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Telomeres are specialized DNA-protein structures located at the ends of eukaryotic chromosomes
whose length is progressively reduced in most somatic cells during ageing. Over the past decade,
emerging evidence has shown that the telomeres are essential regulators of cellular life span and
chromosome integrity in a dynamic fashion. By inducing genomic instability, replicative senescence
and apoptosis, shortening of telomeres is thought to contribute to organismal ageing. While the
aetiology of cardiovascular diseases and diabetes represent a complex interaction between various
risk factors overlaid on different genetic backgrounds, the conventional risk factors often did not
explain the inter-individual variability related to predisposition of disease states. This underscores
the need for biological indicators of ageing in evaluating the aetiology of several age-related
disorders, and recent studies indicate that telomere length could qualify as an ideal marker of
biological ageing. Short telomeres have been detected in senescent endothelial cells and vascular
smooth muscle cells from human atherosclerotic plaque as well as in myocardial tissue from patients
with end-stage heart failure and cardiac hypertrophy. In addition, telomere shortening has been
demonstrated in WBCs from patients with coronary heart disease, premature myocardial infarction,
hypertension and diabetes mellitus. In this review, we discuss the telomere hypothesis of ageing as
well as human studies that address the role of telomeres in cardiovascular, diabetes and other
cardio-metabolic pathologies.
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Telomeres are snippets of DNA at the ends of
chromosomes that function in part like the plastic
tips on the ends of shoelaces, preventing
chromosomal fusions and offering genomic integrity
and stability. Apart from ensuring chromosome
stability, telomeres also provide a mechanism for
‘counting’ cell divisions, and thus signal replicative
senescence.

The telomeric complex is composed of (i) non-
coding double-stranded repeats of G-rich tandem
DNA sequences (TTAGGG in humans) that are
extended several thousand base pairs and end in a
3’end single-stranded overhang, (ii ) the enzyme
telomerase, and (iii ) several telomere repeat binding
factors (TRF1, TRF2, etc.) with structural, and
regulatory roles that participate in the control of
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telomere length and capping1. Since conventional
DNA polymerases responsible for the majority of
DNA replication in eukaryotic cells, are unable to
synthesize the last stretch of DNA on the lagging
strand, it was proposed that chromosomal ends
progressively shorten with each replication cycle –
a phenomenon known as the “end replication
problem”. Hence the terminal replication of
chromosomes requires a specialized polymerase
termed telomerase. Telomerase has two components,
a catalytic telomerase reverse transcriptase (TERT)
and a telomerase RNA component (TERC) that
serves as a template for the synthesis of new
telomeric DNA repeats2.

Telomere protection depends upon several factors
such as its precise protein composition, telomere
length, and telomerase activity level. The probability
of telomere uncapping increases when one or more of
these parameters are critically altered and cannot be
compensated by the others. Telomerase expression and
activity and telomere length are regulated in a tissue-
specific and developmental manner in several species,
including humans1. In general, these parameters are
greater during embryonic development and become
low or undetectable after birth, although significant
differences in adult tissues have been reported.
Telomerase activity is also regulated at different
molecular levels, including transcription, mRNA
splicing, maturation and modification of TERT and
TERC and epigenetic pathways3. Progressive telomere
shortening in cell culture and during ageing of the
whole organism is a characteristic of most adult
somatic cells, which exhibit low or no telomerase
activity. In contrast to adult somatic cells, the extended
proliferative capacity of germ and tumour cells
correlates with maintenance of high telomerase
activity and long telomeres2. Thus telomeres have been
proposed to serve as a molecular device that counts
the number of cellular divisions and limits life span4.

Telomeres and ageing

Recent research points to the crucial roles of
telomeres and telomerase in cellular ageing and

potentially in disease. Ageing is a process associated
with progressive changes, ultimately leading to death,
and the mechanisms involved in ageing are still far
from well understood. The search for ageing and
longevity genes has long been a focus in biomedical
research. Since telomeres shorten as a function of
age in vivo and telomerase antagonizes the process
of telomere shortening, whether or not telomere-
shortening serves, as a timer with different settings
in different species to control the onset of cell
senescence, and thus life span, has been the subject
of intense debate5.

A well established model for the analysis of ageing
at the cellular level is in vitro cultivation of human
diploid cells that divide a limited number of times
before undergoing a state called “cellular senescence”.
This limit has been named “the Hayflick limit”. Such
cells are irreversibly blocked in G1 phase of the cell
cycle and become unresponsive to mitogenic stimuli
yet can remain viable and metabolically active. The
senescent phenotype is accompanied by dramatic
changes in morphology, nuclear structure, gene
expression, protein processing and metabolism. An
increased fraction of these cells positively stained for
senescence-associated b-galactosidase and tumour
suppressors such as p53, p21 and p16 is upregulated.
This cellular senescence thus, represents a tumour
suppressor mechanism6. Early studies in mice bearing
a germ line knockout of the mTR gene and thus null
telomerase activity show that short telomeres trigger
multiple ageing related processes including cell
growth arrest, apoptosis and decreased capacity in
response to stresses in highly proliferative organs,
demonstrating a critical role for telomere length in
genomic stability, cell replicative life span and ageing5.
The consequences of telomere ablation at the
organismal level have been rigorously assessed in
TERC-deficient mice7 which undergo progressive
telomere shortening with each generation and lose
viability when they reach critically short telomeres
(typically after 3 to 5 generations). Remarkably, late
generation TERC-null mice display premature ageing
symptoms and associated disorders, such as infertility,
hair graying, alopecia, heart dysfunction,
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hypertension, various tissue atrophies and decreased
tissue regeneration capacity. These findings indicate
that a minimal telomere length is required to maintain
tissue homeostasis in the mouse and lend support to
the notion that progressive telomere shortening may
be involved in the pathogenesis of age-related human
disorders.

Telomeres and metabolic/vascular diseases

Recent studies indicate that telomere biology is
intimately linked to the genetic/environmental

aetiology of cardiovascular and metabolic diseases
and telomere shortening is emerging as an important
biomarker at the interface of cardiometabolic
diseases (Table I).

Telomere shortening in cardiovascular diseases
(CVDs): Today, there is increasing evidence of an
association between telomere length and many
disease states. Coronary heart disease (CHD) is a
chronic disease in which the coronary arteries
become ‘hardened’ and the lumen narrowed by the
development and progression of atherosclerosis.

Table I. Human studies showing associations between telomere shortening and vascular/metabolic diseases

Cell type Main findings Year Ref

EC Telomere loss in human vascular disease 1995  8

Leukocytes Telomere shortening in respiratory chain disorders 1997 9

Leukocytes Telomere shortening in type 1 diabetic patients 1998 24

Leukocytes Short telomeres in vascular dementia 2000 12

Leukocytes Biology of cardiovascular aging differs between men and women 2001 19

Leukocytes Telomere shortening in severe CAD 2001 13

HAEC Loss of telomere induces endothelial dysfunction 2002 11

PBMC Telomere shortening in CAD with metabolic disorders 2003 16

Leukocytes Short telomeres with risk of premature MI 2003 17

Coronary EC Telomere shortening in CAD 2004 10

Leukocytes Telomere shortening in CAD with plaques 2004 14

Leukocytes Telomere shortening correlating with cardiovascular damage 2004 27

PBMC Telomere shortening in response to life stress 2004 18

Leukocytes Telomere shortening in type 2 diabetic patients 2005 25

2007 21

Leukocytes Menopause impacts telomere length and its relation to IR

and inflammation 2006 30

Leukocytes Rise in BMI causes telomere attrition 2005 29

Leukocytes Obesity and smoking accelerates human ageing 2005 31

Leukocytes Aldosterone might be linked to telomere attrition and perhaps

increased biological ageing 2005 28

Leukocytes Telomere shortening in calicific aortic valve stenosis 2006 15

Leukocytes Telomere shortening in IR & hypertension 2006 20

Monocytes Telomere shortening in type 2 diabetes 2006 26

Leukocytes Telomere shortening in Cardiovascular Health Study (CHS) 2006 22

Leukocytes Telomere shortening in IGT subjects 2007 21

Leukocytes Type 2 diabetic subjects with carotid plaques exhibit

shorter telomeres 2007 21

Leukocytes Telomere length is associated with future CHD 2007 23

EC, endothelial cell; HAEC, human aortic endothelial cell; PBMC, peripheral blood mononuclear cell; MI, myocardial infarction;
CAD, coronary artery disease; IR, insulin resistance; IGT, impaired glucose tolerance
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Develolpment of CHD is dependent on a number of
factors, such as the conventional risk factors
(hypertension, smoking, dyslipidaemia, age, positive
family history), emerging risk factors [C-reactive
protein (CRP), homocysteine, etc.] and the effect of
the genetic background of the individual. However,
despite advances in our understanding of these factors
that predispose to CHD, there are many key aspects
that remain unclear. These include variation in
susceptibility, and a highly variable age of onset in
individuals who display very similar risk profiles.

Association of ageing and cardiovascular
disease has been a matter of great interest in the
field of cardiovascular and geriatric medicine.
Atherosclerosis is a common underlying condition,
and ageing is considered a major risk factor of
atherosclerosis. In addit ion, ageing related
endothelial dysfunction appears to be an important
factor that links ageing to cardiovascular diseases.
Thus, endothel ial dysfunction tr iggered by
atherogenic st imuli (e.g.,  elevated plasma
cholesterol level, hypertension, diabetes, and
smoking) is of central importance in the
pathogenesis of atherosclerosis. Atherosclerosis is
initiated by repeated mechanical, hemodynamic,
and/or immunological injury, probably involving
oxidative stress, to the mural and focal regions of
the endothelium (response-to-injury hypothesis).
Such insults may cause augmented cell turnover in
certain cell populations or tissues rendering the cells
older and nearer to their maximum replicative
capacity. It has been shown that human vascular
endothelial cells lose telomeres as a function of
replicative age and that the telomere loss is greater
in tissue susceptible to atherogenesis8 suggesting
that focally enhanced cellular turnover may cause
early cellular senescence associated with telomere
shortening. Thus, there are compell ing data
implicating that cellular senescence plays a role in
the pathogenesis of atherosclerosis. In vivo, age-
dependent telomere shortening has been reported
in endothelial cells (ECs) from iliac, thoracic, and
coronary arteries8,10,32. Minamino et al11 reported that
vascular ECs with senescence-associated

phenotypes are present in human atherosclerotic
lesions. Notably, Ogami et al10 found shorter
telomeres in coronary ECs of patients with coronary
artery disease (CAD) than in age-matched non CAD
patients. Collectively, these studies suggest that EC
dysfunction and replicative senescence induced by
telomere shortening play a critical role in coronary
atherogenesis.

Several studies have established an association
between telomere length in WBCs and
atherosclerosis. Patients with vascular dementia, a
disorder that is frequently associated with
cerebrovascular atherosclerosis and stroke, exhibit
significantly shorter WBC telomeres compared with
age-matched controls12. Likewise, average telomere
length in leukocytes of patients with severe CAD
was significantly shorter compared with normal
coronary angiograms13. It was also shown that
hypertensives with carotid artery plaques had
shorter telomeres compared to patients without
plaques14. However, Kurz et al15 have reported that
calcific aortic valve stenosis, but not CAD, is
associated with shorter leukocyte telomeres in a
cohort of elderly patients. A Japanese study also
demonstrated that telomere shortening could be
involved in the development of atherosclerotic
disease in patients with hypercholesterolaemia and
diabetes16. In a large case-control study, short
telomeres increased the risk of premature
myocardial infarction by approximately 3-fold17.
Similarly, there also exists a relationship between
telomere length and human hypertension19,20,33. More
recently, we have shown that type 2 diabetic
subjects with atherosclerotic plaques had
significantly shorter telomeres compared to diabetic
subjects without atherosclerotic plaques21. Notably,
the cardiovascular health study (CHS) has
reestablished the associations between telomere
length in leukocytes and indices of sub-clinical and
clinical cardiovascular disease22. Collectively these
studies raise the possibility that telomere attrition
may be a primary abnormality that renders the
organism more susceptible to cardiovascular risk
factors and thus establishes a link between telomere
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shortening in WBCs and cardiovascular disease.
This indeed, is supported by a recent prospective
randomized study (the West of Scotland Primary
Prevention Study, WOSCOPS) where it was shown
that leukocyte telomere length is associated with
future coronary heart disease events in middle-aged,
high-risk men23.

Telomere shortening and diabetes mel l i tus:
Diabetes pat ients are at  higher r isk for
microvascular and macrovascular disease. Jeanclos
et al24 reported that telomere length in WBCs from
patients with type 1 diabetes is reduced compared
with age-matched non-diabetic control subjects.
Adaikalakoteswari and colleagues25 demonstrated
an association of telomere shortening in patients
with type 2 diabetes. A recent study lends support
to our observations in that monocyte telomere
length was significantly shorter in type 2 diabetics
compared to control subjects26. While our studies
demonstrated an associat ion of telomere
shortening with systemic markers of oxidative
stress (lipid peroxidation and protein oxidation)
in type 2 diabetes, the study by Sampson et al26

also showed an association of telomere shortening
and oxidative DNA damage. However, unlike our
study, the telomere shortening observed by the
European group26 was independent of glycaemic
control, insulin resistance (IR) and inflammatory
markers. The strong association of telomere
shortening and IR shown in our study could imply
a role of ethnicity as Indians have been shown to
be more insul in resistant compared to their
European counterparts34.

Very recently, we have demonstrated an
association between shortened telomeres and
impaired glucose tolerance21. An increased
predisposition to diabetes and coronary artery disease
(CAD) among Asian Indians has long been
recognized and claimed to stem in most part from
IGT35. The higher rates of CAD and type 2 diabetes
among Indians are also often not explained by
traditional risk factors. Therefore, telomere
shortening may represent a non-traditional risk factor

and long-term biomarker to be associated with IGT
and in the natural history of diabetes and
cardiovascular diseases. Referring to the recent
literature, it appears that telomere attrition is strongly
correlated with insulin resistance (IR)29,30. Inverse
correlations of WBC telomere length with insulin
resistance, serum leptin and BMI were also reported
in a large-population based cross-sectional study31.
Since both insulin resistance and obesity prime the
genesis of type 2 diabetes and/or cardiovascular
disease, it appears that telomere shortening could
represent a continuously monitorable biomarker.
Moreover, it was inferred from the Framingham
Heart Study that shorter leukocyte telomere length
in hypertensives is largely due to insulin resistance20.
There is increasing evidence that IR, a predecessor
for both CAD and diabetes, is associated with chronic
low grade inflammation and oxidative stress36. There
might be a continuous genesis of oxidative stress and
inflammation in the natural history of diabetes with
its perturbations starting as early as IGT37,38.
Therefore, it is plausible to suggest that these factors
could mechanistically connect insulin resistance and
impaired glucose tolerance with changes in telomere
length.

Telomeres shortening, women and role of estrogen

Several studies confirm that the age-adjusted
telomere length is shorter in men than in
women19,21,25,33,39. As pre-menopausal women are
less prone than man to cardiovascular diseases40

and several  systemic parameters show poor
correlation with blood pressure in women41, these
studies indicate that the biology of ageing differs
between men and women. The lower incidence of
cardiovascular disease in pre-menopausal women
compared with men may be attributable, at least
in part, to estrogens42. In addition to the well
characterized actions on lipoprotein metabolism
and on vascular cells, the influence of estrogen on
telomere homeostasis may also contribute to their
beneficial effects on the cardiovascular system.
This could explain the results of both human and
animal studies that revealed higher telomerase
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act iv i ty and diminished rate of  age-related
telomere attrition, and thereby longer telomeres in
females than in males. Very interestingly the
gender difference in telomere length commonly
seen, was absent in pat ients with type 2
diabetes21,25. This observation supports the well
known fact that women with type 2 diabetes lose
their protection from associated diseases43. We
suggest that the enigmatic gender difference in
telomere shortening and the natural history of
diabetes need to be explored by longitudinal
studies involving both pre- and post-menopausal
women. Such studies are important because (i )
estrogen is a potent ant i - inf lammatory and
antioxidant agent44, (i i ) there is an estrogen-
response element present in hTERT45, and (iii )
hormonal changes in women are expected to have
drastic influences on insulin resistance, adiposity,
oxidative stress and telomere length.

Telomeres and oxidative damage

Although the telomere length may reflect the
history of tissue replication, it is also suggested that
mechanisms other than cellular turnover may take
part in the regulation of telomere length.
Accumulation of oxidative damage is thought to
play an important role in aging and age-associated
diseases and oxidative stress may function as a
common trigger for activation of the senescence
programme. Studies report that telomeric DNA
sequences are particularly prone to chromosomal
breakage and their GGG-triplets are a favourable
target for reactive oxygen species (ROS)46. Direct
administration of oxidants to cells damages DNA,
breaks polyguanosine sequences in telomere
repeats, and causes telomere shortening, cell cycle
arrest and replicative senescence47. Moreover,
telomeres are less efficient in single-strand break
repair than the bulk of the genomic DNA48 and
oxidative stress accelerates telomere loss, whereas
antioxidants decelerate it49. Mild chronic oxidative
stress induced by perturbation of the glutathione
redox cycle resulted in accelerated downregulation
of telomerase activity, enhanced telomere erosion,

and the premature onset of replicative senescence
in HUVECs50. Homocysteine, a cardiovascular risk
factor whose atherogenic effects have been ascribed
to increased hydrogen peroxide production51, also
increased the rate of telomere shortening in
endothelial cells, and this effect was attenuated in
a dose-dependent manner by catalase treatment52.
On the other hand, prolonged oxidative damage also
inhibited telomerase activity and accelerated
telomere shortening in vascular smooth muscle cells
(VSMCs)53.

It has been shown that suppression of oxidative
stress by Asc2P, an oxidation-resistant derivative of
vitamin C, extends the replicative life span by
reducing the rate of telomere shortening54 and
reduction of intracellular ROS by antioxidant
N-acetylcysteine (NAC) prevented mitochondrial
damage and delayed nuclear export of TERT protein,
loss of TERT activity and the onset of replicative
senescence55. The inhibitory effects of oxidant
scavenger NAC on telomere attrition and cell death
suggest that ROS are important mediators that link
mitochondrial dysfunction and telomere shortening
and loss, genomic instability, and apoptosis as well.
One of the mechanisms for accelerated telomere
attrition was demonstrated as formation of 8-oxodG
at the GGG-triplet in telomere sequence in response
to oxidative damage56. Thus, telomeres might also
fulfill a function as stress sensors or sentinels for
the risk of genomic damage due to low physiological
levels of cumulative oxidative damage. While the

Table II.  Human studies showing inverse relationship between
telomere length and biomarkers of oxidative stress

Biomarkers Reference

Isoprostanes  18

TBARS (thiobarbituric acid reactive

substances, a measure of lipid

peroxidation) 25

Aldosterone (proxidant) 28

Oxidative DNA damage 26

8-epi-PGF2a 20

TBARS  and protein carbonyl content 21

C-reactive protein (pro-oxidant) 30, 21
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telomeres in leukocytes of patients with LHON
(Leber hereditary optic neuropathy)- and MELAS-
related mitochondriopathies are on average 1.5kb
shorter than those of age-matched controls, these
respiratory chain disorders are also associated with
increased oxidative stress9. Recently, it was observed
in a number of studies that systemic oxidative stress
assessed by various biomarkers (Table II) is
associated with shorter telomere lengths. Since
increased oxidative stress has been considered as one
of the molecular determinants of diseases including
diabetes and atherosclerosis, telomere length may
provide an additional link between oxidative stress
and the predisposition to vascular diseases and
metabolic disorders.

Telomere shortening and genes

The search for the causes of hypertension and/
or type 2 diabetes has identified several variant
genes that may raise blood pressure or blood glucose
levels in humans. However, despite the tremendous
technological advancements, only modest
understanding has been gained about the genetic
determinants of these complex human traits. There
is also a possibility that the association of shorter
telomeres with increased risk of CVDs and/or
diabetes has a genetic basis. Several studies have
shown that a substantial proportion of the marked
inter-individual variation in mean telomere length
is genetically determined57-59. As telomere length is
highly heritable57, probably X-linked in some
cases39, paternally inherited60, mapped to a major
locus on chromosome1258 and considered as
quantitative trait61, the role of genetic predisposition
to short telomeres in CVDs, diabetes and associated
disorders needs further investigations. It is expected
that any genetic susceptibi l i ty could also be
exacerbated or retarded by post-natal effects on
telomere length. In addition, future work should also
identify functional polymorphisms in telomere-
maintenance genes that could serve as independent
contributors to r isk of type 2 diabetes and
cardiovascular diseases.

Conclusions

More basic research and large epidemiological
studies are needed to conclusively ascertain whether
telomere attrition is an independent cardiometabolic
risk factor or a consequence of age-related diseases.
Accelerated shortening of telomere length could
simply be a surrogate for the chronic oxidative stress
and/or inflammation. Similarly more to be studied
to examine the efficacy of novel therapeutic
strategies aimed at modifying telomere length.
There is also much hope in the use of genetically
engineered mice exhibit ing t issue-specif ic
alterations in telomerase and/or telomere-associated
proteins to demonstrate their possible role in the
pathogenesis of cardiometabolic diseases.
Nevertheless, accelerated telomere shortening
appears to be related to ‘lifestyle diseases’ that
accompany certain concomitant metabolic factors
such as insulin resistance, obesity, hypernutrition
and lack of exercise. It is plausible that the
inheritance of shorter telomeres combined with the
presence of certain disease-risk factors that
determines whether or not subjects progress to an
intermediary clinical phenotype, and ultimately
suffer a clinical event. This appears to be an
outcome in the study of WOSCOPS23. Will this
accelerated telomere shortening be prevented by
tight control of blood glucose, pressure and lipids
and/or by caloric restrict ion and antioxidant
supplementation? Since the statin treatment in the
WOSCOPS attenuated the increased risk with
shorter telomeres23, it was suggested that telomere
length could also identify those individuals who
would benefit most from drug intervention. Given
that ageing is a multifactorial and highly variable
entity and that biological ageing (premature cellular
senescence) may alter functional status of several
tissues, the use of telomere length provides a new
dimension to the study of metabolic and
cardiovascular diseases. As more data accumulate
regarding telomere dynamics and cel lular
dysfunction in specific target tissues, one might
expect a window of therapeutic opportunities.
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