimulus size and

associated gamma peak frequency. Posterior means are in grey and

90 % confidence intervals are depicted in red. Individual differences

in spectral responses seem to implicate connections to and from

inhibitory interneurons (intrinsic connections five and nine are

highlighted in thick lines in the insert on the right: inhibitory cells

and connections are shown in red, while excitatory populations and

connections are shown in black). Model posteriors for models with

and without each second level parameter are shown separately for the

constant term or group mean (bottom left panel) and group effects

(bottom middle and right panels)
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A Working Memory Task and Experimental Data

Recordings were obtained from a monkey performing a

memory guided saccade task. The monkey was trained to

fixate on a central white dot during the 250 ms presentation

of a red dot (cue) in the periphery of the animal’s vision. This

cue was presented at one of six potential locations evenly

spread on an annulus 10� from the fixation point. After the

cue, dots appeared at all of the six locations while the

monkey maintained central fixation over a two second

memory delay. Then, the central fixation dot turned purple

and the peripheral stimuli disappeared. This told the monkey

to make a direct saccade to the remembered location of the

red cue dot to receive a juice reward. We recorded local field

potentials from a 24 channel multi-contact laminar electrode

implanted within prefrontal cortex.

To help locate the electrode relative to the cortical layers,

we also trained the monkey to maintain fixation while a

white disk with a radius of 11 visual degrees was repeatedly

flashed for 50 ms intervals. A current source density analysis

of the visually evoked potentials during this task permitted

the identification of the cortical lamina surrounding the

electrode. (Godlove et al. 2014). An example of this type of

analysis is shown in Fig. 5. This figure illustrates peristim-

ulus time responses of current source density channels (top)

and the corresponding current source density depth varia-

tions (bottom) from a laminar probe placed in the prefrontal

cortex over all cortical layers (Mitzdorf and Singer 1978).

This analysis reveals current sinks and sources and allowed

us to identify the first active sink, which corresponds to

middle (granular) layers of cortex. Thus, we can localize

each of the 24 channels of the laminar electrode in relation to

the granular layer—and determine whether they lie in the

superficial as opposed to deep layers. In the final part of this

review, we use this analysis to establish the validity of our

neural mass model above and show that it can successfully

explain layer specific responses.

Dynamic Causal Modelling of Laminar Probe Data

After equiping the mass model of Fig. 2 with with priors

that are consistent with compartmental models (see above),

we inverted the empirical responses induced during the

delay period in the working memory task. We then used

Bayesian model comparison to test whether the model

could successfully identify the layer (superficial vs deep)

from which we recorded responses.

We find that although this model is formulated at a

mesoscopic scale, it could indeed distinguish between

activity arising from different layers, see Fig. 6. For

example, Bayesian model comparison revealed a relative

log-evidence of 26 when we swapped supercial and deep

recordings. Generally, a relative log-evidence of three or

more can be taken as strong evidence for one model over

another (Kass and Raftery 1995). The remarkable thing

about this result is that the neural mass model has no

explicit notion of space or laminar depth. In other words,

the distinction between superficial and deep populations

rests purely on their connectivity and synaptic time con-

stants, without any explicit reference to their spatial

deployment across multiple cortical layers. The (correct)

mapping between superficial and deep populations to their

laminar depth endorses or validates the prior constraints on

their respective (synaptic) parameters—that can generate

complicated mixtures of spectral responses.

This sort of validation is potentially important as lami-

nar probes offer unbiased estimates of laminar specific

activity—and the hierarchical architecture of extrinsic

(between-source) connections rests primarily on laminar

specific connectivity. Laminar probes are therefore an

exciting technique that allows us to measure brain

responses at an unprecedented resolution. When combined

with dynamic causal modelling, these responses could be

used to address several important questions that we review

in the Conclusions below.

Conclusion

We have reviewed two recent advances in hierarchical or

empirical Bayesian modelling that enable us to deal with

the ill-posed (inverse) problem of source reconstruction

and disclose processes that generate neural rhythms—and

mediate the propagation of information within and between

cortical sources. In the first illustration, we showed that

non-invasive recordings contain rich spatial information,

despite the low resolution of M/EEG; while in the second,

we attempted to reconcile models operating at the micro-

scopic and mesoscopic scale—and show that DCM can

correctly assign superficial and deep cortical dynamics to

laminar-specific responses. This intralaminar DCM affords

the same computational efficiency and advantages as all

other models in DCM, but can exploit microscopic (lami-

nar-specific) data that embody effects like antidromic

currents and back-propagation.

Dynamic causal modelling of electrophysiological

responses obtained with laminar probes is in a position to

address several neurobiological questions: one of the key

reasons to use laminar probes is that they can provide direct

evidence that distinct cortical layers are involved in par-

ticular oscillations and computations. Previous studies of

visual cortex suggest that oscillatory activity in the gamma

and alpha bands are segregated by layers. Neurons in deep
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layers (layers 5 and 6) show spike-field coherence in the

alpha band while superficial layer (layers 2 and 3) neurons

show spike-field coherence in the gamma band (Buffalo

et al. 2011). A question of outstanding importance is

whether this laminar segregation is preserved in prefrontal

cortex, which is involved in top-down control of sensory

cortex (Miller and Cohen 2001).

Superficial and deep cortical layers also tend to have

distinct cortical targets. For example, superficial-layer

neurons form the strongest source of cortico-cortical

feedforward projections, while deep-layer neurons con-

tribute predominately to cortico-cortical feedback (Markov

et al. 2013). Recently, it was shown that the laminar con-

nectivity pattern of a particular inter-areal (extrinsic)

connection predicts how inter-areal oscillatory activity is

coordinated between the areas: when a given connection is

dominated by superficial-layer projection neurons (char-

acteristic of feedforward connectivity), gamma and theta

oscillations predominate. On the other hand, when a

reciprocal connection is dominated by deep-layer projec-

tion neurons (characteristic of feedback connectivity), beta

oscillations appear to mediate neuronal communication

(Bastos et al. 2015). These results suggest that the precise

laminar pattern of extrinsic connectivity profoundly shapes

inter-areal communication, and the frequencies over which

it occurs.

Therefore, it appears that the functional role of oscilla-

tions is shaped both by cortical layer and inter-areal

First sink 

Sinks 

Sources 

Current Source Density Analysis 

Visual stimulus onset 

Visual stimulus onset 

Fig. 5 Current source density

channels (top) and profile across

channels (bottom). We find that

the first active sink corresponds

to unipolar channel 7. This

enables us to distinguish

contacts that measure responses

from distinct cortical layers, that

is superficial (contacts 3–4) and

deep (contacts 9–10)

populations
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connection types, as reviewed above. This provides an

important motivation for using multi-laminar probes to

examine cortical activity during cognitive tasks. An

equally important motivation, from our perspective, is to

interrogate the canonical microcircuit hypothesis, which

predicts that neurons in distinct cortical layers contribute to

distinct computations (Bastos et al. 2012; Friston and

Kiebel 2009; Friston et al. 2015). In particular, it has been

hypothesized that superficial layer neurons can encode

prediction error, while deep layer neurons encode expec-

tations that are used to generate descending (feedback)

predictions. The hierarchical message passing of prediction

errors and predictions is thought to be a crucial part of

predictive coding under the Bayesian brain hypothesis

(Friston and Kiebel 2009; Rao and Ballard 1999; Sum-

merfield et al. 2008). Therefore, multilaminar data may

provide the critical test for these hypotheses: the modelling

of these data could establish whether neuronal activities

(spikes and LFPs) from different cortical layers are indeed

involved in distinct computations implied by predictive

coding. In parallel, these data can be used to inform and

nuance laminar-resolved dynamic causal models of the sort

we entertain here. In turn, more advanced models will

provide more precise descriptions of laminar-resolved

activity, allowing more mechanistic questions to be asked

about the role of specific neuronal populations, intrinsic

connectivity and their neuromodulators in cognition.
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