
Applying Computational

Intelligence to a Real-World

Container Loading Problem in a

Warehouse Environment

Ayodeji Remi-Omosowon

School of Science & Technology

Nottingham Trent University

A thesis submitted in partial fulfilment of the requirements

of Nottingham Trent University for the degree of

Doctor of Philosophy

September 2017

mailto:ayodeji.remi-omosowon2008@my.ntu.ac.uk
http://www.ntu.ac.uk/sat/
http://www.ntu.ac.uk

Copyright Statement

This work is the intellectual property of the author. You may copy up to 5%

of this work for private study, or personal, non-commercial research. Any re-use

of the information contained within this document should be fully referenced,

quoting the author, title, university, degree level and pagination. Queries or

requests for any other use, or if a more substantial copy is required, should be

directed to the owner of the Intellectual Property Rights.

i

To my loving family.

Acknowledgements

I would like to acknowledge my supervisors, Dr Richard Cant and

Dr Caroline Langensiepen, for their support in both academic and

life matters. Their continuous guidance was a crucial factor in my

development as a scientist, and indeed in the completion of this the-

sis. I would also like to thank my examiners, Dr Colin Wilmott and

Professor Robert John, for their valuable comments.

I acknowledge Professor Lars Nolle for introducing me to Combinato-

rial Optimisation and its real-world applications; and for suggesting

the pursuit of a research degree in this area. I also acknowledge Dr

Taha Osman for the valuable comments and insights provided during

the course of this research. Given its real-world application, his sug-

gestions provided a constant reminder of the importance of a thor-

oughly scientific approach, with a focus on academic contributions,

over and above the related software engineering contributions of the

research. He is also responsible for my interest in the Semantic Web.

I acknowledge with love my family and friends who have been very

supportive and helpful throughout this challenging journey. They

helped make it pleasant and enjoyable. I particularly thank my wife

for her patience, and my father, the other academic in the family, for

his advice and encouragement.

Funding for this project has been provided by the Logistics Depart-

ment in NSK Europe Ltd. I recognise the very significant roles played

by NSK’s United Kingdom Distribution Centre team, my manager:

Mr Neil Dodd, and his manager: Mr Mark Carter, and I gratefully

acknowledge with thanks all the support that I have received.

Abstract

One of the problems presented in the day-to-day running of a ware-

house is that of optimally selecting and loading groups of heavy rect-

angular palletised goods into larger rectangular containers while satis-

fying a number of practical constraints. The research presented in this

thesis was commissioned by the logistics department in NSK Europe

Ltd, for the purpose of providing feasible solutions to this problem.

The problem is a version of the Container Loading Problem in the

literature, and it is an active research area with many practical ap-

plications in industry. Most of the advances made in this area focus

more on the optimisation of container utility i.e. volume or weight

capacity, with very few focusing on the practical feasibility of the

loading layout or pattern produced. Much of the work done also

addresses only a few practical constraints at a time, leaving out a

number of constraints that are of importance in real-world container

loading. As this problem is well known to be a combinatorial NP-

hard problem, the exact mathematical methods that exist for solving

it are computationally feasible for only problem instances with small

sizes. For these reasons, this thesis investigates the use of computa-

tional intelligence techniques for solving and providing near-optimum

solutions to this problem while simultaneously satisfying a number of

practical constraints that must be considered for the solutions pro-

vided to be feasible. In proposing a solution to this problem and

dealing with all the constraints considered, an algorithmic framework

that decomposes the CLPs into sub-problems is presented. Each sub-

problem is solved using an appropriate algorithm, and a combination

of constraints particular to each problem is satisfied. The resulting

hybrid algorithm solves the entire problem as a whole and satisfies

all the considered constraints. In order to identify and select feasible

container layouts that are practical and easy to load, a measure of

disorder, based on the concept of entropy in physics and information

theory, is derived. Finally, a novel method of directing a Monte-Carlo

tree search process using the derived entropy measure is employed, to

generate loading layouts that are comparable to those produced by

expert human loaders. In summary, this thesis presents a new ap-

proach for dealing with real-world container loading in a warehouse

environment, particularly in instances where layout complexity is of

major importance; such as the loading of heavy palletised goods using

forklift trucks. The approach can be used to deal with a number of

relevant practical constraints that need to be satisfied simultaneously,

including those encountered when the heavy goods are arranged and

physically packed into a container using forklift trucks.

Contents

Contents vi

List of Figures x

List of Tables xii

List of Algorithms xiv

Publications, Posters, Presentations xv

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Aims and Scope . 5

1.3 Structure of the Thesis . 6

1.4 Contributions of this Thesis . 7

1.5 Related Academic Publications 8

2 Literature Review 10

2.1 Introduction . 10

2.2 Optimisation Problems . 10

2.3 The Container Loading Problem 12

2.3.1 Typology . 13

2.3.2 Solution Approches . 14

2.4 Container Loading in the Real World: Practical Constraints . . . 16

2.5 Conclusion . 20

vi

CONTENTS

3 Problem Overview 22

3.1 Introduction . 22

3.2 Constraints . 26

3.3 The Manual Process . 27

3.3.1 Identified Shortcomings . 30

3.4 Initial Solution Approach . 31

3.5 Proposed Solution Approach . 32

3.5.1 The Selection Problem . 32

3.5.2 The Stacking Problem . 35

3.5.3 The Packing Problem . 38

3.6 Conclusion . 41

4 A Hybrid Algorithm for the Container Loading Problem 43

4.1 Introduction . 43

4.2 The Selection Algorithm . 45

4.3 The Stacking Algorithm . 48

4.4 The Packing Algorithm . 51

4.4.1 The Simple Rectangle Packer 53

4.5 Experiments and Results . 54

4.5.1 Parameter Tuning . 57

4.5.2 Results and Comparisons 58

4.6 Conclusion . 63

5 Improvements to the Packing Algorithm 65

5.1 Introduction . 65

5.2 The Cygon Rectangle Packing Algorithm 66

5.3 The Cygon Packer integrated Genetic Algorithm 66

5.4 The Sort-and-Pack Cygon Packer 68

5.5 Experiments and Results . 70

5.5.1 Comparisons of integrated Rectangle Packing Algorithms . 70

5.5.2 Comparisons of the Packing GA and the Sort-and-Pack al-

gorithm . 70

5.6 Conclusion . 72

vii

CONTENTS

6 Optimising Container Layouts for Real-World Packing 73

6.1 Introduction . 73

6.2 Deriving an Entropy-based measure for Container Layouts 75

6.2.1 Basic Definitions . 78

6.2.2 Selection Entropy . 79

6.2.3 Rotational Entropy . 81

6.2.4 Positional Entropy . 82

6.3 An Entropy-driven Genetic Algorithm for the Packing Problem . 83

6.4 Experiments and Results . 83

6.5 Conclusion . 91

7 An Entropy-Guided Monte-Carlo Method for Generating Opti-

mal Container Loading Layouts 92

7.1 Introduction . 92

7.2 Related Work . 93

7.3 Proposed Algorithm . 95

7.3.1 Placement Method . 95

7.3.2 Directed Choice . 95

7.3.3 Algorithm description . 96

7.4 Experiments . 98

7.5 Results . 100

7.5.1 Overall Performance Comparisons 100

7.5.2 Visual Comparisons . 102

7.5.3 Layout Entropy . 106

7.6 Analysis . 107

7.6.1 Time Behaviour . 107

7.6.2 Layout Progression . 107

7.6.3 Further Discussion . 108

7.7 Conclusion . 116

8 Conclusion 118

8.1 Context . 118

8.2 Summary of Key Contributions 119

viii

CONTENTS

8.3 Future Work . 121

8.3.1 Solving the Multiple Container Loading Problem 121

8.3.2 Dealing with Loading Priorities 122

8.3.3 Keeping groups of related items together in close proximity 122

8.3.4 Extending the application of Gamification 123

8.3.5 Improving and extending the entropy measure 124

8.3.6 Extending the entropy-driven Monte Carlo search to ad-

dress additional constraints 125

Appendix A: Applying Gamification principles to the Container

Loading Problem 126

A.1 Introduction . 126

A.2 Background . 127

A.3 Related Work . 129

A.4 Gamification Approach and Experiments 131

A.4.1 Conventions for visual container layout representation . . . 131

A.4.2 An interface for interactive simulation 133

A.5 Results and Discussion . 134

A.5.1 Gamified system use cases 136

A.5.1.1 Loading Feasibility Checker 136

A.5.1.2 Knowledge Discovery Tool 137

A.5.1.3 Training Aid . 138

A.6 Conclusion . 140

Appendix B: Verified Hybrid Algorithm solutions 141

Appendix C: Hybrid Algorithm Problem Sets 144

References 270

ix

List of Figures

3.1 Pallets on the ‘STD’ pallet-base type 24

3.2 A pallet with the ‘NSK’ pallet-base type (left) and the ‘EURO’

pallet-base type (right) . 25

3.3 Palletised goods stored in various locations in a warehouse 25

3.4 Manual selection of customer orders that add up to 25 942 kg (close

to the maximum container weight limit for a 40ft container: 26 000

kg) . 28

3.5 A detailed packing list . 29

3.6 The bespoke ‘Pallet Loader’ software developed for the UKDC

loading problem . 31

3.7 Various stacking variations obtained using different stacking order 37

3.8 Packings obtained by the Rectangle Packing Algorithm for 8 rect-

angles based on the order and orientation of rectangles 39

4.1 Comparison of weight utilisation across all problem sets 61

4.2 Comparison of computation time across all problem sets 62

6.1 An example of a 2D container layout 80

6.2 Entropy comparisons: Group 1 layouts 87

6.3 Entropy comparisons: Group 2 layouts 88

6.4 Entropy comparisons: Group 3 layouts 89

6.5 Entropy comparisons: Group 4 layouts 90

7.1 Entropy variation with time for a single set of stacks 99

x

LIST OF FIGURES

7.2 Comparison of layout methods at 90% fill, including (left to right):

skyline algorithm, ω = 0.97, ω = 0.98, and ω = 0.99. 103

7.3 Comparison of layout methods 90% fill where skyline algorithm

failed, (left to right): ω = 0.95, ω = 0.97 and ω = 0.98. 104

7.4 Comparison of layout methods 90% fill where skyline algorithm

failed and only ω = 0.96 (left image) and ω = 0.97 (right image)

succeeded. 105

7.5 Times to generate individual layouts for a single set of stacks . . . 107

7.6 Best entropy layout generation for a single set of stacks, 60% fill . 108

7.7 Best entropy layout generation for a single set of stacks, 80% fill . 109

7.8 Best length utilisation layout generation for a single set of stacks,

60% fill . 112

7.9 Layout after 1 cycle, 60% fill, entropy weight 0 113

7.10 Layout after 11858 cycles, 60% fill, entropy weight 0 114

7.11 Layout after 51 cycles, 60% fill, entropy weight 0.98 115

A.1 Example text output from initial loading system 129

A.2 Visual representations for loading system output 134

A.3 Interactive simulation interface for the loading system 135

A.4 An operative uses our colour scheme when sketching a layout . . . 137

A.5 Loading system representation of an interlocking arrangement of

boxes . 138

A.6 A loaders real-world representation of a loading plan using the

same interlocking arrangement . 139

xi

List of Tables

3.1 Dimensions of the container used to load pallets in the UKDC . . 23

3.2 Pallet-base types: Dimensions and allowed orientations 24

4.1 Problem set summary . 56

4.2 Recommended genetic algorithm parameters 58

4.3 Results for the normal problem sets 59

4.4 Results for the extended problem sets 60

5.1 Results obtained for different rectangle packing algorithms 71

6.1 Entropy vs Loader rating (most ordered first) for layouts 86

7.1 Overall success for 50 sets at each fill level 101

7.2 Which weighting generated most of the best entropy and length

measures . 106

7.3 Best entropy values achieved for each fill level and weighting in

MCTS . 110

7.4 Best length usage achieved for each fill level and weighting in MCTS111

A.1 Gamification strategies and goals identified for the system 132

A.2 Defined convention for layout representation 133

B.1 Summary of 50 solutions confirmed to have 100% utilisation . . . 141

C.1 Problem Set #1 . 144

C.2 Problem Set #2 . 158

C.3 Problem Set #3 . 169

xii

LIST OF TABLES

C.4 Problem Set #4 . 181

C.5 Problem Set #5 . 191

C.6 Problem Set #6 . 200

C.7 Problem Set #7 . 211

C.8 Problem Set #8 . 219

C.9 Problem Set #9 . 226

C.10 Problem Set #10 . 234

C.11 Problem Set #11 . 240

C.12 Problem Set #12 . 244

C.13 Problem Set #13 . 250

C.14 Problem Set #14 . 254

C.15 Problem Set #15 . 258

xiii

List of Algorithms

4.1 Hybrid Algorithm . 44

4.2 The Selection Algorithm . 47

4.3 The Stacking Algorithm . 50

4.4 Packing Algorithm - Fitness Evaluation 53

4.5 The Simple Rectangle Packer . 55

5.1 The Cygon Rectangle Packer . 67

5.2 Sort-and-Pack Hybrid Algorithm 69

6.1 Entropy Packing Genetic Algorithm 84

7.1 Entropy Guided Monte Carlo Tree Search 96

7.2 Weighted Choice of Stack . 97

xiv

Publications, Posters,

Presentations

The following have been produced as a direct result of the research presented in

this thesis.

Journal Articles (in preparation)

An Entropy-guided Monte Carlo Tree Search approach for generating optimal

Container Loading layouts. Ayodeji Remi-Omosowon, Richard Cant, Caroline

Langensiepen. 1

Applying Gamification to the Container Loading Problem. Ayodeji Remi-Omosowon,

Richard Cant, Caroline Langensiepen.

Refereed and Accepted Conference Papers

Remi-Omosowon A, Cant R, Langensiepen C. Hybridization and the Collaborative

Combination of Algorithms. UKSim-AMSS 16th Int. Conf. Comput. Model.

Simul., Cambridge, United Kingdom: 2014, p. 404. doi:10.1109/UKSim.2014.60.

Remi-Omosowon A, Cant R, Langensiepen C. Deriving an Entropy Measure for

2D Container Layouts. IEEE UKSim-AMSS 17th Int. Conf. Comput. Model.

Simulation, UKSim2015, Cambridge, United Kingdom: 2015, p. 1038. 2

1Submitted to Omega: first reviewer accepted, second rejected; re-submission planned.
2Awarded a joint Best Paper Award along with 8 other papers out of 98 papers.

xv

Publications, Posters, Presentations

Remi-Omosowon A, Cant R, Langensiepen C. Applying Gamification Principles

to Container Loading in a Warehouse Environment. IEEE UKSim-AMSS 18th

Int. Conf. Comput. Model. Simulation, UKSim2016, Cambridge, United King-

dom: 2016, p. 79-86. 1

Posters

Applying Computational Intelligence to Optimisation Problems in a Warehouse

Environment. Case Study: The Container Loading Problem. Ayodeji Remi-

Omosowon. Displayed at the 2015 Science & Technology Annual Research Con-

ference, Nottingham Trent University, Nottingham, United Kingdom. May 2015.2

Applying Computational Intelligence to the Container Loading Problem. A Hy-

brid approach based on the Collaborative Combination of Algorithms. Ayodeji

Remi-Omosowon. Displayed at the 2014 Science & Technology Annual Research

Conference, Nottingham Trent University, Nottingham, United Kingdom. May

2014.

Formal Presentations and Talks

Load Optimisation Project: Computational Intelligence applied to the Container

Loading Problem. Ayodeji Remi-Omosowon. End-of-Project Presentation given

at NSK Europe Ltd. Newark-on-Trent, United Kingdom, 3rd August 2016.

Applying Gamification Principles to Container Loading in a Warehouse Environ-

ment. Ayodeji Remi-Omosowon. UKSim-AMSS 18th International Conference

on Modelling and Simulation, Cambridge, United Kingdom, 06 April 2016.

Applying Computational Intelligence to Optimisation Problems in a Warehouse

Environment. Case Study: The Container Loading Problem. Ayodeji Remi-

Omosowon. 2015 Science & Technology Annual Research Conference, Notting-

ham Trent University, Nottingham, United Kingdom. 07 May 2015.

1Awarded a joint Best Paper Award along with 3 other papers out of 60 papers.
2Awarded the first prize for the Best Poster on display.

xvi

Publications, Posters, Presentations

Deriving an Entropy Measure for 2D Container Layouts. UKSim-AMSS 17th

International Conference on Modelling and Simulation Cambridge, United King-

dom, 25 March 2015.

Load Optimisation Project Report. Ayodeji Remi-Omosowon. Project Progress

Presentation at NSK Europe Ltd. Newark-on-Trent, United Kingdom, 15 Jan-

uary 2015.

Hybridization and the Collaborative Combination of Algorithms. Case Study:

The Container Loading Problem. UKSim-AMSS 16th International Conference

on Modelling and Simulation, Cambridge, United Kingdom, 26 March 2014.

Computational Optimisation for Practical Applications. Remi-Omosowon Ayo-

deji, NTU Physical Sciences, Engineering and Computing Research Centre Sem-

inar Series. Nottingham Trent University, Nottingham, United Kingdom, 22

January 2014.

Computational Optimisation for Practical Applications. Prof Dr Lars Nolle; Gio-

vanna Martinez Arellano; Ayodeji Remi-Omosowon. Workshop at the AI2013

33rd SGAI International Conference on Artificial Intelligence in Cambridge. 10

December 2013.

Technical Reports

Load Optimisation Project. Project Summary. Ayodeji Remi-Omosowon. NSK

Europe Ltd. Newark-on-Trent, United Kingdom, 11 May 2015.

Published Software Packages

pyeasyga. A simple and easy-to-use implementation of a Genetic Algorithm li-

brary in Python. https://github.com/remiomosowon/pyeasyga. Published June

2014.

xvii

Chapter 1

Introduction

The Container Loading Problem (CLP) is a long-standing problem of real-world

importance, particularly in the logistics and distribution domain. It describes

the general problem of packing a set of three-dimensional boxes into a larger

three-dimensional rectangular container such that some given objective function is

maximised e.g. maximising either the weight or volume capacity of the container.

In addition to maximising the given objective function, many real-world ap-

plications of the CLP also have relevant practical constraints applicable to the

problem. These constraints could arise either from health and safety considera-

tions relating to the problem, or from the nature of the goods being loaded and

the practicalities involved in their handling.

While the addition of practical constraints to the CLP traditionally makes the

already difficult problem even more complex, many of the constraints are relevant

constraints that must be satisfied completely before solutions to a real-world

version of the problem are considered viable. It is therefore obvious that in order

to add value to the real-world applications of the CLP, more attention must be

placed on solution approaches that tackle these practical real-world constraints.

This change in focus can be seen in recent work in the area, with several

different approaches e.g. Ramos et al. [2016b], Bruns et al. [2016], Sheng et al.

[2017], Le and Knust [2017], Männel and Bortfeldt [2017], Sridhar et al. [2017],

Mostaghimi et al. [2017], Huang et al. [2016], Ramos et al. [2016a], Costa and

Captivo [2016], Moura and Bortfeldt [2016], etc., making a significant impact on

the consideration and specific inclusion of many different real-world constraints

1

1. Introduction

to achieve feasible solutions. A gap still exists however in the consideration of the

feasibility and complexity of the resulting layouts generated by various solution

approaches, especially as experienced when dealing with heavy items that often

need to be handled with limited manoeuvrability using a forklift truck, or some

other means, via a single entry point into a container. This constraint affects

the packing density that can be achieved as well as the overall simplicity of the

layout generated. In this thesis, we will investigate solution approaches to the

CLP that aim to satisfy a given number of practical constraints in addition to

achieving the goal of producing loading layouts that pack items in a constrained

space and have a consistency or are simple enough to be easily reproduced by

forklift truck drivers loading real-world shipping containers from one end.

1.1 Background and Motivation

The Container Loading Problem (CLP) describes the problem of packing a given

set of three-dimensional rectangular boxes into a larger three-dimensional rect-

angular container such that a given objective function is maximised, and if appli-

cable, some other constraints are satisfied. A solution to this problem is said to

be viable if all the selected boxes are packed completely within the walls of the

container and there is no overlap between any of the packed boxes.

The particular class of the CLP that this thesis aims to solve is motivated by

the loading problem that occurs in the UK distribution centre of an engineering

and manufacturing company called NSK Europe Ltd. The problem is that of op-

timally loading a set of heavy palletised goods selected from a larger set of goods,

each with a different size, weight and possible orientation, into any one container,

while attempting to maximise the weight capacity of the container and to satisfy

a number of relevant practical constraints. The problem can be generally classi-

fied using the typology defined by Wäscher et al. [2007] as a ‘Single Large Object

Placement Problem’, further characterised with having certain restrictions placed

on the items to be loaded i.e. additional constraints considered because of the

nature of heavy palletised goods.

Forklift trucks are used to move, stack and load heavy palletised goods. A

typical loading operation requires multiple trips from the warehouse to the con-

2

1. Introduction

tainer and back. This operation can take up to an hour to complete in a perfect

loading scenario. Loading mistakes or delays in deciding how to load a given

selection of goods can further increase the time spent loading. It is therefore of

great benefit to investigate and devise a means of reducing the time spent decid-

ing what goods to load and how best to load them. Special care also needs to

be taken when stacking goods on top of each other and when arranging goods

in the container. This is to prevent any potential damage to goods that could

arise from incorrect or non-optimal packing. Again, it is beneficial to ensure that

the goods are packed optimally so that the possibility of any damage is greatly

limited.

For this particular CLP instance, the following practical constraints were iden-

tified and must be considered in order for any solution provided to be considered

feasible. 1

• maximum container weight limit: when goods are selected for packing

into containers, the total weight of all the selected goods must not exceed

the maximum weight capacity of the container.

• complete shipment of pallet groups: pallets are often separated into

logical groups e.g. a specific customer order; if any pallet that is a member

of such a group is loaded into a container, all other pallets belonging to the

same group must be loaded into the same container as well.

• pallet stability: pallets that are stacked on top of each other must have

a combined height not greater than a given maximum stack height; this is

to provide load stability when the stacked pallets are lifted off the ground

and moved from place to place.

• complete surface area support: pallets not placed directly on the con-

tainer floor, must be completely supported by the top surface area of the

pallets they are placed on, i.e., no over-hanging of pallets is allowed.

1 Note that in the rest of this chapter, and indeed the rest of this thesis, the term ‘pallets’
is used to refer to the phrase ‘palletised goods’ or the term ‘goods’, and all are used inter-
changeably. When there is a need to refer to the actual pallet base used to load the goods, the
distinction will be made.

3

1. Introduction

• orientation and rotation constraints: due to the manner in which pal-

letised goods are packed, i.e., packed on pallet bases that facilitate the

movement of the goods by forklift trucks, the palletised goods may only

be picked up and packed in any one of two horizontal orientations; and as

different types of pallet bases are used to pack the goods, some pallets may

be rotated and packed in either of two possible orientations, while others,

due to the nature of the pallet base used, might not allow rotation and

allow packing in only one orientation.

• stackability: pallets can generally have other pallets placed on them, i.e.,

they are ‘stackable’; restrictions, however, can be placed on a pallet so

that no other pallet can be placed on it, e.g., a customer instruction to not

double stack certain pallets, or to mark specific pallets as ‘fragile’; if a pallet

is identified in this manner as a ‘non-stackable’ pallet, it must not have any

other pallet placed on it.

• load bearing weight: when a pallet is placed on another stackable pallet,

the weight of the pallet placed on top, in the stack, must not be greater

than the weight of the (bottom) pallet it is placed on.

• maximum stack weight: to keep in line with forklift truck regulations,

when a pallet is stacked on another pallet, the combined weight of both

pallets must not exceed the weight of the maximum load that the forklift

truck is allowed to carry

Initial attempts have been made by the company to solve the problem using

bespoke ‘made-to-order’ and proprietary ‘off-the-shelf’ software. These attempts

were not successful because the solutions obtained were unfeasible as there were

unable to satisfy the required practical constraints.

This thesis, in an attempt to provide a solution to this problem, investigates

the use of computational intelligence techniques for optimally selecting a subset

of heavy palletised goods for loading in reasonable time; and for generating many

different loading arrangements (layouts), each a potential candidate for loading.

The concept of entropy as a measure of disorder is adopted and applied to the

generated loading layouts (see Remi-Omosowon et al. [2015]). This causes feasible

4

1. Introduction

layouts to be rated better than non-feasible layouts. The best-rated layouts are

then presented.

This thesis also investigates how loaders interact with the presented results

in a gamified loading environment (see Remi-Omosowon et al. [2016]). The feed-

back from this interaction is used to explore the viability of a simulated loading

environment as a learning aid. The premise is that if loaders can spend time

loading in a simulated environment, the knowledge obtained can be transferred

to loading in real-life situations and typically speed up the learning process.

More information about the problem being solved, the constraints considered,

and the solution approaches considered can be found in Chapter 3.

1.2 Aims and Scope

This thesis presents a solution approach for a class of real-world container load-

ing problems with good loading characteristics at low computational cost. In

addition, the resulting layouts produced are also simple to understand and easy

to reproduce by warehouse operatives driving forklift trucks. This class of prob-

lem is characterised with the loading of heavy palletised goods (hence the need

for movement by forklift trucks) and a number of identified practical constraints

that must be satisfied for a solution to be deemed feasible. The main aim of this

thesis is to provide this solution approach as a contribution to container loading

research.

A secondary aim is to examine and evaluate user interaction with the results of

the otherwise complicated algorithms at work in the proposed solution approach,

in a system where gamification principles have been applied to retain and increase

user engagement. The effects of such interactions on the adoption of the overall

loading system in the workplace are also discussed.

The problem considered is a variant of the Single Container Loading Prob-

lem (SCLP). No explicit solution is provided for the related Multiple Container

Loading Problem (MCLP). A naive solution is however proposed in the con-

cluding chapter, for the MCLP, involving the use of repeated applications of the

solution approach provided for the SCLP.

5

1. Introduction

1.3 Structure of the Thesis

The research presented in this thesis covers three themes. Some of the chapters

presented sit directly within a given theme, while the rest span across the different

themes.

The first theme covers the algorithmic optimisation of pallet selection. To this

end, a hybrid algorithm for solving container loading problems, that focuses on

obtaining a selection of pallets that can fit completely into a container, with the

total weight utility of the container close to the maximum allowed, is introduced

in Chapter 4. Improvements to the algorithm, that allows it to fit in more pallets

into the same container in less time, are presented in Chapter 5. The hybrid

algorithm in both cases satisfies all of the required constraints.

The second theme explores strategies for the optimal placement of the selected

pallets within a container such that the resulting layout is achievable using forklift

trucks and is easy for humans to understand. Chapter 6 presents the initial

work done to optimise pallet placement within a container. In it, we derive a

measure to rate layouts in terms of their disorderliness. This measure is then

applied to a stochastic process that generates lots of randomised layouts in order

to find and select the best-rated layouts automatically. Chapter 7 presents an

algorithm that uses the derived measure to drive the placement of individual

pallets (or stacks) within a single layout. The algorithm employs some elements

of randomness during its placement which appeared to give it an edge over purely

deterministic placement. It improves on the approach used in Chapter 6 in that

it uses the measure to drive the generation of a single ‘best’ layout; as opposed

to generating a lot of random layouts, rating them all using the measure, and

then finally selecting a best one. As such, it presents a much faster means of

generating layouts whose placement is directed by a measure that leads to the

reduction of disorder in the layouts. This, in turn, leads to layouts that are easier

to understand by loaders and, by the same virtue, easier to pack using forklift

trucks.

The third theme is concerned with the (human-)factors that come to play

when technology is introduced into the workplace, and it describes the process

of gamifying the presented container loading system to increase user engagement

6

1. Introduction

with the system. This theme is presented in Appendix A: Applying Gamification

principles to the Container Loading Problem, and covers the application of gam-

fication principles to the loading system and the effects they had on the adoption

of the loading system. The loading system, in this case, refers to the hybrid

algorithm and all things used to interact with it e.g. inputs, outputs, formalisms

used to describe input to or output from the algorithm, interfaces used to control

the algorithm, the medium used to interact with the algorithm, etc. A side effect

of this gamification process is that the loading system is made more accessible

to the loaders via a simulated loading environment. This environment is easy for

the loaders to use and understand, as it abstracts away the otherwise complicated

algorithms working behind the scenes.

A review of the relevant literature and previous work undertaken in the field

is presented in Chapter 2, and the final conclusions of the thesis are presented in

Chapter 8.

1.4 Contributions of this Thesis

The contributions of this thesis are:

• The development of a placement algorithm that uses the concepts of entropy

and Monte Carlo tree search to generate layouts that are easy to understand

and load using forklift trucks.

• The development of a framework for algorithmic hybridisation wherein the

problem to be solved can be decomposed into sub-problems and each can be

solved using any number of exchangeable algorithms as long as any imposed

constraints are satisfied.

• Providing a novel solution to the Container Loading Problem that satisfies

a unique combination of practical constraints.

• The development of an optimal approach for solving Container Loading

Problems involving palletised goods.

• The development of a novel approach for identifying feasible loading layouts

based on the use of a derived entropy measure.

7

1. Introduction

• Integrating the above contributions (i.e. otherwise complicated algorithms)

into a system that presents results in a manner that can be easily interpreted

and understood by humans.

• Extending the existing container loading benchmark data, which mostly

only covers weakly heterogeneous problem instances that deal with rela-

tively few constraints at a time, to strongly heterogeneous instances that

cover a larger number of constraints at a time; these additional constraints

reflect a wide spectrum of practical applications that have not yet been

dealt with extensively in literature.

1.5 Related Academic Publications

A significant part of this thesis has been published in 3 peer-reviewed papers in

international conference proceedings. An extended version of one of these papers

is under preparation for submission as a journal article. Ideas presented in two of

the papers have been extended to include work not present in the original papers;

this too, is under preparation for submission as a journal article. Some of the

work has also been presented in 2 posters displayed locally at the University’s

annual Science & Technology conference.

The following list relates the published work to the relevant chapters in which

they are presented.

• Chapter 4: A Hybrid Algorithm for the Container Loading Problem

– Remi-Omosowon A, Cant R, Langensiepen C. Hybridization and the

Collaborative Combination of Algorithms. UKSim-AMSS 16th Int.

Conf. Comput. Model. Simul., Cambridge, United Kingdom: 2014,

p. 404. doi:10.1109/UKSim.2014.60.

– Applying Computational Intelligence to the Container Loading Prob-

lem. A Hybrid approach based on the Collaborative Combination of

Algorithms. Ayodeji Remi-Omosowon. Poster displayed at the 2014

Science & Technology Annual Research Conference, Nottingham Trent

University, Nottingham, United Kingdom. May 2014.

8

1. Introduction

• Chapter 6: Optimising Container Layouts for Real-World Packing

– Remi-Omosowon A, Cant R, Langensiepen C. Deriving an Entropy

Measure for 2D Container Layouts. IEEE UKSim-AMSS 17th Int.

Conf. Comput. Model. Simulation, UKSim2015, Cambridge, United

Kingdom: 2015, p. 1038.

– Applying Computational Intelligence to Optimisation Problems in a

Warehouse Environment. Case Study: The Container Loading Prob-

lem. Ayodeji Remi-Omosowon. Poster displayed at the 2015 Science

& Technology Annual Research Conference, Nottingham Trent Uni-

versity, Nottingham, United Kingdom.

• Appendix A: Applying Gamification principles to the Container Loading

Problem

– Remi-Omosowon A, Cant R, Langensiepen C. Applying Gamification

Principles to Container Loading in a Warehouse Environment. IEEE

UKSim-AMSS 18th Int. Conf. Comput. Model. Simulation, UK-

Sim2016, Cambridge, United Kingdom: 2016, p. 79-86.

9

Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of relevant literature on the study of the Container

Loading Problem (CLP), drawing on research that is focused on understanding

the importance and implications of the consideration of practical real-world con-

straints on the solution approaches employed in solving the CLP. The review

begins by providing an introduction to the CLP as a combinatorial optimisation

problem in Section 2.2. It then situates the CLP in the class of problems known

in complexity theory as NP -Complete problems, thus providing a justification

for the heuristics-based solution approach employed in this thesis to tackle the

problem. Section 2.3 identifies and provides a discussion of the typologies defined

for the CLP in literature as well as the various solution approaches employed

when dealing with CLPs. Finally, section 2.4 presents the practical constraints,

particularly real-world constraints, typically considered when solving CLPs.

2.2 Optimisation Problems

Optimisation problems are problems that seek to find a selection of optimal

choices or parameters to achieve a specific goal. The selected parameters are

usually used to determine the minimum or maximum value of some function.

This function is known as an objective function and when we seek to minimise

10

2. Literature Review

its value, it is referred to as a cost function; on the other hand, when we seek to

maximise its value, it is referred to as a fitness function.

Optimisation problems can be divided into two categories: ‘continuous’ and

‘discrete’ based on the type of parameters, or variables involved. When the vari-

ables are discrete, the problem is known as a combinatorial optimisation problem,

and it has a search space that comprises different combinations of values, one of

which maximises or minimises a given objective function.

As many combinatorial problems with theoretical and practical importance

abound in literature, many algorithmic techniques and solution approaches have

been studied for solving them. A number of these approaches are based on math-

ematical programming methods that seek to find exact solutions to the problem.

While the use of these exact methods is successful on some problems, there exist

a class of problems for which they are not suitable.

Formally, in complexity theory, there is a class of problems P, which are

problems that are solvable in polynomial time. There is also a class of problems

NP (Non-deterministic Polynomial), which are problems where the validity of

their solutions can be verified in polynomial time, but for which the solution

search typically takes exponential time. The non-determinism is a reference to the

concept of a non-deterministic Turing machine exploring both branches of an if-

statement simultaneously, resulting in an exponential search space, in polynomial

time. Having defined both classes of problems, P and NP, NP -Complete problems

can be defined as the class of problems in NP which are as hard as any other

problem in NP. They have the property of having a solution that can be proved

or validated in polynomial time, but not having any known algorithm that can

solve them in polynomial time. For completeness sake, there is also a class of

problems known as NP -Hard problems, which are problems at least as hard as

any problem in NP but may not be in NP themselves.

NP -Complete problems are intractable, as their solution search space increases

exponentially with regards to their input size. This leads to exact methods be-

ing only feasible for problem instances with very limited input size. To remedy

this problem, and to provide solutions to practical problems with large input

sizes in reasonable time, other solution approaches based on heuristics and ap-

proximation algorithms have been developed and studied, that place emphasis on

11

2. Literature Review

providing high-quality ‘optimal’ solutions that are good enough and produced in

very reasonable time.

Examples of some well-known heuristic methods include hill-climbing and gra-

dient descent algorithms, that seek to determine a maximum fitness (or minimum

cost) by iteratively taking steps towards better neighbour solutions in their search

space; simulated annealing, based on a physics metaphor that also uses an itera-

tive procedure and seeks to reach a maximum fitness using small steps that have

been simulated and tested to see if they obtain a better fitness before being se-

lected; and genetic algorithms, inspired by the biological metaphor of evolution

which also uses an iterative process to arrive at an optimum solution, whilst em-

ploying safe-guards that are intended to help prevent it from being stuck in a

local optimum.

The problem considered in this thesis is a practical real-world version of a

combinatorial optimisation problem known as the Container Loading Problem

(CLP). When expressed as the problem ‘how many of these boxes can I fit in this

container?’, the CLP is NP -Hard. However, when expressed as the decision prob-

lem ‘can these set of boxes fit in this container?’, it can be seen to belong to the

NP -Complete class; as any provided solution can be very quickly (in polynomial

time) verified, i.e., does the solution fit all the given boxes into the container? In

addition, as the CLP is known to reduce to the well-known Knapsack Problem

[Scheithauer, 1992], which is already known to be NP -Complete [Pisinger, 1995],

it is itself also NP -Complete. Most practical instances of the (NP -Complete)

CLP are actually relatively easy to solve because the fill levels considered are

fairly small. However, as the version of the CLP considered here occasionally

has to deal with a few tight cases of very high fill level, as well as satisfy several

practical constraints that make the problem even more difficult, the general so-

lution approach proposed makes uses of heuristics, instead of exact methods, to

determine a solution to the problem in reasonable time.

2.3 The Container Loading Problem

The Container Loading Problem (CLP) is an active research area with numerous

applications in the real world, particularly in the container transportation and

12

2. Literature Review

distribution industries [Dereli and Da, 2010]. As indicated earlier, it is well known

to be a NP-Complete problem [Dowsland and Dowsland, 1992] where the direct

application of known mathematical formulations found for it in literature have

been proven to be computationally feasible for only problem instances of a very

limited size [Nepomuceno et al., 2007]. For this reason, the majority of the studies

performed in this area, this thesis inclusive, focus more on providing solutions to

the problem using heuristic and meta-heuristic approaches.

2.3.1 Typology

The definition provided for the CLP above can be said to describe a general

version of the CLP. Several distinctions exist in the characteristics of CLPs, such

as a difference in objective functions or a difference in the constraints considered,

that result in variants to the problem that are treated as individual problems in

their own right, each with its own degree of complexity and its own applicable

solution approaches and techniques.

Dyckhoff, in his seminal work [Dyckhoff, 1990], provided a comprehensive

typology for organising and classifying different CLPs. This brought together

all the terms and different notions used in prior research into packing problems

and provided a consistent language for describing the different problem types and

variations. His work also served to help further the development of research that

focused on specific problem types. Wascher et. al. later developed an improved

typology [Wäscher et al., 2007], partially based on Dyckhoff’s original typology,

to deal with some of the deficiencies in it that had become apparent over time.

They introduced new categorisation criteria different from Dyckhoff’s and a new

consistent system of names for the new problem categories.

In a broad sense, both typologies define two main distinctions for the CLP.

In the first, we have two categories the first of which involves the loading of an

entire set or a subset of small objects into a single larger object where the main

objective is to maximise the utility of the larger object. The second category

involves loading an entire set of small objects into one or more large objects

where the main objective is to minimise the number of large objects used to pack

the entire cargo.

13

2. Literature Review

Another distinction is made on the type of small objects to be loaded. Where

there is only one type of small object, the small objects are said to be homoge-

neous; otherwise, they are said to be heterogeneous. Another further distinction

is made on heterogeneous types; when there are a few distinct types with many

objects of each type, the objects are said to be weakly heterogeneous; and when

there are many distinct object types with few numbers for each object type, the

objects are said to be strongly heterogeneous.

Using these distinctions, Wascher et al.’s typology [Wäscher et al., 2007]

divides CLPs into the following problem types: Identical Item Packing Prob-

lem, Placement Problem, Knapsack Problem, Open Dimension Problem, Cutting

Stock Problem and Bin Packing Problem. These problems are further broken

down and categorised into more refined sub-problems; we refer the reader to

Wascher et al.’s typology for detailed descriptions of the problems and their sub-

problems.

In this thesis, the class of the CLP examined belongs to the class categorized as

the Single Large Object Placement Problem (SLOPP) which is a sub-category of

the Placement Problem but with the distinction of dealing with weakly heteroge-

neous small objects and a single large object. This problem (in its 3-dimensional

form) is commonly referred to as the Single Container Loading Problem (SCLP)

in the literature [Bortfeldt et al., 2003; George and Robinson, 1980; Li et al.,

2014; Zheng et al., 2015; Zhu and Lim, 2012].

2.3.2 Solution Approches

Several solution approaches have been proposed in the literature for solving the

CLP. The two most common heuristic approaches provided are the layering and

wall-building approach. The layering approach, as seen in Bischoff and Ratcliff

[1995a], Gehring and Bortfeldt [1997] and Bortfeldt and Gehring [2001], is based

on the concept of packing items in a loading configuration from the ground up in

layers. The wall building approach, first proposed in George and Robinson [1980],

with a variant introduced in Moura and Oliveira [2005], is based on filling the

container with walls where the walls are rectangle blocks made up of boxes whose

depth is determined by the first box placed in them. Eley [2002] also presents

14

2. Literature Review

an approach based on wall-building that builds blocks of identical oriented boxes

using a greedy heuristic. Another heuristic approach provided in literature is

the AND/OR-graph approach proposed by Morabito and Arenalest [1994] in

which boxes are represented as nodes in a graph and a cut performed on a box is

represented as an AND operation. A sequence of cuts is performed until all nodes

found are final. The set of all the nodes and AND operators is the AND/OR-

graph. These approaches form the foundation for many heuristic frameworks

used for solving the CLP in literature.

Meta-heuristic approaches such as Tabu search [Bortfeldt et al., 2003; Liu

et al., 2011], Genetic Algorithms [Gehring and Bortfeldt, 1997; Nepomuceno et al.,

2007; Pires de Araujo and Pinheiro, 2010], Simulated Annealing [Dereli and Sena

Das, 2010; Peng et al., 2009], and Ant Colony Optimisation [Li Wang et al.,

2010; Yap et al., 2012] have also been used extensively. These approaches have

been explored extensively in the literature, and are often hybridized to solve spe-

cific variants of the CLP. More recently, parallel versions of some meta-heuristic

approaches have been investigated; an example can be seen in Bortfeldt et al.

[2003]. Other research shows trends of hybridizing heuristic methods with other

techniques.

In this thesis, the solution approach employed is a collaborative combination of

several problem-specific heuristic and meta-heuristic approaches. The approach

is inspired by that used in Gehring and Bortfeldt [1997], which incorporated a

tower building phase that reduced the problem into a two-dimensional problem of

packing towers onto a container floor thus resulting in a reduction in dimension-

ality and a simplification to the original problem. In the proposed approach, an

initial search is carried out in the solution space to select items with a combined

weight less than the container weight limit, using a genetic algorithm. ‘Weight’

is an important criterion for driving this stage, because in the problem instance

considered, the container weight limit is met long before the container gets filled

up. The selected items are then built up into stacks using a greedy algorithm, and

the built-up stacks are then packed using initially a genetic algorithm integrated

with several rectangle packing algorithms, and then with a deterministic pack-

ing algorithm, and finally with an Entropy-guided Monte-Carlo algorithm, each

corresponding to the different approaches used at different times while iteratively

15

2. Literature Review

improving the solution quality obtained.

2.4 Container Loading in the Real World: Prac-

tical Constraints

Practical constraints in the container loading problem turn up in different forms.

Some constraints are related to the enclosing container, while some are related to

the items being packed, and in some instances where the items being moved are

heavy, some constraints are related to the forklift trucks used to move the items.

These constraints may occur in practice as ‘hard’ or ‘soft’ constraints. Hard

constraints must be satisfied, while soft constraints can have violations tolerated

up to certain limits, if not completely satisfied.

A quick review of the literature turns up three basic constraints that seem

to be a fundamental part of the canonical problem definition for the CLP, and

were not explicitly observed, are assumed to be implicitly observed by most.

These include: (i) the packing of boxes orthogonally to the walls of the enclosing

container, (ii) the placing of all boxes completely within the walls of the container,

and (iii) making sure boxes do not intersect each other. Due to the ubiquity of

these constraints, some might not refer to them as ‘practical’ constraints; indeed

these particular three have been referred to as ‘geometric’ constraints by some.

In addition to these constraints, some solutions also insist that the entire base of

a box must be fully supported by either the container floor or another box, while

some allow a little overhang when boxes are placed on other boxes.

Apart from these basic constraints, the rest of the practical constraints typ-

ically encountered are related to orientation, stacking, stability, weight distri-

bution, weight capacity, multidrop prioritisation, and complete shipment of item

groups. These are covered in detail in the review by Bortfeldt and Wäscher [2013],

who divides them into categories in relation to the container, the individual items

being loaded, the entire cargo being loaded, and the positioning of the cargo. I

will briefly describe a number of these here.

In practice, a typical container has weight limits that must not be exceeded.

In most container loading problems, the volume of the container is the objective

16

2. Literature Review

function that is maximised. When heavy goods are to be loaded, the weight

limits are often met before the volume limits are encountered. In cases like these,

the weight of the container becomes the objective function that is maximised

as the weight limits become more restrictive than the volume limits. Weight

limit constraints are typically treated as hard constraints. Another constraint

related to weight is the weight distribution constraint. It requires the distribution

of weight to be spread out almost evenly across the container floor. This is

important in order to satisfy axle weight guidelines for the trucks that transport

the containers, as well as to provide a stable load that reduces the movement

of cargo when the container is in transit. When considered, weight distribution

constraints are often treated as soft constraints.

The orientation constraint is the most common constraint considered in the

CLP literature. In theory, there can be up to six different orientations possible i.e.,

three vertical orientations each having two horizontal orientations. In practice,

however, the vertical orientation is often fixed e.g. goods that have stickers with

directions to load ‘This way up ↑’, or items that have to be stood up a particular

way. This results in there being only two possible orientations in which to pack

items. Additional limits can also be placed on the horizontal orientations allowed.

This can be seen for example in the problem considered in this thesis (described

in Chapter 3) where different types of pallets are used to pack goods, and some

of the pallets allow loading using forklift trucks from only two sides i.e., the front

and the back, while others allow loading from all four sides. When we consider

that we load the palletised goods orthogonally in the container, and account for

symmetry, then the pallets that allow loading from all four sides give us two

possible horizontal orientations while the pallets that allow loading from only

two sides give us only one possible orientation in which the pallet can be packed.

Orientation constraints are treated as hard constraints in the literature.

Stacking constraints are usually introduced as hard constraints to help prevent

damage to the items being packed. They are concerned with restrictions on

how boxes are placed on top of each other and are also referred to as ‘load-

bearing’ constraints in the literature (see Junqueira et al. [2012b]) because they

are concerned with the load-bearing strength of boxes and how much weight they

can sustain before they get damaged. Several methods exist for dealing with

17

2. Literature Review

stacking constraints in practice. One such method is to always require heavier

items to be placed below lighter ones; another separates items into groups of

‘stackable’ and ‘non-stackable’ items where stackable items are those that can

have other items placed on them and non-stackable items can not. The choice

of which items are stackable or not could be determined by the shape of the

top surface of the item to be packed, for example, if the top surface is uneven.

It could also be determined by a ‘Do not double-stack’ directive. Items might

also be marked as ‘fragile’ with a meaning attached that directs loaders not to

place the items on any other items and not to have other items placed on them.

Another observed method considers the item density and places items of higher

density below items of lower density.

The complete shipment constraint refers to the case where if an item that

belongs to a subset of items is loaded into a container, all other items belonging

to the same subset must be loaded as well. Examples of this might include the

loading of different furniture parts, or as with the problem dealt with in this

thesis, items belonging to the same customer order. In both examples, if a single

part of the subset is loaded, the rest must be loaded as well. Another case for

this constraint is mentioned in literature, the difference lying in the number of

containers the items are loaded into. In this case, if an item that belongs to

a subset of items is loaded into one of many containers used to load a given

shipment, it is sufficient that the other items in the same subset are loaded as

part of that shipment and not necessarily in the same container. When dealt with

in literature (e.g. see Eley [2003]), complete shipment constraints are treated as

hard constraints.

Loading priority constraints refer to a situation where a subset of items must

be loaded from a given set of items. For example, this might be because of a

deadline placed on the delivery of the particular subset of items, or because of

the items having a higher delivery priority than others e.g. first class post items

will be given more priority than second class post items. This constraint is usually

treated as a hard constraint where we find that all high priority items must be

loaded first before any low priority item is loaded.

Positioning constraints deal with the restriction on the position of items within

a container. The literature distinguishes between ‘absolute’ and ‘relative’ posi-

18

2. Literature Review

tioning. With absolute positioning, items are restricted to (or restricted from)

very specific locations, i.e. absolute positions, within a container. Relative posi-

tioning, on the other hand, restricts the placement of items relative to each other

e.g. requiring that items belonging to the same customer order be placed next to

each other within the container. In practice, situations that require the delivery

of packed items to multiple locations exhibit both absolute and relative position-

ing constraints. The items that will be delivered to the same location are kept

close together relative to each other, while groups of items are kept in absolute

positions in the container such that each group can be unloaded according to the

order of the locations being delivered to. Here, they are mostly treated as hard

constraints.

The stability constraint deals with how stable the items are when being packed

or unpacked, and how stable an entire packed load is when being moved. They are

of significant importance in the literature and are often presented in the form of

requiring that the bottom surface area of an item to be packed must be completely

supported by either the top surface area of another item or the container floor. In

some cases, where an item is placed on another item, partial support that results

in a little overhang may be allowed (see Gehring and Bortfeldt [1997]; Tarantilis

et al. [2009]). Interlocking arrangements in the load may also be used to reduce

motion during transit. The use of ‘filler’ materials is also introduced in practice

to plug any gaps left after loading to keep entire loads stable.

Pattern complexity constraints deal with how easy it is for generated loading

patterns to be understood and implemented by human loaders or robots. It is

of importance because complex patterns that achieve a very compact and high

container fill may not be implementable by human loaders or loading robots

without considerable extra effort. This results in loading patterns that are easy

to describe and pack being more desirable in practice than complex patterns that

might obtain a higher fill. An example of the complexity constraint in practice is

the use of the ‘guillotine’ pattern. It is a pattern that can be obtained by a series

of cuts made parallel to the walls of the container. It is frequently considered in

the literature as it can easily be described and packed.

19

2. Literature Review

2.5 Conclusion

The solution approaches considered in the literature for the CLP can be broadly

divided into ‘exact and approximate algorithms’ and ‘heuristic and meta-heuristic’

algorithms. While quite a lot of progress has been made in the area of the exact

and approximate algorithms for the CLP [Zhao et al., 2014], considering that

there have been only a few proposed so far, they have so far proven to be fea-

sible only for problem instances of limited size. Heuristic and meta-heuristic

approaches, on the other hand, have been shown to be a good vehicle for solving

problems with practically-relevant constraints and typically provide good quality

solutions in reasonable time for problems with realistic sizes. Despite this, the

focus on real-world practical constraints in the literature has been very little in

comparison to the body of work present. There appears to be more research

dealing with an idealised form of the CLP which typically has just a few or no

constraints present. Indeed, for this reason, Bortfeldt and Wäscher [2013] in their

review remark that research in container loading has to be looked upon as be-

ing in its infancy with respect to the inclusion of practically-relevant constraints.

They report that only 26 out of the 163 papers they reviewed considered 4 or

more constraints simultaneously.

In this regard, one can see that the literature addressing the issue of deal-

ing with multiple practical constraints simultaneously is scarce. This chapter,

therefore, presents a review of the Container Loading Problem (CLP), situating

it particularly in the context of its use practically in the real-world, as well as

in the work environment. We consider the category of the CLP identified by the

two main typologies for the CLP in the literature [Dyckhoff, 1990; Wäscher et al.,

2007] as the ‘Single Large Object Placement Problem’ (also commonly referred

to as the Single Container Loading Problem) and present a review of a number of

relevant practical constraints, i.e., weight limit, orientation, pattern complexity,

stability, complete shipment, loading priority, and stacking. The work presented

attempts to deal with these constraints simultaneously. In cases where it appears

a constraint is not explicitly dealt with, e.g. loading priority or positioning, a

workaround is presented for dealing with the constraint using the same body of

work presented in this thesis.

20

2. Literature Review

While a number of standard solution approaches for solving CLPs are pre-

sented, the focus in the rest of this thesis is motivated by real-world applications

of the problem. In dealing with the problem, we realise that the real-world con-

straints encountered in practice are what make the problem different from the

canonical CLP found in the literature. Indeed, one could argue that the combi-

nation of a number of given constraints turn each CLP into a unique problem

different from other CLPs. To this end, non-standard solution approaches that

deviate from or extend the norm might be expected to be better suited to prob-

lems with such unique combination of constraints. In the rest of this thesis, a

number of approaches that have been applied successfully to other areas but have

to the best of my knowledge not been previously applied to the area of Container

Loading are investigated. These concepts, which include the use of ‘entropy’ as a

measure and the use of ‘Monte Carlo tree search’ to guide search, are considered,

and their implementation and use in the CLP is outlined in subsequent chapters.

21

Chapter 3

Problem Overview

3.1 Introduction

The problem this thesis attempts to solve is motivated by a real-world container

loading problem that occurs in the United Kingdom distribution centre (UKDC)

of an engineering and manufacturing company, NSK Europe Ltd., that is one of

the largest bearing suppliers in the world. The UKDC serves as the logistics and

distribution department for the company, and the problem instance and specific

practical constraints considered in this thesis are therefore a result of a practical

case study developed there.

In the UKDC, bearings are packed into boxes which are put into cartons and

arranged on pallets which are then shrink-wrapped to be loaded as individual

units onto shipping containers for transportation to customers. We will subse-

quently use the terms “pallets” or “palletised goods” interchangeably to refer

to these individual shrink-wrapped units and use the term “pallet-base” to refer

to the actual base on which the cartons have been arranged. A typical pallet

is heavy, weighing 445 kg on average, and has to be moved about using forklift

trucks. Pallets are loaded into 40 ft containers with dimensions presented in Ta-

ble 3.1. There are 4 different pallet-base types currently used in the UKDC; these

types are shown in Table 3.2. Each pallet-base type has different implications for

the orientation in which they can be placed on a container floor using a forklift

truck, and the way they can be arranged side-by-side within the confines of the

22

3. Problem Overview

Table 3.1: Dimensions of the container used to load pallets in the UKDC

Container Dimensions

Length 1203 cm
Breadth 235 cm
Maximum stack height 210 cm
Maximum weight capacity 25 999 kg

container (see Figures 3.1 and 3.2).

The problem belongs to the first category of Dyckhoff and Gerhard’s classifi-

cation [Dyckhoff, 1990], i.e., using a single container and a weakly heterogeneous

rectangular box set. The problem is also categorised as the Single Large Object

Placement Problem (SLOPP) according to Wascher et al’s improved typology

[Wäscher et al., 2007], which is a sub-category of the Placement Problem as de-

fined in their typology, with the distinction of dealing with weakly heterogeneous

small objects and a single large object.

Multiple pallets, potentially having different pallet-bases, may be logically

grouped together as a single job. Single jobs must not be split across different

containers and must have all of their constituent pallets loaded completely onto a

single container. If they can’t all be loaded, none of the pallets belonging to that

job must be loaded. Forklift trucks are used to move, stack and load the heavy

pallets, which are typically spread across different locations in the warehouse (see

Figure 3.3); with a typical loading operation requiring multiple trips from the

warehouse to the container and back. A loading operation can take up to an

hour given a perfect loading scenario; with loading mistakes or delays in deciding

how to load a given selection of goods further increasing the time spent loading.

It is therefore of great benefit to investigate and devise a means of reducing the

time spent deciding what goods to load and how best to load them.

The problem encountered in the UKDC is therefore that of optimally loading

a set of heavy palletised goods selected from a larger set of goods, each with

a different size, weight and possible orientation, into a single container, while

attempting to maximise the weight capacity of the container and to satisfy a

number of other relevant practical constraints. Due to the nature of the heavy

palletised goods involved, additional constraints are considered due to the re-

23

3. Problem Overview

Table 3.2: Pallet-base types: Dimensions and allowed orientations

Pallet-base Length Breadth Orientations

STD 70 cm 80 cm Both
NSK 105 cm 78 cm Single
EURO 120 cm 81 cm Both
EURO2 80 cm 60 cm Single

Figure 3.1: Pallets on the ‘STD’ pallet-base type

strictions encountered with respect to how the pallets are physically placed and

arranged on a container’s floor using forklift trucks. As the value of the entire

cargo in a fully loaded container can range from an average of £24 000 to £120

000, it is important to take care when stacking pallets on top of each other and

to arrange the resulting stacks carefully in the container in a manner that allows

for safe, easy and quick loading (or unloading) using forklift trucks; this should

help prevent any potential damage to the palletised goods that could arise from

incorrect or non-optimal packing.

24

3. Problem Overview

Figure 3.2: A pallet with the ‘NSK’ pallet-base type (left) and the ‘EURO’ pallet-
base type (right)

Figure 3.3: Palletised goods stored in various locations in a warehouse

25

3. Problem Overview

3.2 Constraints

Discussion with the end users at the UKDC revealed some constraints on solu-

tions that were absolute. Firstly, there was a maximum overall weight that must

not be exceeded by the total weight of all the pallets loaded onto a single con-

tainer. Secondly, no more than two pallets could be stacked and no upper pallet

could be loaded across more than one lower pallet for health and safety reasons.

Additionally, due to the physical limitations of manipulation via forklift trucks,

some pallets had to be loaded in a single orientation, while others could be loaded

in both possible horizontal orientations. Finally, the requirement to dispatch an

entire container’s cargo, to a particular destination means that pallets could be

divided into groups containing any combination of pallets, such that if a pallet

was selected to be packed into the container, all other pallets in the same group

must be completely packed as well. Results that do not satisfy these constraints

were not acceptable. In addition to these, the following practical constraints are

also considered:

• pallets have a ‘stackable’ property that indicates if they can have other

pallets placed on them; if a pallet is not stackable, it must not have any

other pallet placed on it

• stackable pallets must not have a pallet with greater weight placed on them;

only pallets with weight less than or equal to that of the stackable pallet

are allowed to be placed on it

• for stability during container transit, pallets not placed directly on the

container floor must be completely supported by the surface area of the

pallets they are placed on

• for stability when being moved by forklift trucks, pallets that are stacked

on top of each other must have a combined height less than or equal to a

given maximum stack height

• to keep in line with forklift truck regulations, pallets stacked on top of each

other must have a combined weight less than or equal to the maximum

weight the forklift truck is allowed to carry

26

3. Problem Overview

• finally, pallets must be packed orthogonally, parallel to the sides of the

container and completely within the confines of the container’s walls.

Results that do not satisfy these constraints are not feasible.

3.3 The Manual Process

The loading process in the UKDC begins when a sales operative has a list of

packed pallets ready to be shipped out to customers. These packed pallets will

often be separated into different logical groups each representing a single customer

order, or job. Using a pen, paper and a calculator, the operative, considering

only the pallet weights and volume, attempts to select a combination of jobs that

have a combined weight close to or equal to the maximum weight capacity of a

container. The selections total volume is also checked to see if it is less than or

equal to the volume capacity of the container. Once such a selection is found

(see Figure 3.4), it is sent to warehouse operatives with loading experience to

determine if the selection will fit into the container or not. The loaders evaluate

the selection considering not only the pallet weights and volume but also the

types of pallet-base in use, which provides them with pallet size and orientation

information. Armed with this knowledge, they tap into their know-how and prior

experience to determine if they think the selection can fit into the container or not.

If they think the selection will fit, they notify the sales operative who then books

a container for loading and sends the loaders a detailed packing list (see Figure

3.5); otherwise, the entire selection process is repeated and the new selection is

also checked to see if it will fit.

When a selection that fits has been identified, it is then up to the loaders to

work out how best to load the selection into a container as efficiently as possible

while satisfying required practical constraints. They determine this by drawing

on their years of experience to come up with a loading plan. Once they have the

plan, they generate pallet stacks and proceed to load the stacks on the container

floor using forklift trucks.

27

3. Problem Overview

Figure 3.4: Manual selection of customer orders that add up to 25 942 kg (close
to the maximum container weight limit for a 40ft container: 26 000 kg)

28

3. Problem Overview

Figure 3.5: A detailed packing list

29

3. Problem Overview

3.3.1 Identified Shortcomings

The process as it stands is not as efficient as the management in the UKDC would

like it to be. A significant amount of time is spent during the process when the

sales operatives and the loaders are trying to determine and find a selection that

can fit completely in a container. This part of the process is an important part

to get right as a wrong fit will result in a lot more time wasted when selected

pallets are packed up to a point and then have to be unpacked when it is found

that the entire load will not fit completely in the container. In a bid to automate

and optimise the manual process, the UKDC have embarked on research towards

a computerised loading optimisation system in order to:

• increase overall loading speed and efficiency,

• save time and avoid conflict and confusion between operatives when they

disagree on pallet selections, and how best to load them, reduce the total

costs incurred when hiring containers, by optimally maximising the capacity

of every loaded container to reduce the overall number of containers required

for loading,

• reduce damage to goods that might arise from non-optimal packing within

the container, thereby reducing costs that are normally associated with

the replacement of damaged goods and customer fines for the receipt of

damaged goods,

• provide greater customer satisfaction by speedily processing and loading

customer orders for safe and prompt delivery,

• increase warehouse throughput, i.e., the more goods that can be loaded

and shipped out of the warehouse, the higher the capacity to process new

orders within the existing warehouse space, thus leading potentially to more

business for the company,

• make loading know-how available to all operatives.

This should have the overall effect of significantly improving business performance

and raising competitive edge while providing greater customer satisfaction.

30

3. Problem Overview

Figure 3.6: The bespoke ‘Pallet Loader’ software developed for the UKDC loading
problem

3.4 Initial Solution Approach

Since as far back as 2005, the UKDC has been trying to optimize its loading

process. Initial attempts made to solve the loading problem involved the use of

proprietary off-the-shelf software. The main problem faced with this approach

was that the systems examined were not flexible enough to accommodate and

satisfy all of the required constraints. Subsequent attempts were then made

to develop bespoke software for the problem. One notable attempt made in

2005 produced software called the ‘Pallet Loader’. The software was built by a

computer science work-placement student employed by the company at the time.

A screenshot of the software in operation can be seen in Figure 3.6. It was also

deemed unsuccessful because it could not deal with new pallet-bases with sizes

different from those it already had hardcoded into it; it also assumed all pallets

where stackable and could have other pallets placed on them, which in reality

was seldom the case; it did not take into account individual pallet weights and

as such could not deal with any weight-related constraints; and, it sometimes

generated unfeasible loading layouts such that pallets with much larger bottom

surface areas would be placed on pallets with a smaller top surface area.

31

3. Problem Overview

3.5 Proposed Solution Approach

As alluded to earlier in the literature review, constraints encountered in practice

are very often of great importance and a number of them must be completely

satisfied simultaneously in order for any provided solutions to be considered fea-

sible. The main issue faced by previous solution attempts was directly related to

this inability to completely satisfy all of the considered constraints. This meant

that while some solutions might have been provided, and on paper or in theory

might have looked okay, they would have failed to make any sense or be of any

value in practice.

Detailed discussions with the loaders led to a heuristic approach that was a

natural fit for the problem as experienced in the UKDC. The approach involved

separating the problem into sub-problems where each sub-problem is solved in-

dependently. The approach also managed to take care of all the considered con-

straints. The separation breaks down the problem into the sub-problems of (i)

selecting pallets for loading into a container subject to a maximum weight con-

straint, (ii) stacking the selected pallets subject to a number of given constraints,

and (iii) packing the selected stacks completely on the container floor. It was

inspired by a similar separation that occurs in the manual process for solving the

problem.

Mirroring this breakdown into sub-problems, allowed for a deeper focus on

each individual sub-problem leading to the proposal of well-known solution ap-

proaches for solving each sub-problem. We also ended up with an easier way to

cover all the constraints considered, as the constraints separate nicely into the

different sub-problems. A consequence of this is that for each sub-problem, we

find ourselves dealing with a smaller number of constraints than we would have

if considering all of the considered constraints as a combined whole. This results

in sub-problems that are easier to solve individually.

3.5.1 The Selection Problem

In the context of the overall loading problem in the UKDC, the selection problem

is simply the problem of selecting a combination of jobs that have combined

weight close to that given as the maximum for a container, i.e., the very first

32

3. Problem Overview

part of the problem involving only the sales operative when he/she generates the

manual selection list using just pen and paper (Figure 3.4). It essentially finds a

selection of pallets whose total weight maximises the weight capacity for a specific

container, and is equivalent to the one-dimensional knapsack problem Pisinger

[1995] which can be modelled mathematically as:

Maximise
n∑

i=1

vixi

subject to
n∑

i=1

wixi ≤ W, x ∈ {0, 1}

where xi is a binary variable equal to 1 if item i should be included in the

knapsack, or 0 otherwise; n is the total number of items available; vi and

wi are the value and weight of item i respectively; and W is the maximum

weight capacity of the knapsack.

Relating the knapsack problem back to the selection problem, the knapsack rep-

resents the container, and jobs are the items to be selected. The value (and

weight) of a job is its weight. We therefore have xi representing an individual

job, n representing the total number of jobs, W representing the maximum weight

capacity of the container, and vi and wi both representing the combined weight of

all pallets in job i. The problem is then to obtain a selection of jobs with weights

less than or equal to the weight capacity of the container.

A genetic algorithm (GA) is proposed to solve this problem as it is a well-

known meta-heuristic approach adopted for solving difficult combinatorial opti-

mization problems: see De Jong [1975], Davis [1989], Thierens and Goldberg

[1994], Rudolph [1994], Palmer and Kershenbaum [1995], Reeves [1997], and

Cheng et al. [2000] in Tang [2011]; and given the size of the problem, can be

guaranteed to provide good results. Also, by solving this problem using a GA,

we take advantage of the fact that at the end of a typical GA run, we are presented

with multiple solutions of varying quality and fitness. These multiple solutions

provide us with alternative selections that can be examined if the first selection

examined is found not to fit; this mimics perfectly the situation in the manual

33

3. Problem Overview

solution approach when the sales operative has to produce a new selection if the

previous selection produced was found to be unsuitable by the loaders.

In the operation of the proposed GA when generating a selection of jobs,

we have implicitly taken care of the practical constraint that requires keeping

pallets belonging to the same job together. This is because the ‘items’ we pick

for selection into our knapsack are the individual jobs (which themselves are

made up of related pallets grouped together), rather than the individual pallets.

As such, no extra work needs to be done to ensure that selected pallets are

only selected if every other pallet belonging to its groups is selected as well.

Another practical constraint that we deal with in the selection problem is that

of ensuring that the maximum weight of the selected pallets is less than the

maximum weight for the given container. This constraint is explicitly handled

by the GA, as intermediate solutions that are found to violate the constraint

during its operation are penalized, and only solutions that satisfy the constraint

are considered.

As an alternative approach to using a GA, a Dynamic Programming (DP)

approach was considered as it is also a well-known algorithm for solving the one-

dimensional knapsack problem in pseudo-polynomial time [Martello and Toth,

1990; Pisinger, 1995]. Further examination however revealed that using this ap-

proach would require more time and computational effort, as we would have to

do extra work to ensure that we are able to generate selections that add up to

the same weight but are made up of different combinations of jobs; in the GA

approach, we essentially got this for free. Additionally, we would also have to

perform multiple repeated runs using the DP approach to target different weights

(we looked at starting at the maximum and working our way down). Again, dis-

cussions around what step sizes to use when decreasing the target weights, and

whether or not to use unit sizes thereby targeting every possible weight, or using

fixed step sizes to decrement the weight, which could lead to missing out on good

solutions for the weights in between, further made stronger the case for not using

the DP approach. Another factor considered when ruling out the DP approach

was that it is known to be memory intensive: Martello and Toth in Martello

and Toth [1990] mention that they do not consider a DP approach in their com-

putational experiments for the one-dimensional knapsack problem because of its

34

3. Problem Overview

‘excessive memory requirements’.

3.5.2 The Stacking Problem

The stacking problem in the UKDC occurs when a loader receives both the selec-

tion and detailed packing lists from the sales operative. The problem involves the

generation of stacks, which are simply pallets placed on top of each other, that

are then moved as a unit using forklift trucks to be arranged on the container

floor, all while satisfying the different number of stacking-related constraints. To

solve the problem manually, the loader typically eyeballs the list of pallets taking

note of the numbers of different pallet-bases used and the individual weights for

each pallet. He/she then mentally works out the number of stacks that can be

produced from the list while considering the related constraints. The different

pallet-base sizes come into play because they determine the top and bottom sur-

face areas of pallets that are considered in one of the constraints, and the weights

are also used when satisfying the weight-related stacking constraints. After stacks

are generated, they are then packed onto a container floor.

The proposed solution to the stacking problem is a greedy algorithm that is

partly inspired by the approach employed in Gehring and Bortfeldt [1997]. We

took insight from their tower-generation process and came up with a procedure to

greedily generate stacks subject to the unique combination of constraints faced in

the UKDC. The proposed greedy algorithm will separate pallets into ‘stackable’

and ‘non-stackable’ groups based on whether other pallets can be placed on them

or not. Both groups will then have their pallets sorted in descending order by

weight. At the core of its operation, the greedy algorithm will proceed to generate

stacks from both groups by selecting pallets from the stackable group before the

non-stackable group as bottom pallets for stacks; and by selecting pallets from

the non-stackable group before the stackable group as the top pallets. This way,

we ensure that all stackable pallets are considered before non-stackable pallets as

bottom pallets in a stack so we do not end up in a situation where a stackable

pallet that could have been used as a bottom pallet is wasted as a top pallet.

Sorting both groups in descending order by weight ensures that heavier pallets

are selected before lighter ones. If we get a situation where a non-stackable pallet

35

3. Problem Overview

is selected as the bottom pallet of a stack, it would mean there were no more

stackable pallets to consider. Once a bottom and top pallet are selected, we have

a complete stack. If only a bottom pallet can be selected (i.e. either there are

no more pallets to place on it, or the pallet itself is non-stackable and cant have

other pallets placed on it), we will pack that single pallet on its own. Stacks (and

single pallets) are generated in this manner until pallets from both groups have

been exhausted.

During the stacking operation, the greedy algorithm ensures that the required

constraints are satisfied. At the point where the top and bottom pallets of a stack

have been selected, the algorithm checks to see that (1) the combined weight of

both pallets is less than the specified maximum stack weight (this relates to the

maximum load a forklift truck can carry), (2) the combined height of the pair is

less than the specified maximum stack height (this relates to the stack’s stability

when it is being moved using a forklift truck), (3) the weight of the top pallet

is less than or equal to that of the bottom pallet, and (4) the bottom surface

area of the top pallet is less than or equal to that of the bottom pallet. Outside

of these constraints, pallets that have been marked as ‘fragile’ or have customer

instructions to not double-stack are both treated as non-stackable pallets.

As an alternative to the greedy approach, we could also have proposed any

number of tower building algorithms commonly used in literature. However,

due to the constraints we have to deal with, our version of tower building is

more simplistic than the problems typically encountered in literature. As we

can only stack a single pallet on another pallet and have a maximum of two

pallets in a stack, the heuristics often employed in literature, that often attempt

to stack multiple boxes on a single box while at the same time building the

towers/stacks as high as the container’s height, turn out to be overly complicated

solutions for our much simpler problem. Using the greedy approach and making

a quick comparison with a simple stacking method that builds up stacks in the

order pallets are presented, we can see in Figure 3.7 that the proposed approach

produces a better overall solution as it is able to generate stacks greedily in a

manner that ensures that the surface area covered by the resulting stack footprint

is minimised, hence increasing the chances that the set of stacks produced from

the approach would fit completely within a container at a later packing phase.

36

3. Problem Overview

Stackable pallets are marked with a ‘S’ and non-stackable pallets
are marked with a ‘NS’.

Figure 3.7: Various stacking variations obtained using different stacking order

37

3. Problem Overview

3.5.3 The Packing Problem

The packing problem identified in the UKDC is the problem of packing the result-

ing set of pallet stacks obtained from the prior stacking process completely into

a container. When the pallet stacks are physically packed into a container, they

are placed orthogonally to the enclosing walls. Forklift trucks are used to pack

and arrange the stacks on the container floor. The forklift trucks are able to pick

up and move pallet stacks by inserting their forks into slots that can be found on

the pallet bases of the pallets. Some pallets have these slots in their pallet bases

on only two (opposite) sides, while others have the slots on all sides. This allows

pallet stacks to be lifted and packed in either only a single orientation or in any

of two possible orientations (allowing rotations by 90◦), both determined by the

presence and position of the slots on their pallet bases. In the packing problem,

experienced warehouse operatives are tasked with packing the set of pallet stacks,

obtained from the stacking process, completely into a container. They rely on

their experience to determine the order and orientation with which to place each

pallet stack into the container. The specific order with which the different stacks

are packed as well as the orientation each individual stack is placed in has an

impact on if the final arrangement of stacks is able to fit in completely into a

container (see Figure 3.8). The complexity arises from the fact that the pallet

stacks are placed on several different types of pallet bases, with different sizes

and different possible orientations. The loaders are able to deal with this using

mostly past experience and their intuition.

This problem is equivalent to a two-dimensional rectangle packing problem

(2D-RPP), which is the problem of packing a given set of small rectangular

pieces into a larger containing rectangle. There are many variants of the 2D-

RPP [Dowsland and Dowsland, 1992]. Majority assume rectangles have a single

fixed orientation and allow no rotations during rectangle placement. Others allow

rectangle rotations by 90◦ thus allowing placement in either of the two possible

orientations. Some additionally may or may not impose that the small rectangle

pieces are obtained through a sequence of edge-to-edge cuts parallel to the edges

of the larger containing rectangle (e.g. Lodi et al. [1999]); this is generally referred

to as a guillotine constraint in literature. In proposing a solution to the packing

38

3. Problem Overview

Order for Packing 1: A B C D E F G H
Order for Packing 2: G A* B* C D E F H
Order for Packing 3: A* B* C D E F* G H
An asterisk (*) next to a rectangle means the rectangle is rotated and
placed in its second orientation.

Figure 3.8: Packings obtained by the Rectangle Packing Algorithm for 8 rectan-
gles based on the order and orientation of rectangles

39

3. Problem Overview

problem, we concern ourselves only with the variant of the 2D-RPP that is the

most similar to our own problem: i.e. the variant that completely packs a given

set of rectangles orthogonally into a single larger rectangle, with the rectangles

placed in one or more possible orientations.

An order-based genetic algorithm (GA) integrated with a rectangle packing

algorithm was initially proposed for solving the problem. In its operation, the

GA takes as its input the list of stacks from the stacking process, and generates

several lists of varying order with each stack setup for packing in a randomised

orientation. Each list is then packed in its prescribed order using the integrated

rectangle packing algorithm. The order is important because the results obtained

from the rectangle packing algorithm employed vary based on the order (and

orientation) of the rectangles it is given to pack (illustrated in Figure 3.8). The

algorithm stops when it either encounters a list that it is able to pack completely

into a container or when it has gone through all the lists produced without finding

such a list. The GA was proposed to solve this problem because it is a well-known

solution approach to the Travelling Salesman Problem which is an order-based

problem. It was also selected because of the earlier familiarity with GA operations

gained when using them to solve the prior selection problem. The packing GA,

in its operation, satisfies the constraint that allows boxes to be packed in any

allowed orientation. If a box is allowed to rotate, it can be packed in any of two

given orientations. If not, the box can only be packed in a single orientation.

The packing GA also satisfies the constraints of packing boxes orthogonally into

a container and of packing boxes completely within the walls of a container.

Subsequently, as part of the effort to improve the quality of layouts produced,

an entropy-guided Monte Carlo tree search (MCTS) process was proposed for

solving the same problem. The process employs a heuristic placement method

that places pallets randomly in the spare space in a container and then moves

them towards the already filled area of the container. The pallets are moved in

a manner that aligns them as close as possible to previously loaded pallets. The

MCTS process along with its placement method helps to facilitate the efficient

utilisation of space within the container. Guiding the search process using entropy

helps to reduce the level of disorderliness in the layouts resulting in layouts that

are easier to understand. In its operation, the entropy-guided MCTS process

40

3. Problem Overview

satisfies all the same constraints satisfied by the earlier proposed Packing GA.

3.6 Conclusion

The container loading problem (CLP) experienced in the UKDC differs from

the canonical CLP commonly described and dealt with in literature. This is

usually expected when dealing with real-world problems in practice. In solving

the problem, the UKDC usually made use of a manual system for selecting and

loading pallets into containers. This system relied on the expertise provided

by a handful of experienced warehouse operatives. Earlier attempts had been

made to automate this manual loading process. The attempts included the use

of off-the-shelf and bespoke software solutions. Due to the unique nature of the

problem, which is a result of the specific combination of practical constraints being

considered, it was difficult to obtain solutions from these attempts as there was

a lot of manual tuning and configuration required to accommodate and capture

all the required constraints. In addition to this, solutions that were eventually

obtained were practically unfeasible for loading in the real world. An example of

this was the production of plans that were too complex to be loaded by forklift

trucks. In another example, the way the pallets were stacked would cause damage

to the boxes if loaded in practice. In other instances, some loading plans that

looked almost feasible were generated and could be loaded in practice with little

tweaks to the plan; however, it was always obvious from looking at such plans that

a higher container utilisation could be obtained by using the loaders’ expertise.

These inadequacies led to the commissioning of the research reported in this

thesis. At the start of the research, the exact problem being solved and the man-

ual process employed for solving the problem were both studied and investigated.

This study revealed that the problem was different from the canonical form of

the problem normally described in the literature and that the problem was made

more difficult by the introduction of all the real-world constraints specific to the

UKDC, that had to be satisfied for solutions provided to be considered feasible.

This explained why the problem had been non-trivial to solve so far. The study

of the manual process in addition to the study of relevant literature is what led

to the overall hybrid framework provided for the proposed solution approach. In

41

3. Problem Overview

order to simplify the problem, it was split into different sub-problems, i.e. the

sub-problems of selection, stacking, and packing, that could each be solved in-

dependently of the other sub-problems and later combined together to provide a

solution to the entire problem. This approach was inspired by the manual process

and forms the foundation that all subsequent solution approaches presented in

this thesis are built on. Once the sub-problems were identified, solving the over-

all problem became a matter of identifying and implementing known solution

approaches to each of the sub-problems. While the whole problem being solved

and all its combined constraints might have looked like a ‘new’ problem with no

known solutions, each of the sub-problems had known solution approaches and

had a smaller number of constraints to deal with individually.

42

Chapter 4

A Hybrid Algorithm for the

Container Loading Problem

4.1 Introduction

In the previous chapter, we proposed a solution approach to the CLP experienced

in the UKDC that uses a hybrid algorithm to solve the problem by first separat-

ing the problem into sub-problems, which are solved individually using different

specialised algorithms and collaboratively combined to solve the entire problem

while satisfying all of the relevant practical constraints encountered at each sub-

problem stage. In this chapter, we present the proposed hybrid algorithm and

show how the sub-algorithms are collaboratively combined to solve the entire

problem. It is worth mentioning again that the hybrid algorithm is designed in a

manner that allows each of the sub-algorithms to be easily interchanged with an

equivalent algorithm. We refer the reader back to the previous chapter for the

justifications we made for the choice of the individual sub-algorithms presented

in this chapter.

The hybrid algorithm at its core is an iterative procedure that combines three

different heuristic algorithms: i.e. a selection algorithm, a stacking algorithm,

and a packing algorithm. As mentioned in the previous chapter, the selection

algorithm solves a one-dimensional knapsack problem by selecting a combination

of jobs (groups of pallets) for loading into a container, while maximizing the

43

4. A Hybrid Algorithm for the Container Loading Problem

Algorithm 4.1 Hybrid Algorithm

Input:
UnpackedPallets
Lc, Bc,Wmax . container length, breadth, and maximum weight
Wst, Hst . maximum stack weight and height

Output:
PackedStacks

group UnpackedPallets into PalletJobs . each job is a group of pallets
JobSelections ← SelectionAlgorithm(PalletJobs ,Wmax)
for all selection ∈ JobSelections do

generate list of pallets, Pallets from selection
Stacks ← StackingAlgorithm(Pallets ,Wst, Hst)
PackedStacks ← PackingAlgorithm(Stacks , Lc, Bc)
if AllStacksFit(PackedStacks) then

return PackedStacks
end if

end for

weight capacity of the container; the stacking algorithm stacks a given list of

pallets by sorting the selection of pallets obtained from the selection algorithm in

descending order of weight and iteratively stacking pallets on top of each other in

a greedy manner whilst keeping the stack height and weight below the specified

maximum values; and the packing algorithm solves a two-dimensional rectangle

packing problem by packing the list of stacks produced by the stacking algorithm

into a container, and checking to see if the stacks are packed completely or not.

Algorithm 4.1 shows the operation of the hybrid algorithm. It begins by

first preparing the required input data and running the selection algorithm. The

resulting list of selections produced is iterated through, and for each selection, a

list containing all the selected pallets is produced. This list of pallets is provided

as input to the stacking algorithm which produces a list of stacks as output.

The packing algorithm then takes as its input this list of stacks and packs the

stacks in the container reporting if they could be completely packed or not. This

iteration in the hybrid algorithm, through the list of selections, continues until

the packing algorithm finds a list of stacks that can be packed completely in the

container, or until all the job selections have been evaluated, at which point the

44

4. A Hybrid Algorithm for the Container Loading Problem

algorithm reports that no selection of pallets could be found that fits completely

in the container. If a selection of pallets that fits completely is found, all of the

identified practical constraints mentioned in Chapter 3 will have been satisfied.

4.2 The Selection Algorithm

The selection problem, in the previous chapter, was identified as being equivalent

to the well-known one-dimensional knapsack problem, and a genetic algorithm

(GA) was proposed to solve it. The proposed GA (see Algorithm 4.2) is a stan-

dard GA implementation with standard chromosome representation and genetic

operators i.e. selection, crossover, mutation. As GAs are well known and widely

used across literature, we will not discuss in detail its general implementation and

operation; we instead refer the reader to Goldberg [1989] and Hopgood [2001]

where such detail is covered extensively.

In the selection GA, a candidate solution is represented as a chromosome

which is encoded as an array of bits. The length of the array is equal to the

total number of available jobs. Each bit in the array represents a unique job and

can have its value set to 0 or 1, representing whether a job has been selected

for inclusion into a container (i.e., the bit value is set to 1), or not (i.e., the bit

value is set to 0). Each job represents a logical group of pallets that must all be

completely packed together in the same container. The quality of a chromosome

or candidate solution, known as its fitness, is the total sum of weights for all the

jobs selected for inclusion in the container. The weight of each job is, in turn, the

total sum of weights for every pallet that belongs to that particular job. If the

total weight of all the selected jobs in a candidate solution exceeds the container’s

maximum weight capacity, a penalty is applied and the fitness of the candidate

solution is set to zero.

The selection GA begins its operation by generating an initial population of

candidate solutions where each bit of the chromosome is randomly set to 0 or 1.

The fitness of every chromosome in the population is then calculated, and the

entire population is sorted according to fitness. This population is known as the

first generation. To create a new population which will be known as the second

generation, the GA concept of ‘elitism’ is first applied. This simply makes a copy

45

4. A Hybrid Algorithm for the Container Loading Problem

of the chromosome with highest fitness from the last generation and includes it

as the first member of the new population. Two chromosomes are then selected

from the previous population using ‘tournament selection’, which is one of several

GA selection operators where a number of chromosomes are chosen at random

from the population and placed in tournaments against each other. The winner

of each ‘tournament’ (i.e. the chromosome with the best fitness) is selected for

crossover. Based on a crossover probability, these two chromosomes, known as

parent chromosomes, are either mated or cloned to produce two children chro-

mosomes. The mating process is a standard one-point crossover operation which

involves selecting a random point in both chromosomes and swapping their end

parts. The cloning process simply creates an exact copy of a chromosome. Based

on a mutation probability, the resulting children are mutated. In a mutation

operation, a random position in the chromosome is selected, and its bit is flipped

i.e. if the bit is 0, it is changed to 1, or vice versa. This process of selection, repro-

duction and mutation is repeated until the number of chromosomes in the current

generation matches the population size of the previous generation, at which point

the creation of the new generation is complete. Subsequent generations are cre-

ated using the same procedure until a specified number of generations have been

produced.

The output of the selection algorithm is the population of chromosomes in the

last generation. Each chromosome in this population is a candidate solution that

represents a varied combination of jobs selected for inclusion into a container. The

selection of jobs identified in each chromosome satisfies the practical constraints

identified for the selection problem in the previous chapter, i.e., the total number

of pallets resulting from the selected jobs have a total combined weight less than

the maximum weight capacity of the container. The chromosomes in the last

population are sorted in descending order by fitness to ensure that when the

hybrid algorithm is iterating through the population, it will stack and pack job

selections with a higher fitness first. As the fitness measure is the total sum of

weights for every selected pallet, when a candidate solution is found that can be

successfully stacked and packed, we can be sure that we have packed a solution

that provides the maximum weight utility for the container, and that no other

solution exists in the population with a higher container weight utility.

46

4. A Hybrid Algorithm for the Container Loading Problem

Algorithm 4.2 The Selection Algorithm

Input:
PalletJobs . list of pallet groups
Wmax . maximum container weight

Output:
JobSelections . selections of pallet groups

InitialisePopulation(PalletJobs)
EvaluatePopulation(Wmax)
while max generation count not reached do

create new population
apply elitism
while total population count not reached do

Parent1, Parent2 ← TournamentSelection(TournamentSize)
Child1, Child2 ← Crossover(Parent1, Parent2)
Mutate(Child1)
Mutate(Child2)
add Child1 and Child2 to new population

end while
EvaluateNewPopulation(Wmax)

end while
JobSelections ← most recent population
return JobSelections
end

function EvaluatePopulation(Wmax)
for all individual ∈ population do

individual.fitness ← 0
for all bit ∈ individual do

if bit == 1 then
Wjob ← weight of job at bit position
individual.fitness ← individual.fitness + Wjob

end if
end for
if individual.fitness > Wmax then

individual.fitness ← 0 . penalty for greater weights
end if

end for
end function

47

4. A Hybrid Algorithm for the Container Loading Problem

function TournamentSelection(n) . n is the tournament size
select n individuals from the population at random
bestIndividual ← select individual with best fitness
return bestIndividual

end function

function Crossover(Parent1, Parent2) . a parent is a list of pallet groups
rand← select random floating point number between 0 and 1
if rand < crossoverProbability then

crossoverPoint← select a random pallet group’s position
create Child1, Child2 as two empty list of pallet groups
for each pallet group in Parent do . Parent can be either parent

position← position of the pallet group
if position < crossoverPoint then

copy the value at position in Parent1 to Child1
copy the value at position in Parent2 to Child2

else
copy the value at position in Parent1 to Child2
copy the value at position in Parent2 to Child1

end if
end for

end if
end function

function Mutate(Child)
rand← select random floating point number between 0 and 1
if rand < mutationProbability then

pos← select random position in Child
invert the value at position pos in Child . i.e. 0 → 1; 1 → 0

end if
end function

4.3 The Stacking Algorithm

In the stacking problem, we are given a list of pallets to stack subject to several

identified practical constraints. The proposed algorithm for this problem is a

greedy algorithm. The greedy algorithm (see Algorithm 4.3) begins its operation

by separating the given list of pallets into two categories: stackable and non-

stackable. The pallets in each category are then sorted in descending order of

48

4. A Hybrid Algorithm for the Container Loading Problem

weight. A stack data structure is defined that can hold two pallets: a required

bottom pallet, and an optional top pallet. This data structure is defined for

convenience in the operation of the stacking process and also to help satisfy the

constraint that requires that a stack of pallets should not contain more than two

pallets.

The algorithm then proceeds to iteratively generate stacks by attempting

to use stackable pallets before non-stackable pallets as bottom pallets and non-

stackable pallets before stackable pallets as top pallets. While searching for a

bottom pallet, stackable pallets are considered first so that there is room for

another pallet to be placed as a top pallet. Since the list of stackable pallets

is sorted by weight in descending order, heavier pallets are guaranteed to be

selected before lighter ones. This way, if another pallet in the same list is selected

as a top pallet, we are certain that it is not heavier than the bottom pallet. If

a pallet is selected from the list of non-stackable pallets as a bottom pallet, no

other pallet can be placed on it. While searching for a top pallet, non-stackable

pallets are considered first to ensure that a stackable pallet that can be used as a

bottom pallet is not wasted as a top pallet. If a pallet is found that satisfies all

the required practical constraints, it is selected as a top pallet; otherwise, other

pallets in the list are considered until a suitable pallet is found. If none is found,

the algorithm proceeds to check the list of stackable pallets for a suitable pallet.

If a bottom and top pallet can be selected for a stack, the stack is complete

and added to a stack list. If only a bottom pallet can be selected for a stack,

with no suitable top pallet found, the stack is considered complete and added to

the stack list. Stacks are generated and added to the stack list until there are no

more pallets to be considered for stacking.

The output of the stacking algorithm is the resulting list of stacks. The greedy

approach used for the stacking algorithm ensures that the total number of stacks

generated is minimized. This is important because a lower number of stacks

increases the chances of the entire stack list being packed completely onto the

container floor.

49

4. A Hybrid Algorithm for the Container Loading Problem

Algorithm 4.3 The Stacking Algorithm

Input:
Pallets . pallets from an individual selection
Wst, Hst . maximum stack weight and height

Output:
Stacks

Stackable, NonStackable ← Split(Pallets)
Sort(Stackable) . in descending order by weight
Sort(NonStackable) . in descending order by weight
initialise StackList
while Stackable has pallets or NonStackable has pallets do

create Stack
if Stackable has pallets then

select first pallet in Stackable
remove selected pallet from Stackable

else if NonStackable has pallets then
select first pallet in NonStackable
remove selected pallet from NonStackable

end if
bottomPallet ← selected pallet
add bottomPallet to Stack

if bottomPallet is stackable then
topFound← false
for all pallet ∈ NonStackable do

topPallet ← pallet
satisfied ← CheckConstraints(bottomPallet , topPallet)
if satisfied == true then

topFound← true
topPallet ← selected pallet
remove topPallet from NonStackable
add topPallet to Stack
break

end if
end for

if topFound 6= true then
for all pallet ∈ Stackable do

topPallet ← pallet
satisfied ← CheckConstraints(bottomPallet , topPallet)

50

4. A Hybrid Algorithm for the Container Loading Problem

if satisfied == true then
topPallet ← selected pallet
remove topPallet from Stackable
add topPallet to Stack
break

end if
end for

end if
end if
add Stack to StackList

end while
return StackList

4.4 The Packing Algorithm

In the packing problem described in the previous chapter, we are faced with the

problem of packing the set of pallet stacks obtained from the prior stacking process

completely into a container. This problem was identified as being equivalent to a

two-dimensional rectangle packing problem and an order-based genetic algorithm

(GA) integrated with a rectangle packing algorithm was proposed for solving it.

The proposed GA’s overall operation is similar to that of a standard GA,

with some minor differences in chromosome representation and hence the im-

plementation of the genetic operators. Candidate solutions are represented by

chromosomes encoded as an order-based list of pallet stacks, with each pallet

stack having an orientation property (0 or 1) that determines what orientation

the stack will be packed in.

The GA’s initial population is generated by randomly assigning the orienta-

tion of each stack in a given stack list to 0 or 1, and shuffling the order of the

stacks in the list. The fitness of a chromosome is evaluated using the integrated

rectangle packing algorithm which sets the fitness to the total number of stacks

in the stack list that it is able to completely pack into the container. During

the fitness evaluation process (see Algorithm 4.4), the algorithm checks if each

stack (more precisely the bottom pallet of each stack) can be rotated. If the

stack can be rotated, it is packed with the rectangle packing algorithm in the

orientation assigned to the stack in the chromosome; if not, it is packed in the

51

4. A Hybrid Algorithm for the Container Loading Problem

stack’s only acceptable orientation irrespective of the orientation assigned to it.

In dealing with the rotations this way, we satisfy the fourth constraint identified

and considered in Chapter 1:

• Boxes can either be rotated or not. If a box is allowed to rotate, it can only

be placed in a container in any of two given orientations; otherwise, it can

only be placed in a single orientation.

When generating subsequent populations, the ‘random’ selection method is

used for selecting chromosomes for reproduction. We use random selection in-

stead of other GA selection mechanisms that tend to explicitly favour to some

degree the selection of the fittest members of the population (e.g. tournament or

roulette selection) because at this point the only fitness measure available to us

is a binary measure that indicates if a given stack list can be completely packed

into a container or not; and if the stacks can be packed completely, the entire GA

process is stopped as a solution would have been found. This type of measure is

not a good selection criterion; hence, the ‘random’ selection method, which does

not rely on using any measure as a selection criterion, was selected.

During reproduction, after two parent chromosomes are selected, we employ a

one-point crossover operation, which selects a random point in both chromosomes

and swaps the orientations of the stacks in their end parts. The resulting children

chromosomes obtained from the swaps make up the next population. As in the

standard GA, reproduction via crossover is subject to a crossover probability. In

the mutation operation employed, the order of the pallet stacks that comprise

a chromosome is shuffled. As with crossover, this mutation is also subject to a

mutation probability. In the overall operation of the algorithm, if a chromosome

is evaluated and found to have a fitness equal to the total number of stacks in the

chromosome (i.e. all the stacks in the chromosome can be packed completely), the

algorithm terminates as a solution has been found; otherwise, the algorithm runs

till it reaches the maximum number of generations and terminates indicating that

no solution could be found that could be packed completely into the container

for this particular selection of stacks.

52

4. A Hybrid Algorithm for the Container Loading Problem

Algorithm 4.4 Packing Algorithm - Fitness Evaluation

Input:
StackList . i.e. candidate solution / chromosome

Output:
fitness

fitness← 0
for all stack ∈ StackList do

if stack can rotate then
stack.orientation← suppliedOrientation

else
stack.orientation← defaultOrientation

end if

canPack ← TryPack(stack)

if canPack == true then
fitness← fitness + 1

end if
end for
return fitness

4.4.1 The Simple Rectangle Packer

The rectangle packing algorithm employed as the integrated packer in the Pack-

ing algorithm is called the Simple Rectangle Packer. It corresponds to the ‘Shelf

Next Fit’ algorithm in Jylänki [2010] and to the ‘Next-Fit Decreasing Height’

algorithm in Lodi et al. [2002] without the initial step that sorts items by non-

increasing height. It is a simple algorithm optimised for runtime performance. It

does sacrifice a bit of space efficiency for its high performance and low memory

usage, but the time needed to pack a new rectangle is O(1) [Markus Ewald, 2009].

It achieves good results with near-uniform sized rectangles but will waste lots of

space with rectangles of varying dimensions. As our pallet set is weakly het-

erogeneous (see Section 3.1), we selected this algorithm for its high performance

expecting it to achieve good results when used as the integrated packer.

In its operation, the algorithm begins with a new row with height set to

0. For each rectangle it has to pack, it adds the rectangle to the current row

53

4. A Hybrid Algorithm for the Container Loading Problem

from left to right. If the rectangle’s height is greater than the row’s height and

the entire packing area height has not been exceeded, the row’s height is set to

the rectangle’s height. If the rectangle does not fit in the row (i.e. adding the

rectangle makes it exceed the packing area width), the row is closed and another

row is created. The process then repeats, adding rectangles to the row from left

to right. When the packing area’s height is exceeded, the algorithm is no longer

able to pack any rectangles. The algorithm is presented in Algorithm 4.5. Its

implementation in code can be found in Markus Ewald [2011a].

4.5 Experiments and Results

The performance of the hybrid algorithm described in this chapter was evaluated

using historical anonymised data via computational experiments performed on

a PC with an Intel Core i3 M330 CPU (2.13GHz) and 4GB RAM running the

ArchLinux operating system. The data contained various records of pallet and

container data, and the weight utilisation obtained when experienced warehouse

operatives manually loaded the recorded pallets into the given container.

The data was presented as 15 problem sets consisting on average of 22 jobs

and 331 pallets, with each problem set representing a specific instance of the

packing problem as experienced by the warehouse operatives. A summary of the

data is presented in Table 4.1 and each of the problem sets is presented in the

tables in Appendix C: Hybrid Algorithm Problem Sets. The pallets are weakly

heterogeneous with only 4 different types of pallets (see Table 3.2) used across

all the problem sets. For each pallet in the problem set, weight, length, breadth

and height data is provided. The data provided, however, did not consider the

stacking constraint. As such, during the algorithm evaluation, all pallets in the

problem sets are assumed to be stackable. In order to provide further compari-

son that would better reflect behaviour observed in real-world container loading,

the problem set was extended to consider the stacking constraint by randomly

generating and assigning the stackability constraint to pallets i.e. some pallets

would be considered stackable, and would be able to have other pallets placed on

them, while others would not. The resulting problem set, extended to consider

the stacking constraints, is referred to as the ‘extended’ problem set, while the

54

4. A Hybrid Algorithm for the Container Loading Problem

Algorithm 4.5 The Simple Rectangle Packer

Input:
stack

Output:
canPack . indicate if the stack can be packed or not
placement . stack’s placement point in the packing area

initialise PackingArea
currentRow ← 0
rowHeight← 0
usedRowWidth← 0

function TryPack(stack)
canPack ← false
placement← InvalidP lacementPoint

. rectangle won’t fit if it is larger than packing area
if stack.width > PackingAreaWidth or

stack.height > PackingAreaHeight then
placement← InvalidP lacementPoint
canPack ← false
return canPack, placement

end if

. if packing area width is exceeded, start a new row
if usedRowWidth + stack.width > PackingAreaWidth then

currentRow += rowHeight
rowHeight← 0
usedRowWidth← 0

end if

. if stack can’t fit vertically, packing area is full
if currentRow + stack.height > PackingAreaHeight then

placement← InvalidP lacementPoint
canPack ← false
return canPack, placement

end if

. stack fits in current location
placement← Point(usedRowWidth, currentRow)

usedRowWidth += stack.width

55

4. A Hybrid Algorithm for the Container Loading Problem

if stack.height > rowHeight then
rowHeight = stack.height

end if

canPack ← true
return canPack, placement

end function

Table 4.1: Problem set summary

Problem set Jobs Pallets Total weight (kg)

PS01 37 390 173947
PS02 35 299 118168
PS03 29 332 147675
PS04 25 279 121957
PS05 22 251 97070
PS06 25 298 121574
PS07 24 236 92502
PS08 18 181 71011
PS09 21 215 96328
PS10 19 173 66698
PS11 8 113 45081
PS12 17 161 71704
PS13 14 103 46892
PS14 13 116 44459
PS15 24 335 138405

original unmodified problem set is referred to as the ‘normal’ problem set.

The hybrid algorithm is run for 50 iterations across all the problem sets,

and the best, average and worst-case computation time and container weight

utilisation achieved across all iterations is computed and compared. The total

computation time to run all the iterations is also computed. Solutions obtained

from the hybrid algorithm were validated by experienced warehouse operatives,

who would compare the presented solutions with past documented solutions, and

would also draw from experience to work out if a provided solution was feasible or

not. A summary of 50 of such validated solutions, each having a weight utilisation

of 100% is presented in Appendix B: Verified Hybrid Algorithm solutions.

56

4. A Hybrid Algorithm for the Container Loading Problem

Results obtained from evaluating the algorithm on the problem sets in their

normal and extended form are compared with results from the manual process

employed at NSK. The comparisons made are based on the weight utilisation

of the packings obtained by both approaches. The historical data provided did

not capture the time it took the warehouse operatives to complete their loading

operations; as such, we have assumed an approximate value of 5 minutes - which

represented the fastest recorded time it took an experienced warehouse operative

to work out a selection of pallets and verify that the selection fits.

4.5.1 Parameter Tuning

The selection and packing GAs have several parameters that control their perfor-

mance and operation. As these parameters can take on a wide range of values,

with the values having a direct impact on the performance/computational time of

the GA, we performed experiments to obtain parameters that achieved a good bal-

ance of optimal results and computation time. From the experiments performed,

it was found that increasing the generation size of the selection GA beyond 500

had a very little effect on the performance of the algorithm, but caused a linear

increase in the computation time. A population size of 100 was observed to give

optimal results on average but resulted in low performance for large problem sets.

A population size of 200 is thus selected so that uniform performance is obtained

across large and small problem sets. Increasing the population size beyond 200

had little or no effect on performance, and only resulted in an increase to compu-

tation time. After experimenting with values between 0 and 1, in steps of 0.1, for

the crossover probability, and in steps of 0.05 for the mutation probability, it was

found that the values 0.8 and 0.05 for the crossover and mutation probabilities

respectively, provided a good balance between optimal results and computational

time. Similar experiments were performed on the packing genetic algorithm and

recommended parameters obtained.

Based on the experiments performed, the parameters for the crossover prob-

ability, mutation probability, population size and generation size of the selection

GA were set to 0.8, 0.05, 200 and 500 respectively. Similarly, the parameters for

the crossover probability, mutation probability, population size and generation

57

4. A Hybrid Algorithm for the Container Loading Problem

Table 4.2: Recommended genetic algorithm parameters

Selection GA Packing GA

Crossover probability 0.8 0.8
Mutation probability 0.05 0.2
Population size 200 100
Generation size 500 300

size of the packing GA were set to 0.8, 0.2, 100 and 300 respectively. These

parameters, seen in Table 4.2, are used subsequently for evaluating the hybrid

algorithm across all the problem sets.

4.5.2 Results and Comparisons

The results of evaluating the hybrid algorithm on the normal problem set, shown

in Table 4.3, show that the hybrid algorithm achieves a higher weight utilisation

than the manual process across all the problem sets. Even the worst-case solutions

obtained from the algorithm are consistently better than the solutions from the

manual process. The solutions are also obtained in reasonable time, with the

worst-case recorded time of 21.91 seconds.

The results of evaluating the algorithm on the extended problem set, which

considers and enforces the stacking constraint, can be seen in Table 4.4. Due

to the introduction of the stacking constraint, a general increase in computation

time is observed. The weight utilisation achieved by the algorithm is similar to

that achieved on the normal problem sets in the best-case scenario, slightly lower

in the average-case scenario, and significantly lower in the worst-case scenario.

In comparison to the manual loading process, the algorithm performs better in

the average and best case scenarios; but achieves lower weight utilisation for

some of the problem sets in the worst-case scenario. The computation time

achieved for the average and worst-case scenario is significantly higher than those

obtained for the normal problem sets. This is expected as the introduction of

the stacking constraint will require more computation to be performed in the

Stacking algorithm.

Overall, on average, the hybrid algorithm evaluated on the extended prob-

58

4. A Hybrid Algorithm for the Container Loading Problem

T
ab

le
4.

3:
R

es
u
lt

s
fo

r
th

e
n
or

m
al

p
ro

b
le

m
se

ts

P
ro

b
le

m
se

ts
M

an
u
al

p
ro

ce
ss

H
y
b
ri

d
al

go
ri

th
m

W
ei

gh
t

u
ti

li
sa

ti
on

(%
)

B
es

t
R

ec
or

d
ed

T
im

e
(s

)
W

ei
gh

t
u
ti

li
sa

ti
on

(%
)

T
im

e
(s

)

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

P
S
1

98
.1

5
30

0
10

0
10

0
10

0
0.

53
0.

49
0.

47
P

S
2

98
.7

2
30

0
99

.9
4

99
.9

9
10

0
11

.7
2

0.
7

0.
46

P
S
3

98
.9

2
30

0
10

0
10

0
10

0
0.

47
0.

42
0.

4
P

S
4

98
.5

8
30

0
10

0
10

0
10

0
0.

42
0.

38
0.

38
P

S
5

98
.6

8
30

0
10

0
10

0
10

0
0.

49
0.

37
0.

36
P

S
6

95
.8

30
0

99
.7

1
99

.9
9

10
0

11
.2

9
0.

85
0.

37
P

S
7

99
.2

5
30

0
10

0
10

0
10

0
0.

46
0.

4
0.

38
P

S
8

99
.7

3
30

0
10

0
10

0
10

0
0.

37
0.

35
0.

33
P

S
9

94
.7

1
30

0
10

0
10

0
10

0
0.

39
0.

37
0.

36
P

S
10

85
.5

4
30

0
10

0
10

0
10

0
0.

42
0.

35
0.

33
P

S
11

89
.1

6
30

0
99

.7
6

99
.7

6
99

.7
6

0.
35

0.
28

0.
26

P
S
12

95
.4

3
30

0
10

0
10

0
10

0
0.

36
0.

33
0.

32
P

S
13

94
.8

8
30

0
99

.9
9

99
.9

9
99

.9
9

0.
34

0.
31

0.
31

P
S
14

81
.6

30
0

99
.9

9
99

.9
9

99
.9

9
0.

34
0.

31
0.

3
P

S
15

96
.5

2
30

0
98

.7
5

99
.9

6
10

0
21

.9
1

2.
1

0.
37

A
ve

ra
ge

s:
95

.0
4

30
0

99
.8

8
99

.9
8

99
.9

8
3.

32
0.

53
0.

36

59

4. A Hybrid Algorithm for the Container Loading Problem

T
ab

le
4.

4:
R

es
u
lt

s
fo

r
th

e
ex

te
n
d
ed

p
ro

b
le

m
se

ts

P
ro

b
le

m
se

ts
M

an
u
al

p
ro

ce
ss

H
y
b
ri

d
al

go
ri

th
m

W
ei

gh
t

u
ti

li
sa

ti
on

(%
)

B
es

t
R

ec
or

d
ed

T
im

e
(s

)
W

ei
gh

t
u
ti

li
sa

ti
on

(%
)

T
im

e
(s

)

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

P
S
1

98
.1

5
30

0
99

.9
9

10
0

10
0

1.
35

0.
34

0.
28

P
S
2

98
.7

2
30

0
94

.3
6

99
.3

3
10

0
48

.1
7

25
.2

8
0.

28
P

S
3

98
.9

2
30

0
99

.9
9

10
0

10
0

0.
29

0.
27

0.
25

P
S
4

98
.5

8
30

0
99

.2
2

99
.9

8
10

0
97

.4
2.

29
0.

23
P

S
5

98
.6

8
30

0
90

.4
2

99
.4

5
10

0
22

6.
86

23
.4

0.
24

P
S
6

95
.8

30
0

78
.2

9
99

.0
7

10
0

17
5.

78
29

.1
0.

24
P

S
7

99
.2

5
30

0
94

.3
4

99
.2

10
0

15
8.

73
38

.3
6

0.
24

P
S
8

99
.7

3
30

0
78

96
.5

5
10

0
29

3.
53

78
.5

9
0.

21
P

S
9

94
.7

1
30

0
99

.9
3

99
.9

9
10

0
17

7.
86

3.
79

0.
22

P
S
10

85
.5

4
30

0
93

.1
7

99
.2

5
10

0
30

1.
34

75
.7

0.
22

P
S
11

89
.1

6
30

0
99

.7
6

99
.7

6
99

.7
6

1.
86

0.
67

0.
22

P
S
12

95
.4

3
30

0
99

.9
1

99
.9

7
10

0
0.

25
0.

22
0.

21
P

S
13

94
.8

8
30

0
99

.7
7

99
.9

6
99

.9
9

0.
23

0.
21

0.
2

P
S
14

81
.6

30
0

96
.2

8
99

.6
3

99
.9

5
34

5.
56

33
.3

4
0.

19
P

S
15

96
.5

2
30

0
89

.6
99

.0
7

10
0

15
4.

56
39

.0
6

0.
23

A
ve

ra
ge

s:
95

.0
4

30
0

94
.2

99
.4

1
99

.9
8

13
2.

25
23

.3
7

0.
23

60

4. A Hybrid Algorithm for the Container Loading Problem

F
ig

u
re

4.
1:

C
om

p
ar

is
on

of
w

ei
gh

t
u
ti

li
sa

ti
on

ac
ro

ss
al

l
p
ro

b
le

m
se

ts

61

4. A Hybrid Algorithm for the Container Loading Problem

F
ig

u
re

4.
2:

C
om

p
ar

is
on

of
co

m
p
u
ta

ti
on

ti
m

e
ac

ro
ss

al
l

p
ro

b
le

m
se

ts

62

4. A Hybrid Algorithm for the Container Loading Problem

lem set outperforms the manual loading method with average worst-case weight

utilisation and computation time of 99.88% and 132.25 seconds respectively.

4.6 Conclusion

In the previous chapter, an approach to solving the Container Loading Problem

(CLP) was proposed that divided the CLP into several sub-problems and solved

each sub-problem individually in order to solve the problem as a whole. In this

chapter, a hybrid algorithm was devised as a combination of several different in-

dependent algorithms that each solve one of the sub-problems, while satisfying

a number of different practical constraints relevant to each sub-problem. The

devised algorithm comprised of a genetic algorithm to solve a ‘selection’ prob-

lem; a greedy algorithm to solve a ‘stacking’ problem; and a genetic algorithm

integrated with a rectangle packing algorithm to solve a ‘packing’ problem.

The algorithm was tested using problem sets made up of real-world histori-

cal data and the results showed that the algorithm achieved an average weight

utilisation of 99.98% in 0.53 seconds on the examined problem sets. As the

data examined did not consider stacking constraints, the initial algorithm runs

assumed all pallets were stackable. To better reflect real-world loading, the prob-

lem sets were extended to include stacking constraints. With the introduction

of a stacking constraint, the algorithm achieved an average weight utilisation of

99.41% in 23.37 seconds.

When the stacking constraint was introduced, the results obtained showed a

slight reduction in the weight utilisation achieved with a noticeable increase in

computation time. This performance was still deemed acceptable and practical,

with the best- and average-case performance producing better results than the

manual process and the worst-case performance producing results as good as

those obtained by the manual process. In both cases, with and without the

consideration of the stacking constraint, the results were very promising as all

the solutions obtained were found to be feasible to load in a real-world scenario,

and were computed in a reasonable time.

The quality of the weight utilisation and computation time obtained did not

seem to be affected by the characteristics of the problem set. Performance did not

63

4. A Hybrid Algorithm for the Container Loading Problem

vary across problem sets with a high or low number of jobs/pallets. We did find

that for some of the smaller problem sets, the weight utilisation obtained, e.g.

99.76% for problem set 11, while not the maximum possible for the container i.e.

100%, was the best possible utilisation that could be obtained for the combination

of jobs and pallets considered.

In summary, the results obtained from the experiments performed on all the

problem sets show that the proposed approach is valid, runs in reasonable time

and produces better quality results than the existing manual process.

64

Chapter 5

Improvements to the Packing

Algorithm

5.1 Introduction

In this chapter, we present improvements to the hybrid algorithm derived in

Chapter 4. The improvements are made particularly to the packing algorithm

(see section 4.4) employed for solving the packing sub-problem, in order to in-

crease overall packing efficiency. You may recall that the hybrid algorithm is

modular in design and composed of several algorithms, each employed to solve

an individual sub-problem. This allows for the easy exchange of any of the algo-

rithms with equivalent algorithms that can solve a particular sub-problem while

satisfying all required constraints. The initial steps taken towards improvement

therefore involved examining other equivalent algorithms for solving the packing

sub-problem. As a start, instead of replacing the entire packing algorithm i.e.

the packing genetic algorithm (GA) and its integrated rectangle packing algo-

rithm, we replace only the GA’s integrated rectangle packing algorithm. The

new rectangle packing algorithm employed is called the Cygon Rectangle Packer.

It replaces the Simple Rectangle Packer in the Packing GA. Based on observa-

tions of the operation and results of the modified Packing GA, the entire Packing

GA is subsequently replaced with a simpler ‘Sort-and-Pack’ algorithm that uses

the Cygon packer for its ‘Pack’ step.

65

5. Improvements to the Packing Algorithm

5.2 The Cygon Rectangle Packing Algorithm

The Cygon Rectangle Packer is the integrated rectangle packing algorithm em-

ployed as a replacement for the Simple Rectangle Packer in the Packing GA.

It is named after its author, Markus ‘Cygon’ Ewald and was selected because

it is efficient in its space usage and offers good performance. It never exceeds

O(n) time but generally achieves almost O(1) on average thus providing a very

good compromise between space-efficiency and time-efficiency [see Markus Ewald,

2009].

In its operation, the packing algorithm always places rectangles as low as

possible in the packing area. So, for any new rectangle that is to be added, it

has to determine the X coordinate at which the rectangle can have the lowest

overall height without intersecting any other rectangles. To quickly discover these

locations, the algorithm uses a sophisticated data structure that stores the upper

silhouette of the packing area. When a new rectangle needs to be added, only

the silhouette edges need to be analysed to find the position where the rectangle

would achieve the lowest placement possible in the packing area. The algorithm

is presented in Algorithm 5.1 and its implementation in code can be found in

Markus Ewald [2011a].

5.3 The Cygon Packer integrated Genetic Algo-

rithm

As mentioned earlier, the Cygon rectangle packer is integrated into the Packing

GA and used to replace the earlier employed ‘Simple rectangle packer’. The new

packer can be used in the same manner and handle the exact same inputs and

constraints as the packer it is replacing. Because of this ‘transparency’ between

the packers, the Packing GA is able to run and function as usual without any

change to its operation. The only change expected is to the results obtained.

Once the exchange is made, the Packing GA is able to immediately use the newly

integrated packer as part of its evaluation process. The algorithm’s operation can

be seen in Algorithm 4.4.

66

5. Improvements to the Packing Algorithm

Algorithm 5.1 The Cygon Rectangle Packer

Input:
stack

Output:
canPack . indicate if the stack can be packed or not
placement . stack’s placement point in the packing area

initialise PackingArea
initialise heightSlices . stores the height silhouette of the rectangles

heightSlices.add(Point(0, 0))

function TryPack(stack)
canPack ← false
placement← InvalidP lacementPoint

. rectangle won’t fit if it is larger than packing area
if stack.width > PackingAreaWidth or

stack.height > PackingAreaHeight then
placement← InvalidP lacementPoint
canPack ← false
return canPack, placement

end if

canPack, placement← GetBestPlacementInPackingArea(stack)

if (canPack is true) and (placement is valid) then
. mark the region of rectangle as being taken

UpdateHeightSlices(stack, placement)
end if
canPack ← true

return canPack, placement
end function

function GetBestPlacementInPackingArea(stack)
bestSliceX ← 0
bestSliceY ← 0

highest← heightSlices.getHighest()
rightmost← heightSlices.getRightMost()

67

5. Improvements to the Packing Algorithm

if highest + stack.height ≤ PackingAreaHeight then
bestSliceY ← highest.Y

end if

if rightmost + stack.width ≤ PackingAreaWidth then
bestSliceX ← rightmost.X

end if

while RectangleIntersectsInX(stack, bestSliceX) do
bestSliceX++

end while

while RectangleIntersectsInY(stack, bestSliceY) do
bestSliceY ++

end while

if bestSliceX + stack.width ≤ PackingAreaWidth and
bestSliceY + stack.height ≤ PackingAreaHeight then

placement← Point(bestSliceX, bestSliceY)
canPack ← true

else
placement← InvalidP lacementPoint
canPack ← false

end if

return canPack, placement
end function

5.4 The Sort-and-Pack Cygon Packer

While examining the output from the Packing GA integrated with the Cygon

packer, we observed that layouts that had larger stacks packed first tended to fit

in more stacks into the container. ‘Larger’ in this context refers not to the weight,

but instead to the ‘size’ or ‘surface area’ of the bottom part of the stack in contact

with the container floor. As a result of this observation, a decision was made to

swap out the entire Packing GA with a simpler ‘Sort-and-Pack’ algorithm, and

to observe if this would produce comparable results.

The ‘Sort-and-Pack’ algorithm in its operation sorts all the stacks that have

68

5. Improvements to the Packing Algorithm

Algorithm 5.2 Sort-and-Pack Hybrid Algorithm

Input:
UnpackedPallets
Lc, Bc,Wmax . container length, breadth, and maximum weight
Wst, Hst . maximum stack weight and height

Output:
PackedStacks

1: group UnpackedPallets into PalletJobs . each job is a group of pallets
2: JobSelections ← SelectionAlgorithm(PalletJobs ,Wmax)
3: for all selection ∈ JobSelections do
4: generate list of pallets, Pallets from selection
5: Stacks ← StackingAlgorithm(Pallets ,Wst, Hst)
6: PackedStacks ← SortAndPackAlgorithm(Stacks , Lc, Bc)
7: if AllStacksFit(PackedStacks) then
8: return PackedStacks
9: end if

10: end for
11: end

been selected for packing in descending order by their ‘size’ (explained above).

It then uses the Cygon packer to iteratively pack the stacks into the container.

Its overall operation is similar to that of the Packing GA which it replaces: i.e.

after it attempts to pack a given set of stacks, it reports if it was able to com-

pletely pack all the stacks into the container or not. If the stacks were completely

packed, a solution has been found; otherwise, the iteration of the list of selec-

tions generated by the selection algorithm in the hybrid algorithm continues until

either all the selections have been evaluated or a selection is found that can be

packed completely into the container. The hybrid algorithm, modified to use

the Sort-and-Pack algorithm for solving the packing sub-problem can be seen in

Algorithm 5.2. It differs from the original algorithm in the replacement of the

algorithm used for packing the stacks (line 6 of Algorithm 5.2). The reader is re-

ferred back to Chapters 4 and 3 for a description of the original hybrid algorithm

(algorithm 4.1) and the packing sub-problem (section 3.5.3) respectively.

69

5. Improvements to the Packing Algorithm

5.5 Experiments and Results

5.5.1 Comparisons of integrated Rectangle Packing Algo-

rithms

Experiments were performed and comparisons made between the ‘Simple’, ‘Cy-

gon’, and ‘Arevalo’ rectangle packers [see Markus Ewald, 2009], before the ‘Cygon’

packer was selected as the candidate algorithm for integration with the Packing

GA. The three algorithms are from a family of rectangle packing algorithms pro-

vided as part of the ‘Nuclex’ framework [Markus Ewald, 2011b]: a set of fast and

elegant components that take care of the grunt work required to implement cer-

tain features in a Microsoft XNA game. Their performance was evaluated using

historical data separated into problem sets.

The results obtained (see Table 5.1) showed that the Cygon packer consis-

tently outperforms the other two packers in both weight utilisation and compu-

tation time. With regards to the weight utilisation achieved, the Cygon packer

performed better, consistently achieving 100% utilisation for the worst-, best-

and average-case scenarios for both the normal and extended problem sets. The

Arevalo and Simple packers followed closely, with the Arevalo packer producing a

slightly better result than the Simple packer. With regards to computation time,

the Cygon packer noticeably outperforms the other two packers in the worst- and

average-case scenarios, with little or no difference in the best-case scenario.

5.5.2 Comparisons of the Packing GA and the Sort-and-

Pack algorithm

(i) Layout Comparison: The Packing GA and the Sort-and-Pack algorithm em-

ploy the same Cygon rectangle packer for packing and operate in a very similar

manner, which is why we are able to easily swap one out for the other. The

resulting output from both algorithms however differ in the number of layouts

produced. The Packing GA in its operation produces a multitude of layouts (de-

termined by the population size of the GA), while the Sort-and-Pack algorithm

produces only one. As the underlying rectangle packer used is the same for both,

70

5. Improvements to the Packing Algorithm

Table 5.1: Results obtained for different rectangle packing algorithms

Problem
sets

Rectangle
packing
algorithms

Hybrid algorithm

Weight
utilisation (%)

Computation
Time (s)

Worst Average Best Worst Average Best

PS1 Simple 99.63 99.97 100 4.19 0.83 0.28
Cygon 100 100 100 2.93 0.5 0.28
Arevalo 99.83 99.99 100 10.76 0.84 0.29

PS2 Simple 99.1 99.94 100 3.82 0.7 0.28
Cygon 100 100 100 0.33 0.3 0.28
Arevalo 99.98 99.99 100 0.41 0.37 0.33

the type of layouts produced are very similar. The major difference in their op-

eration lies in the way the rectangle packer is used to pack the stacks. In the

Sort-and-Pack algorithm, the stacks to be packed are first sorted in decreasing

order by size, before being presented to the Cygon packer. In the Packing GA,

the stack order is shuffled randomly before the stacks are presented to the Cy-

gon packer. This distinction meant that while both algorithms were capable of

producing the same exact layouts in theory, in practice the Packing GA almost

never arrives at the same order used for packing by the Sort-and-Pack algorithm;

and even in the few cases in which it does, it takes significantly longer to do so.

(ii) Time Comparison: The Sort-and-Pack algorithm performs a lot faster than

the Packing GA. This is because, during its operation, the Sort-and-Pack al-

gorithm processes the entire set of input stacks just once. This is in contrast

to the Packing GA, which by nature of its implementation has to process the

same set of stacks multiple times during its operation, with the typical number

of times roughly equal to the product of the GA’s ‘population size’ and its num-

ber of ‘generations’. As this difference is very clear-cut, no explicit comparison

has been presented for the computation times of both algorithms. As alluded to

in the previous paragraph, the Sort-and-Pack algorithm is able to arrive at and

achieve layouts with a higher utilisation much faster than the Packing GA. In

those situations where the same layout and utilisation is achieved, the Sort-and-

71

5. Improvements to the Packing Algorithm

Pack algorithm produces the layout much faster than the Packing GA.

5.6 Conclusion

In this chapter, improvements to the hybrid algorithm presented in Chapter 4,

made in order to improve the overall packing efficiency of the algorithm, are

presented. The first improvement involved replacing the integrated rectangle

packer used in the Packing genetic algorithm (GA) component of the hybrid

algorithm, i.e., the ‘Simple’ rectangle packer, with a more space-efficient packer,

i.e., the ‘Cygon’ rectangle packer. This resulted in an increase in the average

container weight utilisation achieved by the (improved) hybrid algorithm across

the problem sets considered in the experiments. A significant reduction in the

computation time of the hybrid algorithm was also observed on the same problem

sets. Observation of the results obtained from this initial improvement to the

algorithm, revealed that the layouts that had ‘larger’ stacks packed earlier on in

the packing process, tended to have a higher number of stacks packed overall;

thus resulting in a higher container utilisation. ‘Larger’ in this context refers to

the total surface area of the stack in contact with the container floor.

This observation led to the second improvement to the hybrid algorithm,

which involved the replacement of the entire Packing GA with a much simpler

‘Sort-and-Pack’ algorithm. This new algorithm simply sorted the input stacks in

descending order by size (of bottom stack surface area) before packing them with

the same ‘Cygon’ packer employed initially. This change resulted in the modified

algorithm achieving layouts with a higher container utilisation much faster than

with the Packing GA. Overall, the gains obtained from this improvement are in

the much faster computation times with which the layouts are produced. This

significant increase in speed was due to the fact that the ‘Sort-and-Pack’ algorithm

only processes a given set of stacks once, in comparison to the Packing GA which

processes the same set of stacks for a significantly higher number of times.

72

Chapter 6

Optimising Container Layouts for

Real-World Packing

6.1 Introduction

In the work presented so far, we have solved a version of the container loading

problem (CLP) with a number of defined constraints. Our solution presents a

selection of pallets that is known to fit entirely in the enclosing container as well

as maximise the weight capacity of the same container. We are also able to show

exactly how the selected pallets will be placed in the container to achieve the

observed fit. This is similar to many of the solutions to the CLP observed in the

literature where success is usually determined by the measure of the container’s

volume utility. Sometimes, as in our case, the measure of success is driven by the

container’s weight utility. Little or no attention is usually paid to the aesthetics

of the container loading layouts produced, nor to the practicalities involved in

the physical loading of such layouts. Physically loading in the real world might

typically involve the use of machinery such as forklift trucks. This is of conse-

quence because the trucks are only able to move in and out of a container in a

particular way, and might place further restrictions on how pallets can be picked

up, oriented and placed in a container. In our study, we observed that one of

the smallest pallet sizes available to us could only be picked up in one orienta-

tion because the holes available on the other orientation of the pallet where too

73

6. Optimising Container Layouts for Real-World Packing

close together to allow it to be picked up by the forklift truck. These sort of

considerations really need to be in place when producing container layouts for

the CLP otherwise we will be left with solutions that in theory should work, but

are totally infeasible in practical cases where motion is constrained by the ability

to be picked up and moved using forklift trucks.

In this chapter, we therefore present an attempt to tackle this issue of op-

timising a container layout for physical loading in the real world. To do this,

an entropy measure was derived to help give an indication of how feasible or

desirable a loading layout is to physically load. The desirability in this sense

was a qualitative measure of how content a loader would be if he was given the

layout to load. This often went hand in hand with the feasibility of the layout

- i.e. how practical it would be to load using a forklift truck. If the layout was

complex and unfeasible, it would be less desirable to load. There were also cases

of layouts that would be feasible to load, but not as desirable because the layout

might involve extra work for the loaders e.g. having to lift the pallet a first time

to move it out of storage racking, placing it on the floor somewhere, and ma-

noeuvering the forklift truck to the side of the pallet so as to pick it up from its

second (alternate) orientation. The experiments performed involved experienced

loaders identifying feasible layouts with some indication of which layouts they

would prefer to load. Thus, they selected layouts that were the most practical

to load, which minimised the amount of work they would have to do when using

forklift trucks. In their criteria for desirability, they also often implicitly took

into consideration layouts that provided a rigid structure within the container, so

that when the container is in transit, the pallets will have none or very minimal

motion within the container. This should help minimise the possible damage that

could occur in transit. Tuning the measure to match these expectations meant

the measure would help identify layouts that closely mimicked actual physical

loading as carried out by a human. Indeed, the experiments that followed re-

vealed a strong correlation between layouts that had a very low entropy measure

and layouts that were simple to understand and reproduce; while layouts that

had a very high entropy measure were those that would involve more work when

loading them using forklift trucks.

74

6. Optimising Container Layouts for Real-World Packing

6.2 Deriving an Entropy-based measure for Con-

tainer Layouts

The derivation of entropy for use as a computational aesthetic measure is not a

new idea. Detailed discussions covering the idea and a formulation of an entropy

measure are presented in Cant et al. [2012]. In this section, we present a derivation

of an entropy measure that is heavily influenced by the same discussions and

provide an interpretation and application of the measure for 2D container loading

layouts. As such, we borrow from and refer to a number of the mathematical

formulations in those discussions.

Entropy as a measure is usually associated with thermodynamics in physics,

where it is a well-defined quantity that represents the number of specific ways in

which a thermodynamic system may be arranged. In this context, it is commonly

understood as a measure of the disorder of the system in question. Formally

stated, if a system is in a macrostate that has a number of possible microstates,

then the entropy of the system is defined as the logarithmic measure of the number

of microstates that can give rise to an observed macrostate:

S = kb ln(Ω) (6.1)

where kb is the Boltzmann constant, and Ω is the number of microscopically

distinct states that would give rise to the same, measured, macroscopic variables.

In our application, there are no obvious macroscopic variables, so we will next

examine another definition for entropy associated with information theory. The

definition is provided by Shannon [Shannon, 1948] and it expresses entropy as a

measure of the uncertainty or unpredictability about a source of information. It

is based on the equation:

H = −
∑
i

pi ln(pi) (6.2)

where i indexes the possible states of the system and pi is the probability of

a particular state occurring. Hence Shannon entropy relates to the probability

distribution that generates the states rather than to the individual states them-

75

6. Optimising Container Layouts for Real-World Packing

selves.

Note that if all states are equally probable, and there are N possible states

then the entropy simply becomes:

S = N ×
(
− 1

N
log

(
1

N

))
= logN

reducing to the definition in (6.1) above. In this case the role of the thermody-

namic variables is played by the probability distribution i.e. the macrostates are

identified with the rules that generate the data rather than the data itself (see

Cant and Langensiepen [2010]).

In calculating the entropy for a container layout, the states are identified with

the rules used to generate the layout. These rules are then deduced and all the

alternative arrangements that could be generated by the same rule are examined

and each assigned a probability (i.e. the probability distribution used to generate

the layout configuration). This enables the use of Shanon’s formula in 6.2 to

generate an entropy value. In practice however, there seems to be no easy way

of assigning different probabilities to the different states, so equal probabilities

are assigned to each. The task is then to count the number of ways in which

an equivalent layout could be produced. Of course, the meaning of the word

equivalent is to some extent a matter of human judgement. As a simple example

of this, consider a sequence of playing cards. If we are not restricted to a single

deck and select two cards in succession, the second card could be identical to the

first, and there is only one way to do that. For example, the 4 of spades would

be followed by another 4 of spades. The number of equivalent states is just 1

and the entropy is 0. If the second card has the same number and colour but a

different suit, then there are now two options (i.e. 4 of spades followed by 4 of

clubs, or a 4 of spades followed by another 4 of spades) hence the entropy will be

log 2. If the colour is also different (e.g. 4 of spades followed by 4 of diamonds),

then there are now four choices and the entropy will be log 4. If we follow the 4

of spades with the 9 of spades, there are 13 options (i.e. any of the 13 spades)

and hence the entropy will be log 13. We can separate the entropy associated

with the suit from the entropy associated with the number. If we follow the 4 of

spades with the 9 of clubs then there are two suit choices and 13 number choices

76

6. Optimising Container Layouts for Real-World Packing

so the number of options altogether is 2 × 13 = 26 and the entropy is log 26 or

log 2 + log 13. In other words, the entropies associated with different aspects

of the arrangement can simply be added. Using this principle, the entropy of a

longer sequence of cards can be deduced as the sum of the entropies associated

with the individual steps. Note that there are potential ambiguities associated

with the deduction of these rules and the resulting entropies. For example, given

the sequence 4 followed by 5 we could choose the number entropy to be log 13 or

we could note the sequential nature and choose the number entropy to be log 2

(this would be on the basis of the two choices 4-4 or 4-5). Ultimately one should

make sure that whatever convention is adopted is used consistently and reflects

the requirements of the particular problem at hand. In the following sections,

we will identify the conventions that we have adopted for the container loading

problem.

Generally, there will exist a number of different sets of rules, and these rules

relate each stack in the layout to every other stack in terms of their semantic

relevance (i.e. selection entropy, defined in 6.2.2), geometric arrangement (i.e.

rotational entropy, defined in 6.2.3) and distance (i.e. positional entropy, defined

in 6.2.4), relative to each other. In practice, we proceed with the calculation of

entropy for a layout by creating a connected graph that relates each stack in the

layout to every other stack. Every edge in the graph is a link between two stacks

that represents the rule that relates the two connected stacks. The edge weights

hold the respective calculated values corresponding to the selection, rotational

and positional entropies. We then compute a minimum spanning tree (MST)

from the connected graph using only the positional entropy value as the edge

weight to drive edge selection. We choose to use the positional entropy value to

drive the choice of the rules selected based on the assumption that layouts are

generated in sequence, one at a time, with stacks placed relatively close to each

other, and that the entropy of each new stack is only calculated with reference

to stacks that have already been calculated. This removes the ambiguity of

choice faced when trying to determine whether to use only a specific entropy

value, a combination of any two, or a combination of all three different calculated

entropy values, to drive the choice of the rules selected. The MST represents our

entropy tree and is guaranteed to connect all stacks in the graph together using

77

6. Optimising Container Layouts for Real-World Packing

the shortest positional entropy value path along its edges. This has the effect of

giving a higher consideration to nearest neighbour stacks when connecting stacks

in the layout to each other The entropy of the entire layout is then calculated as a

combined sum of the entropy values for all the selected rules that are assumed to

have generated the layout. In conclusion, the overall entropy value of the layout is

computed as the combined sum of the three respective entropy values associated

with every edge in the resulting entropy tree.

6.2.1 Basic Definitions

In this thesis, we associate our entropy measure with the aesthetic look and feel

of a 2D container layout and present it as a measure of the disorderliness of the

layout. The higher the value of the entropy measure, the higher the perceived

disorderliness of the layout. Layouts are typically presented as large rectangular

boxes, which represent a container, that contain a number of smaller rectangular

boxes, which represent the packed items.

In determining the aesthetic measure or feel for a 2D container layout, the

types of items present in the layout, as well as the geometric arrangement and

position of the items need to be taken into consideration. Following on from

this, we identify the need to create relationships between items that indicate

and measure their semantic relevance (i.e. the types of items present) and their

orientation and position in the layout relative to each other. We account for each

of these relationships in the subsections that follow.

The following is a summary of the general entropy formulation as presented

in Cant et al. [2012]; we identify the simplified form and show how we use this

form in subsequent calculations in the subsections that follow. Let T be the set

of states of a given system. A rule R is defined as a boolean function on T such

that:

W (R) = {t ∈ T |R(t)}

is the set of states that are observed to obey the rule. For differences that can’t

be observed or are not important, a concept of symmetry, Z, is introduced and

defined as an equivalence relation on T such that:

78

6. Optimising Container Layouts for Real-World Packing

[a] = {t ∈ T |t Z a}

and [a] is the set of states indistinguishable from a. If Z is to be consistent with

R, then for two states, a and b, we say:

a Z b→ R(a) = R(b).

The entropy S for the rule R given the symmetry Z is then formally defined as

the logarithm of the cardinality of the quotient set of W (R) by Z:

S(R,Z) = ln(|W (R)/Z|).

The cardinality of the quotient set can be rewritten as Ω(R) thus we have a

simplified form:

S(R) = ln(Ω(R)). (6.3)

Further simplification of (6.3) gives us:

S = ln(Ω),

which is the same as the original physics definition introduced earlier in (6.1).

6.2.2 Selection Entropy

We formulate the selection entropy as a measure of the semantic relevance of

items in a layout to each other. The semantic relevance, in the examples we use,

is determined by the ‘type’ of an item. Practically, an item’s type is determined

by its length, width and possible orientations. In the example layout in Figure

6.1, we have three different types indicated by the different coloured boxes. For

any two items, we calculate the selection entropy value of the rule that relates

the items to each other as the logarithm of the cardinality of the set of states

that are observed to obey the rule.

Determining these sets of states presents some ambiguity. In the example lay-

out, the set of states that contains both items for a link between any two ‘blue’

79

6. Optimising Container Layouts for Real-World Packing

Figure 6.1: An example of a 2D container layout

items can be said to have a cardinality of 9, because there are 9 different blue

items to choose from, or 1 because all the blue items are identical in type and

ultimately there is only 1 type of blue item. Similarly, the cardinality of the set

of states that links a blue item and a yellow item can be said to be 11 because

we have a choice of 9+2 different items to choose from in order to select a blue

and yellow item, or it can be said to be 2 because we are only selecting from 2

different item types. We can even go further to say that the cardinality of the set

for the states that obey the rule for the blue-yellow link is 13, not 11, because,

in the absence of any links between the item types, the multiset that contains

both blue and yellow items is the universal set that contains all available 13 items.

Formally, this can be represented as:

for items x ∈ A and y ∈ B, where A and B are sets that each contain a specific

item type, and U is the universal set containing all items:

if A == B,

then S(x, y) = ln(|A|) = ln(|B|),

80

6. Optimising Container Layouts for Real-World Packing

else S(x, y) = ln(|AUB|) or ln(U),

where |A| is the cardinality of A.

In our experiments, we calculate the selection entropy for the rule that relates

similar items as the logarithm of the total number of items of the same type; and

that for different items as the logarithm of the total number of all items present.

6.2.3 Rotational Entropy

The rotational entropy is a measure that is indicative of the geometric arrange-

ment (orientation) of items relative to each other. For any two items, we calculate

the rotational entropy by examining the orientation of both items. If the orienta-

tions are the same, we set the rotational entropy value to zero (i.e. the logarithm

of 1); otherwise if the orientations are different, we set the value to the logarithm

of 2. In arriving at this formulation, we make the assumption that items are

packed in orthogonal orientations parallel to container walls. As such, only two

orientations are taken into account: 0◦ and 90◦ (orientations 180◦ and 270◦ are

not considered as separate orientations due to their symmetry to 0◦ and 90◦ re-

spectively). Formally, the calculation is represented as:

for items x and y,

if x.orientation == y.orientation

then S(x, y) = ln(1)

else S(x, y) = ln(2)

This results in producing lower entropy for items that are packed in the same

orientation, and a higher entropy for items that are packed in different orienta-

tions.

81

6. Optimising Container Layouts for Real-World Packing

6.2.4 Positional Entropy

The positional entropy is a measure determined by the vertical and horizontal

displacement between any two items. This displacement is measured from the

centre of the items. For two stacks a and b both with coordinates on the Cartesian

plane, where the point (x1, y1) represents the top left corner, ax and bx represent

the dimensions of both stacks in x, and ay and by represent the dimensions of

both stacks in y, we define the horizontal displacement as the difference of the

position of their centres in the x direction, Xdisp as:

Xdisp =

∣∣∣∣(ax1 +
ax
2

)
−
(
bx1 +

bx
2

)∣∣∣∣
and define the vertical displacement as the difference of the position of their

centres in the y direction, Ydisp as:

Ydisp =

∣∣∣∣(ay1 +
ay
2

)
−
(
by1 +

by
2

)∣∣∣∣
We then calculate the horizontal displacement entropy, Sx as:

Sx(a, b) = ln

(
1 +

2 ·Xdisp

ax + bx

)
if

Xdisp ≤
ax + bx

2

otherwise

Sx(a, b) = ln

(
1 +

2 ·Xdisp

bx
− ax

bx

)

Similarly, we calculate the vertical displacement entropy, Sy as:

Sy(a, b) = ln

(
1 +

2 · Ydisp

ay + by

)
if

Ydisp ≤
ay + by

2

82

6. Optimising Container Layouts for Real-World Packing

otherwise

Sy(a, b) = ln

(
1 +

2 · Ydisp

by
− ay

by

)
We therefore calculate the positional entropy, S(a, b) as:

S(a, b) = Sx(a, b) + Sy(a, b)

6.3 An Entropy-driven Genetic Algorithm for

the Packing Problem

Once an entropy value could be calculated for a layout, layouts composed of the

same set of stacks could be compared relative to each other. The comparisons

had to be between layouts composed of the same pallet load, as differences in the

number and types of pallets in a layout have an impact on the derived entropy

measure. This comparison was automated and built into the algorithm by the

introduction of the derived entropy measure as a fitness function for a genetic

algorithm (GA). The Packing GA from Chapter 4 was re-used for this exercise.

This way, in the packing step of the hybrid algorithm, we are able to generate a

lot of different layouts from the same set of stacks and use the entropy measure

to drive the comparison and selection of the ‘fittest’ layouts i.e. those with the

lowest entropy scores. These ‘fittest’ layouts are hypothetically the most practical

and straightforward to load layouts using a forklift truck. The operation of this

entropy-driven GA can be seen in Algorithm 6.1.

6.4 Experiments and Results

In the experiments, entropy values were computed for a number of layouts using

the derivations presented earlier. Layouts were then shown in groups to experi-

enced loaders so the loaders could rate the layouts in terms of their perception

of what was more ‘ordered’ and ‘desirable’ to load. The correlation between the

calculated entropy values and the loaders’ perception of what layouts were most

83

6. Optimising Container Layouts for Real-World Packing

Algorithm 6.1 Entropy Packing Genetic Algorithm

Input:
PalletStacks

Output:
StackLayout . selected layout of stacks

InitialisePopulation(PalletStacks)
EvaluatePopulation
while max generation count not reached do

create new population
apply elitism
while total population count not reached do

Parent1, Parent2 ← RandomSelection
Child1, Child2 ← Crossover(Parent1, Parent2)
Mutate(Child1)
Mutate(Child2)
add Child1 and Child2 to new population

end while
EvaluatePopulation

end while
StackLayout ← fittest individual in most recent population
return StackLayout
end

function InitialisePopulation
for all individual ∈ population do . each individual is a list of stacks

individual.fitness ← 0 . intialise fitness to 0
Shuffle(individual) . shuffle the position of stacks
for all stack ∈ individual do

RandomiseOrientation(stack) . set stack orientation to 0 or 1
end for
layout← GenerateLayout(individual)
if AllStacksFitInLayout(layout) then

individual.fitness ← CalculateEntropy(layout)
end if

end for
end function

84

6. Optimising Container Layouts for Real-World Packing

function EvaluatePopulation
for all individual ∈ population do

layout← GenerateLayout(individual)
if AllStacksFitInLayout(layout) then

individual.fitness ← CalculateEntropy(layout)
else

individual.fitness ← 0 . penalty for stacks that don’t fit
end if

end for
end function

ordered and best for loading, was recorded.

The following figures show groups of layouts and their respective calculated

entropy values. These groups, each consisting of 2 to 3 layouts, were presented

to the loaders to rate. No notion of a ‘measure’ was provided or mentioned to

the loaders, so as not to influence their choices; they were simply presented with

layouts 2 or 3 at a time and asked which of the layouts they would rather load

- i.e. which was the better layout. Table 6.1 shows the relationship between the

calculated entropy values of the layouts and their ratings of perceived orderliness

by the loaders.

For groups 1, 3, and 4 (Figures 6.2, 6.4 and 6.5 respectively), the layouts

presented were rated the same by the loaders as by the entropy measure. For

the layouts in group 2 (Figure 6.3), the loaders rated layouts 3 and 4 as being

more ordered than layout 5. This correlated with the calculated entropy values

for the layouts. They however rated layout 3 as being more ordered than layout

4, which did not correlate with the ratings obtained using the entropy measure.

This observation was puzzling and was the first of its kind where there was a

mismatch between what the entropy values indicated and what the loaders said.

Further conversation with the loaders revealed that in making their decision for

this particular case, the loaders were using additional information not known to

us, in the form of a loading constraint they needed to meet when loading con-

tainers. This constraint was not considered or included in the calculations made

for the entropy measure. Layout 3 was therefore apparently selected as their pre-

ferred layout because it filled out the container more breadth-wise, which would

then reduce any possible motion laterally within the container, thus reducing the

85

6. Optimising Container Layouts for Real-World Packing

Table 6.1: Entropy vs Loader rating (most ordered first) for layouts

Group Layout Entropy value Entropy rating Loader rating

1
1 98.2

2, 1 2, 1
2 97.95

2
3 101.70

4, 3, 5 3, 4, 54 97.73

5 111.29

3
6 100.36

6, 7 6, 7
7 107.34

4
8 97.57

8, 9 8, 9
9 98.27

possibility of damage that could occur in transit. This constraint was the major

influence and deciding factor in their selection of layout 3 as the more ordered

layout.

In general, for all of the experiments, despite the occasional differences in

loading preference or style of the different loaders, they all agreed on and provided

the same ratings of what they thought as being more ordered. The correlation

between their own concept of order and the entropy measure of the layouts was

high. All the calculated entropy values for all of the layouts presented to the

loaders, except for the group shown in Figure 6.3, correlated with and matched the

loaders’ rating and perception of orderliness. In such cases, as discussed earlier,

we determined that other factors and constraints not present in the calculations

for the entropy measure were involved in the decision making process when rating

the layouts, and were the reason for the mismatch.

86

6. Optimising Container Layouts for Real-World Packing

(a) Layout 1 Entropy: 98.92 (b) Layout 2 Entropy: 97.95

Figure 6.2: Entropy comparisons: Group 1 layouts

87

6. Optimising Container Layouts for Real-World Packing

(a) Layout 3
Entropy: 101.70

(b) Layout 4
Entropy: 97.74

(c) Layout 5
Entropy: 111.29

Figure 6.3: Entropy comparisons: Group 2 layouts

88

6. Optimising Container Layouts for Real-World Packing

(a) Layout 6 Entropy: 100.36 (b) Layout 7 Entropy: 107.34

Figure 6.4: Entropy comparisons: Group 3 layouts

89

6. Optimising Container Layouts for Real-World Packing

(a) Layout 8 Entropy: 97.57 (b) Layout 9 Entropy: 98.27

Figure 6.5: Entropy comparisons: Group 4 layouts

90

6. Optimising Container Layouts for Real-World Packing

6.5 Conclusion

In this chapter, a method of calculating entropy for a 2D container layout as a

measure of its disorderliness is derived. The entropy measure is calculated as the

combined sum of different individual entropy values that each identify relation-

ships of type, geometric placement, and position respectively, for all items in a

loading layout. Feedback from expert loaders was used to assess the validity of the

measure and to demonstrate that the measure can indeed be used to rate loading

layouts in practice: in terms of their aesthetic look and feel or disorderliness, and

their desirability to be loaded. The lower the overall entropy value of a layout is,

the higher the aesthetic value or desirability of the layout, and vice versa. The

measure is viable and consistently rate layouts reasonably well in terms of their

disorderliness, obtaining the lowest entropy values when we place similar items

(selection entropy) close together (positional entropy) in the same orientation

(rotational entropy). As seen in the experiments, exceptions may occur where

there is a mismatch in the correlation of the calculated entropy value and the

loaders’ own perception of orderliness for a layout. This occasional mismatch

does not reduce the effectiveness of the measure; it only serves to point out that

the measure in itself does not completely cover all of the factors and constraints

that an experienced loader would consider when determining a feasible layout.

91

Chapter 7

An Entropy-Guided Monte-Carlo

Method for Generating Optimal

Container Loading Layouts

7.1 Introduction

In Chapter 4, we presented a framework for the algorithmic selection of groups of

pallets from a larger collection of pallet groups, to be loaded into a container. In

Chapter 5, we further improved the packing algorithm to obtain solutions that

were more efficient in container space utilisation. In Chapter 6, we defined a

measure of order and consistency for a layout based on entropy, and we showed

that forklift drivers found low entropy solutions easier for them to understand

and achieve.

In this chapter, we show how low-entropy solutions to the CLP can be effi-

ciently produced by the new technique of using entropy to direct a Monte Carlo

tree search (MCTS) process. In doing this, we take a holistic approach to the

loading process in that we try to combine efficiency of space utilisation within the

container with simplicity for the forklift drivers i.e. the layouts produced are easy

to understand and implement in real-world loading using forklift trucks. This re-

duces the time that a container spends being loaded, and the number of containers

required for a given single job. The proposed algorithm, i.e., the entropy-guided

92

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Monte Carlo packing algorithm, was used in a series of experiments to assess its

performance in achieving layouts that optimised space usage while being human

loadable. These experiments, as well as a discussion of the observed results and

a number of layouts generated by the algorithm, are presented.

7.2 Related Work

The work by Bischoff and Ratcliff [1995b] had a significant impact in the consid-

eration of practical constraints that might impact the methods used for solving

CLPs. Techanitisawad and Tangwiwatwong [2004] included container stability

and stack priority within their solution and used an integrated heuristic approach

based on genetic algorithms for container selection and loading. Peng et al. [2009]

considered orientation and stability constraints but used a hybrid simulated an-

nealing algorithm. Bortfeldt and Gehring [Bortfeldt and Gehring, 2001; Gehring

and Bortfeldt, 1997] also considered orientation, stability, top placement, weight,

and balance constraints, and again used a genetic algorithm approach. These

examples have specifically included some of the real-world constraints to achieve

solutions and generally have taken heuristic or hybridised approaches.

Taking the real-world problems further, Gendreau et al. [2006] generated so-

lutions that took vehicle route constraints into account with the CLP. However, I

have not been able to find work within the literature that addresses the issues of

being able to achieve a packing within a container where there are the physical

constraints of getting the packed boxes into the required positions using a single

entry point, as well as the limited manoeuvrability associated with the packing of

heavy pallets. These extra constraints affect the density at which items may be

packed and the required simplicity of its layout. Although Iori and Riera-Ledesma

[2015] considered loading based on a ‘last in, first out’ principle, the emphasis was

on the decisions associated with the choice of vehicles and the travelling salesman

route issue, rather than the container layout. More recently, Moura and Bortfeldt

[2016] discussed how the process could be optimised for distribution to multiple

customers with trucks packed in 2 layers, optimising numbers of trucks used;

while Alonso et al. [2017] took a mathematical approach to optimising loading

and unloading effort by minimising the number of trucks to be used.

93

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

In previous work [Cant et al., 2012; Cant and Langensiepen, 2010], a new

interpretation of the concept of entropy was derived, taking influences from its

use in the domains of physics and information into the domain of graphical scene

layouts for computer games. A new measure was derived from this interpreta-

tion and applied to the container layouts generated by the algorithms presented

earlier for the CLP in this thesis. The measure helped to provide a quantitative

assessment of the ease of loading any particular layout for the forklift drivers.

This was explored earlier in Chapter 6, where we found that the measure seemed

to correlate with what the forklift drivers considered to be easy layouts to load.

Coulom [2007] combined tree based searching with Monte Carlo evaluation

and applied it to the challenging board game Go. Its potential for wider impact

was seen immediately so that by 2012 a survey by Browne et al. [2012] could

cite more than 240 papers using MCTS in a range of areas and variants from

computer Go through crossword puzzle generation to printer scheduling. Moura

and Oliveira [2008] have used MCTS in their work on combining the travelling

salesman problem with container loading, but they provided their own GRASP

technique for the CLP aspects of the problem, using the MCTS to direct the

combination of load selection and route. Most of these methods use the UCT:

‘Upper Confidence Bound 1 applied to trees’ (or a closely related) variant of the

MCTS, introduced by Kocsis and Szepesvári [2006]. Moura and Bortfeldt also

used a tree search algorithm for filling trucks in their work [Moura and Bortfeldt,

2016] mentioned earlier, but in this case, the tree search was not Monte Carlo;

rather, it was a recursive process to ensure the pallets were stacked in an order

suitable for delivery.

The implementation presented in this chapter is closer to that of Pure MCTS,

with the distinguishing factor being the application of a derived measure (i.e.

entropy) combined with elements of randomness using a weighting, as a method

for influencing the choice of nodes during MCTS playouts; instead of a purely

random choice for nodes. A number of experiments were performed using the

UCT variant of the MCTS. Initial results suggested that the overhead of keeping

the information about earlier passes combined with back-propagation resulted

in more costs than gains in performance. Subsequent results indicated that for

our problem instances, the UCT variant doesn’t do any better than the purely

94

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

random variant.

7.3 Proposed Algorithm

The remaining problem requires the packing of a selected set of pallet stacks into

a shipping container such that the packing achieves as high a density as possible,

compatible with loading from a single entry point with forklift trucks, such that

the layout produced is consistent enough to be easily assimilated by the loaders

to make their job easier, and that it can be achieved within a reasonable time

without significant computer resources. We have developed a new algorithm for

this purpose that has two key aspects in order to achieve the goals.

7.3.1 Placement Method

In order to achieve feasibility of loading, the placement of each potential stack

within the container is performed by placing the stack randomly in the spare

space in the container, moving it towards the already filled area, then sliding

it to abut the stack to its left so that it aligned as close as possible to the left

bottom corner of the previous stack (as seen in the layouts presented subsequently

in this chapter). If the stack cannot be fitted into the current ‘strip’ of stacks in

this manner, a new strip is started. This ‘Tetris-like’ method ensures that the

resultant packing layout can be achieved by the loaders using their forklift trucks.

7.3.2 Directed Choice

In order to achieve a loading layout that can be easily assessed and carried out

by the loaders, the selection of the next stack to be placed uses a Monte Carlo

tree search where the weighting is generated by a measure of the entropy of the

layout. The actual calculation of entropy for a stack is calculated as discussed in

Chapter 6 and the overall entropy for a layout that includes it is generated by

summing it with the running entropy for the previously placed stacks.

95

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Algorithm 7.1 Entropy Guided Monte Carlo Tree Search

Initialise all stacks to unplaced
while Some unplaced stacks remain do

Initialise Smin

for Each unplaced stack q do
for Each orientation o of q do

Calculate entropy S(q, o) relative to existing layout
if S(q, o) < Smin then

Smin = S(q, o)
end if

end for
end for
Select one unplaced stack and orientation randomly, using Algorithm 7.2
Add chosen stack to layout in selected orientation

end while
Record layout, entropy, length

7.3.3 Algorithm description

In our process, as expressed in Algorithm 7.1, we try placing each unplaced stack

in each possible orientation and calculate the entropy. During this process, we

also track the minimum entropy Smin. We allow entropy to direct the branch

chosen at each node in the tree i.e. the choice of the next stack in a given orien-

tation to be included in the container layout. Equation 7.1 is used to compute

a probability P (q, o) which can be used to bias the choice made towards lower

entropy configurations.

P (q, o) =
1

1 + ω × (S(q, o)− Smin − 1)
(7.1)

where ω is a weighting parameter that determines how strongly entropy affects

the outcome.

There are two special cases. If the weighting, ω, given to the entropy is 0,

then all probabilities will be equal and the choice is completely random; whereas

if the weighting is 1, (7.1) is singular for S(q, o) = Smin, resulting in the purely

deterministic choice of the branch producing the lowest entropy solution thus

far. Occasionally, there will be more than one configuration with the same lowest

96

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Algorithm 7.2 Weighted Choice of Stack

if ω = 0 then
All P are equal (pure monte carlo)
Select randomly

else if ω = 1 then
All lowest (degenerate) entropies have P equal (e.g. 1), all others are 0
Find all stacks and corresponding orientations with lowest entropy
Select randomly within this subset

else
Calculate total probability for all allowed stacks:
Set Ptotal to 0
for all stack q and orientation o do

Calculate P = 1
1+ω×(S(q,o)−Smin−1)

where Smin is the lowest entropy found in this set,
and S(q, o) is the entropy of the stack q in orientation o
Add P to Ptotal

end for
Select stack q and orientation o randomly with distribution P

end if

entropy solution, so a random selection will still be required between these options

only. For values between these two extremes, the choice of which stack to include

is based on a weighted distribution based on the entropy calculations for all the

potential next stacks (Algorithm 7.2).

As a sanity test of the need for both the placement and entropy aspects of

the algorithm, the pure Monte Carlo tree search method (ω = 0) was trialled

without enforcing the Tetris-like placement method specified in subsection 7.3.1.

This selected stacks randomly, packing them in a randomly selected orientation

(for stacks with multiple packing orientations) and placed the stacks in a random

choice of available placement points within the container. The method failed to

achieve any successful layouts (i.e. ones wholly within the outline of the container)

despite providing a relatively small number of stacks to place and running for 48

hours of processing.

My presented version of the MCTS needs only local values to decide its path

(i.e. the entropy associated with adding a particular stack), and so has no need to

perform the back-propagation stage used in implementations that improve their

97

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

estimates of global quantities during their branch exploration.

7.4 Experiments

The experiments were carried out on a farm of identical four-core AMD A8 desk-

top machines, with 8GB of RAM, running Windows 10 with no other user pro-

grams active. Each machine was running three instances of the experiment, each

of which was explicitly bound to one of the cores. The software was written in

C# and no explicit optimisation or parallelisation was applied.

In order to assess the consistency and robustness of the algorithm, we applied

it to a range of situations. The container layouts were categorised in terms of the

‘fill level’. This denoted the relative proportion of the floor area of the selected

stacks compared to that of the container - in other words, a 2D liquid measure

that takes no account of individual dimensions, only absolute floor area covered.

At the UKDC, four different pallet dimensions are used, and so each stack would

have one of those four as its base. For each of the different fill levels to be tested

in the experiments (i.e. values ranging from 60% to 99% of container space), fifty

sets of stacks were randomly generated using the 4 possible pallet sizes. The use of

the notional fill level and the randomisation of the stacks used in each experiment

meant that it was quite likely that for high fill levels it might be impossible to

get all the stacks into the container once the actual dimensions were taken into

account by the algorithm.

The algorithm was then applied to produce layouts for each of the random

sets of stacks at each of the fill levels. At each iteration within the algorithm, if a

better layout was achieved, it was recorded. A layout was considered better if it

achieved an overall lower entropy or if it occupied less space along the length of

the container (the ‘length measure’ referred to in the algorithm). In either of these

cases, the values, the time taken and the number of iterations were recorded. In

Monte Carlo tree search (MCTS) as used here, a stopping criterion is required.

Initial experiments showed that, over a range of fill levels, the algorithm had

already achieved its best results well within 600 seconds (see Figure 7.1). This

was therefore used as the stopping criterion to end the experiments. The early

termination of some lines shows that no further improvement in entropy was

98

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.1: Entropy variation with time for a single set of stacks

achieved for the remainder of the run for that value of ω. The time limit is also

appropriate for the problem. Given the time taken for the physical process of

loading using a forklift truck there is clearly no pressing need for a result in a

few seconds, but equally we cannot afford to wait several hours. A limit of ten

minutes is therefore a good reflection of user needs.

In order to assess the efficacy of the entropy directed aspect of MCTS, the

experiments were repeated for different values of the entropy weighting parameter

ω introduced in (7.1). The value of ω was varied from 0 (for completeness) to

1 i.e. the selection of the next stack to be placed during container loading was

varied from being completely random to being weighted towards a low-entropy

choice. Initial experiments revealed that values very close to, but less than 1,

produced good results so we emphasised that region in the full tests. To give

an external comparison, the performance of a deterministic packer, the skyline

algorithm [Wei et al., 2011], was also evaluated. This algorithm is deterministic

99

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

but highly dependent on the input ordering. In order to show the best results

that this algorithm could achieve we presorted the input files to group all the

similar sized stacks together, ordered from the largest. We chose this algorithm

because its dependence on the input order would allow this simple pre-sorting

process to force an ordered layout. This would provide a direct comparison to

the entropy-driven method, not just in the ability to successfully fill the container

but also in terms of the quality of the configuration that is produced.

Thus the overall set of experiments involved running the MCTS and the deter-

ministic algorithm for each of 50 randomly chosen sets of stacks, for each of 13 dif-

ferent fill levels: i.e. 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%,

98% and 99%, and in the case of the MCTS, for an additional 9 different weight-

ings of entropy directing the MCTS, i.e., ω = 0, 0.5, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99

and 1. In some of the following tables and graphs of results, not all of the entropy

weightings may be shown, as it was found that when the fill level was high, MCTS

with lower values of ω failed to find any configuration that packed all the stacks

into the container within the stopping time, and so provided no results. In addi-

tion, for some of the higher fill levels considered, i.e., fill levels 95%, 96%, 97%,

98%, and 99%, no results were produced for either the deterministic algorithm or

any of the values of ω considered for the MCTS.

7.5 Results

7.5.1 Overall Performance Comparisons

Table 7.1 shows the number of different random sets that were successfully pro-

cessed for each algorithm variant at each fill level. All the algorithms found

successful layouts for all fill levels up to 70%. At the 80% level, the variants of

our algorithm with weaker entropy dependence, i.e. ω < 0.95, began to fail on

some datasets. It is worth noting that the skyline algorithm only succeeds at this

fill level when the stacks are sorted in largest first order. We also attempted sky-

line with the stacks ordered smallest first, but its results were significantly worse,

so these have not been shown. At the 90% level, there are 17 combinations for

which none of the algorithms was successful. For this case, the entropy guided

100

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Table 7.1: Overall success for 50 sets at each fill level

Fill Level skyline ω = 0 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1

60% 50 50 50 50 50 50 50 50 50 50

70% 50 50 50 50 50 50 50 50 50 50

80% 50 35 20 48 50 50 50 50 50 50

90% 17 0 0 0 5 7 13 22 30 17

91% 14 0 0 1 6 6 8 10 13 6

92% 1 0 0 0 2 1 5 5 8 1

93% 0 0 0 0 0 0 0 2 1 0

94% 0 0 0 0 0 0 0 0 1 0

95% 0 0 0 0 0 0 0 0 0 0

96% 0 0 0 0 0 0 0 0 0 0

97% 0 0 0 0 0 0 0 0 0 0

98% 0 0 0 0 0 0 0 0 0 0

99% 0 0 0 0 0 0 0 0 0 0

MCTS algorithm with ω = 0.99 performed best. The version with ω = 0.98

was next, whilst skyline and the ω = 1 algorithm produced the same number of

successful layouts. These were, however, not exactly the same set of layouts. The

ω = 0.99 algorithm was most successful, creating a valid layout in 30 out of 50

cases, including all the configurations for which skyline found a solution. For the

3 configurations for which ω = 0.99 failed, ω = 0.97 succeeded. In one of these

cases, ω = 1 also succeeded and in another ω = 0.96 also succeeded.

At the 91% level, the skyline algorithm as well as all the entropy-guided MCTS

algorithm with all the weightings except ω = 0.9 and ω = 0.95, processed fewer

sets than at the previous level. The ω = 0.99 algorithm was again the most

successful, producing a valid layout for 13 of the 50 cases, followed by ω = 0.98,

which succeeded in 10 of the 50 cases. At levels higher than 91%, the total

number of successful combinations processed drops significantly. For these, the

most challenging cases, less than 5% of the total sets of stacks considered across

all weightings for each fill level were able to produce any layouts successfully.

101

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

At 92%, the skyline algorithm and the versions of the entropy-guided MCTS

algorithm with ω = 0.96 and ω = 1 managed to process only a single set of

stacks. It should be noted that each processed a different set of stacks. The

ω = 0.99 algorithm again performed best, producing layouts for 8 of the 50 sets

of stacks considered, followed by ω = 0.98 and ω = 0.97 which produced layouts

for 5 sets of stacks. At 93%, only ω = 0.98 and ω = 0.99 are able to successfully

produce layouts for 2 and 1 set of stacks respectively. Finally, at 94%, only

ω = 0.99 successfully processed a single set of stacks. For levels 95% up to 99%,

no configuration of the skyline or entropy-guided MCTS algorithm was found

that could successfully process any of the total sets of stacks considered.

7.5.2 Visual Comparisons

Figure 7.2 shows the layouts created by different algorithm versions for one of the

90% fill sets for which the skyline algorithm was successful. The leftmost image

shows the output of the skyline algorithm and the remaining images, in order left

to right, show the layouts created by our algorithm for ω = 0.97, ω = 0.98 and

ω = 0.99 respectively. The layout for ω = 1 was identical to that for ω = 0.99.

When it works, the skyline algorithm produces a similar looking result to the

high ω layouts. Although the skyline method with a sorted input list produced

an apparently similar arrangement to our algorithm it is inflexible and could not

find a solution for many of the high fill level sets. One of these is shown in Figure

7.3. The order from left to right is ω = 0.95, ω = 0.97, and ω = 0.98. Here the

layouts for ω = 0.99 and ω = 1 matched that for ω = 0.98. The lower values of

ω do produce less regular patterns, however, as can be seen from Table 7.1, this

sometimes allows a layout to be found where the variant with a higher value of

ω was unsuccessful. A specific example of this can be seen in Figure 7.4. This is

the case where only ω = 0.96 and ω = 0.97 were successful. It is notable that the

entropy value for ω = 0.96 is 29.88 which is lower than the value for ω = 0.97,

which is 31.84. This is because all versions of the algorithm are searching for the

lowest entropy, whereas the value of ω controls the amount of random variation

within the search.

102

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.2: Comparison of layout methods at 90% fill, including (left to right):
skyline algorithm, ω = 0.97, ω = 0.98, and ω = 0.99.

103

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.3: Comparison of layout methods 90% fill where skyline algorithm failed,
(left to right): ω = 0.95, ω = 0.97 and ω = 0.98.

104

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.4: Comparison of layout methods 90% fill where skyline algorithm failed
and only ω = 0.96 (left image) and ω = 0.97 (right image) succeeded.

105

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Table 7.2: Which weighting generated most of the best entropy and length mea-
sures

Fill Level weighting ω = 0 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1

60%
Entropy 0 0 0 6 5 13 12 12 2

Length 0 0 1 5 9 12 17 6 0

70%
Entropy 0 0 0 1 5 4 10 19 11

Length 0 0 1 3 7 10 13 16 0

80%
Entropy 0 0 0 1 1 6 11 31 0

Length 0 0 0 4 3 14 8 21 0

90%
Entropy 0 0 0 1 1 4 8 15 4

Length 0 0 0 1 2 3 6 19 2

91%
Entropy 0 0 0 0 0 2 2 10 1

Length 0 0 0 1 0 2 4 8 1

92%
Entropy 0 0 0 0 0 2 2 4 0

Length 0 0 0 0 0 3 2 3 0

93%
Entropy 0 0 0 0 0 0 2 1 0

Length 0 0 0 0 0 0 2 1 0

94%
Entropy 0 0 0 0 0 0 0 1 0

Length 0 0 0 0 0 0 0 1 0

7.5.3 Layout Entropy

Table 7.2 shows how the best entropy and the best length achieved occurred at

different values of ω for the individual sets of stacks. The best length achieved

gives an indication of the tightness of the fill when the fill level was relatively low.

So, for example, at a fill level of 70%, 1 of the set of 50 randomly chosen sets of

stacks achieved its best entropy value when the weighting applied to the MCTS

was 0.95, and 5 of the same set of stacks achieved their best entropy values when

the weighting applied to the MCTS was 0.96. The table shows that most of the

layouts achieved their best entropy values when the weighting was 0.98 or 0.99.

A similar result is apparent for the best-achieved length usage. This confirms the

previous conclusion that values of ω just below 1 performed best.

106

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.5: Times to generate individual layouts for a single set of stacks

7.6 Analysis

7.6.1 Time Behaviour

Figure 7.5 shows the generation of layouts over time during the course of an

experiment for a single set of pallet stacks chosen for a fill level of 70%, and for a

range of entropy weightings. Although the run for a weighting of 0 was faster, as

it did not have to calculate the entropy, in terms of the overall timescale of the

experiments this was not significant, and the container layouts produced, as will

be seen later, were inferior.

7.6.2 Layout Progression

Figure 7.6 shows the typical progression of the layouts generated for a single set

of pallet stacks that have been selected to cover 60% of the container floor area.

The y axis indicates the best entropy level achieved while the x axis indicates the

107

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.6: Best entropy layout generation for a single set of stacks, 60% fill

number of layouts generated and processed to produce that entropy level. Note

that when the next stack to be chosen is heavily biassed towards low entropy

choices, the overall entropy achieved for the layout is soon far below that of

the weakly or unbiased choice. However, the purely deterministic version of the

algorithm, with ω = 1, is not always the best choice, in that sometimes the ability

to randomly choose the next stack achieves the lowest overall entropy sooner (see

Figure 7.7).

7.6.3 Further Discussion

Table 7.3 summarises the results of the experiments in terms of the best entropy

achieved over the random selection of stacks for each of the notional fill levels,

and for different weightings of entropy used to direct the MCTS. Lower entropy

values indicate a more desirable layout. Note that for a fill level of 90%, no

successful layouts were achieved when the entropy weighting (ω) was less than

0.95. In other words, the stacks could not be arranged such that they could all fit

108

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.7: Best entropy layout generation for a single set of stacks, 80% fill

in the container, even though their total floor area was 90% of the container floor

area. However, for higher weightings, the entropy direction enabled the MCTS

to find ways to fit the selected stacks into the container. The mean and standard

deviation show that there is considerable variation of the best entropy that can

be achieved within the 50 randomly chosen sets of stacks.

Table 7.4 summarises the results in terms of the best length usage achieved for

the container; that is, the value for the layout that occupied the lowest proportion

of the length of the shipping container. These values were recorded during the

experiments, though the entropy was always used to direct the MCTS. The length

measure shown here is the length of the container in cm which has no stacks in it

- the overall container length is 12.03 metres. Thus in this table, a higher value

indicates more space left at the end of the container. Figure 7.8 shows the typical

progression of length utilisation as the layouts are generated by the algorithm.

As the tables show that the variation in the best entropy and best length was

quite large across the randomly chosen sets of stacks, we also looked at the way

109

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

T
ab

le
7.

3:
B

es
t

en
tr

op
y

va
lu

es
ac

h
ie

ve
d

fo
r

ea
ch

fi
ll

le
ve

l
an

d
w

ei
gh

ti
n
g

in
M

C
T

S

F
il
l

L
ev

el
ω

=
0

0.
5

0.
9

0.
95

0.
96

0.
97

0.
98

0.
99

ω
=

1

60
%

B
es

t
V

al
u
e

26
.5

7
24

.6
4

19
.6

6
19

.5
19

.5
19

.5
19

.5
19

.5
19

.5
4

M
ea

n
38

.8
9

35
.9

8
28

.2
9

26
.0

1
25

.4
8

24
.6

4
23

.9
6

23
.4

22
.5

1

st
d

4.
57

4.
28

4.
02

3.
62

3.
44

3.
04

2.
81

2.
42

1.
94

70
%

B
es

t
V

al
u
e

35
.2

5
30

.1
2

24
.6

4
23

.0
9

22
.2

8
22

.3
1

22
.2

8
22

.2
8

22
.4

7

M
ea

n
46

.2
7

42
.5

33
.2

5
30

.1
7

29
.4

1
28

.6
2

27
.8

4
26

.6
7

25
.8

7

st
d

4.
33

4.
05

3.
96

3.
44

3.
37

3.
37

3.
12

2.
35

1.
7

80
%

B
es

t
V

al
u
e

42
.9

2
39

.7
28

.6
9

25
.5

6
25

.2
6

25
.0

9
25

.0
9

25
.0

9
25

.2
1

M
ea

n
50

.7
45

.6
8

36
.6

3
33

.7
5

33
.1

2
31

.8
7

31
.2

4
30

.3
9

29
.5

4

st
d

3.
78

2.
88

3.
66

3.
68

3.
4

3.
06

2.
92

2.
7

1.
99

90
%

B
es

t
V

al
u
e

N
/A

N
/A

N
/A

30
.7

4
29

.8
8

29
.7

1
29

.0
3

29
.7

1
30

.5
1

M
ea

n
N

/A
N

/A
N

/A
34

.5
7

33
.1

5
33

.0
9

33
.2

3
32

.4
7

32
.1

st
d

N
/A

N
/A

N
/A

3.
31

1.
73

2.
68

2.
32

1.
44

1.
19

91
%

B
es

t
V

al
u
e

N
/A

N
/A

32
.9

9
31

.5
7

31
.8

0
30

.6
1

29
.6

2
29

.6
2

29
.6

2

M
ea

n
N

/A
N

/A
32

.9
9

33
.4

2
35

.1
4

32
.7

6
32

.2
7

31
.6

0
31

.4
2

st
d

N
/A

N
/A

0.
0

1.
19

2.
81

1.
87

1.
60

1.
37

1.
37

92
%

B
es

t
V

al
u
e

N
/A

N
/A

N
/A

31
.1

4
31

.2
9

29
.8

7
29

.7
4

28
.9

3
30

.8
9

M
ea

n
N

/A
N

/A
N

/A
32

.1
1

31
.2

9
32

.5
2

31
.7

1
32

.9
0

30
.8

9

st
d

N
/A

N
/A

N
/A

0.
96

0.
00

1.
70

1.
19

2.
53

0.
00

93
%

B
es

t
V

al
u
e

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

32
.6

0
35

.4
5

N
/A

M
ea

n
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
33

.0
9

35
.4

5
N

/A

st
d

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
50

0.
00

N
/A

94
%

B
es

t
V

al
u
e

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

31
.6

6
N

/A

M
ea

n
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
31

.6
6

N
/A

st
d

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
00

N
/A

110

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

T
ab

le
7.

4:
B

es
t

le
n
gt

h
u
sa

ge
ac

h
ie

ve
d

fo
r

ea
ch

fi
ll

le
ve

l
an

d
w

ei
gh

ti
n
g

in
M

C
T

S

F
il

l
L

ev
el

ω
=

0
0.

5
0.

9
0.

95
0.

96
0.

97
0.

98
0.

99
ω

=
1

60
%

B
es

t
V

al
u

e
34

8
33

8
39

7
38

7
39

6
40

3
40

5
40

2
38

3

M
ea

n
11

6.
54

10
0.

80
13

3.
99

14
9.

67
15

6.
27

16
9.

07
18

2.
44

18
9.

58
14

2.
96

st
d

97
.9

7
83

.3
6

10
7.

02
11

4.
56

11
6.

72
11

9.
54

11
8.

18
11

8.
43

98
.8

6

70
%

B
es

t
V

al
u

e
18

3
12

5
21

1
24

1
24

6
25

4
27

3
26

7
18

9

M
ea

n
42

.7
5

38
.4

0
61

.1
7

69
.7

3
76

.3
0

77
.1

1
84

.5
2

85
.1

9
59

.4
1

st
d

34
.2

5
27

.6
0

48
.7

2
53

.1
1

57
.1

2
59

.4
3

60
.5

6
60

.2
1

37
.2

0

80
%

B
es

t
V

al
u

e
71

50
89

12
4

11
6

12
0

13
8

14
8

80

M
ea

n
19

.0
9

13
.1

0
28

.5
4

29
.0

9
31

.1
3

33
.7

4
31

.9
2

34
.4

1
28

.8
3

st
d

16
.0

5
11

.4
2

21
.8

1
22

.9
3

24
.0

4
24

.2
8

24
.8

7
25

.6
9

19
.1

3

90
%

B
es

t
V

al
u

e
N

/A
N

/A
N

/A
22

24
31

34
54

25

M
ea

n
N

/A
N

/A
N

/A
8.

00
9.

00
7.

90
8.

49
12

.2
6

8.
77

st
d

N
/A

N
/A

N
/A

8.
46

7.
28

7.
96

7.
47

10
.6

2
7.

12

91
%

B
es

t
V

al
u

e
N

/A
N

/A
9

23
18

33
46

43
33

M
ea

n
N

/A
N

/A
9.

00
10

.6
7

6.
67

10
.2

2
14

.0
0

18
.9

2
13

.6
7

st
d

N
/A

N
/A

0.
00

6.
85

6.
47

8.
68

10
.9

1
11

.2
8

9.
85

92
%

B
es

t
V

al
u

e
N

/A
N

/A
N

/A
13

12
36

34
36

N
/A

M
ea

n
N

/A
N

/A
N

/A
12

.5
0

12
.0

0
17

.1
7

15
.1

7
14

.7
3

N
/A

st
d

N
/A

N
/A

N
/A

0.
50

0.
00

10
.9

9
11

.0
2

10
.5

4
N

/A

93
%

B
es

t
V

al
u

e
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
3

2
N

/A

M
ea

n
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
3.

00
2.

00
N

/A

st
d

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
00

0.
00

N
/A

94
%

B
es

t
V

al
u

e
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
5

N
/A

M
ea

n
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
5.

00
N

/A

st
d

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
00

N
/A

111

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.8: Best length utilisation layout generation for a single set of stacks,
60% fill

the different weightings contributed to the best values on a set by set basis.

For further comparison of the effect of the different weightings, consider the

three example layouts shown in Figures 7.9, 7.10 and 7.11. Figure 7.9 shows a

layout generated at the start of the process for a particular set of stacks using an

entropy weighting of 0 i.e. the MCTS was undirected. Note that even though the

stacks do fit within the container, they are very disorganised (with an entropy

of 50.6). After a further 11 857 layouts had been generated for the same set of

stacks (and still using ω = 0), the best entropy recorded had gone down to 32.8,

but the layout was still complex, as shown in Figure 7.10. These two may be

compared with the layout shown in Figure 7.11, which was generated from the

same set of stacks, but with a value of 0.98 for ω. It can be clearly seen that the

third layout is highly ordered and compactly fitted into the container, with the

entropy value down to 22.1 after processing only 51 layout attempts.

112

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.9: Layout after 1 cycle, 60% fill, entropy weight 0

113

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.10: Layout after 11858 cycles, 60% fill, entropy weight 0

114

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

Figure 7.11: Layout after 51 cycles, 60% fill, entropy weight 0.98

115

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

7.7 Conclusion

In this chapter, a new entropy-based approach to solve the problem of generating

feasible layouts for the single container loading problem was presented. The

approach uses a Tetris-like placement method that ensures that generated layouts

can be easily implemented thus allowing for the safe and easy loading of palletised

goods by warehouse operatives using forklift trucks to load from a single entry

point. The choice of what stack to load next and in what orientation to load it in

is driven by a Monte Carlo tree search process and a weighting that can be used

to bias the choice towards lower entropy layouts i.e. layouts that are easier to

understand and implement (see Chapter 6). The generality of the approach makes

it suitable for dealing with container loading configurations where the types of

pallets used are not known beforehand.

The series of experiments used to evaluate the entropy-driven Monte Carlo

tree search algorithm, as well as an analysis of the results obtained, were also

presented. The results show that the layouts produced with a weighting value

closer to 1, i.e. strongly biased towards low-entropy choices, were more ordered

than those where the weighting value was closer to 0. The weighting values 0.98

and 0.99 in particular, accounted for a majority of the layouts with the best

entropy values, particularly in the situations where the packing density was high.

Together, they accounted for 70% of the total layouts produced when testing the

packing of stacks with a 90% fill capacity, 46% for the 91% fill capacity, 59% for

the 92% fill capacity, and 100% for the 93% fill capacity.

While it was faster to generate layouts using a weighting of 0 because no

entropy calculation is performed, the difference was not particularly significant

when considering the overall timescale of the experiments. As alluded to ear-

lier, the layouts produced using this weighting, ω = 0, were less inferior to those

produced with the weighting values closer to 1. At the other extreme, using a

weighting value of 1 did not perform as well as expected. The observed results

indicate that this is due to a lack of the random variation present in the other

weighting values (where 0 ≤ ω < 1). This ability to occasionally randomly select

stacks and their orientations during layout generation often resulted in the algo-

rithm reaching an overall lower entropy sooner than with a purely deterministic

116

7. An Entropy-Guided Monte-Carlo Method for Generating Optimal
Container Loading Layouts

‘lowest-entropy’ selection mechanism, i.e., where ω = 1.

Overall, the results show that the algorithm is viable and can be used to

produce good ‘low-entropy’ layouts in a very reasonable time. While the layouts

generated might seem obvious to the reader, this is the very thing I hope to have

achieved: to have produced a generalised approach implemented on a computer

that produces container layouts similar to those produced by expert human op-

eratives with their knowledge of the limitations of the environment. Experts at

generating layouts may not always be available and can make mistakes, so an

algorithm that can achieve equivalent outcomes in a short time is desirable.

117

Chapter 8

Conclusion

8.1 Context

The Container Loading Problem (CLP) is an active research area with numerous

real-world applications, particularly in the container transportation and distribu-

tion industries [Dereli and Sena Das, 2010]. Research in container loading, how-

ever, is still in its infancy with respect to the inclusion and satisfaction of several

practically-relevant constraints simultaneously; especially when compared to the

body of work available where very few or no practical constraints are consid-

ered. This is in contrast with real-world applications of the CLP where typically

all constraints considered must be satisfied in order for provided solutions to be

deemed feasible. In this regard, the current literature is still lacking.

This thesis examines a version of the CLP motivated by a real-world problem

experienced in the UK distribution centre (UKDC) of an engineering company.

In solving the problem, a number of standard and non-standard approaches for

solving the CLP are employed and several constraints, i.e. orientation, weight

limit, stability, stacking, complete shipment and pattern complexity, are also si-

multaneously dealt with. The overall approach presented is a hybrid heuristic

that resembles the existing process used to manually solve the problem in the

UKDC. This approach selects, stacks and packs items in different stages, ensur-

ing that all required constraints are satisfied at each corresponding stage. The

packing algorithm employed packs in a manner that results in packing patterns

that are easy to understand and reproduce by human loaders. Overall, the de-

118

8. Conclusion

vised hybrid algorithm has resulted in a consistent and significant increase in

observed container weight utility for loading problems and runs in a fraction of

the time required for a human solution to be provided. It also produces loading

patterns that make the loading process simple and easy to follow; a feature that

is of great benefit to less experienced loaders.

8.2 Summary of Key Contributions

This thesis contributes to the understanding and application of a number of

Computational Intelligence techniques to Container Loading Problems. The con-

tributions are especially relevant to real-world applications of container loading in

warehouse environments, particularly for cases where the items to be loaded into

containers are heavy and palletised, and need to be moved around using forklift

trucks. Following is a summary of the key contributions presented:

• An algorithmic framework, that takes the approach of decomposing the CLP

into sub-problems in order to solve it as a whole, is presented. This frame-

work allows for algorithmic hybridisation wherein problems to be solved

can be decomposed into sub-problems with each solved using any num-

ber of exchangeable algorithms, as long as any imposed constraints are

satisfied. The initial set of algorithms introduced in this framework are:

(i) a genetic algorithm for the selection sub-problem, (ii) a problem-specific

greedy algorithm for the stacking sub-problem, and (iii) a genetic algorithm

integrated with a rectangle packing algorithm, subsequently replaced by a

Sort-and-Pack Cygon algorithm, and then by the derived Entropy-guided

Monte Carlo tree search algorithm. These algorithms were evaluated using

real-world historical data and simultaneously took into account all relevant

practical constraints.

• Taking influence from physics and information theory, an approach based

on a derived entropy measure is introduced for the identification of feasible

container layouts. This measure provides an indication of which layouts are

practical and easy to load, particularly when using forklift trucks.

119

8. Conclusion

• A novel method of directing a Monte-Carlo tree search process using en-

tropy, during the process of generating layouts, is presented. The method

makes use of Tetris-like placement, using an entropy-weighted value to bias

the choice of what item to select and how exactly to place it, during a

packing operation. This enables it to produce layouts with high-density

packing, comparable to those produced by expert human loaders, that can

be easily understood and reproduced by human loaders using forklift trucks.

The layouts are produced in very reasonable time and have the additional

advantage of being easily generalised to include other practical constraints.

As experts may not always be available, this is a very desirable outcome.

• The variant of the CLP dealt with in this thesis is characterised by its weakly

heterogeneous palletised goods, which are heavy and need to be moved

around using forklift trucks. These characteristics impose additional con-

straints to those typically considered in the literature. The resulting com-

bination of constraints can indeed be said to make the considered problem

unique. A novel approach for solving this specific CLP variant optimally,

that simultaneously satisfies all identified constraints, in order to provide a

feasible real-world solution, is presented.

• Data that extends the existing container loading benchmark data is pro-

vided. The existing data typically only covers weakly or strongly heteroge-

neous problem instances that deal with relatively few practical constraints

at a time. The presented data is representative of real-world problem in-

stances that consider a larger number of constraints at a time. These ad-

ditional constraints reflect a wide spectrum of practical applications that

have not yet been dealt with extensively in literature.

• An approach that integrates the above contributions, i.e., the complicated

algorithms and data, into an engaging system that presents results in a

manner that can be easily understood and interpreted by humans, is also

presented. Continued use of this system brought about some unintended

consequences, including its use as: (i) a tool to verify and check if human-

crafted layouts were feasible; (ii) an environment for training warehouse

120

8. Conclusion

operatives with little or no loading experience, thus minimising possible

damage to goods in real-world training; (iii) a means to discover new loading

patterns that have not been used before in practice. These use-cases, in

addition to the system’s original intended purpose, had a positive effect on

the adoption of the container loading system that served as an abstraction

for the algorithms presented in this thesis.

While these contributions were a direct result of a specific case study in practice,

the generality of the approaches presented makes them suitable for dealing with

container loading problems with configurations different from the one studied.

8.3 Future Work

The following points are suggestions for further work that can be carried out to

extend the research presented in this thesis.

8.3.1 Solving the Multiple Container Loading Problem

The algorithm presented in this thesis was designed to solve the Single Container

Loading Problem (SCLP). No attempt was made in particular to solve the re-

lated Multiple Container Loading Problem (MCLP). That said, the algorithm

can be modified and extended to solve the MCLP using an approach known as

the ‘sequential’ approach in MCLP literature [Eley, 2002; Lim and Zhang, 2005].

The approach repeatedly applies the algorithm to a given set of pallets, solving

the SCLP each time and filling containers sequentially one after the other. The

pallets that are already packed into containers are removed from the original set

of pallets. Hence subsequent applications of the algorithm make use of a smaller

set of pallets. This continues until all the pallets have been packed. The caveat

of this approach, however, is that there will almost always be one container that

has not been fully utilised. In practice, particularly in the use case at the UKDC,

this is not necessarily a problem. Left-over pallets are often held back until there

are more pallets available to pack so that a new container can be fully utilised.

If the pallets need to be sent out urgently though, a smaller container is used

or a courier that can handle the load is booked. If the left-over load was held

121

8. Conclusion

back until there are more pallets available, the held back pallets will typically

be marked as having a higher shipment priority so that when a new container is

made available, they will be packed before any of the newly added pallets.

8.3.2 Dealing with Loading Priorities

When loading priorities are implemented, certain items must be loaded before

others. This could occur as a result of a deadline placed on the delivery of certain

items. In this example, items with a nearer delivery deadline will be loaded and

shipped out before items with a farther deadline. Handling loading priorities

during loading can be dealt with using an approach that also makes use of the

repeated application of the algorithm presented in this thesis. This time, instead

of applying the algorithm to all of the available pallets, the algorithm is first

applied only to pallets with the highest loading priority, and then applied to

pallets with lower loading priorities. Pallets with lower loading priorities are only

considered when all of the highest priority pallets have been loaded and there

is still space in the container. This process is repeated until all the pallets are

loaded in order of loading priority, or until the container is filled up at some point.

At the point when the container is filled up, it is guaranteed that none of the

pallets loaded so far will have a lower priority than any of the pallets left behind.

8.3.3 Keeping groups of related items together in close
proximity

In real-world container loading, there are times when groups of items must be

kept and packed together in close proximity within a container. This requirement

is an example of the ‘relative’ positioning constraint. We see examples of this in

situations where items must be delivered to multiple locations, i.e., multi-drop

loading. In such situations, the items meant for delivery to the same location are

typically kept together when loaded into a container. This makes it easy to find

and unload items destined for the same location. It also saves time and minimises

the possibility of damage that could occur when the items to be unloaded at a

specific location are scattered across the container such that a number of unrelated

items have to first be unloaded and loaded back in order to reach them.

122

8. Conclusion

While this constraint is not explicitly handled by the presented algorithm,

it can be dealt with by attempting to pack related item groups one group at a

time using repeated applications of the algorithm. For the initial application of

the algorithm, the entire container is considered as the packing area. After the

first group of related items have been packed, the length of the container space

used is subtracted from the original container length and the resulting container

space left is used as the new packing area for subsequent packing. This process

repeats for each subsequent application of the algorithm, and the container space

available (i.e. the container length) is reduced at each turn until either all the

items have been packed or there is no more space available for packing. Breaking

the container down into sections/rows this way at each step ensures that items

belonging to different groups do not get mixed up with each other. Using this

approach, there is an expected loss in packing space efficiency typical with packing

methods, e.g. the ‘Shelf Next Fit’ packing algorithm, that prematurely close up

rows/shelves in the container during packing. In practice, however, keeping the

related item groups together during packing is seen as being more important and

will often take preference over fitting in more items. This is also reflected in

the literature [Christensen and Rousøe, 2009; de Queiroz and Miyazawa, 2013;

Junqueira et al., 2012a], where this constraint, the multi-drop instance of the

positioning constraint, is mostly treated as a hard constraint.

8.3.4 Extending the application of Gamification

The current gamification setup can be extended to involve the setting up of a

scoring system and the implementation of a high scores table for the interac-

tive simulation environment. This should leverage the natural human desire for

competition to increase user engagement with the system. Initial experiments

already revealed the existence of a friendly competition amongst loaders, with

individual loaders often wanting to know how other loaders perform when laying

out particular container loads. Loaders trying to best each others’ scores should

retain an increased level of engagement while sustaining the friendly competition.

As gamification is an ongoing process that should be constantly evolved over

time to improve the nature of the interaction with users [Zichermann, 2011], a

123

8. Conclusion

system/framework could also be put in place to enable the continuous capture

and analysis of data such as: (i) how easy it is to use the system; (ii) how

effective the learning experience is; (iii) how much faster an inexperienced loader

learns using the gamified system compared to the traditional means; (iv) how

inexperienced loaders’ performance in the gamified system compares to that of

experienced loaders; (v) how much performance obtained in the gamified system

reflects actual real-world performance; and (vi) how much correlation there is

between loading performance in the gamified system and loading performance in

practice. This should help refine the user engagement process and ensure that

the system has a direct impact on the users, ultimately resulting in an increase

in the performance of the loaders in their day-to-day loading activities.

8.3.5 Improving and extending the entropy measure

In the current method for calculating the overall entropy measure for a container

layout (see Chapter 6), the edge weights of the graph representing all the con-

nected items in the layout are what determines the shape of the resulting entropy

tree. In this implementation, the edge weights are calculated as the combined

sum of the selection, rotation and positional entropies. There is room for explor-

ing different implementations that could result in a different shaped entropy tree

e.g. the use of the individual entropy values or a combined sum of any two of the

different entropy values as the edge weight. These different implementations will

result in different calculated edge weights which will, in turn, result in different

overall entropy values. Further experiments would need to be performed to de-

termine if any of these methods are acceptable and produce better results than

the current implementation.

Other thoughts for extending the measure include: (i) significantly reducing

the overhead involved in calculating the entropy relationships between items in

the entropy graph by only connecting items to their nearest neighbours rather

than to all the items present, as items that are farther away add a higher distance

entropy value to the edge weight resulting in a low probability of being selected

during the entropy tree generation; (ii) exploring and giving further thought

to the possibility of the inclusion of weight distribution considerations in the

124

8. Conclusion

calculation of the entropy measure, which might involve some sort of weight

ratio calculation for an item relative to the weight of its nearest neighbours; and

(iii) tweaking the measure to account for and reflect the length of layouts, as the

current implementation sometimes results in layouts with different lengths having

the same entropy measure. As with the initial suggestions above, these will also

need to be tested extensively to determine their suitability for use as a feasible

measure in practice, while keeping in line with the original intended purpose for

the measure.

8.3.6 Extending the entropy-driven Monte Carlo search
to address additional constraints

As the novel approach proposed for guiding Monte Carlo search via the entropy

criterion lends itself to generalisation, further constraints that are pertinent to

real-life situations can be included. Other practical issues such as the weight

distribution of goods laterally and longitudinally across the floor of a container

and legally enforced axle weight limits, can be addressed. Directed Monte Carlo

search provides a means to weight the chosen pallets by multiple criteria, so that

the resultant layouts achieve the optimal combination of characteristics. Gen-

erating guidance by the inclusion of the expert users’ preferences or importance

attached to these criteria will allow this. This inclusion of ‘soft criteria’ is an area

that Bortfeldt and Wäscher [2013] consider has not been sufficiently explored. A

further area that could be studied is the generation of ‘stable’ layouts that have

very minimal or no lateral motion during container transportation in order to

prevent (or reduce) potential damage to goods during transit.

125

Appendix A: Applying
Gamification principles to the
Container Loading Problem

A.1 Introduction

Gamification is a phenomenon that has in the last few years garnered a lot of

attention with numerous applications particularly focusing on productivity and

health fitness. It is defined as the use of game design elements in non-game con-

texts [Deterding et al., 2011a] and is mostly introduced into a system to increase

user experience and user engagement [Deterding et al., 2011b], or to act as the

means of actual user engagement where there is none. The increase in experi-

ence and engagement is considered to be the result of the effects obtained when

leveraging peoples natural desire for learning and accomplishment.

In this chapter, we discuss the application of the principles of gamification to

the container loading system used to assist warehouse operatives during container

loading in the UKDC [see Section 3.1]. We discuss the effects gamification has

on the adoption of the container loading system, and show a systematic build-up

of trust and familiarity over time of the system by the operatives. This increased

user engagement with the system which lead to an increase in system adoption.

We then propose a fully gamified system as an abstraction that provides an

interactive environment for the engagement of warehouse operatives with the un-

derlying complicated algorithms that solve the container loading problem. The

container loading system used in this context refers to the hybrid algorithm de-

scribed in Chapter 4, along with all the elements provided to make the algorithm

accessible to the warehouse operatives so that they are able to interact with it.

126

Appendix A: Applying Gamification principles to the Container
Loading Problem

A.2 Background

The introduction of information technology systems into the workplace to increase

business performance is not a new idea and has its pros and cons. Recent trends

show the application of gamification in this context as a means of increasing and

retaining user engagement with the introduced information technology systems.

In solving the problem faced by the UKDC, we introduced a computerised system

and applied gamification elements to it. Our intention was to increase (and retain)

user engagement with our introduced system, as well as to increase the overall

system adoption.

The UKDC’s problem (described in detail in chapter 3) can be summarised as

that of optimally selecting and loading groups of palletised goods onto containers.

To solve this problem optimally, the UKDC have invested in research towards a

computerised loading optimisation system in a bid to:

• increase overall loading speed;

• reduce the cost of hiring containers by optimally maximising the capacity

of every loaded container to the reduce overall number of containers used

for loading;

• reduce damage to goods that might occur because of non-optimal packing

in the container, therefore reducing costs that might arise from replacing

damaged goods, or customer fines for the receipt of damaged goods;

• provide greater customer satisfaction by speedily processing and loading

customer orders for safe and prompt delivery, and;

• increase warehouse throughput: the more goods that are loaded and sent

out from the warehouse, the higher the warehouses capacity to process new

customer orders with the existing space, which could lead to more business

for the company;

which should have the overall effect of significantly improving business perfor-

mance and raising the competitive edge of the UKDC while providing greater

customer satisfaction.

127

Appendix A: Applying Gamification principles to the Container
Loading Problem

As mentioned briefly earlier, we devised a container loading system for the

UKDC that comprises the devised hybrid algorithm described in chapter 4 and

a number of UI (user interface) elements that support and allow for interaction

with the hybrid algorithm. These UI elements start off as simple and plain

functional elements, that subsequently get upgraded to more engaging elements

in order to encourage and increase interaction with the system. This progression

and change in the UI elements, an example of which is a change from a purely

textual output from the algorithm to graphical colour-coded aesthetically pleasing

container layouts, is described in the subsequent sections of this chapter.

The initial container loading system produced its output as plain textual data

(see Figure A.1), with numbers tersely showing item dimensions, weight, group

membership, and coordinate point locations. The output from the system was

difficult for the operatives to interpret and understand. Hence, the reception of

this initial system by the warehouse operatives was negative. There was also

resistance to the idea that a computer system could produce ‘optimised’ loading

solutions; the popular belief was that a computer could not deal with the com-

plexities involved in satisfying all necessary practical constraints while producing

the container layouts. The system, if it worked, was also seen as something that

would take over the more fulfilling aspects of the jobs of the warehouse operatives

who currently manually work out the selection of pallets for loading and plan the

layouts for the selected pallets in preparation for loading.

Results obtained from initial experiments (see Section 4.5) showed solutions

that consistently achieved 100% container weight utilisation. These results, com-

pared to the average of 85% utilisation obtained manually across historical loading

data, only helped to fuel the already uneasy feelings towards the system.

What these tests did not show at the time was the flexibility that could

be obtained from the solutions provided by the loading system and how these

solutions could greatly complement a warehouse operative’s experience; it was

only later, after the addition of gamification principles to the system, that these

factors became apparent.

128

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.1: Example text output from initial loading system

A.3 Related Work

Information technology systems have long since been introduced into the work-

place to bring about an increase in business performance [Black and Lynch, 2001;

Brynjolfsson and Hitt, 2000]. Studies show however that such introduction does

not always guarantee a positive result [Debrabander and Edstrom, 1977; Ma-

jchrzak and Klein, 1987]. Recent trends show the increased introduction of el-

ements from game design into business computing systems in order to increase

user engagement and improve or guarantee the adoption of the system in question

[Alcivar and Abad, 2016]. This phenomenon, of introducing gaming elements in

a non-gaming context in order to increase engagement, is generally referred to as

gamification.

As gamification research is still in its infancy, several varied definitions exist

for it in literature: Deterding, Nacke, Dixon and Khaled in [Deterding et al.,

2011a, p. 9] define it as “the use of game design elements in non-game contexts”;

Sy, Zichermann and Cunningham in [Sy et al., 2011, p. ix] define it as “using

game-thinking and game mechanics to solve problems and engage audiences”;

Huotari and Hamari in [Huotari and Hamari, 2012, p. 19] define it as “a process

of enhancing a service with affordances for gameful experiences in order to support

user’s overall value creation”; and Werbach and Hunter in [Werbach and Hunter,

2012, p. 26] define it as “the use of game elements and game-design techniques

in non-game contexts”. While the existing definitions might be inconsistent, a

129

Appendix A: Applying Gamification principles to the Container
Loading Problem

standard is emerging that emphasizes the use of “game elements” in “non-gaming

contexts”. To this end, we identify with the definition of gamification as a process

of incorporating game elements, for a specific purpose, into a system in order to

maximise a user’s experience and increase engagement with the system. The

important point in this definition is the presence of a purpose; the game elements

incorporated into a system must have a specific purpose if an improvement in

user engagement and motivation is expected [Alcivar and Abad, 2016].

A highly cited example of the successful application of gamification is Foursqu-

are, a location-based service that allows its users to check in at various locations

using mobile devices. It used badges as a game element to leverage the desire

of people to be connected and saw an increase in the user engagement of their

service. Li et al. [2012] gamified a tutorial system to help new users learn Auto-

CAD. They employed gamification elements such as scoring: to provide feedback

on performance, game levels: to provide a means of progression, missions: to

provide a challenge, and rewards: to motivate users. They recorded an increase

in engagement, enjoyment and performance among their users. McDaniel et al.

[2012] introduced gamification through the use of badges, as a sign of achieve-

ment, into a learning management system to motivate students towards certain

behaviours desired by teaching staff. They observed that feelings of connected-

ness and competition drove students to engage with the system and reported an

increase in engagement. de Marcos et al. [2015] studied the effects of gamifica-

tion on learning performance in an undergraduate course. Their results suggest

a significant positive impact of gamification on learning performance.

In this appendix, we show our attempts at the incremental introduction of

game elements, each to satisfy a pre-determined goal, to a decision support sys-

tem for the sole purpose of increasing user engagement and changing the user’s

perspective towards the system. Indeed, we can say that this process of introduc-

ing game elements into systems to improve engagement and change behaviour

is a common theme across all applications of gamification, as it is an integral

part of its definition. Whether or not an increase in performance or engagement

is achieved is another matter, but the main design goal of the application of

gamification must be to cause such an increase.

130

Appendix A: Applying Gamification principles to the Container
Loading Problem

A.4 Gamification Approach and Experiments

Based on the observed initial attitude towards the loading system, we realised

early the need for a way to initiate and maintain user engagement with the system

in order to increase its adoption. If the system adoption remained low, the system

would be unable to make any impact that could cause any measurable effect on

user or business performance.

The main goal was therefore to ensure an increase in the user engagement

of the loading system. We identified from the literature that the application of

gamification principles was a good fit for this goal, and we set about identifying

areas in the underlying system that could benefit from such principles. Table A.1

shows the gamification sub-goals we set and the eight strategies we identified for

tackling them. In the rest of this section, we discuss the implementation of some

of these strategies and outline some of the observations made when the warehouse

operatives were exposed to the resulting gamified system. The remainder of our

observed results is discussed in the section A.5.

A.4.1 Conventions for visual container layout representa-
tion

Our first steps involved building a visualisation for the text data output of the

loading system (Strategy 1). We also set up naming and colour-coding conven-

tions (see Table A.2) to identify the different types of pallets available for loading.

The naming convention used is based on established names familiar to the ware-

house operatives, and the colours used are easily identifiable primary colours.

The visual representation is provided as a container layout that shows the exact

placement of colour-coded palletised goods within a container (see Figure A.2).

In subsequent interactions with the loading system, all loading operation results

were presented using this visual representation. Our observations of these in-

teractions revealed that our conceived visual representation, while a step in the

right direction, came across as rigid and final to the operatives. This observation

informed the need for a more flexible interactive interface and became the basis

for the identification and implementation of Strategy 2 and Strategy 7.

131

Appendix A: Applying Gamification principles to the Container
Loading Problem

T
ab

le
A

.1
:

G
am

ifi
ca

ti
on

st
ra

te
gi

es
an

d
go

al
s

id
en

ti
fi
ed

fo
r

th
e

sy
st

em

P
ro

b
le

m
G

o
a
l

S
tr

a
te

g
y

S
y
st

em
ad

op
ti

on
is

lo
w

an
d

sy
st

em
ou

tp
u
t

is
d
u
ll
,

n
on

-e
n
ga

gi
n
g

an
d

d
iffi

cu
lt

to
in

te
rp

re
t

A
.

E
n
ga

ge
u
se

rs
v
is

u
al

ly
w

it
h

an
in

tu
it

iv
e

in
te

rf
ac

e
1.

P
re

se
n
t

an
in

te
rf

ac
e

w
it

h
in

tu
it

iv
e

lo
ad

in
g

re
p
re

se
n
ta

ti
on

th
at

is
ea

sy
fo

r
u
se

rs
to

u
se

an
d

u
n
d
er

st
an

d

B
.

R
et

ai
n

u
se

r
en

ga
ge

m
en

t
an

d
m

ak
e

sy
st

em
fu

n
2.

E
n
su

re
th

e
in

te
rf

ac
e

is
si

m
p
le

an
d

ca
n

m
ak

e
lo

ad
in

g
ta

sk
s

fu
n

3.
P

ro
v
id

e
lo

ad
in

g
’c

h
al

le
n
ge

s’
th

at
ca

n
b

e
re

w
ar

d
ed

w
it

h
sp

ec
ia

l
b
ad

ge
s

or
tr

op
h
ie

s

C
.

E
n
co

u
ra

ge
u
se

r
le

ar
n
in

g,
im

p
ro

ve
m

en
t

an
d

k
n
ow

le
d
ge

sh
ar

in
g

4.
Im

p
le

m
en

t
a

sc
or

in
g

sy
st

em
to

le
ve

ra
ge

u
se

r
co

m
p

et
iv

en
es

s
w

h
ic

h
m

ak
es

u
se

rs
w

an
t

to
d
o

b
et

te
r

th
an

ot
h
er

s
at

lo
ad

in
g

ta
sk

s
5.

P
ro

v
id

e
re

p
ea

ta
b
le

ta
sk

s,
w

h
ic

h
ca

n
b

e
u
se

d
in

co
n
ju

n
ct

io
n

w
it

h
sc

or
e

fe
ed

b
ac

k
to

re
in

fo
rc

e
le

ar
n
in

g
6.

R
ec

or
d

co
m

p
le

te
d

u
se

r
ta

sk
s

th
at

ot
h
er

u
se

rs
ca

n
ea

si
ly

ac
ce

ss
an

d
le

ar
n

fr
om

7.
P

ro
v
id

e
u
se

rs
w

it
h

a
w

ay
to

in
te

ra
ct

w
it

h
th

e
re

su
lt

s
fr

om
th

e
lo

ad
in

g
sy

st
em

in
or

d
er

to
al

lo
w

m
o
d
ifi

ca
ti

on
s

th
at

re
su

lt
in

n
ew

so
-

lu
ti

on
s

8.
P

ro
v
id

e
an

in
te

rf
ac

e
th

at
al

lo
w

s
on

e
to

q
u
ic

k
ly

an
d

ea
si

ly
ch

ec
k

if
a

p
ar

ti
cu

la
r

lo
ad

la
yo

u
t

w
il
l

fi
t

in
a

co
n
ta

in
er

132

Appendix A: Applying Gamification principles to the Container
Loading Problem

Table A.2: Defined convention for layout representation

Pallet Type Dimension Ratio Colour

STD 12 x 8 Yellow
NSK 8 x 7 Blue
EURO 10.5 x 8 Red
EURO2 8 x 6 Green

A.4.2 An interface for interactive simulation

In other to provide an interface that would be fun and interesting (Strategy 2),

we decided to build a simulation interface that would incorporate the same visual

representation conventions we had previously defined (see Figure A.3). We made

this interface accessible on a tablet because of its ubiquity and mobility; the

idea being that the warehouse operatives would find it very familiar and easy to

operate. We then presented the simulation interface in a manner that vaguely

resembles the game ‘Tetris’. Altogether, this puts a familiar interface in front

of the complicated algorithms running behind the scenes in the loading system.

As part of the interface design, and in keeping with our defined conventions,

the interactive blocks used to represent palletised goods in the simulation were

sized to scale and colour-coded appropriately. The end result was an interactive

interface that allowed for easy modification of loading layouts in a simulated

container (Strategy 7). We observed in subsequent user interaction a natural

extension to the use of this interface that was not part of its intended design,

being the use of the simulation interface to check if manual loading plans not

generated by the loading system were feasible and could fit completely in the

simulated container. This helped loaders check and reinforce their own loading

knowledge. As part of our continuous evaluation of the system, this observed

interaction helped further inform the gamification goals and became the basis for

the identification and implementation of Strategy 8.

133

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.2: Visual representations for loading system output

A.5 Results and Discussion

Our continuous observation of user interaction with the loading system through-

out the entire gamification process was very informative. In fact, our observations

of certain parts of the process directly informed further actions applied to other

parts of the process.

As the conventions we introduced for the visual representation of the loading

system’s output were easy to understand and relate to, they were easily adopted

by the operatives and internalised; this brought about an increased engagement in

the loading system. This adoption provided a common vocabulary for the loaders

to use to represent loading terms and made it easier for them to understand

and relate to the output of the loading system. It also brought about easier

communication between us, the designers of the system, and the loaders. Loading

problems became easier to discuss as there were no longer any barriers to the

understanding, or the description, of the problem in question as both parties to

the conversation know what every term means and what each colour-coded figure

134

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.3: Interactive simulation interface for the loading system

135

Appendix A: Applying Gamification principles to the Container
Loading Problem

represents. Our visual representation convention has now been internalised so

much that it is used in the day-to-day discussion of general loading activities, not

necessarily related to the loading system, in the warehouse (see Figure A.4).

In our initial gamified representation of the loading system output, users were

presented with loading layouts as seen in Figure A.2. The users often commented

on how the system output was feasible but not how they would have loaded it

themselves. This sentiment was expressed several times by different loaders. We

observed that in the majority of the times this comment was made, the changes

the users would have made to the generated layout were minor, and if these

minor changes could be made, the user’s satisfaction would increase. Using this

feedback, we further gamified the system to produce an interactive simulation

interface. Using the interactive interface, loading plans were no longer set in

stone, and loaders were free to modify the results of loading operations to better

suit their preferred loading style, while still ensuring that the resulting new layout

is feasible. This feature alone caused a significant increase in user engagement

with the system.

A.5.1 Gamified system use cases

As a result of this increased engagement, additional use cases of the gamified

system were identified to include some functionality that was not an intended

part of the original system design.

A.5.1.1 Loading Feasibility Checker

The system can be used to check if a load can fit completely into the simulated

container. As the simulation is built to scale, if the load fits in the simulation,

it will most likely fit in the real world. The users used this functionality often

to check the feasibility of planned loads in the simulation before proceeding with

actual physical loading in the real world. This helped to catch any potential

issues that could occur before actual physical loading is performed, saving time

that would otherwise have been spent trying to rectify the issue. In turn, this

saved costs possibly incurred through loading damage. We remind the reader that

the real-world loading operations involve using forklift trucks to move around

136

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.4: An operative uses our colour scheme when sketching a layout

heavy goods; it is easier, faster and safer to plan out such activities first in

the simulation and then loading, rather than directly proceeding with physical

loading and trying to rectify any issues that develop as they manifest. This

particular complementary behaviour of the system has proven to be very useful

to the operatives.

A.5.1.2 Knowledge Discovery Tool

The system has sometimes generated and presented loading layout patterns that

the loaders have never experienced or implemented before. A common comment

received from the users regarding this behaviour is “I would never have thought

to do it that way”. Some of these interesting loading layouts allow the loaders

to pack more goods onto the container than they previously thought possible;

others introduce entirely new ways of packing loads efficiently. The loaders have

adopted these new patterns and started to apply them practically to their loading

operations in the real-world (see Figure A.5 and Figure A.6).

137

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.5: Loading system representation of an interlocking arrangement of
boxes

A.5.1.3 Training Aid

The system can be used as a training aid for teaching new or inexperienced load-

ers about loading and how to perform loading activities. We observed that this

category of users found it easier to follow explanations of loading activities that

were communicated to them visually. Learning is made easier if the user can

see, instead of imagine, what exactly a load should look like, and what steps

to take to complete a loading activity. The simulation interface provides such a

visual communication interface that can help make loading activities more tan-

gible. It also provides immediate feedback, scenario testing, and the opportunity

to make mistakes with no real-world impact, which can be invaluable to a learner.

In the long run, we observed that continuous interaction with the gamified system:

checking the feasibility of loading plans, explaining loading concepts, experiment-

ing with alternative plans for the same load, gradually brought about trust in the

system. The users had over time come to rely on the output of the system and

138

Appendix A: Applying Gamification principles to the Container
Loading Problem

Figure A.6: A loaders real-world representation of a loading plan using the same
interlocking arrangement

on its capability to help check the feasibility of their own work. The system

was now seen in a different perspective as an assistive technology brought in to

complement their own effort and to help them perform their job more effectively.

We acknowledge that making the system easily accessible and interactive played

an important role in engaging users; creating a simulation interface to present

the cryptic output of the complicated algorithms as easily accessible interactive

layouts helped to significantly increase system adoption.

Overall, the application of gamification principles and the manner of our ap-

proach has had a very positive effect on the use of the underlying loading system to

which we applied the principles. The gamified system has increased, and contin-

ues to retain, user engagement and has provided a fun and engaging environment

for performing serious loading tasks and activities.

139

Appendix A: Applying Gamification principles to the Container
Loading Problem

A.6 Conclusion

The majority of the studies on gamification tend to generally indicate a positive

effect on the system that is gamified; this is however highly dependent on the con-

text in which the gamification is applied and on the users of the gamified system

[Groh, 2012; Hamari et al., 2014]. We have taken specific gamification principles

and applied them to the industrial context of a warehouse environment, with

warehouse operatives as the users of the system. Our preliminary investigations

revealed that the introduction of the gamification principles had a very positive

effect on the adoption of the underlying container loading system. Prior to the

introduction of gamification principles, the adoption of the system was poor with

warehouse operatives being wary of a system they saw as a potential replacement

for themselves and their work. Gamifying the system helped changed this per-

ception over time by presenting the system in a less threatening manner as an

engaging environment where serious work and learning intersect with fun. This

gamified user interface on top of the system helped break down perceived barriers

that had previously been set up, and helped the loaders see the system as it was

intended, as an assistive system to help complement their loading operations and

thus increase their overall performance.

140

Appendix B: Verified Hybrid
Algorithm solutions

The data presented in the following table (Table B.1) represents solutions ob-

tained from the hybrid algorithm presented in Chapter 4. Each row in the table

represents a solution found by the algorithm i.e. the total number of pallet types

selected that the algorithm found to fit in the container. There are 50 of such so-

lutions presented in the table. Each of the solutions was found to obtain a weight

utilisation of 100%. These results were validated and confirmed by experienced

warehouse operatives.

Table B.1: Summary of 50 solutions confirmed to have 100% utilisation

Solutions
Number of Pallet Types

Total Pallets
EURO2 STD NSK EURO

1 1 48 22 3 74

2 1 42 11 11 65

3 0 49 14 5 68

4 0 36 20 9 65

5 0 42 22 3 67

6 1 39 20 3 63

7 2 36 25 3 66

8 1 25 32 2 60

9 1 28 28 3 60

10 1 23 31 3 58

11 0 23 33 6 62

141

Appendix B: Verified Hybrid Algorithm solutions

12 1 22 24 11 58

13 0 28 31 6 65

14 0 30 25 12 67

15 2 40 24 6 72

16 2 41 26 2 71

17 0 48 18 2 68

18 0 39 16 13 68

19 0 36 20 9 65

20 3 27 22 7 59

21 3 25 26 6 60

22 0 24 28 7 59

23 2 16 17 16 51

24 3 19 27 7 56

25 4 21 29 6 60

26 3 16 32 6 57

27 3 24 28 5 60

28 5 19 27 0 51

29 5 21 32 3 61

30 5 21 35 1 62

31 3 49 16 3 71

32 4 32 14 13 63

33 5 34 20 5 64

34 3 40 22 2 67

35 3 19 22 14 58

36 2 32 21 6 61

37 3 40 15 6 64

38 0 32 20 6 58

39 2 21 18 12 53

40 1 22 25 7 55

41 3 35 22 2 62

42 1 20 13 19 53

43 1 27 26 3 57

142

Appendix B: Verified Hybrid Algorithm solutions

44 3 22 22 10 57

45 4 23 28 3 58

46 5 20 24 3 52

47 3 25 27 3 58

48 2 25 28 3 58

49 1 42 8 13 64

50 5 20 33 1 59

143

Appendix C: Hybrid Algorithm
Problem Sets

The following tables present the data for the 15 problem sets used to evaluate

the hybrid algorithm in the experiments presented in Chapter 4.

Table C.1: Problem Set #1

Pallet number Weight Length Breadth Height

JOB0001/00001 381 120 81 78

JOB0001/00002 487 105 75 61

JOB0001/00003 597 105 75 73

JOB0001/00004 380 105 75 56

JOB0001/00005 497 105 75 69

JOB0001/00006 279 80 70 81

JOB0001/00007 306 80 70 72

JOB0001/00008 655 120 81 69

JOB0001/00009 561 105 75 73

JOB0001/00010 810 105 75 72

JOB0001/00011 718 105 75 73

JOB0001/00012 325 105 75 56

JOB0001/00013 479 105 75 61

JOB0001/00014 228 80 70 72

JOB0001/00015 433 80 70 79

JOB0002/00001 523 120 81 62

Continued on next page

144

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0002/00002 699 120 81 74

JOB0002/00003 608 120 81 76

JOB0002/00004 551 120 81 76

JOB0002/00005 648 120 81 88

JOB0002/00006 662 120 81 77

JOB0002/00007 729 120 81 76

JOB0002/00008 503 120 81 76

JOB0002/00009 513 120 81 76

JOB0002/00010 852 120 81 78

JOB0002/00011 353 80 70 71

JOB0002/00012 815 120 81 94

JOB0003/00001 176 80 70 45

JOB0003/00002 362 80 70 74

JOB0003/00003 358 80 70 74

JOB0003/00004 296 80 70 74

JOB0003/00005 614 80 70 74

JOB0003/00006 467 120 81 60

JOB0003/00007 227 80 70 58

JOB0004/00001 52 80 60 30

JOB0005/00001 577 105 75 87

JOB0005/00002 577 105 75 87

JOB0005/00003 46 80 60 36

JOB0006/00001 66 80 60 28

JOB0007/00001 551 120 81 72

JOB0007/00002 564 120 81 73

JOB0007/00003 508 80 70 75

JOB0007/00004 459 80 70 75

JOB0007/00005 282 80 70 75

JOB0007/00006 351 80 70 75

JOB0007/00007 378 80 70 75

Continued on next page

145

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00008 393 80 70 84

JOB0007/00009 412 80 70 96

JOB0007/00010 447 80 70 75

JOB0007/00011 498 80 70 75

JOB0007/00012 349 80 70 86

JOB0007/00013 393 80 70 81

JOB0007/00014 329 80 70 80

JOB0007/00015 563 120 81 70

JOB0007/00016 618 105 75 70

JOB0008/00001 400 105 75 63

JOB0008/00002 204 80 70 49

JOB0008/00003 163 80 70 66

JOB0009/00001 360 80 70 77

JOB0009/00002 241 80 70 75

JOB0009/00003 363 80 70 73

JOB0009/00004 372 80 70 73

JOB0009/00005 337 80 70 73

JOB0009/00006 549 105 75 71

JOB0009/00007 406 80 70 72

JOB0009/00008 331 80 70 72

JOB0009/00009 543 105 75 72

JOB0009/00010 342 80 70 76

JOB0009/00011 464 80 70 73

JOB0009/00012 303 80 70 76

JOB0009/00013 757 105 75 83

JOB0009/00014 387 80 70 72

JOB0009/00015 340 80 70 72

JOB0009/00016 298 80 70 72

JOB0009/00017 735 105 75 84

JOB0010/00001 294 80 70 74

Continued on next page

146

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0010/00002 592 105 75 71

JOB0010/00003 391 80 70 92

JOB0010/00004 279 80 70 72

JOB0010/00005 401 120 81 76

JOB0010/00006 495 105 75 69

JOB0011/00001 308 80 70 81

JOB0011/00002 296 80 70 81

JOB0011/00003 418 80 70 73

JOB0011/00004 522 105 75 72

JOB0011/00005 693 105 75 86

JOB0011/00006 336 80 70 79

JOB0011/00007 633 105 75 75

JOB0011/00008 590 105 75 79

JOB0011/00009 600 105 75 71

JOB0011/00010 600 105 75 71

JOB0011/00011 599 105 75 71

JOB0011/00012 345 80 70 63

JOB0011/00013 503 105 75 61

JOB0011/00014 600 105 75 71

JOB0011/00015 534 105 75 72

JOB0011/00016 740 105 75 71

JOB0011/00017 435 80 70 73

JOB0012/00001 292 80 70 58

JOB0012/00002 700 120 81 60

JOB0012/00003 676 120 81 76

JOB0012/00004 816 120 81 76

JOB0012/00005 503 120 81 60

JOB0012/00006 601 80 70 92

JOB0012/00007 700 120 81 76

JOB0012/00008 660 120 81 76

Continued on next page

147

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0012/00009 661 120 81 92

JOB0012/00010 292 80 70 73

JOB0012/00011 407 80 70 69

JOB0012/00012 619 120 81 76

JOB0012/00013 459 120 81 61

JOB0013/00001 268 80 70 64

JOB0013/00002 515 105 75 72

JOB0013/00003 552 105 75 73

JOB0013/00004 555 105 75 72

JOB0013/00005 346 105 75 47

JOB0013/00006 264 105 75 69

JOB0013/00007 416 105 75 58

JOB0013/00008 403 105 75 58

JOB0013/00009 261 80 70 76

JOB0013/00010 371 80 70 95

JOB0013/00011 156 80 70 60

JOB0013/00012 549 120 81 76

JOB0014/00001 776 105 75 81

JOB0014/00002 332 105 75 56

JOB0014/00003 418 80 70 99

JOB0014/00004 553 105 75 65

JOB0014/00005 352 80 70 73

JOB0014/00006 450 105 75 56

JOB0014/00007 261 80 70 64

JOB0014/00008 500 105 75 56

JOB0014/00009 924 105 75 85

JOB0014/00010 440 105 75 56

JOB0014/00011 653 105 75 70

JOB0014/00012 322 80 70 74

JOB0014/00013 393 80 70 91

Continued on next page

148

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0014/00014 310 80 70 66

JOB0015/00001 316 80 70 74

JOB0015/00002 331 80 70 74

JOB0015/00003 308 80 70 74

JOB0015/00004 281 80 70 71

JOB0015/00005 296 80 70 73

JOB0015/00006 441 80 70 89

JOB0015/00007 347 80 70 74

JOB0015/00008 317 80 70 74

JOB0015/00009 319 80 70 74

JOB0015/00010 154 80 70 51

JOB0015/00011 400 80 70 74

JOB0015/00012 258 80 70 59

JOB0015/00013 366 80 70 74

JOB0015/00014 184 80 70 67

JOB0015/00015 345 80 70 74

JOB0015/00016 343 80 70 74

JOB0015/00017 349 80 70 74

JOB0015/00018 368 80 70 73

JOB0015/00019 276 80 70 73

JOB0015/00020 276 80 70 73

JOB0015/00021 74 80 70 39

JOB0016/00001 309 80 70 79

JOB0016/00002 282 80 70 66

JOB0016/00003 306 80 70 78

JOB0016/00004 499 105 75 59

JOB0016/00005 617 105 75 71

JOB0016/00006 418 105 75 59

JOB0016/00007 238 80 70 79

JOB0016/00008 420 105 75 59

Continued on next page

149

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00009 619 105 75 71

JOB0016/00010 628 105 75 74

JOB0016/00011 617 105 75 71

JOB0016/00012 479 105 75 59

JOB0016/00013 605 105 75 71

JOB0016/00014 279 105 75 71

JOB0016/00015 196 80 70 49

JOB0016/00016 783 105 75 71

JOB0016/00017 645 105 75 73

JOB0017/00001 737 105 75 82

JOB0017/00002 736 105 75 82

JOB0017/00003 737 105 75 82

JOB0017/00004 409 80 70 84

JOB0017/00005 355 80 70 83

JOB0017/00006 402 80 70 83

JOB0017/00007 640 105 75 81

JOB0017/00008 656 105 75 81

JOB0017/00009 316 105 75 72

JOB0017/00010 733 105 75 82

JOB0017/00011 732 105 75 82

JOB0017/00012 212 80 70 77

JOB0017/00013 231 80 70 73

JOB0017/00014 584 105 75 83

JOB0017/00015 416 105 75 72

JOB0018/00001 616 105 75 72

JOB0018/00002 600 105 75 72

JOB0018/00003 125 80 60 46

JOB0018/00004 361 80 70 84

JOB0018/00005 472 80 70 92

JOB0018/00006 352 80 70 82

Continued on next page

150

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00007 583 105 75 71

JOB0018/00008 680 105 75 73

JOB0018/00009 370 80 70 83

JOB0019/00001 335 80 70 83

JOB0019/00002 444 80 70 83

JOB0019/00003 307 80 70 73

JOB0019/00004 825 120 81 82

JOB0019/00005 315 80 70 81

JOB0019/00006 286 80 70 76

JOB0019/00007 250 80 70 72

JOB0019/00008 389 120 81 83

JOB0019/00009 683 105 75 82

JOB0019/00010 484 105 75 63

JOB0019/00011 230 105 75 41

JOB0019/00012 441 105 75 71

JOB0019/00013 696 105 75 82

JOB0019/00014 75 80 70 43

JOB0020/00001 193 80 70 60

JOB0020/00002 363 105 75 61

JOB0020/00003 394 80 70 82

JOB0020/00004 254 80 70 62

JOB0020/00005 484 105 75 62

JOB0020/00006 594 105 75 77

JOB0020/00007 212 80 70 60

JOB0020/00008 189 80 70 65

JOB0020/00009 446 105 75 56

JOB0020/00010 539 105 75 65

JOB0020/00011 613 105 75 75

JOB0020/00012 608 105 75 72

JOB0020/00013 598 105 75 72

Continued on next page

151

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0020/00014 208 80 60 66

JOB0020/00015 555 105 75 70

JOB0020/00016 559 105 75 72

JOB0021/00001 599 120 81 74

JOB0021/00002 709 105 75 72

JOB0021/00003 708 105 75 72

JOB0021/00004 341 80 70 89

JOB0021/00005 620 105 75 72

JOB0021/00006 641 105 75 72

JOB0021/00007 563 120 81 67

JOB0021/00008 663 105 75 71

JOB0021/00009 639 105 75 72

JOB0021/00010 522 105 75 71

JOB0021/00011 329 80 70 73

JOB0021/00012 227 80 70 76

JOB0021/00013 291 80 70 76

JOB0021/00014 291 80 70 51

JOB0021/00015 348 80 70 78

JOB0021/00016 506 80 70 76

JOB0021/00017 586 105 75 71

JOB0021/00018 328 80 70 82

JOB0021/00019 518 105 75 71

JOB0021/00020 494 80 70 76

JOB0021/00021 353 80 70 73

JOB0021/00022 234 80 70 76

JOB0021/00023 260 80 70 73

JOB0021/00024 234 80 70 73

JOB0021/00025 331 80 70 73

JOB0021/00026 378 80 70 76

JOB0021/00027 354 80 70 87

Continued on next page

152

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0022/00001 279 80 70 85

JOB0022/00002 290 80 70 85

JOB0022/00003 325 80 70 84

JOB0022/00004 237 80 70 74

JOB0022/00005 355 80 70 88

JOB0022/00006 350 80 70 96

JOB0022/00007 348 80 70 78

JOB0022/00008 396 80 70 84

JOB0022/00009 331 80 70 79

JOB0022/00010 358 105 75 67

JOB0022/00011 317 80 70 74

JOB0022/00012 398 80 70 85

JOB0022/00013 394 80 70 84

JOB0022/00014 398 105 75 61

JOB0022/00015 399 80 70 84

JOB0022/00016 362 120 81 78

JOB0022/00017 528 105 75 91

JOB0023/00001 679 120 81 90

JOB0023/00002 783 105 75 86

JOB0023/00003 188 80 70 62

JOB0023/00004 742 105 75 71

JOB0023/00005 268 80 70 58

JOB0023/00006 334 80 70 79

JOB0023/00007 656 105 75 85

JOB0023/00008 308 80 70 83

JOB0023/00009 725 105 75 84

JOB0023/00010 726 105 75 84

JOB0023/00011 399 80 70 88

JOB0023/00012 348 80 70 72

JOB0023/00013 348 80 70 72

Continued on next page

153

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0023/00014 176 80 70 44

JOB0024/00001 435 80 70 92

JOB0024/00002 614 105 75 76

JOB0024/00003 263 80 70 57

JOB0024/00004 317 80 70 78

JOB0024/00005 642 105 75 77

JOB0024/00006 306 80 70 79

JOB0024/00007 502 80 70 92

JOB0025/00001 324 80 70 79

JOB0025/00002 443 80 70 90

JOB0025/00003 433 80 70 82

JOB0025/00004 323 80 70 59

JOB0025/00005 795 120 81 75

JOB0025/00006 573 105 75 82

JOB0025/00007 666 120 81 79

JOB0025/00008 602 105 75 76

JOB0025/00009 620 105 75 68

JOB0025/00010 586 105 75 71

JOB0026/00001 477 80 70 87

JOB0026/00002 341 105 75 47

JOB0026/00003 601 105 75 70

JOB0026/00004 578 105 75 74

JOB0026/00005 442 80 70 94

JOB0026/00006 848 105 75 89

JOB0026/00007 268 80 70 71

JOB0026/00008 336 80 70 76

JOB0026/00009 232 80 70 72

JOB0027/00001 670 105 75 75

JOB0027/00002 281 105 75 66

JOB0027/00003 368 105 75 83

Continued on next page

154

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0027/00004 534 105 75 71

JOB0027/00005 455 105 75 71

JOB0027/00006 371 80 70 78

JOB0027/00007 280 105 75 66

JOB0027/00008 535 105 75 71

JOB0027/00009 596 105 75 71

JOB0027/00010 595 105 75 71

JOB0027/00011 534 105 75 71

JOB0027/00012 504 105 75 76

JOB0027/00013 536 105 75 71

JOB0027/00014 386 105 75 87

JOB0027/00015 364 80 70 79

JOB0027/00016 201 80 70 46

JOB0028/00001 281 80 70 92

JOB0028/00002 400 80 70 67

JOB0028/00003 778 105 75 71

JOB0028/00004 209 80 70 62

JOB0028/00005 359 80 70 83

JOB0028/00006 339 80 70 84

JOB0028/00007 460 80 70 94

JOB0028/00008 403 105 75 87

JOB0028/00009 311 105 75 71

JOB0029/00001 169 80 70 59

JOB0029/00002 306 80 70 76

JOB0029/00003 875 120 81 76

JOB0030/00001 359 80 70 75

JOB0030/00002 486 80 70 88

JOB0030/00003 630 105 75 80

JOB0030/00004 516 105 75 70

JOB0030/00005 651 105 75 74

Continued on next page

155

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0030/00006 464 105 75 74

JOB0030/00007 490 105 75 60

JOB0030/00008 379 105 75 57

JOB0030/00009 291 80 70 73

JOB0031/00001 237 80 70 61

JOB0031/00002 352 80 70 72

JOB0031/00003 443 105 75 64

JOB0031/00004 702 105 75 83

JOB0031/00005 476 80 70 96

JOB0031/00006 335 80 70 73

JOB0031/00007 581 105 75 79

JOB0031/00008 391 105 75 65

JOB0031/00009 607 105 75 64

JOB0032/00001 238 80 70 77

JOB0032/00002 412 105 75 69

JOB0032/00003 613 105 75 79

JOB0032/00004 217 80 70 64

JOB0032/00005 198 80 70 59

JOB0032/00006 389 80 70 76

JOB0032/00007 309 80 70 79

JOB0032/00008 358 80 70 66

JOB0032/00009 341 80 70 75

JOB0033/00001 14 80 60 31

JOB0034/00001 36 80 60 29

JOB0035/00001 220 120 81 38

JOB0036/00001 370 80 70 59

JOB0036/00002 880 105 75 92

JOB0036/00003 536 105 75 71

JOB0036/00004 580 120 81 72

JOB0036/00005 812 105 75 70

Continued on next page

156

Appendix C: Hybrid Algorithm Problem Sets

Table C.1 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0036/00006 304 80 70 76

JOB0036/00007 800 105 75 70

JOB0036/00008 798 105 75 70

JOB0036/00009 348 80 70 64

JOB0036/00010 288 80 70 63

JOB0037/00001 325 80 70 77

JOB0037/00002 458 80 70 87

JOB0037/00003 937 105 75 85

JOB0037/00004 340 80 70 88

JOB0037/00005 280 105 75 71

JOB0037/00006 229 105 75 51

JOB0037/00007 983 105 75 85

JOB0037/00008 513 105 75 57

JOB0037/00009 709 105 75 70

157

Appendix C: Hybrid Algorithm Problem Sets

Table C.2: Problem Set #2

Pallet number Weight Length Breadth Height

JOB0001/00001 354 80 70 55

JOB0001/00002 589 120 81 63

JOB0001/00003 589 120 81 63

JOB0001/00004 586 120 81 63

JOB0001/00005 589 120 81 63

JOB0001/00006 590 120 81 63

JOB0001/00007 591 120 81 63

JOB0001/00008 241 80 70 61

JOB0001/00009 312 80 70 75

JOB0001/00010 410 80 70 75

JOB0001/00011 306 80 70 75

JOB0001/00012 898 120 81 75

JOB0001/00013 198 80 70 58

JOB0001/00014 201 80 70 59

JOB0001/00015 923 120 81 75

JOB0002/00001 351 120 81 64

JOB0002/00002 378 80 70 80

JOB0002/00003 398 80 70 75

JOB0002/00004 459 80 70 75

JOB0002/00005 468 80 70 75

JOB0003/00001 371 105 75 68

JOB0003/00002 643 105 75 72

JOB0003/00003 322 80 70 87

JOB0003/00004 327 105 75 75

JOB0003/00005 600 105 75 72

JOB0003/00006 328 80 70 84

JOB0003/00007 212 80 70 77

JOB0003/00008 269 105 75 74

Continued on next page

158

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00009 310 80 70 87

JOB0003/00010 330 105 75 75

JOB0003/00011 369 80 70 78

JOB0003/00012 578 105 75 73

JOB0003/00013 566 105 75 72

JOB0003/00014 225 80 70 56

JOB0003/00015 331 80 70 73

JOB0003/00016 172 80 70 72

JOB0003/00017 179 80 70 69

JOB0004/00001 212 80 70 62

JOB0004/00002 304 80 70 73

JOB0004/00003 282 80 70 76

JOB0004/00004 310 80 70 75

JOB0004/00005 306 80 70 88

JOB0004/00006 136 80 70 60

JOB0004/00007 522 105 75 69

JOB0004/00008 303 80 70 74

JOB0005/00001 503 105 75 72

JOB0006/00001 179 80 70 79

JOB0006/00002 452 80 70 87

JOB0007/00001 384 105 75 57

JOB0007/00002 563 105 75 67

JOB0008/00001 558 120 81 61

JOB0008/00002 341 80 70 74

JOB0008/00003 296 80 70 74

JOB0009/00001 63 80 60 35

JOB0010/00001 23 80 60 50

JOB0011/00001 128 80 70 50

JOB0011/00002 248 80 70 64

JOB0011/00003 279 80 70 81

Continued on next page

159

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00004 276 80 70 79

JOB0011/00005 253 80 70 64

JOB0011/00006 504 105 75 72

JOB0011/00007 392 120 81 50

JOB0011/00008 560 120 81 83

JOB0012/00001 173 80 70 46

JOB0012/00002 328 80 70 95

JOB0012/00003 374 80 70 85

JOB0012/00004 455 80 70 98

JOB0012/00005 249 80 70 82

JOB0012/00006 364 80 70 89

JOB0012/00007 174 105 75 71

JOB0012/00008 223 105 75 71

JOB0012/00009 194 120 81 64

JOB0012/00010 520 105 75 72

JOB0012/00011 366 80 70 95

JOB0013/00001 312 80 70 77

JOB0013/00002 524 120 81 70

JOB0013/00003 582 105 75 64

JOB0013/00004 766 105 75 79

JOB0013/00005 756 105 75 79

JOB0013/00006 590 120 81 77

JOB0013/00007 677 105 75 71

JOB0013/00008 742 105 75 71

JOB0013/00009 164 80 70 64

JOB0013/00010 228 105 75 64

JOB0013/00011 300 105 75 75

JOB0013/00012 380 105 75 84

JOB0013/00013 268 105 75 71

JOB0013/00014 268 105 75 71

Continued on next page

160

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0013/00015 545 120 81 88

JOB0013/00016 698 105 75 83

JOB0014/00001 242 80 70 60

JOB0014/00002 662 120 81 79

JOB0014/00003 731 120 81 82

JOB0014/00004 396 80 70 93

JOB0014/00005 397 80 70 76

JOB0014/00006 733 105 75 70

JOB0014/00007 506 120 81 80

JOB0014/00008 273 80 70 87

JOB0015/00001 597 120 81 89

JOB0015/00002 386 80 70 92

JOB0015/00003 858 120 81 90

JOB0015/00004 248 80 70 52

JOB0015/00005 369 80 70 73

JOB0015/00006 349 80 70 64

JOB0015/00007 332 80 70 73

JOB0015/00008 333 80 70 73

JOB0015/00009 562 105 75 70

JOB0015/00010 600 105 75 70

JOB0015/00011 661 105 75 70

JOB0015/00012 505 105 75 70

JOB0015/00013 680 105 75 71

JOB0015/00014 666 105 75 70

JOB0016/00001 94 80 70 29

JOB0017/00001 20 80 60 27

JOB0018/00001 77 80 70 30

JOB0019/00001 443 105 75 64

JOB0020/00001 166 80 70 78

JOB0020/00002 388 80 70 84

Continued on next page

161

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0020/00003 417 80 70 92

JOB0020/00004 464 80 70 96

JOB0020/00005 299 80 70 63

JOB0020/00006 543 105 75 75

JOB0020/00007 350 80 70 90

JOB0020/00008 296 80 70 89

JOB0021/00001 294 80 70 82

JOB0021/00002 450 105 75 80

JOB0021/00003 169 80 70 63

JOB0021/00004 431 120 81 61

JOB0021/00005 580 105 75 70

JOB0021/00006 609 105 75 74

JOB0021/00007 241 80 70 65

JOB0021/00008 601 105 75 74

JOB0021/00009 428 80 70 82

JOB0021/00010 222 80 70 65

JOB0021/00011 327 80 70 74

JOB0021/00012 222 80 70 75

JOB0021/00013 760 105 75 89

JOB0021/00014 549 105 75 72

JOB0021/00015 474 105 75 72

JOB0022/00001 298 80 70 76

JOB0022/00002 342 105 75 71

JOB0022/00003 294 80 70 76

JOB0022/00004 296 80 70 74

JOB0022/00005 494 80 70 83

JOB0022/00006 392 80 70 75

JOB0022/00007 407 80 70 92

JOB0022/00008 394 80 70 77

JOB0022/00009 477 105 75 71

Continued on next page

162

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0022/00010 346 80 70 73

JOB0022/00011 186 80 70 75

JOB0022/00012 354 80 70 73

JOB0022/00013 411 80 70 74

JOB0022/00014 222 80 70 44

JOB0022/00015 115 80 60 47

JOB0023/00001 365 80 70 75

JOB0023/00002 625 105 75 60

JOB0023/00003 612 105 75 82

JOB0023/00004 404 105 75 57

JOB0023/00005 348 80 70 91

JOB0023/00006 627 105 75 61

JOB0023/00007 459 105 75 86

JOB0023/00008 357 105 75 71

JOB0023/00009 366 120 81 65

JOB0023/00010 244 80 70 65

JOB0023/00011 356 80 70 92

JOB0023/00012 445 80 70 97

JOB0023/00013 503 105 75 65

JOB0024/00001 551 105 75 72

JOB0024/00002 262 80 70 70

JOB0024/00003 605 105 75 71

JOB0024/00004 369 105 75 56

JOB0024/00005 641 105 75 71

JOB0024/00006 451 105 75 60

JOB0024/00007 374 105 75 60

JOB0024/00008 377 80 70 73

JOB0024/00009 407 80 70 73

JOB0024/00010 358 80 70 86

JOB0024/00011 624 120 81 85

Continued on next page

163

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0024/00012 766 105 75 72

JOB0025/00001 61 80 70 58

JOB0025/00002 500 80 70 83

JOB0025/00003 318 80 70 73

JOB0025/00004 803 105 75 81

JOB0025/00005 357 105 75 62

JOB0025/00006 478 105 75 65

JOB0025/00007 594 105 75 79

JOB0025/00008 421 80 70 80

JOB0025/00009 320 80 70 89

JOB0025/00010 432 80 70 73

JOB0025/00011 204 80 70 56

JOB0025/00012 173 80 70 49

JOB0026/00001 296 80 70 80

JOB0026/00002 341 80 70 72

JOB0026/00003 280 80 70 72

JOB0026/00004 479 80 70 91

JOB0026/00005 577 105 75 72

JOB0026/00006 116 105 75 56

JOB0026/00007 346 80 70 82

JOB0026/00008 500 105 75 72

JOB0026/00009 429 80 70 81

JOB0026/00010 337 80 70 72

JOB0026/00011 347 80 70 72

JOB0026/00012 360 80 70 70

JOB0026/00013 330 80 70 75

JOB0026/00014 431 80 70 73

JOB0027/00001 487 80 70 76

JOB0027/00002 492 80 70 84

JOB0027/00003 383 80 70 74

Continued on next page

164

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0027/00004 249 80 70 64

JOB0027/00005 357 80 70 79

JOB0027/00006 323 80 70 81

JOB0027/00007 293 80 70 61

JOB0027/00008 265 80 70 74

JOB0027/00009 515 105 75 72

JOB0027/00010 261 105 75 76

JOB0027/00011 629 105 75 72

JOB0027/00012 486 105 75 73

JOB0027/00013 269 80 70 72

JOB0027/00014 167 80 70 76

JOB0027/00015 244 80 70 63

JOB0028/00001 535 105 75 71

JOB0028/00002 252 80 70 64

JOB0028/00003 300 80 70 73

JOB0028/00004 244 80 70 73

JOB0028/00005 400 80 70 72

JOB0028/00006 379 80 70 82

JOB0028/00007 322 80 70 75

JOB0028/00008 370 80 70 61

JOB0028/00009 345 80 70 73

JOB0028/00010 440 80 70 79

JOB0028/00011 440 80 70 81

JOB0028/00012 405 105 75 63

JOB0029/00001 547 105 75 80

JOB0029/00002 273 80 70 65

JOB0029/00003 377 105 75 62

JOB0029/00004 279 80 70 61

JOB0029/00005 278 105 75 63

JOB0029/00006 513 105 75 75

Continued on next page

165

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0029/00007 382 105 75 74

JOB0029/00008 175 80 70 64

JOB0029/00009 407 80 70 87

JOB0029/00010 332 80 70 82

JOB0030/00001 703 120 81 63

JOB0030/00002 524 120 81 63

JOB0030/00003 703 120 81 63

JOB0030/00004 770 120 81 79

JOB0031/00001 241 105 75 71

JOB0031/00002 230 105 75 51

JOB0031/00003 254 105 75 72

JOB0031/00004 256 105 75 72

JOB0031/00005 167 80 70 81

JOB0031/00006 253 105 75 72

JOB0031/00007 199 80 70 51

JOB0031/00008 131 105 75 36

JOB0031/00009 369 105 75 64

JOB0032/00001 355 80 70 74

JOB0032/00002 176 80 60 53

JOB0032/00003 382 80 70 74

JOB0032/00004 569 120 81 77

JOB0032/00005 282 80 70 60

JOB0032/00006 380 80 70 73

JOB0032/00007 418 80 70 74

JOB0032/00008 320 80 70 74

JOB0032/00009 248 80 70 59

JOB0032/00010 852 120 81 69

JOB0032/00011 530 120 81 60

JOB0032/00012 618 120 81 69

JOB0032/00013 806 120 81 69

Continued on next page

166

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0032/00014 351 120 81 53

JOB0032/00015 767 120 81 83

JOB0033/00001 428 80 70 90

JOB0033/00002 511 120 81 63

JOB0033/00003 410 120 81 55

JOB0033/00004 511 120 81 63

JOB0033/00005 297 80 70 84

JOB0034/00001 269 80 70 67

JOB0034/00002 396 80 70 74

JOB0034/00003 208 80 70 74

JOB0034/00004 256 80 70 74

JOB0034/00005 171 80 70 69

JOB0034/00006 320 80 70 62

JOB0034/00007 632 105 75 71

JOB0034/00008 311 80 70 78

JOB0034/00009 180 80 70 54

JOB0034/00010 271 80 70 64

JOB0034/00011 235 80 70 66

JOB0034/00012 261 80 70 57

JOB0035/00001 391 80 70 80

JOB0035/00002 429 80 70 73

JOB0035/00003 366 80 70 73

JOB0035/00004 317 80 70 81

JOB0035/00005 410 80 70 98

JOB0035/00006 222 80 70 80

JOB0035/00007 500 80 70 98

JOB0035/00008 234 80 70 66

JOB0035/00009 717 105 75 71

JOB0035/00010 389 80 70 73

JOB0035/00011 322 80 70 91

Continued on next page

167

Appendix C: Hybrid Algorithm Problem Sets

Table C.2 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0035/00012 421 80 70 85

168

Appendix C: Hybrid Algorithm Problem Sets

Table C.3: Problem Set #3

Pallet number Weight Length Breadth Height

JOB0001/00001 360 80 70 77

JOB0001/00002 241 80 70 75

JOB0001/00003 363 80 70 73

JOB0001/00004 372 80 70 73

JOB0001/00005 337 80 70 73

JOB0001/00006 549 105 75 71

JOB0001/00007 406 80 70 72

JOB0001/00008 331 80 70 72

JOB0001/00009 543 105 75 72

JOB0001/00010 342 80 70 76

JOB0001/00011 464 80 70 73

JOB0001/00012 303 80 70 76

JOB0001/00013 757 105 75 83

JOB0001/00014 387 80 70 72

JOB0001/00015 340 80 70 72

JOB0001/00016 298 80 70 72

JOB0001/00017 735 105 75 84

JOB0002/00001 294 80 70 74

JOB0002/00002 592 105 75 71

JOB0002/00003 391 80 70 92

JOB0002/00004 279 80 70 72

JOB0002/00005 401 120 81 76

JOB0002/00006 495 105 75 69

JOB0003/00001 308 80 70 81

JOB0003/00002 296 80 70 81

JOB0003/00003 418 80 70 73

JOB0003/00004 522 105 75 72

JOB0003/00005 693 105 75 86

Continued on next page

169

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00006 336 80 70 79

JOB0003/00007 633 105 75 75

JOB0003/00008 590 105 75 79

JOB0003/00009 600 105 75 71

JOB0003/00010 600 105 75 71

JOB0003/00011 599 105 75 71

JOB0003/00012 345 80 70 63

JOB0003/00013 503 105 75 61

JOB0003/00014 600 105 75 71

JOB0003/00015 534 105 75 72

JOB0003/00016 740 105 75 71

JOB0003/00017 435 80 70 73

JOB0004/00001 292 80 70 58

JOB0004/00002 700 120 81 60

JOB0004/00003 676 120 81 76

JOB0004/00004 816 120 81 76

JOB0004/00005 503 120 81 60

JOB0004/00006 601 80 70 92

JOB0004/00007 700 120 81 76

JOB0004/00008 660 120 81 76

JOB0004/00009 661 120 81 92

JOB0004/00010 292 80 70 73

JOB0004/00011 407 80 70 69

JOB0004/00012 619 120 81 76

JOB0004/00013 459 120 81 61

JOB0005/00001 268 80 70 64

JOB0005/00002 515 105 75 72

JOB0005/00003 552 105 75 73

JOB0005/00004 555 105 75 72

JOB0005/00005 346 105 75 47

Continued on next page

170

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0005/00006 264 105 75 69

JOB0005/00007 416 105 75 58

JOB0005/00008 403 105 75 58

JOB0005/00009 261 80 70 76

JOB0005/00010 371 80 70 95

JOB0005/00011 156 80 70 60

JOB0005/00012 549 120 81 76

JOB0006/00001 776 105 75 81

JOB0006/00002 332 105 75 56

JOB0006/00003 418 80 70 99

JOB0006/00004 553 105 75 65

JOB0006/00005 352 80 70 73

JOB0006/00006 450 105 75 56

JOB0006/00007 261 80 70 64

JOB0006/00008 500 105 75 56

JOB0006/00009 924 105 75 85

JOB0006/00010 440 105 75 56

JOB0006/00011 653 105 75 70

JOB0006/00012 322 80 70 74

JOB0006/00013 393 80 70 91

JOB0006/00014 310 80 70 66

JOB0007/00001 316 80 70 74

JOB0007/00002 331 80 70 74

JOB0007/00003 308 80 70 74

JOB0007/00004 281 80 70 71

JOB0007/00005 296 80 70 73

JOB0007/00006 441 80 70 89

JOB0007/00007 347 80 70 74

JOB0007/00008 317 80 70 74

JOB0007/00009 319 80 70 74

Continued on next page

171

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00010 154 80 70 51

JOB0007/00011 400 80 70 74

JOB0007/00012 258 80 70 59

JOB0007/00013 366 80 70 74

JOB0007/00014 184 80 70 67

JOB0007/00015 345 80 70 74

JOB0007/00016 343 80 70 74

JOB0007/00017 349 80 70 74

JOB0007/00018 368 80 70 73

JOB0007/00019 276 80 70 73

JOB0007/00020 276 80 70 73

JOB0007/00021 74 80 70 39

JOB0008/00001 309 80 70 79

JOB0008/00002 282 80 70 66

JOB0008/00003 306 80 70 78

JOB0008/00004 499 105 75 59

JOB0008/00005 617 105 75 71

JOB0008/00006 418 105 75 59

JOB0008/00007 238 80 70 79

JOB0008/00008 420 105 75 59

JOB0008/00009 619 105 75 71

JOB0008/00010 628 105 75 74

JOB0008/00011 617 105 75 71

JOB0008/00012 479 105 75 59

JOB0008/00013 605 105 75 71

JOB0008/00014 279 105 75 71

JOB0008/00015 196 80 70 49

JOB0008/00016 783 105 75 71

JOB0008/00017 645 105 75 73

JOB0008/00001 737 105 75 82

Continued on next page

172

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0008/00002 736 105 75 82

JOB0008/00003 737 105 75 82

JOB0008/00004 409 80 70 84

JOB0008/00005 355 80 70 83

JOB0008/00006 402 80 70 83

JOB0008/00007 640 105 75 81

JOB0008/00008 656 105 75 81

JOB0008/00009 316 105 75 72

JOB0008/00010 733 105 75 82

JOB0008/00011 732 105 75 82

JOB0008/00012 212 80 70 77

JOB0008/00013 231 80 70 73

JOB0008/00014 584 105 75 83

JOB0008/00015 416 105 75 72

JOB0009/00001 616 105 75 72

JOB0009/00002 600 105 75 72

JOB0009/00003 125 80 60 46

JOB0009/00004 361 80 70 84

JOB0009/00005 472 80 70 92

JOB0009/00006 352 80 70 82

JOB0009/00007 583 105 75 71

JOB0009/00008 680 105 75 73

JOB0009/00009 370 80 70 83

JOB0010/00001 335 80 70 83

JOB0010/00002 444 80 70 83

JOB0010/00003 307 80 70 73

JOB0010/00004 825 120 81 82

JOB0010/00005 315 80 70 81

JOB0010/00006 286 80 70 76

JOB0010/00007 250 80 70 72

Continued on next page

173

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0010/00008 389 120 81 83

JOB0010/00009 683 105 75 82

JOB0010/00010 484 105 75 63

JOB0010/00011 230 105 75 41

JOB0010/00012 441 105 75 71

JOB0010/00013 696 105 75 82

JOB0010/00014 75 80 70 43

JOB0011/00001 193 80 70 60

JOB0011/00002 363 105 75 61

JOB0011/00003 394 80 70 82

JOB0011/00004 254 80 70 62

JOB0011/00005 484 105 75 62

JOB0011/00006 594 105 75 77

JOB0011/00007 212 80 70 60

JOB0011/00008 189 80 70 65

JOB0011/00009 446 105 75 56

JOB0011/00010 539 105 75 65

JOB0011/00011 613 105 75 75

JOB0011/00012 608 105 75 72

JOB0011/00013 598 105 75 72

JOB0011/00014 208 80 60 66

JOB0011/00015 555 105 75 70

JOB0011/00016 559 105 75 72

JOB0012/00001 599 120 81 74

JOB0012/00002 709 105 75 72

JOB0012/00003 708 105 75 72

JOB0012/00004 341 80 70 89

JOB0012/00005 620 105 75 72

JOB0012/00006 641 105 75 72

JOB0012/00007 563 120 81 67

Continued on next page

174

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0012/00008 663 105 75 71

JOB0012/00009 639 105 75 72

JOB0012/00010 522 105 75 71

JOB0012/00011 329 80 70 73

JOB0012/00012 227 80 70 76

JOB0012/00013 291 80 70 76

JOB0012/00014 291 80 70 51

JOB0012/00015 348 80 70 78

JOB0012/00016 506 80 70 76

JOB0012/00017 586 105 75 71

JOB0012/00018 328 80 70 82

JOB0012/00019 518 105 75 71

JOB0012/00020 494 80 70 76

JOB0012/00021 353 80 70 73

JOB0012/00022 234 80 70 76

JOB0012/00023 260 80 70 73

JOB0012/00024 234 80 70 73

JOB0012/00025 331 80 70 73

JOB0012/00026 378 80 70 76

JOB0012/00027 354 80 70 87

JOB0013/00001 279 80 70 85

JOB0013/00002 290 80 70 85

JOB0013/00003 325 80 70 84

JOB0013/00004 237 80 70 74

JOB0013/00005 355 80 70 88

JOB0013/00006 350 80 70 96

JOB0013/00007 348 80 70 78

JOB0013/00008 396 80 70 84

JOB0013/00009 331 80 70 79

JOB0013/00010 358 105 75 67

Continued on next page

175

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0013/00011 317 80 70 74

JOB0013/00012 398 80 70 85

JOB0013/00013 394 80 70 84

JOB0013/00014 398 105 75 61

JOB0013/00015 399 80 70 84

JOB0013/00016 362 120 81 78

JOB0013/00017 528 105 75 91

JOB0014/00001 679 120 81 90

JOB0014/00002 783 105 75 86

JOB0014/00003 188 80 70 62

JOB0014/00004 742 105 75 71

JOB0014/00005 268 80 70 58

JOB0014/00006 334 80 70 79

JOB0014/00007 656 105 75 85

JOB0014/00008 308 80 70 83

JOB0014/00009 725 105 75 84

JOB0014/00010 726 105 75 84

JOB0014/00011 399 80 70 88

JOB0014/00012 348 80 70 72

JOB0014/00013 348 80 70 72

JOB0014/00014 176 80 70 44

JOB0015/00001 435 80 70 92

JOB0015/00002 614 105 75 76

JOB0015/00003 263 80 70 57

JOB0015/00004 317 80 70 78

JOB0015/00005 642 105 75 77

JOB0015/00006 306 80 70 79

JOB0015/00007 502 80 70 92

JOB0016/00001 324 80 70 79

JOB0016/00002 443 80 70 90

Continued on next page

176

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00003 433 80 70 82

JOB0016/00004 323 80 70 59

JOB0016/00005 795 120 81 75

JOB0016/00006 573 105 75 82

JOB0016/00007 666 120 81 79

JOB0016/00008 602 105 75 76

JOB0016/00009 620 105 75 68

JOB0016/00010 586 105 75 71

JOB0017/00001 477 80 70 87

JOB0017/00002 341 105 75 47

JOB0017/00003 601 105 75 70

JOB0017/00004 578 105 75 74

JOB0017/00005 442 80 70 94

JOB0017/00006 848 105 75 89

JOB0017/00007 268 80 70 71

JOB0017/00008 336 80 70 76

JOB0017/00009 232 80 70 72

JOB0018/00001 670 105 75 75

JOB0018/00002 281 105 75 66

JOB0018/00003 368 105 75 83

JOB0018/00004 534 105 75 71

JOB0018/00005 455 105 75 71

JOB0018/00006 371 80 70 78

JOB0018/00007 280 105 75 66

JOB0018/00008 535 105 75 71

JOB0018/00009 596 105 75 71

JOB0018/00010 595 105 75 71

JOB0018/00011 534 105 75 71

JOB0018/00012 504 105 75 76

JOB0018/00013 536 105 75 71

Continued on next page

177

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00014 386 105 75 87

JOB0018/00015 364 80 70 79

JOB0018/00016 201 80 70 46

JOB0019/00001 281 80 70 92

JOB0019/00002 400 80 70 67

JOB0019/00003 778 105 75 71

JOB0019/00004 209 80 70 62

JOB0019/00005 359 80 70 83

JOB0019/00006 339 80 70 84

JOB0019/00007 460 80 70 94

JOB0019/00008 403 105 75 87

JOB0019/00009 311 105 75 71

JOB0020/00001 169 80 70 59

JOB0020/00002 306 80 70 76

JOB0020/00003 875 120 81 76

JOB0021/00001 359 80 70 75

JOB0021/00002 486 80 70 88

JOB0021/00003 630 105 75 80

JOB0021/00004 516 105 75 70

JOB0021/00005 651 105 75 74

JOB0021/00006 464 105 75 74

JOB0021/00007 490 105 75 60

JOB0021/00008 379 105 75 57

JOB0021/00009 291 80 70 73

JOB0022/00001 237 80 70 61

JOB0022/00002 352 80 70 72

JOB0022/00003 443 105 75 64

JOB0022/00004 702 105 75 83

JOB0022/00005 476 80 70 96

JOB0022/00006 335 80 70 73

Continued on next page

178

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0022/00007 581 105 75 79

JOB0022/00008 391 105 75 65

JOB0022/00009 607 105 75 64

JOB0023/00001 238 80 70 77

JOB0023/00002 412 105 75 69

JOB0023/00003 613 105 75 79

JOB0023/00004 217 80 70 64

JOB0023/00005 198 80 70 59

JOB0023/00006 389 80 70 76

JOB0023/00007 309 80 70 79

JOB0023/00008 358 80 70 66

JOB0023/00009 341 80 70 75

JOB0024/00001 14 80 60 31

JOB0025/00001 36 80 60 29

JOB0026/00001 220 120 81 38

JOB0027/00001 370 80 70 59

JOB0027/00002 880 105 75 92

JOB0027/00003 536 105 75 71

JOB0027/00004 580 120 81 72

JOB0027/00005 812 105 75 70

JOB0027/00006 304 80 70 76

JOB0027/00007 800 105 75 70

JOB0027/00008 798 105 75 70

JOB0027/00009 348 80 70 64

JOB0027/00010 288 80 70 63

JOB0028/00001 325 80 70 77

JOB0028/00002 458 80 70 87

JOB0028/00003 937 105 75 85

JOB0028/00004 340 80 70 88

JOB0028/00005 280 105 75 71

Continued on next page

179

Appendix C: Hybrid Algorithm Problem Sets

Table C.3 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0028/00006 229 105 75 51

JOB0028/00007 983 105 75 85

JOB0028/00008 513 105 75 57

JOB0028/00009 709 105 75 70

180

Appendix C: Hybrid Algorithm Problem Sets

Table C.4: Problem Set #4

Pallet number Weight Length Breadth Height

JOB0001/00001 268 80 70 64

JOB0001/00002 515 105 75 72

JOB0001/00003 552 105 75 73

JOB0001/00004 555 105 75 72

JOB0001/00005 346 105 75 47

JOB0001/00006 264 105 75 69

JOB0001/00007 416 105 75 58

JOB0001/00008 403 105 75 58

JOB0001/00009 261 80 70 76

JOB0001/00010 371 80 70 95

JOB0001/00011 156 80 70 60

JOB0001/00012 549 120 81 76

JOB0002/00001 776 105 75 81

JOB0002/00002 332 105 75 56

JOB0002/00003 418 80 70 99

JOB0002/00004 553 105 75 65

JOB0002/00005 352 80 70 73

JOB0002/00006 450 105 75 56

JOB0002/00007 261 80 70 64

JOB0002/00008 500 105 75 56

JOB0002/00009 924 105 75 85

JOB0002/00010 440 105 75 56

JOB0002/00011 653 105 75 70

JOB0002/00012 322 80 70 74

JOB0002/00013 393 80 70 91

JOB0002/00014 310 80 70 66

JOB0003/00001 316 80 70 74

JOB0003/00002 331 80 70 74

Continued on next page

181

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00003 308 80 70 74

JOB0003/00004 281 80 70 71

JOB0003/00005 296 80 70 73

JOB0003/00006 441 80 70 89

JOB0003/00007 347 80 70 74

JOB0003/00008 317 80 70 74

JOB0003/00009 319 80 70 74

JOB0003/00010 154 80 70 51

JOB0003/00011 400 80 70 74

JOB0003/00012 258 80 70 59

JOB0003/00013 366 80 70 74

JOB0003/00014 184 80 70 67

JOB0003/00015 345 80 70 74

JOB0003/00016 343 80 70 74

JOB0003/00017 349 80 70 74

JOB0003/00018 368 80 70 73

JOB0003/00019 276 80 70 73

JOB0003/00020 276 80 70 73

JOB0003/00021 74 80 70 39

JOB0004/00001 309 80 70 79

JOB0004/00002 282 80 70 66

JOB0004/00003 306 80 70 78

JOB0004/00004 499 105 75 59

JOB0004/00005 617 105 75 71

JOB0004/00006 418 105 75 59

JOB0004/00007 238 80 70 79

JOB0004/00008 420 105 75 59

JOB0004/00009 619 105 75 71

JOB0004/00010 628 105 75 74

JOB0004/00011 617 105 75 71

Continued on next page

182

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00012 479 105 75 59

JOB0004/00013 605 105 75 71

JOB0004/00014 279 105 75 71

JOB0004/00015 196 80 70 49

JOB0004/00016 783 105 75 71

JOB0004/00017 645 105 75 73

JOB0005/00001 737 105 75 82

JOB0005/00002 736 105 75 82

JOB0005/00003 737 105 75 82

JOB0005/00004 409 80 70 84

JOB0005/00005 355 80 70 83

JOB0005/00006 402 80 70 83

JOB0005/00007 640 105 75 81

JOB0005/00008 656 105 75 81

JOB0005/00009 316 105 75 72

JOB0005/00010 733 105 75 82

JOB0005/00011 732 105 75 82

JOB0005/00012 212 80 70 77

JOB0005/00013 231 80 70 73

JOB0005/00014 584 105 75 83

JOB0005/00015 416 105 75 72

JOB0006/00001 616 105 75 72

JOB0006/00002 600 105 75 72

JOB0006/00003 125 80 60 46

JOB0006/00004 361 80 70 84

JOB0006/00005 472 80 70 92

JOB0006/00006 352 80 70 82

JOB0006/00007 583 105 75 71

JOB0006/00008 680 105 75 73

JOB0006/00009 370 80 70 83

Continued on next page

183

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00001 335 80 70 83

JOB0007/00002 444 80 70 83

JOB0007/00003 307 80 70 73

JOB0007/00004 825 120 81 82

JOB0007/00005 315 80 70 81

JOB0007/00006 286 80 70 76

JOB0007/00007 250 80 70 72

JOB0007/00008 389 120 81 83

JOB0007/00009 683 105 75 82

JOB0007/00010 484 105 75 63

JOB0007/00011 230 105 75 41

JOB0007/00012 441 105 75 71

JOB0007/00013 696 105 75 82

JOB0007/00014 75 80 70 43

JOB0008/00001 193 80 70 60

JOB0008/00002 363 105 75 61

JOB0008/00003 394 80 70 82

JOB0008/00004 254 80 70 62

JOB0008/00005 484 105 75 62

JOB0008/00006 594 105 75 77

JOB0008/00007 212 80 70 60

JOB0008/00008 189 80 70 65

JOB0008/00009 446 105 75 56

JOB0008/00010 539 105 75 65

JOB0008/00011 613 105 75 75

JOB0008/00012 608 105 75 72

JOB0008/00013 598 105 75 72

JOB0008/00014 208 80 60 66

JOB0008/00015 555 105 75 70

JOB0008/00016 559 105 75 72

Continued on next page

184

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0009/00001 599 120 81 74

JOB0009/00002 709 105 75 72

JOB0009/00003 708 105 75 72

JOB0009/00004 341 80 70 89

JOB0009/00005 620 105 75 72

JOB0009/00006 641 105 75 72

JOB0009/00007 563 120 81 67

JOB0009/00008 663 105 75 71

JOB0009/00009 639 105 75 72

JOB0009/00010 522 105 75 71

JOB0009/00011 329 80 70 73

JOB0009/00012 227 80 70 76

JOB0009/00013 291 80 70 76

JOB0009/00014 291 80 70 51

JOB0009/00015 348 80 70 78

JOB0009/00016 506 80 70 76

JOB0009/00017 586 105 75 71

JOB0009/00018 328 80 70 82

JOB0009/00019 518 105 75 71

JOB0009/00020 494 80 70 76

JOB0009/00021 353 80 70 73

JOB0009/00022 234 80 70 76

JOB0009/00023 260 80 70 73

JOB0009/00024 234 80 70 73

JOB0009/00025 331 80 70 73

JOB0009/00026 378 80 70 76

JOB0009/00027 354 80 70 87

JOB0010/00001 279 80 70 85

JOB0010/00002 290 80 70 85

JOB0010/00003 325 80 70 84

Continued on next page

185

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0010/00004 237 80 70 74

JOB0010/00005 355 80 70 88

JOB0010/00006 350 80 70 96

JOB0010/00007 348 80 70 78

JOB0010/00008 396 80 70 84

JOB0010/00009 331 80 70 79

JOB0010/00010 358 105 75 67

JOB0010/00011 317 80 70 74

JOB0010/00012 398 80 70 85

JOB0010/00013 394 80 70 84

JOB0010/00014 398 105 75 61

JOB0010/00015 399 80 70 84

JOB0010/00016 362 120 81 78

JOB0010/00017 528 105 75 91

JOB0011/00001 679 120 81 90

JOB0011/00002 783 105 75 86

JOB0011/00003 188 80 70 62

JOB0011/00004 742 105 75 71

JOB0011/00005 268 80 70 58

JOB0011/00006 334 80 70 79

JOB0011/00007 656 105 75 85

JOB0011/00008 308 80 70 83

JOB0011/00009 725 105 75 84

JOB0011/00010 726 105 75 84

JOB0011/00011 399 80 70 88

JOB0011/00012 348 80 70 72

JOB0011/00013 348 80 70 72

JOB0011/00014 176 80 70 44

JOB0012/00001 435 80 70 92

JOB0012/00002 614 105 75 76

Continued on next page

186

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0012/00003 263 80 70 57

JOB0012/00004 317 80 70 78

JOB0012/00005 642 105 75 77

JOB0012/00006 306 80 70 79

JOB0012/00007 502 80 70 92

JOB0013/00001 324 80 70 79

JOB0013/00002 443 80 70 90

JOB0013/00003 433 80 70 82

JOB0013/00004 323 80 70 59

JOB0013/00005 795 120 81 75

JOB0013/00006 573 105 75 82

JOB0013/00007 666 120 81 79

JOB0013/00008 602 105 75 76

JOB0013/00009 620 105 75 68

JOB0013/00010 586 105 75 71

JOB0014/00001 477 80 70 87

JOB0014/00002 341 105 75 47

JOB0014/00003 601 105 75 70

JOB0014/00004 578 105 75 74

JOB0014/00005 442 80 70 94

JOB0014/00006 848 105 75 89

JOB0014/00007 268 80 70 71

JOB0014/00008 336 80 70 76

JOB0014/00009 232 80 70 72

JOB0015/00001 670 105 75 75

JOB0015/00002 281 105 75 66

JOB0015/00003 368 105 75 83

JOB0015/00004 534 105 75 71

JOB0015/00005 455 105 75 71

JOB0015/00006 371 80 70 78

Continued on next page

187

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0015/00007 280 105 75 66

JOB0015/00008 535 105 75 71

JOB0015/00009 596 105 75 71

JOB0015/00010 595 105 75 71

JOB0015/00011 534 105 75 71

JOB0015/00012 504 105 75 76

JOB0015/00013 536 105 75 71

JOB0015/00014 386 105 75 87

JOB0015/00015 364 80 70 79

JOB0015/00016 201 80 70 46

JOB0016/00001 281 80 70 92

JOB0016/00002 400 80 70 67

JOB0016/00003 778 105 75 71

JOB0016/00004 209 80 70 62

JOB0016/00005 359 80 70 83

JOB0016/00006 339 80 70 84

JOB0016/00007 460 80 70 94

JOB0016/00008 403 105 75 87

JOB0016/00009 311 105 75 71

JOB0017/00001 169 80 70 59

JOB0017/00002 306 80 70 76

JOB0017/00003 875 120 81 76

JOB0018/00001 359 80 70 75

JOB0018/00002 486 80 70 88

JOB0018/00003 630 105 75 80

JOB0018/00004 516 105 75 70

JOB0018/00005 651 105 75 74

JOB0018/00006 464 105 75 74

JOB0018/00007 490 105 75 60

JOB0018/00008 379 105 75 57

Continued on next page

188

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00009 291 80 70 73

JOB0019/00001 237 80 70 61

JOB0019/00002 352 80 70 72

JOB0019/00003 443 105 75 64

JOB0019/00004 702 105 75 83

JOB0019/00005 476 80 70 96

JOB0019/00006 335 80 70 73

JOB0019/00007 581 105 75 79

JOB0019/00008 391 105 75 65

JOB0019/00009 607 105 75 64

JOB0020/00001 238 80 70 77

JOB0020/00002 412 105 75 69

JOB0020/00003 613 105 75 79

JOB0020/00004 217 80 70 64

JOB0020/00005 198 80 70 59

JOB0020/00006 389 80 70 76

JOB0020/00007 309 80 70 79

JOB0020/00008 358 80 70 66

JOB0020/00009 341 80 70 75

JOB0021/00001 14 80 60 31

JOB0022/00001 36 80 60 29

JOB0023/00001 220 120 81 38

JOB0024/00001 370 80 70 59

JOB0024/00002 880 105 75 92

JOB0024/00003 536 105 75 71

JOB0024/00004 580 120 81 72

JOB0024/00005 812 105 75 70

JOB0024/00006 304 80 70 76

JOB0024/00007 800 105 75 70

JOB0024/00008 798 105 75 70

Continued on next page

189

Appendix C: Hybrid Algorithm Problem Sets

Table C.4 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0024/00009 348 80 70 64

JOB0024/00010 288 80 70 63

JOB0025/00001 325 80 70 77

JOB0025/00002 458 80 70 87

JOB0025/00003 937 105 75 85

JOB0025/00004 340 80 70 88

JOB0025/00005 280 105 75 71

JOB0025/00006 229 105 75 51

JOB0025/00007 983 105 75 85

JOB0025/00008 513 105 75 57

JOB0025/00009 709 105 75 70

190

Appendix C: Hybrid Algorithm Problem Sets

Table C.5: Problem Set #5

Pallet number Weight Length Breadth Height

JOB0001/00001 403 80 70 95

JOB0001/00001 403 80 70 95

JOB0001/00002 243 80 70 57

JOB0001/00003 389 105 75 84

JOB0001/00004 391 105 75 84

JOB0001/00005 293 80 70 73

JOB0001/00006 340 80 70 73

JOB0001/00007 243 105 75 48

JOB0001/00008 308 80 70 74

JOB0001/00009 282 80 70 73

JOB0001/00010 329 80 70 73

JOB0001/00011 312 80 70 76

JOB0001/00012 389 105 75 62

JOB0001/00013 217 80 70 43

JOB0001/00014 248 80 70 62

JOB0001/00015 530 105 75 74

JOB0001/00016 194 80 70 76

JOB0001/00017 199 80 70 76

JOB0001/00018 199 80 70 57

JOB0001/00019 273 80 70 77

JOB0001/00020 322 80 70 73

JOB0001/00021 412 80 70 83

JOB0001/00022 248 80 70 73

JOB0002/00001 460 80 70 65

JOB0002/00002 203 105 75 95

JOB0002/00003 303 105 75 76

JOB0002/00004 555 105 75 57

JOB0002/00005 271 80 70 78

Continued on next page

191

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0002/00006 323 80 70 77

JOB0002/00007 236 80 70 66

JOB0002/00008 301 80 70 72

JOB0002/00009 323 105 75 74

JOB0002/00010 477 80 70 91

JOB0002/00011 321 105 75 73

JOB0002/00012 188 120 81 67

JOB0002/00013 239 105 75 69

JOB0002/00014 347 105 75 93

JOB0002/00015 347 105 75 93

JOB0002/00016 479 105 75 71

JOB0003/00001 364 105 75 72

JOB0003/00002 635 120 81 74

JOB0003/00003 599 105 75 72

JOB0003/00004 729 120 81 74

JOB0003/00005 464 120 81 69

JOB0003/00006 247 105 75 58

JOB0003/00007 267 80 70 62

JOB0003/00008 408 105 75 61

JOB0003/00009 414 80 70 74

JOB0003/00010 287 80 70 77

JOB0003/00011 131 80 70 52

JOB0003/00012 222 80 70 66

JOB0003/00013 359 80 70 58

JOB0003/00014 422 80 70 87

JOB0003/00015 294 80 70 74

JOB0003/00016 743 105 75 72

JOB0003/00017 395 105 75 69

JOB0003/00018 322 80 70 66

JOB0003/00019 339 80 70 69

Continued on next page

192

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00001 330 105 75 71

JOB0004/00002 538 120 81 95

JOB0004/00003 704 120 81 90

JOB0004/00004 606 120 81 73

JOB0004/00005 346 105 75 76

JOB0004/00006 700 105 75 86

JOB0004/00007 340 80 70 95

JOB0004/00008 346 80 70 85

JOB0004/00009 577 105 75 71

JOB0004/00010 413 105 75 52

JOB0004/00011 690 105 75 71

JOB0004/00012 288 80 70 79

JOB0005/00001 217 80 70 58

JOB0005/00002 352 80 70 82

JOB0005/00003 380 105 75 46

JOB0005/00004 386 80 70 70

JOB0005/00005 243 80 70 59

JOB0005/00006 353 80 70 80

JOB0005/00007 478 80 70 93

JOB0005/00008 237 80 70 79

JOB0006/00001 236 80 70 57

JOB0006/00002 258 105 75 73

JOB0006/00003 548 120 81 75

JOB0006/00004 186 80 70 39

JOB0006/00005 408 80 70 66

JOB0006/00006 353 80 70 75

JOB0006/00007 313 80 70 75

JOB0006/00008 508 105 75 89

JOB0006/00009 293 80 70 73

JOB0006/00010 583 105 75 72

Continued on next page

193

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00001 226 80 70 57

JOB0007/00002 684 120 81 77

JOB0007/00003 260 80 70 58

JOB0007/00004 316 80 70 71

JOB0007/00005 534 120 81 75

JOB0008/00001 679 105 75 83

JOB0008/00002 267 105 75 56

JOB0008/00003 310 105 75 74

JOB0008/00004 363 80 70 89

JOB0008/00005 60 80 60 40

JOB0008/00006 807 105 75 74

JOB0008/00007 329 80 70 85

JOB0008/00008 318 105 75 74

JOB0008/00009 375 120 81 39

JOB0008/00010 825 105 75 74

JOB0008/00011 637 105 75 74

JOB0008/00012 348 80 70 82

JOB0008/00013 398 80 70 93

JOB0009/00001 660 120 81 74

JOB0009/00002 416 120 81 60

JOB0009/00003 442 80 70 82

JOB0010/00001 64 80 70 42

JOB0010/00002 380 105 75 72

JOB0010/00003 329 105 75 72

JOB0010/00004 275 80 70 70

JOB0010/00005 675 105 75 71

JOB0010/00006 516 120 81 59

JOB0010/00007 105 80 70 49

JOB0010/00008 748 105 75 86

JOB0010/00009 745 105 75 70

Continued on next page

194

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0010/00010 303 80 70 76

JOB0010/00011 410 105 75 55

JOB0010/00012 465 105 75 69

JOB0010/00013 128 80 70 67

JOB0010/00014 482 105 75 70

JOB0011/00001 44 80 60 31

JOB0012/00001 14 80 60 30

JOB0013/00001 394 80 70 82

JOB0013/00002 385 105 75 62

JOB0013/00003 803 105 75 81

JOB0013/00004 197 80 70 73

JOB0013/00005 212 80 70 57

JOB0013/00006 347 80 70 93

JOB0013/00007 305 80 70 88

JOB0013/00008 554 105 75 65

JOB0013/00009 410 105 75 89

JOB0013/00010 314 105 75 57

JOB0013/00011 325 80 70 89

JOB0013/00012 311 80 70 77

JOB0014/00001 104 80 70 28

JOB0015/00001 349 80 70 75

JOB0015/00002 361 105 75 47

JOB0015/00003 880 120 81 82

JOB0015/00004 710 105 75 71

JOB0015/00005 461 105 75 62

JOB0015/00006 533 105 75 71

JOB0015/00007 781 120 81 84

JOB0015/00008 435 105 75 86

JOB0015/00009 226 80 70 56

JOB0015/00010 240 80 70 80

Continued on next page

195

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0015/00011 257 80 70 69

JOB0016/00001 224 80 70 55

JOB0016/00002 580 105 75 66

JOB0016/00003 642 105 75 69

JOB0016/00004 639 105 75 82

JOB0016/00005 392 105 75 56

JOB0016/00006 236 105 75 73

JOB0016/00007 479 80 70 83

JOB0016/00008 167 80 70 85

JOB0016/00009 190 105 75 87

JOB0016/00010 493 105 75 66

JOB0016/00011 232 105 75 50

JOB0016/00012 331 105 75 74

JOB0016/00013 334 105 75 74

JOB0016/00014 463 105 75 72

JOB0016/00015 367 80 70 96

JOB0016/00016 187 80 70 58

JOB0016/00017 149 80 70 53

JOB0017/00001 504 105 75 63

JOB0017/00002 253 80 70 62

JOB0017/00003 273 80 70 92

JOB0017/00004 327 105 75 58

JOB0017/00005 744 105 75 70

JOB0017/00006 310 105 75 75

JOB0017/00007 953 105 75 83

JOB0017/00008 412 105 75 65

JOB0017/00009 659 105 75 80

JOB0017/00010 531 105 75 71

JOB0017/00011 368 105 75 70

JOB0017/00012 701 105 75 84

Continued on next page

196

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0017/00013 369 105 75 70

JOB0017/00014 321 80 70 82

JOB0017/00015 205 80 70 58

JOB0017/00016 675 120 81 72

JOB0017/00017 280 105 75 57

JOB0018/00001 228 80 70 45

JOB0019/00001 646 120 81 71

JOB0019/00002 674 120 81 67

JOB0019/00003 656 105 75 70

JOB0019/00004 786 105 75 74

JOB0019/00005 444 80 70 76

JOB0019/00006 524 105 75 74

JOB0020/00001 277 105 75 41

JOB0020/00002 326 105 75 54

JOB0020/00003 582 105 75 81

JOB0020/00004 399 105 75 62

JOB0020/00005 558 105 75 73

JOB0020/00006 750 105 75 88

JOB0020/00007 367 80 70 91

JOB0020/00008 240 80 70 72

JOB0020/00009 416 80 70 84

JOB0020/00010 384 80 70 84

JOB0020/00011 408 105 75 66

JOB0020/00012 447 120 81 62

JOB0021/00001 104 80 70 76

JOB0021/00002 104 80 70 76

JOB0021/00003 565 105 75 72

JOB0021/00004 105 80 70 74

JOB0021/00005 206 80 70 69

JOB0021/00006 112 80 70 74

Continued on next page

197

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0021/00007 303 80 70 76

JOB0021/00008 161 80 70 51

JOB0021/00009 202 80 70 76

JOB0021/00010 105 80 70 76

JOB0021/00011 111 80 70 74

JOB0021/00012 353 80 70 76

JOB0021/00013 232 80 70 76

JOB0021/00014 112 80 70 74

JOB0021/00015 111 80 70 74

JOB0021/00016 155 80 70 91

JOB0021/00017 201 80 70 76

JOB0021/00018 106 80 70 74

JOB0021/00019 112 80 70 74

JOB0021/00020 111 80 70 74

JOB0021/00021 112 80 70 74

JOB0021/00022 112 80 70 74

JOB0021/00023 112 80 70 74

JOB0021/00024 377 105 75 85

JOB0021/00025 339 105 75 54

JOB0021/00026 561 105 75 73

JOB0021/00027 373 105 75 73

JOB0021/00028 553 120 81 75

JOB0021/00029 565 105 75 73

JOB0021/00030 583 105 75 73

JOB0021/00031 549 105 75 73

JOB0021/00032 353 80 70 74

JOB0021/00033 150 105 75 61

JOB0021/00034 156 105 75 61

JOB0021/00035 399 105 75 73

JOB0021/00036 321 105 75 73

Continued on next page

198

Appendix C: Hybrid Algorithm Problem Sets

Table C.5 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0021/00037 405 105 75 72

JOB0021/00038 323 105 75 73

JOB0021/00039 392 105 75 72

JOB0021/00040 698 120 81 76

JOB0021/00041 344 105 75 72

JOB0021/00042 366 105 75 71

JOB0021/00043 518 120 81 85

JOB0022/00001 790 120 81 91

JOB0022/00002 914 120 81 91

JOB0022/00003 788 120 81 91

JOB0022/00004 940 120 81 91

JOB0022/00005 341 80 70 74

JOB0022/00006 741 120 81 76

199

Appendix C: Hybrid Algorithm Problem Sets

Table C.6: Problem Set #6

Pallet number Weight Length Breadth Height

JOB0001/00001 262 80 70 65

JOB0001/00002 354 80 70 85

JOB0001/00003 655 120 81 78

JOB0001/00004 520 120 81 62

JOB0001/00005 753 120 81 95

JOB0001/00006 602 105 75 78

JOB0001/00007 396 80 70 88

JOB0001/00008 456 80 70 96

JOB0002/00001 578 105 75 69

JOB0002/00002 599 105 75 69

JOB0002/00003 468 105 75 57

JOB0002/00004 167 80 70 57

JOB0002/00005 600 105 75 69

JOB0002/00006 765 105 75 83

JOB0002/00007 625 105 75 69

JOB0002/00008 279 80 70 74

JOB0002/00009 585 105 75 69

JOB0002/00010 284 80 70 74

JOB0002/00011 590 105 75 69

JOB0002/00012 582 105 75 69

JOB0002/00013 585 105 75 69

JOB0002/00014 296 105 75 40

JOB0002/00015 719 105 75 87

JOB0002/00016 462 120 81 70

JOB0002/00017 646 105 75 72

JOB0002/00018 223 105 75 60

JOB0002/00019 476 80 70 88

JOB0002/00020 425 80 70 89

Continued on next page

200

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0002/00021 450 105 75 55

JOB0002/00022 566 105 75 69

JOB0002/00023 187 80 70 43

JOB0002/00024 323 105 75 73

JOB0003/00001 690 120 81 63

JOB0003/00002 300 80 70 89

JOB0003/00003 690 120 81 64

JOB0003/00004 669 120 81 64

JOB0003/00005 416 120 81 46

JOB0003/00006 815 120 81 64

JOB0003/00007 657 120 81 75

JOB0003/00008 689 120 81 75

JOB0003/00009 576 120 81 63

JOB0003/00010 610 120 81 63

JOB0003/00011 719 120 81 75

JOB0003/00012 604 120 81 75

JOB0003/00013 604 120 81 75

JOB0003/00014 360 80 70 65

JOB0003/00015 619 120 81 63

JOB0003/00016 411 120 81 63

JOB0004/00001 403 80 70 95

JOB0004/00002 243 80 70 57

JOB0004/00003 389 105 75 84

JOB0004/00004 391 105 75 84

JOB0004/00005 293 80 70 73

JOB0004/00006 340 80 70 73

JOB0004/00007 243 105 75 48

JOB0004/00008 308 80 70 74

JOB0004/00009 282 80 70 73

JOB0004/00010 329 80 70 73

Continued on next page

201

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00011 312 80 70 76

JOB0004/00012 389 105 75 62

JOB0004/00013 217 80 70 43

JOB0004/00014 248 80 70 62

JOB0004/00015 530 105 75 74

JOB0004/00016 194 80 70 76

JOB0004/00017 199 80 70 76

JOB0004/00018 199 80 70 57

JOB0004/00019 273 80 70 77

JOB0004/00020 322 80 70 73

JOB0004/00021 412 80 70 83

JOB0004/00022 248 80 70 73

JOB0005/00001 460 80 70 65

JOB0005/00002 203 105 75 95

JOB0005/00003 303 105 75 76

JOB0005/00004 555 105 75 57

JOB0005/00005 271 80 70 78

JOB0005/00006 323 80 70 77

JOB0005/00007 236 80 70 66

JOB0005/00008 301 80 70 72

JOB0005/00009 323 105 75 74

JOB0005/00010 477 80 70 91

JOB0005/00011 321 105 75 73

JOB0005/00012 188 120 81 67

JOB0005/00013 239 105 75 69

JOB0005/00014 347 105 75 93

JOB0005/00015 347 105 75 93

JOB0005/00016 479 105 75 71

JOB0006/00001 364 105 75 72

JOB0006/00002 635 120 81 74

Continued on next page

202

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0006/00003 599 105 75 72

JOB0006/00004 729 120 81 74

JOB0006/00005 464 120 81 69

JOB0006/00006 247 105 75 58

JOB0006/00007 267 80 70 62

JOB0006/00008 408 105 75 61

JOB0006/00009 414 80 70 74

JOB0006/00010 287 80 70 77

JOB0006/00011 131 80 70 52

JOB0006/00012 222 80 70 66

JOB0006/00013 359 80 70 58

JOB0006/00014 422 80 70 87

JOB0006/00015 294 80 70 74

JOB0006/00016 743 105 75 72

JOB0006/00017 395 105 75 69

JOB0006/00018 322 80 70 66

JOB0006/00019 339 80 70 69

JOB0007/00001 330 105 75 71

JOB0007/00002 538 120 81 95

JOB0007/00003 704 120 81 90

JOB0007/00004 606 120 81 73

JOB0007/00005 346 105 75 76

JOB0007/00006 700 105 75 86

JOB0007/00007 340 80 70 95

JOB0007/00008 346 80 70 85

JOB0007/00009 577 105 75 71

JOB0007/00010 413 105 75 52

JOB0007/00011 690 105 75 71

JOB0007/00012 288 80 70 79

JOB0008/00001 217 80 70 58

Continued on next page

203

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0008/00002 352 80 70 82

JOB0008/00003 380 105 75 46

JOB0008/00004 386 80 70 70

JOB0008/00005 243 80 70 59

JOB0008/00006 353 80 70 80

JOB0008/00007 478 80 70 93

JOB0008/00008 237 80 70 79

JOB0009/00001 236 80 70 57

JOB0009/00002 258 105 75 73

JOB0009/00003 548 120 81 75

JOB0009/00004 186 80 70 39

JOB0009/00005 408 80 70 66

JOB0009/00006 353 80 70 75

JOB0009/00007 313 80 70 75

JOB0009/00008 508 105 75 89

JOB0009/00009 293 80 70 73

JOB0009/00010 583 105 75 72

JOB0010/00001 226 80 70 57

JOB0010/00002 684 120 81 77

JOB0010/00003 260 80 70 58

JOB0010/00004 316 80 70 71

JOB0010/00005 534 120 81 75

JOB0011/00001 679 105 75 83

JOB0011/00002 267 105 75 56

JOB0011/00003 310 105 75 74

JOB0011/00004 363 80 70 89

JOB0011/00005 60 80 60 40

JOB0011/00006 807 105 75 74

JOB0011/00007 329 80 70 85

JOB0011/00008 318 105 75 74

Continued on next page

204

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00009 375 120 81 39

JOB0011/00010 825 105 75 74

JOB0011/00011 637 105 75 74

JOB0011/00012 348 80 70 82

JOB0011/00013 398 80 70 93

JOB0012/00001 660 120 81 74

JOB0012/00002 416 120 81 60

JOB0012/00003 442 80 70 82

JOB0013/00001 64 80 70 42

JOB0013/00002 380 105 75 72

JOB0013/00003 329 105 75 72

JOB0013/00004 275 80 70 70

JOB0013/00005 675 105 75 71

JOB0013/00006 516 120 81 59

JOB0013/00007 105 80 70 49

JOB0013/00008 748 105 75 86

JOB0013/00009 745 105 75 70

JOB0013/00010 303 80 70 76

JOB0013/00011 410 105 75 55

JOB0013/00012 465 105 75 69

JOB0013/00013 128 80 70 67

JOB0013/00014 482 105 75 70

JOB0014/00001 44 80 60 31

JOB0015/00001 14 80 60 30

JOB0016/00001 394 80 70 82

JOB0016/00002 385 105 75 62

JOB0016/00003 803 105 75 81

JOB0016/00004 197 80 70 73

JOB0016/00005 212 80 70 57

JOB0016/00006 347 80 70 93

Continued on next page

205

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00007 305 80 70 88

JOB0016/00008 554 105 75 65

JOB0016/00009 410 105 75 89

JOB0016/00010 314 105 75 57

JOB0016/00011 325 80 70 89

JOB0016/00012 311 80 70 77

JOB0017/00001 104 80 70 28

JOB0018/00001 349 80 70 75

JOB0018/00002 361 105 75 47

JOB0018/00003 880 120 81 82

JOB0018/00004 710 105 75 71

JOB0018/00005 461 105 75 62

JOB0018/00006 533 105 75 71

JOB0018/00007 781 120 81 84

JOB0018/00008 435 105 75 86

JOB0018/00009 226 80 70 56

JOB0018/00010 240 80 70 80

JOB0018/00011 257 80 70 69

JOB0019/00001 224 80 70 55

JOB0019/00002 580 105 75 66

JOB0019/00003 642 105 75 69

JOB0019/00004 639 105 75 82

JOB0019/00005 392 105 75 56

JOB0019/00006 236 105 75 73

JOB0019/00007 479 80 70 83

JOB0019/00008 167 80 70 85

JOB0019/00009 190 105 75 87

JOB0019/00010 493 105 75 66

JOB0019/00011 232 105 75 50

JOB0019/00012 331 105 75 74

Continued on next page

206

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0019/00013 334 105 75 74

JOB0019/00014 463 105 75 72

JOB0019/00015 367 80 70 96

JOB0019/00016 187 80 70 58

JOB0019/00017 149 80 70 53

JOB0020/00001 504 105 75 63

JOB0020/00002 253 80 70 62

JOB0020/00003 273 80 70 92

JOB0020/00004 327 105 75 58

JOB0020/00005 744 105 75 70

JOB0020/00006 310 105 75 75

JOB0020/00007 953 105 75 83

JOB0020/00008 412 105 75 65

JOB0020/00009 659 105 75 80

JOB0020/00010 531 105 75 71

JOB0020/00011 368 105 75 70

JOB0020/00012 701 105 75 84

JOB0020/00013 369 105 75 70

JOB0020/00014 321 80 70 82

JOB0020/00015 205 80 70 58

JOB0020/00016 675 120 81 72

JOB0020/00017 280 105 75 57

JOB0021/00001 228 80 70 45

JOB0022/00001 646 120 81 71

JOB0022/00002 674 120 81 67

JOB0022/00003 656 105 75 70

JOB0022/00004 786 105 75 74

JOB0022/00005 444 80 70 76

JOB0022/00006 524 105 75 74

JOB0023/00001 277 105 75 41

Continued on next page

207

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0023/00002 326 105 75 54

JOB0023/00003 582 105 75 81

JOB0023/00004 399 105 75 62

JOB0023/00005 558 105 75 73

JOB0023/00006 750 105 75 88

JOB0023/00007 367 80 70 91

JOB0023/00008 240 80 70 72

JOB0023/00009 416 80 70 84

JOB0023/00010 384 80 70 84

JOB0023/00011 408 105 75 66

JOB0023/00012 447 120 81 62

JOB0024/00001 104 80 70 76

JOB0024/00002 104 80 70 76

JOB0024/00003 565 105 75 72

JOB0024/00004 105 80 70 74

JOB0024/00005 206 80 70 69

JOB0024/00006 112 80 70 74

JOB0024/00007 303 80 70 76

JOB0024/00008 161 80 70 51

JOB0024/00009 202 80 70 76

JOB0024/00010 105 80 70 76

JOB0024/00011 111 80 70 74

JOB0024/00012 353 80 70 76

JOB0024/00013 232 80 70 76

JOB0024/00014 112 80 70 74

JOB0024/00015 111 80 70 74

JOB0024/00016 155 80 70 91

JOB0024/00017 201 80 70 76

JOB0024/00018 106 80 70 74

JOB0024/00019 112 80 70 74

Continued on next page

208

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0024/00020 111 80 70 74

JOB0024/00021 112 80 70 74

JOB0024/00022 112 80 70 74

JOB0024/00023 112 80 70 74

JOB0024/00024 377 105 75 85

JOB0024/00025 339 105 75 54

JOB0024/00026 561 105 75 73

JOB0024/00027 373 105 75 73

JOB0024/00028 553 120 81 75

JOB0024/00029 565 105 75 73

JOB0024/00030 583 105 75 73

JOB0024/00031 549 105 75 73

JOB0024/00032 353 80 70 74

JOB0024/00033 150 105 75 61

JOB0024/00034 156 105 75 61

JOB0024/00035 399 105 75 73

JOB0024/00036 321 105 75 73

JOB0024/00037 405 105 75 72

JOB0024/00038 323 105 75 73

JOB0024/00039 392 105 75 72

JOB0024/00040 698 120 81 76

JOB0024/00041 344 105 75 72

JOB0024/00042 366 105 75 71

JOB0024/00043 518 120 81 85

JOB0025/00001 790 120 81 91

JOB0025/00002 914 120 81 91

JOB0025/00003 788 120 81 91

JOB0025/00004 940 120 81 91

JOB0025/00005 341 80 70 74

Continued on next page

209

Appendix C: Hybrid Algorithm Problem Sets

Table C.6 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0025/00006 741 120 81 76

210

Appendix C: Hybrid Algorithm Problem Sets

Table C.7: Problem Set #7

Pallet number Weight Length Breadth Height

JOB0001/00001 354 80 70 55

JOB0001/00002 589 120 81 63

JOB0001/00003 589 120 81 63

JOB0001/00004 586 120 81 63

JOB0001/00005 589 120 81 63

JOB0001/00006 590 120 81 63

JOB0001/00007 591 120 81 63

JOB0001/00008 241 80 70 61

JOB0001/00009 312 80 70 75

JOB0001/00010 410 80 70 75

JOB0001/00011 306 80 70 75

JOB0001/00012 898 120 81 75

JOB0001/00013 198 80 70 58

JOB0001/00014 201 80 70 59

JOB0001/00015 923 120 81 75

JOB0002/00001 351 120 81 64

JOB0002/00002 378 80 70 80

JOB0002/00003 398 80 70 75

JOB0002/00004 459 80 70 75

JOB0002/00005 468 80 70 75

JOB0003/00001 371 105 75 68

JOB0003/00002 643 105 75 72

JOB0003/00003 322 80 70 87

JOB0003/00004 327 105 75 75

JOB0003/00005 600 105 75 72

JOB0003/00006 328 80 70 84

JOB0003/00007 212 80 70 77

JOB0003/00008 269 105 75 74

Continued on next page

211

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00009 310 80 70 87

JOB0003/00010 330 105 75 75

JOB0003/00011 369 80 70 78

JOB0003/00012 578 105 75 73

JOB0003/00013 566 105 75 72

JOB0003/00014 225 80 70 56

JOB0003/00015 331 80 70 73

JOB0003/00016 172 80 70 72

JOB0003/00017 179 80 70 69

JOB0004/00001 212 80 70 62

JOB0004/00002 304 80 70 73

JOB0004/00003 282 80 70 76

JOB0004/00004 310 80 70 75

JOB0004/00005 306 80 70 88

JOB0004/00006 136 80 70 60

JOB0004/00007 522 105 75 69

JOB0004/00008 303 80 70 74

JOB0005/00001 503 105 75 72

JOB0006/00001 179 80 70 79

JOB0006/00002 452 80 70 87

JOB0007/00001 384 105 75 57

JOB0007/00002 563 105 75 67

JOB0008/00001 558 120 81 61

JOB0008/00002 341 80 70 74

JOB0008/00003 296 80 70 74

JOB0009/00001 166 80 70 78

JOB0009/00002 388 80 70 84

JOB0009/00003 417 80 70 92

JOB0009/00004 464 80 70 96

JOB0009/00005 299 80 70 63

Continued on next page

212

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0009/00006 543 105 75 75

JOB0009/00007 350 80 70 90

JOB0009/00008 296 80 70 89

JOB0010/00001 294 80 70 82

JOB0010/00002 450 105 75 80

JOB0010/00003 169 80 70 63

JOB0010/00004 431 120 81 61

JOB0010/00005 580 105 75 70

JOB0010/00006 609 105 75 74

JOB0010/00007 241 80 70 65

JOB0010/00008 601 105 75 74

JOB0010/00009 428 80 70 82

JOB0010/00010 222 80 70 65

JOB0010/00011 327 80 70 74

JOB0010/00012 222 80 70 75

JOB0010/00013 760 105 75 89

JOB0010/00014 549 105 75 72

JOB0010/00015 474 105 75 72

JOB0011/00001 298 80 70 76

JOB0011/00002 342 105 75 71

JOB0011/00003 294 80 70 76

JOB0011/00004 296 80 70 74

JOB0011/00005 494 80 70 83

JOB0011/00006 392 80 70 75

JOB0011/00007 407 80 70 92

JOB0011/00008 394 80 70 77

JOB0011/00009 477 105 75 71

JOB0011/00010 346 80 70 73

JOB0011/00011 186 80 70 75

JOB0011/00012 354 80 70 73

Continued on next page

213

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00013 411 80 70 74

JOB0011/00014 222 80 70 44

JOB0011/00015 115 80 60 47

JOB0012/00001 365 80 70 75

JOB0012/00002 625 105 75 60

JOB0012/00003 612 105 75 82

JOB0012/00004 404 105 75 57

JOB0012/00005 348 80 70 91

JOB0012/00006 627 105 75 61

JOB0012/00007 459 105 75 86

JOB0012/00008 357 105 75 71

JOB0012/00009 366 120 81 65

JOB0012/00010 244 80 70 65

JOB0012/00011 356 80 70 92

JOB0012/00012 445 80 70 97

JOB0012/00013 503 105 75 65

JOB0013/00001 551 105 75 72

JOB0013/00002 262 80 70 70

JOB0013/00003 605 105 75 71

JOB0013/00004 369 105 75 56

JOB0013/00005 641 105 75 71

JOB0013/00006 451 105 75 60

JOB0013/00007 374 105 75 60

JOB0013/00008 377 80 70 73

JOB0013/00009 407 80 70 73

JOB0013/00010 358 80 70 86

JOB0013/00011 624 120 81 85

JOB0013/00012 766 105 75 72

JOB0014/00001 61 80 70 58

JOB0014/00002 500 80 70 83

Continued on next page

214

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0014/00003 318 80 70 73

JOB0014/00004 803 105 75 81

JOB0014/00005 357 105 75 62

JOB0014/00006 478 105 75 65

JOB0014/00007 594 105 75 79

JOB0014/00008 421 80 70 80

JOB0014/00009 320 80 70 89

JOB0014/00010 432 80 70 73

JOB0014/00011 204 80 70 56

JOB0014/00012 173 80 70 49

JOB0015/00001 296 80 70 80

JOB0015/00002 341 80 70 72

JOB0015/00003 280 80 70 72

JOB0015/00004 479 80 70 91

JOB0015/00005 577 105 75 72

JOB0015/00006 116 105 75 56

JOB0015/00007 346 80 70 82

JOB0015/00008 500 105 75 72

JOB0015/00009 429 80 70 81

JOB0015/00010 337 80 70 72

JOB0015/00011 347 80 70 72

JOB0015/00012 360 80 70 70

JOB0015/00013 330 80 70 75

JOB0015/00014 431 80 70 73

JOB0016/00001 487 80 70 76

JOB0016/00002 492 80 70 84

JOB0016/00003 383 80 70 74

JOB0016/00004 249 80 70 64

JOB0016/00005 357 80 70 79

JOB0016/00006 323 80 70 81

Continued on next page

215

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00007 293 80 70 61

JOB0016/00008 265 80 70 74

JOB0016/00009 515 105 75 72

JOB0016/00010 261 105 75 76

JOB0016/00011 629 105 75 72

JOB0016/00012 486 105 75 73

JOB0016/00013 269 80 70 72

JOB0016/00014 167 80 70 76

JOB0016/00015 244 80 70 63

JOB0017/00001 535 105 75 71

JOB0017/00002 252 80 70 64

JOB0017/00003 300 80 70 73

JOB0017/00004 244 80 70 73

JOB0017/00005 400 80 70 72

JOB0017/00006 379 80 70 82

JOB0017/00007 322 80 70 75

JOB0017/00008 370 80 70 61

JOB0017/00009 345 80 70 73

JOB0017/00010 440 80 70 79

JOB0017/00011 440 80 70 81

JOB0017/00012 405 105 75 63

JOB0018/00001 547 105 75 80

JOB0018/00002 273 80 70 65

JOB0018/00003 377 105 75 62

JOB0018/00004 279 80 70 61

JOB0018/00005 278 105 75 63

JOB0018/00006 513 105 75 75

JOB0018/00007 382 105 75 74

JOB0018/00008 175 80 70 64

JOB0018/00009 407 80 70 87

Continued on next page

216

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00010 332 80 70 82

JOB0019/00001 703 120 81 63

JOB0019/00002 524 120 81 63

JOB0019/00003 703 120 81 63

JOB0019/00004 770 120 81 79

JOB0020/00001 241 105 75 71

JOB0020/00002 230 105 75 51

JOB0020/00003 254 105 75 72

JOB0020/00004 256 105 75 72

JOB0020/00005 167 80 70 81

JOB0020/00006 253 105 75 72

JOB0020/00007 199 80 70 51

JOB0020/00008 131 105 75 36

JOB0020/00009 369 105 75 64

JOB0021/00001 355 80 70 74

JOB0021/00002 176 80 60 53

JOB0021/00003 382 80 70 74

JOB0021/00004 569 120 81 77

JOB0021/00005 282 80 70 60

JOB0021/00006 380 80 70 73

JOB0021/00007 418 80 70 74

JOB0021/00008 320 80 70 74

JOB0021/00009 248 80 70 59

JOB0021/00010 852 120 81 69

JOB0021/00011 530 120 81 60

JOB0021/00012 618 120 81 69

JOB0021/00013 806 120 81 69

JOB0021/00014 351 120 81 53

JOB0021/00015 767 120 81 83

JOB0022/00001 428 80 70 90

Continued on next page

217

Appendix C: Hybrid Algorithm Problem Sets

Table C.7 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0022/00002 511 120 81 63

JOB0022/00003 410 120 81 55

JOB0022/00004 511 120 81 63

JOB0022/00005 297 80 70 84

JOB0023/00001 269 80 70 67

JOB0023/00002 396 80 70 74

JOB0023/00003 208 80 70 74

JOB0023/00004 256 80 70 74

JOB0023/00005 171 80 70 69

JOB0023/00006 320 80 70 62

JOB0023/00007 632 105 75 71

JOB0023/00008 311 80 70 78

JOB0023/00009 180 80 70 54

JOB0023/00010 271 80 70 64

JOB0023/00011 235 80 70 66

JOB0023/00012 261 80 70 57

JOB0024/00001 391 80 70 80

JOB0024/00002 429 80 70 73

JOB0024/00003 366 80 70 73

JOB0024/00004 317 80 70 81

JOB0024/00005 410 80 70 98

JOB0024/00006 222 80 70 80

JOB0024/00007 500 80 70 98

JOB0024/00008 234 80 70 66

JOB0024/00009 717 105 75 71

JOB0024/00010 389 80 70 73

JOB0024/00011 322 80 70 91

JOB0024/00012 421 80 70 85

218

Appendix C: Hybrid Algorithm Problem Sets

Table C.8: Problem Set #8

Pallet number Weight Length Breadth Height

JOB0001/00001 217 80 70 58

JOB0001/00002 352 80 70 82

JOB0001/00003 380 105 75 46

JOB0001/00004 386 80 70 70

JOB0001/00005 243 80 70 59

JOB0001/00006 353 80 70 80

JOB0001/00007 478 80 70 93

JOB0001/00008 237 80 70 79

JOB0002/00001 236 80 70 57

JOB0002/00002 258 105 75 73

JOB0002/00003 548 120 81 75

JOB0002/00004 186 80 70 39

JOB0002/00005 408 80 70 66

JOB0002/00006 353 80 70 75

JOB0002/00007 313 80 70 75

JOB0002/00008 508 105 75 89

JOB0002/00009 293 80 70 73

JOB0002/00010 583 105 75 72

JOB0003/00001 226 80 70 57

JOB0003/00002 684 120 81 77

JOB0003/00003 260 80 70 58

JOB0003/00004 316 80 70 71

JOB0003/00005 534 120 81 75

JOB0004/00001 679 105 75 83

JOB0004/00002 267 105 75 56

JOB0004/00003 310 105 75 74

JOB0004/00004 363 80 70 89

JOB0004/00005 60 80 60 40

Continued on next page

219

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00006 807 105 75 74

JOB0004/00007 329 80 70 85

JOB0004/00008 318 105 75 74

JOB0004/00009 375 120 81 39

JOB0004/00010 825 105 75 74

JOB0004/00011 637 105 75 74

JOB0004/00012 348 80 70 82

JOB0004/00013 398 80 70 93

JOB0005/00001 660 120 81 74

JOB0005/00002 416 120 81 60

JOB0005/00003 442 80 70 82

JOB0006/00001 64 80 70 42

JOB0006/00002 380 105 75 72

JOB0006/00003 329 105 75 72

JOB0006/00004 275 80 70 70

JOB0006/00005 675 105 75 71

JOB0006/00006 516 120 81 59

JOB0006/00007 105 80 70 49

JOB0006/00008 748 105 75 86

JOB0006/00009 745 105 75 70

JOB0006/00010 303 80 70 76

JOB0006/00011 410 105 75 55

JOB0006/00012 465 105 75 69

JOB0006/00013 128 80 70 67

JOB0006/00014 482 105 75 70

JOB0007/00001 44 80 60 31

JOB0008/00001 14 80 60 30

JOB0009/00001 394 80 70 82

JOB0009/00002 385 105 75 62

JOB0009/00003 803 105 75 81

Continued on next page

220

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0009/00004 197 80 70 73

JOB0009/00005 212 80 70 57

JOB0009/00006 347 80 70 93

JOB0009/00007 305 80 70 88

JOB0009/00008 554 105 75 65

JOB0009/00009 410 105 75 89

JOB0009/00010 314 105 75 57

JOB0009/00011 325 80 70 89

JOB0009/00012 311 80 70 77

JOB0010/00001 104 80 70 28

JOB0011/00001 349 80 70 75

JOB0011/00002 361 105 75 47

JOB0011/00003 880 120 81 82

JOB0011/00004 710 105 75 71

JOB0011/00005 461 105 75 62

JOB0011/00006 533 105 75 71

JOB0011/00007 781 120 81 84

JOB0011/00008 435 105 75 86

JOB0011/00009 226 80 70 56

JOB0011/00010 240 80 70 80

JOB0011/00011 257 80 70 69

JOB0012/00001 224 80 70 55

JOB0012/00002 580 105 75 66

JOB0012/00003 642 105 75 69

JOB0012/00004 639 105 75 82

JOB0012/00005 392 105 75 56

JOB0012/00006 236 105 75 73

JOB0012/00007 479 80 70 83

JOB0012/00008 167 80 70 85

JOB0012/00009 190 105 75 87

Continued on next page

221

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0012/00010 493 105 75 66

JOB0012/00011 232 105 75 50

JOB0012/00012 331 105 75 74

JOB0012/00013 334 105 75 74

JOB0012/00014 463 105 75 72

JOB0012/00015 367 80 70 96

JOB0012/00016 187 80 70 58

JOB0012/00017 149 80 70 53

JOB0013/00001 504 105 75 63

JOB0013/00002 253 80 70 62

JOB0013/00003 273 80 70 92

JOB0013/00004 327 105 75 58

JOB0013/00005 744 105 75 70

JOB0013/00006 310 105 75 75

JOB0013/00007 953 105 75 83

JOB0013/00008 412 105 75 65

JOB0013/00009 659 105 75 80

JOB0013/00010 531 105 75 71

JOB0013/00011 368 105 75 70

JOB0013/00012 701 105 75 84

JOB0013/00013 369 105 75 70

JOB0013/00014 321 80 70 82

JOB0013/00015 205 80 70 58

JOB0013/00016 675 120 81 72

JOB0013/00017 280 105 75 57

JOB0014/00001 228 80 70 45

JOB0015/00001 646 120 81 71

JOB0015/00002 674 120 81 67

JOB0015/00003 656 105 75 70

JOB0015/00004 786 105 75 74

Continued on next page

222

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0015/00005 444 80 70 76

JOB0015/00006 524 105 75 74

JOB0016/00001 277 105 75 41

JOB0016/00002 326 105 75 54

JOB0016/00003 582 105 75 81

JOB0016/00004 399 105 75 62

JOB0016/00005 558 105 75 73

JOB0016/00006 750 105 75 88

JOB0016/00007 367 80 70 91

JOB0016/00008 240 80 70 72

JOB0016/00009 416 80 70 84

JOB0016/00010 384 80 70 84

JOB0016/00011 408 105 75 66

JOB0016/00012 447 120 81 62

JOB0017/00001 104 80 70 76

JOB0017/00002 104 80 70 76

JOB0017/00003 565 105 75 72

JOB0017/00004 105 80 70 74

JOB0017/00005 206 80 70 69

JOB0017/00006 112 80 70 74

JOB0017/00007 303 80 70 76

JOB0017/00008 161 80 70 51

JOB0017/00009 202 80 70 76

JOB0017/00010 105 80 70 76

JOB0017/00011 111 80 70 74

JOB0017/00012 353 80 70 76

JOB0017/00013 232 80 70 76

JOB0017/00014 112 80 70 74

JOB0017/00015 111 80 70 74

JOB0017/00016 155 80 70 91

Continued on next page

223

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0017/00017 201 80 70 76

JOB0017/00018 106 80 70 74

JOB0017/00019 112 80 70 74

JOB0017/00020 111 80 70 74

JOB0017/00021 112 80 70 74

JOB0017/00022 112 80 70 74

JOB0017/00023 112 80 70 74

JOB0017/00024 377 105 75 85

JOB0017/00025 339 105 75 54

JOB0017/00026 561 105 75 73

JOB0017/00027 373 105 75 73

JOB0017/00028 553 120 81 75

JOB0017/00029 565 105 75 73

JOB0017/00030 583 105 75 73

JOB0017/00031 549 105 75 73

JOB0017/00032 353 80 70 74

JOB0017/00033 150 105 75 61

JOB0017/00034 156 105 75 61

JOB0017/00035 399 105 75 73

JOB0017/00036 321 105 75 73

JOB0017/00037 405 105 75 72

JOB0017/00038 323 105 75 73

JOB0017/00039 392 105 75 72

JOB0017/00040 698 120 81 76

JOB0017/00041 344 105 75 72

JOB0017/00042 366 105 75 71

JOB0017/00043 518 120 81 85

JOB0018/00001 790 120 81 91

JOB0018/00002 914 120 81 91

JOB0018/00003 788 120 81 91

Continued on next page

224

Appendix C: Hybrid Algorithm Problem Sets

Table C.8 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00004 940 120 81 91

JOB0018/00005 341 80 70 74

JOB0018/00006 741 120 81 76

225

Appendix C: Hybrid Algorithm Problem Sets

Table C.9: Problem Set #9

Pallet number Weight Length Breadth Height

JOB0001/00001 737 105 75 82

JOB0001/00002 736 105 75 82

JOB0001/00003 737 105 75 82

JOB0001/00004 409 80 70 84

JOB0001/00005 355 80 70 83

JOB0001/00006 402 80 70 83

JOB0001/00007 640 105 75 81

JOB0001/00008 656 105 75 81

JOB0001/00009 316 105 75 72

JOB0001/00010 733 105 75 82

JOB0001/00011 732 105 75 82

JOB0001/00012 212 80 70 77

JOB0001/00013 231 80 70 73

JOB0001/00014 584 105 75 83

JOB0001/00015 416 105 75 72

JOB0002/00001 616 105 75 72

JOB0002/00002 600 105 75 72

JOB0002/00003 125 80 60 46

JOB0002/00004 361 80 70 84

JOB0002/00005 472 80 70 92

JOB0002/00006 352 80 70 82

JOB0002/00007 583 105 75 71

JOB0002/00008 680 105 75 73

JOB0002/00009 370 80 70 83

JOB0003/00001 335 80 70 83

JOB0003/00002 444 80 70 83

JOB0003/00003 307 80 70 73

JOB0003/00004 825 120 81 82

Continued on next page

226

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00005 315 80 70 81

JOB0003/00006 286 80 70 76

JOB0003/00007 250 80 70 72

JOB0003/00008 389 120 81 83

JOB0003/00009 683 105 75 82

JOB0003/00010 484 105 75 63

JOB0003/00011 230 105 75 41

JOB0003/00012 441 105 75 71

JOB0003/00013 696 105 75 82

JOB0003/00014 75 80 70 43

JOB0004/00001 193 80 70 60

JOB0004/00002 363 105 75 61

JOB0004/00003 394 80 70 82

JOB0004/00004 254 80 70 62

JOB0004/00005 484 105 75 62

JOB0004/00006 594 105 75 77

JOB0004/00007 212 80 70 60

JOB0004/00008 189 80 70 65

JOB0004/00009 446 105 75 56

JOB0004/00010 539 105 75 65

JOB0004/00011 613 105 75 75

JOB0004/00012 608 105 75 72

JOB0004/00013 598 105 75 72

JOB0004/00014 208 80 60 66

JOB0004/00015 555 105 75 70

JOB0004/00016 559 105 75 72

JOB0005/00001 599 120 81 74

JOB0005/00002 709 105 75 72

JOB0005/00003 708 105 75 72

JOB0005/00004 341 80 70 89

Continued on next page

227

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0005/00005 620 105 75 72

JOB0005/00006 641 105 75 72

JOB0005/00007 563 120 81 67

JOB0005/00008 663 105 75 71

JOB0005/00009 639 105 75 72

JOB0005/00010 522 105 75 71

JOB0005/00011 329 80 70 73

JOB0005/00012 227 80 70 76

JOB0005/00013 291 80 70 76

JOB0005/00014 291 80 70 51

JOB0005/00015 348 80 70 78

JOB0005/00016 506 80 70 76

JOB0005/00017 586 105 75 71

JOB0005/00018 328 80 70 82

JOB0005/00019 518 105 75 71

JOB0005/00020 494 80 70 76

JOB0005/00021 353 80 70 73

JOB0005/00022 234 80 70 76

JOB0005/00023 260 80 70 73

JOB0005/00024 234 80 70 73

JOB0005/00025 331 80 70 73

JOB0005/00026 378 80 70 76

JOB0005/00027 354 80 70 87

JOB0006/00001 279 80 70 85

JOB0006/00002 290 80 70 85

JOB0006/00003 325 80 70 84

JOB0006/00004 237 80 70 74

JOB0006/00005 355 80 70 88

JOB0006/00006 350 80 70 96

JOB0006/00007 348 80 70 78

Continued on next page

228

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0006/00008 396 80 70 84

JOB0006/00009 331 80 70 79

JOB0006/00010 358 105 75 67

JOB0006/00011 317 80 70 74

JOB0006/00012 398 80 70 85

JOB0006/00013 394 80 70 84

JOB0006/00014 398 105 75 61

JOB0006/00015 399 80 70 84

JOB0006/00016 362 120 81 78

JOB0006/00017 528 105 75 91

JOB0007/00001 679 120 81 90

JOB0007/00002 783 105 75 86

JOB0007/00003 188 80 70 62

JOB0007/00004 742 105 75 71

JOB0007/00005 268 80 70 58

JOB0007/00006 334 80 70 79

JOB0007/00007 656 105 75 85

JOB0007/00008 308 80 70 83

JOB0007/00009 725 105 75 84

JOB0007/00010 726 105 75 84

JOB0007/00011 399 80 70 88

JOB0007/00012 348 80 70 72

JOB0007/00013 348 80 70 72

JOB0007/00014 176 80 70 44

JOB0008/00001 435 80 70 92

JOB0008/00002 614 105 75 76

JOB0008/00003 263 80 70 57

JOB0008/00004 317 80 70 78

JOB0008/00005 642 105 75 77

JOB0008/00006 306 80 70 79

Continued on next page

229

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0008/00007 502 80 70 92

JOB0009/00001 324 80 70 79

JOB0009/00002 443 80 70 90

JOB0009/00003 433 80 70 82

JOB0009/00004 323 80 70 59

JOB0009/00005 795 120 81 75

JOB0009/00006 573 105 75 82

JOB0009/00007 666 120 81 79

JOB0009/00008 602 105 75 76

JOB0009/00009 620 105 75 68

JOB0009/00010 586 105 75 71

JOB0010/00001 477 80 70 87

JOB0010/00002 341 105 75 47

JOB0010/00003 601 105 75 70

JOB0010/00004 578 105 75 74

JOB0010/00005 442 80 70 94

JOB0010/00006 848 105 75 89

JOB0010/00007 268 80 70 71

JOB0010/00008 336 80 70 76

JOB0010/00009 232 80 70 72

JOB0011/00001 670 105 75 75

JOB0011/00002 281 105 75 66

JOB0011/00003 368 105 75 83

JOB0011/00004 534 105 75 71

JOB0011/00005 455 105 75 71

JOB0011/00006 371 80 70 78

JOB0011/00007 280 105 75 66

JOB0011/00008 535 105 75 71

JOB0011/00009 596 105 75 71

JOB0011/00010 595 105 75 71

Continued on next page

230

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00011 534 105 75 71

JOB0011/00012 504 105 75 76

JOB0011/00013 536 105 75 71

JOB0011/00014 386 105 75 87

JOB0011/00015 364 80 70 79

JOB0011/00016 201 80 70 46

JOB0012/00001 281 80 70 92

JOB0012/00002 400 80 70 67

JOB0012/00003 778 105 75 71

JOB0012/00004 209 80 70 62

JOB0012/00005 359 80 70 83

JOB0012/00006 339 80 70 84

JOB0012/00007 460 80 70 94

JOB0012/00008 403 105 75 87

JOB0012/00009 311 105 75 71

JOB0013/00001 169 80 70 59

JOB0013/00002 306 80 70 76

JOB0013/00003 875 120 81 76

JOB0014/00001 359 80 70 75

JOB0014/00002 486 80 70 88

JOB0014/00003 630 105 75 80

JOB0014/00004 516 105 75 70

JOB0014/00005 651 105 75 74

JOB0014/00006 464 105 75 74

JOB0014/00007 490 105 75 60

JOB0014/00008 379 105 75 57

JOB0014/00009 291 80 70 73

JOB0015/00001 237 80 70 61

JOB0015/00002 352 80 70 72

JOB0015/00003 443 105 75 64

Continued on next page

231

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0015/00004 702 105 75 83

JOB0015/00005 476 80 70 96

JOB0015/00006 335 80 70 73

JOB0015/00007 581 105 75 79

JOB0015/00008 391 105 75 65

JOB0015/00009 607 105 75 64

JOB0016/00001 238 80 70 77

JOB0016/00002 412 105 75 69

JOB0016/00003 613 105 75 79

JOB0016/00004 217 80 70 64

JOB0016/00005 198 80 70 59

JOB0016/00006 389 80 70 76

JOB0016/00007 309 80 70 79

JOB0016/00008 358 80 70 66

JOB0016/00009 341 80 70 75

JOB0017/00001 14 80 60 31

JOB0018/00001 36 80 60 29

JOB0019/00001 220 120 81 38

JOB0020/00001 370 80 70 59

JOB0020/00002 880 105 75 92

JOB0020/00003 536 105 75 71

JOB0020/00004 580 120 81 72

JOB0020/00005 812 105 75 70

JOB0020/00006 304 80 70 76

JOB0020/00007 800 105 75 70

JOB0020/00008 798 105 75 70

JOB0020/00009 348 80 70 64

JOB0020/00010 288 80 70 63

JOB0021/00001 325 80 70 77

JOB0021/00002 458 80 70 87

Continued on next page

232

Appendix C: Hybrid Algorithm Problem Sets

Table C.9 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0021/00003 937 105 75 85

JOB0021/00004 340 80 70 88

JOB0021/00005 280 105 75 71

JOB0021/00006 229 105 75 51

JOB0021/00007 983 105 75 85

JOB0021/00008 513 105 75 57

JOB0021/00009 709 105 75 70

233

Appendix C: Hybrid Algorithm Problem Sets

Table C.10: Problem Set #10

Pallet number Weight Length Breadth Height

JOB0001/00001 354 80 70 55

JOB0001/00002 589 120 81 63

JOB0001/00003 589 120 81 63

JOB0001/00004 586 120 81 63

JOB0001/00005 589 120 81 63

JOB0001/00006 590 120 81 63

JOB0001/00007 591 120 81 63

JOB0001/00008 241 80 70 61

JOB0001/00009 312 80 70 75

JOB0001/00010 410 80 70 75

JOB0001/00011 306 80 70 75

JOB0001/00012 898 120 81 75

JOB0001/00013 198 80 70 58

JOB0001/00014 201 80 70 59

JOB0001/00015 923 120 81 75

JOB0002/00001 351 120 81 64

JOB0002/00002 378 80 70 80

JOB0002/00003 398 80 70 75

JOB0002/00004 459 80 70 75

JOB0002/00005 468 80 70 75

JOB0003/00001 371 105 75 68

JOB0003/00002 643 105 75 72

JOB0003/00003 322 80 70 87

JOB0003/00004 327 105 75 75

JOB0003/00005 600 105 75 72

JOB0003/00006 328 80 70 84

JOB0003/00007 212 80 70 77

JOB0003/00008 269 105 75 74

Continued on next page

234

Appendix C: Hybrid Algorithm Problem Sets

Table C.10 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00009 310 80 70 87

JOB0003/00010 330 105 75 75

JOB0003/00011 369 80 70 78

JOB0003/00012 578 105 75 73

JOB0003/00013 566 105 75 72

JOB0003/00014 225 80 70 56

JOB0003/00015 331 80 70 73

JOB0003/00016 172 80 70 72

JOB0003/00017 179 80 70 69

JOB0004/00001 212 80 70 62

JOB0004/00002 304 80 70 73

JOB0004/00003 282 80 70 76

JOB0004/00004 310 80 70 75

JOB0004/00005 306 80 70 88

JOB0004/00006 136 80 70 60

JOB0004/00007 522 105 75 69

JOB0004/00008 303 80 70 74

JOB0005/00001 503 105 75 72

JOB0006/00001 179 80 70 79

JOB0006/00002 452 80 70 87

JOB0007/00001 384 105 75 57

JOB0007/00002 563 105 75 67

JOB0008/00001 558 120 81 61

JOB0008/00002 341 80 70 74

JOB0008/00003 296 80 70 74

JOB0009/00001 61 80 70 58

JOB0009/00002 500 80 70 83

JOB0009/00003 318 80 70 73

JOB0009/00004 803 105 75 81

JOB0009/00005 357 105 75 62

Continued on next page

235

Appendix C: Hybrid Algorithm Problem Sets

Table C.10 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0009/00006 478 105 75 65

JOB0009/00007 594 105 75 79

JOB0009/00008 421 80 70 80

JOB0009/00009 320 80 70 89

JOB0009/00010 432 80 70 73

JOB0009/00011 204 80 70 56

JOB0009/00012 173 80 70 49

JOB0010/00001 296 80 70 80

JOB0010/00002 341 80 70 72

JOB0010/00003 280 80 70 72

JOB0010/00004 479 80 70 91

JOB0010/00005 577 105 75 72

JOB0010/00006 116 105 75 56

JOB0010/00007 346 80 70 82

JOB0010/00008 500 105 75 72

JOB0010/00009 429 80 70 81

JOB0010/00010 337 80 70 72

JOB0010/00011 347 80 70 72

JOB0010/00012 360 80 70 70

JOB0010/00013 330 80 70 75

JOB0010/00014 431 80 70 73

JOB0011/00001 487 80 70 76

JOB0011/00002 492 80 70 84

JOB0011/00003 383 80 70 74

JOB0011/00004 249 80 70 64

JOB0011/00005 357 80 70 79

JOB0011/00006 323 80 70 81

JOB0011/00007 293 80 70 61

JOB0011/00008 265 80 70 74

JOB0011/00009 515 105 75 72

Continued on next page

236

Appendix C: Hybrid Algorithm Problem Sets

Table C.10 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00010 261 105 75 76

JOB0011/00011 629 105 75 72

JOB0011/00012 486 105 75 73

JOB0011/00013 269 80 70 72

JOB0011/00014 167 80 70 76

JOB0011/00015 244 80 70 63

JOB0012/00001 535 105 75 71

JOB0012/00002 252 80 70 64

JOB0012/00003 300 80 70 73

JOB0012/00004 244 80 70 73

JOB0012/00005 400 80 70 72

JOB0012/00006 379 80 70 82

JOB0012/00007 322 80 70 75

JOB0012/00008 370 80 70 61

JOB0012/00009 345 80 70 73

JOB0012/00010 440 80 70 79

JOB0012/00011 440 80 70 81

JOB0012/00012 405 105 75 63

JOB0013/00001 547 105 75 80

JOB0013/00002 273 80 70 65

JOB0013/00003 377 105 75 62

JOB0013/00004 279 80 70 61

JOB0013/00005 278 105 75 63

JOB0013/00006 513 105 75 75

JOB0013/00007 382 105 75 74

JOB0013/00008 175 80 70 64

JOB0013/00009 407 80 70 87

JOB0013/00010 332 80 70 82

JOB0014/00001 703 120 81 63

JOB0014/00002 524 120 81 63

Continued on next page

237

Appendix C: Hybrid Algorithm Problem Sets

Table C.10 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0014/00003 703 120 81 63

JOB0014/00004 770 120 81 79

JOB0015/00001 241 105 75 71

JOB0015/00002 230 105 75 51

JOB0015/00003 254 105 75 72

JOB0015/00004 256 105 75 72

JOB0015/00005 167 80 70 81

JOB0015/00006 253 105 75 72

JOB0015/00007 199 80 70 51

JOB0015/00008 131 105 75 36

JOB0015/00009 369 105 75 64

JOB0016/00001 355 80 70 74

JOB0016/00002 176 80 60 53

JOB0016/00003 382 80 70 74

JOB0016/00004 569 120 81 77

JOB0016/00005 282 80 70 60

JOB0016/00006 380 80 70 73

JOB0016/00007 418 80 70 74

JOB0016/00008 320 80 70 74

JOB0016/00009 248 80 70 59

JOB0016/00010 852 120 81 69

JOB0016/00011 530 120 81 60

JOB0016/00012 618 120 81 69

JOB0016/00013 806 120 81 69

JOB0016/00014 351 120 81 53

JOB0016/00015 767 120 81 83

JOB0017/00001 428 80 70 90

JOB0017/00002 511 120 81 63

JOB0017/00003 410 120 81 55

JOB0017/00004 511 120 81 63

Continued on next page

238

Appendix C: Hybrid Algorithm Problem Sets

Table C.10 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0017/00005 297 80 70 84

JOB0018/00001 269 80 70 67

JOB0018/00002 396 80 70 74

JOB0018/00003 208 80 70 74

JOB0018/00004 256 80 70 74

JOB0018/00005 171 80 70 69

JOB0018/00006 320 80 70 62

JOB0018/00007 632 105 75 71

JOB0018/00008 311 80 70 78

JOB0018/00009 180 80 70 54

JOB0018/00010 271 80 70 64

JOB0018/00011 235 80 70 66

JOB0018/00012 261 80 70 57

JOB0019/00001 391 80 70 80

JOB0019/00002 429 80 70 73

JOB0019/00003 366 80 70 73

JOB0019/00004 317 80 70 81

JOB0019/00005 410 80 70 98

JOB0019/00006 222 80 70 80

JOB0019/00007 500 80 70 98

JOB0019/00008 234 80 70 66

JOB0019/00009 717 105 75 71

JOB0019/00010 389 80 70 73

JOB0019/00011 322 80 70 91

JOB0019/00012 421 80 70 85

239

Appendix C: Hybrid Algorithm Problem Sets

Table C.11: Problem Set #11

Pallet number Weight Length Breadth Height

JOB0001/00001 349 80 70 75

JOB0001/00002 361 105 75 47

JOB0001/00003 880 120 81 82

JOB0001/00004 710 105 75 71

JOB0001/00005 461 105 75 62

JOB0001/00006 533 105 75 71

JOB0001/00007 781 120 81 84

JOB0001/00008 435 105 75 86

JOB0001/00009 226 80 70 56

JOB0001/00010 240 80 70 80

JOB0001/00011 257 80 70 69

JOB0002/00001 224 80 70 55

JOB0002/00002 580 105 75 66

JOB0002/00003 642 105 75 69

JOB0002/00004 639 105 75 82

JOB0002/00005 392 105 75 56

JOB0002/00006 236 105 75 73

JOB0002/00007 479 80 70 83

JOB0002/00008 167 80 70 85

JOB0002/00009 190 105 75 87

JOB0002/00010 493 105 75 66

JOB0002/00011 232 105 75 50

JOB0002/00012 331 105 75 74

JOB0002/00013 334 105 75 74

JOB0002/00014 463 105 75 72

JOB0002/00015 367 80 70 96

JOB0002/00016 187 80 70 58

JOB0002/00017 149 80 70 53

Continued on next page

240

Appendix C: Hybrid Algorithm Problem Sets

Table C.11 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00001 504 105 75 63

JOB0003/00002 253 80 70 62

JOB0003/00003 273 80 70 92

JOB0003/00004 327 105 75 58

JOB0003/00005 744 105 75 70

JOB0003/00006 310 105 75 75

JOB0003/00007 953 105 75 83

JOB0003/00008 412 105 75 65

JOB0003/00009 659 105 75 80

JOB0003/00010 531 105 75 71

JOB0003/00011 368 105 75 70

JOB0003/00012 701 105 75 84

JOB0003/00013 369 105 75 70

JOB0003/00014 321 80 70 82

JOB0003/00015 205 80 70 58

JOB0003/00016 675 120 81 72

JOB0003/00017 280 105 75 57

JOB0004/00001 228 80 70 45

JOB0005/00001 646 120 81 71

JOB0005/00002 674 120 81 67

JOB0005/00003 656 105 75 70

JOB0005/00004 786 105 75 74

JOB0005/00005 444 80 70 76

JOB0005/00006 524 105 75 74

JOB0006/00001 277 105 75 41

JOB0006/00002 326 105 75 54

JOB0006/00003 582 105 75 81

JOB0006/00004 399 105 75 62

JOB0006/00005 558 105 75 73

JOB0006/00006 750 105 75 88

Continued on next page

241

Appendix C: Hybrid Algorithm Problem Sets

Table C.11 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0006/00007 367 80 70 91

JOB0006/00008 240 80 70 72

JOB0006/00009 416 80 70 84

JOB0006/00010 384 80 70 84

JOB0006/00011 408 105 75 66

JOB0006/00012 447 120 81 62

JOB0007/00001 104 80 70 76

JOB0007/00002 104 80 70 76

JOB0007/00003 565 105 75 72

JOB0007/00004 105 80 70 74

JOB0007/00005 206 80 70 69

JOB0007/00006 112 80 70 74

JOB0007/00007 303 80 70 76

JOB0007/00008 161 80 70 51

JOB0007/00009 202 80 70 76

JOB0007/00010 105 80 70 76

JOB0007/00011 111 80 70 74

JOB0007/00012 353 80 70 76

JOB0007/00013 232 80 70 76

JOB0007/00014 112 80 70 74

JOB0007/00015 111 80 70 74

JOB0007/00016 155 80 70 91

JOB0007/00017 201 80 70 76

JOB0007/00018 106 80 70 74

JOB0007/00019 112 80 70 74

JOB0007/00020 111 80 70 74

JOB0007/00021 112 80 70 74

JOB0007/00022 112 80 70 74

JOB0007/00023 112 80 70 74

JOB0007/00024 377 105 75 85

Continued on next page

242

Appendix C: Hybrid Algorithm Problem Sets

Table C.11 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00025 339 105 75 54

JOB0007/00026 561 105 75 73

JOB0007/00027 373 105 75 73

JOB0007/00028 553 120 81 75

JOB0007/00029 565 105 75 73

JOB0007/00030 583 105 75 73

JOB0007/00031 549 105 75 73

JOB0007/00032 353 80 70 74

JOB0007/00033 150 105 75 61

JOB0007/00034 156 105 75 61

JOB0007/00035 399 105 75 73

JOB0007/00036 321 105 75 73

JOB0007/00037 405 105 75 72

JOB0007/00038 323 105 75 73

JOB0007/00039 392 105 75 72

JOB0007/00040 698 120 81 76

JOB0007/00041 344 105 75 72

JOB0007/00042 366 105 75 71

JOB0007/00043 518 120 81 85

JOB0008/00001 790 120 81 91

JOB0008/00002 914 120 81 91

JOB0008/00003 788 120 81 91

JOB0008/00004 940 120 81 91

JOB0008/00005 341 80 70 74

JOB0008/00006 741 120 81 76

243

Appendix C: Hybrid Algorithm Problem Sets

Table C.12: Problem Set #12

Pallet number Weight Length Breadth Height

JOB0001/00001 599 120 81 74

JOB0001/00002 709 105 75 72

JOB0001/00003 708 105 75 72

JOB0001/00004 341 80 70 89

JOB0001/00005 620 105 75 72

JOB0001/00006 641 105 75 72

JOB0001/00007 563 120 81 67

JOB0001/00008 663 105 75 71

JOB0001/00009 639 105 75 72

JOB0001/00010 522 105 75 71

JOB0001/00011 329 80 70 73

JOB0001/00012 227 80 70 76

JOB0001/00013 291 80 70 76

JOB0001/00014 291 80 70 51

JOB0001/00015 348 80 70 78

JOB0001/00016 506 80 70 76

JOB0001/00017 586 105 75 71

JOB0001/00018 328 80 70 82

JOB0001/00019 518 105 75 71

JOB0001/00020 494 80 70 76

JOB0001/00021 353 80 70 73

JOB0001/00022 234 80 70 76

JOB0001/00023 260 80 70 73

JOB0001/00024 234 80 70 73

JOB0001/00025 331 80 70 73

JOB0001/00026 378 80 70 76

JOB0001/00027 354 80 70 87

JOB0002/00001 279 80 70 85

Continued on next page

244

Appendix C: Hybrid Algorithm Problem Sets

Table C.12 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0002/00002 290 80 70 85

JOB0002/00003 325 80 70 84

JOB0002/00004 237 80 70 74

JOB0002/00005 355 80 70 88

JOB0002/00006 350 80 70 96

JOB0002/00007 348 80 70 78

JOB0002/00008 396 80 70 84

JOB0002/00009 331 80 70 79

JOB0002/00010 358 105 75 67

JOB0002/00011 317 80 70 74

JOB0002/00012 398 80 70 85

JOB0002/00013 394 80 70 84

JOB0002/00014 398 105 75 61

JOB0002/00015 399 80 70 84

JOB0002/00016 362 120 81 78

JOB0002/00017 528 105 75 91

JOB0003/00001 679 120 81 90

JOB0003/00002 783 105 75 86

JOB0003/00003 188 80 70 62

JOB0003/00004 742 105 75 71

JOB0003/00005 268 80 70 58

JOB0003/00006 334 80 70 79

JOB0003/00007 656 105 75 85

JOB0003/00008 308 80 70 83

JOB0003/00009 725 105 75 84

JOB0003/00010 726 105 75 84

JOB0003/00011 399 80 70 88

JOB0003/00012 348 80 70 72

JOB0003/00013 348 80 70 72

JOB0003/00014 176 80 70 44

Continued on next page

245

Appendix C: Hybrid Algorithm Problem Sets

Table C.12 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00001 435 80 70 92

JOB0004/00002 614 105 75 76

JOB0004/00003 263 80 70 57

JOB0004/00004 317 80 70 78

JOB0004/00005 642 105 75 77

JOB0004/00006 306 80 70 79

JOB0004/00007 502 80 70 92

JOB0005/00001 324 80 70 79

JOB0005/00002 443 80 70 90

JOB0005/00003 433 80 70 82

JOB0005/00004 323 80 70 59

JOB0005/00005 795 120 81 75

JOB0005/00006 573 105 75 82

JOB0005/00007 666 120 81 79

JOB0005/00008 602 105 75 76

JOB0005/00009 620 105 75 68

JOB0005/00010 586 105 75 71

JOB0006/00001 477 80 70 87

JOB0006/00002 341 105 75 47

JOB0006/00003 601 105 75 70

JOB0006/00004 578 105 75 74

JOB0006/00005 442 80 70 94

JOB0006/00006 848 105 75 89

JOB0006/00007 268 80 70 71

JOB0006/00008 336 80 70 76

JOB0006/00009 232 80 70 72

JOB0007/00001 670 105 75 75

JOB0007/00002 281 105 75 66

JOB0007/00003 368 105 75 83

JOB0007/00004 534 105 75 71

Continued on next page

246

Appendix C: Hybrid Algorithm Problem Sets

Table C.12 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00005 455 105 75 71

JOB0007/00006 371 80 70 78

JOB0007/00007 280 105 75 66

JOB0007/00008 535 105 75 71

JOB0007/00009 596 105 75 71

JOB0007/00010 595 105 75 71

JOB0007/00011 534 105 75 71

JOB0007/00012 504 105 75 76

JOB0007/00013 536 105 75 71

JOB0007/00014 386 105 75 87

JOB0007/00015 364 80 70 79

JOB0007/00016 201 80 70 46

JOB0008/00001 281 80 70 92

JOB0008/00002 400 80 70 67

JOB0008/00003 778 105 75 71

JOB0008/00004 209 80 70 62

JOB0008/00005 359 80 70 83

JOB0008/00006 339 80 70 84

JOB0008/00007 460 80 70 94

JOB0008/00008 403 105 75 87

JOB0008/00009 311 105 75 71

JOB0009/00001 169 80 70 59

JOB0009/00002 306 80 70 76

JOB0009/00003 875 120 81 76

JOB0010/00001 359 80 70 75

JOB0010/00002 486 80 70 88

JOB0010/00003 630 105 75 80

JOB0010/00004 516 105 75 70

JOB0010/00005 651 105 75 74

JOB0010/00006 464 105 75 74

Continued on next page

247

Appendix C: Hybrid Algorithm Problem Sets

Table C.12 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0010/00007 490 105 75 60

JOB0010/00008 379 105 75 57

JOB0010/00009 291 80 70 73

JOB0011/00001 237 80 70 61

JOB0011/00002 352 80 70 72

JOB0011/00003 443 105 75 64

JOB0011/00004 702 105 75 83

JOB0011/00005 476 80 70 96

JOB0011/00006 335 80 70 73

JOB0011/00007 581 105 75 79

JOB0011/00008 391 105 75 65

JOB0011/00009 607 105 75 64

JOB0012/00001 238 80 70 77

JOB0012/00002 412 105 75 69

JOB0012/00003 613 105 75 79

JOB0012/00004 217 80 70 64

JOB0012/00005 198 80 70 59

JOB0012/00006 389 80 70 76

JOB0012/00007 309 80 70 79

JOB0012/00008 358 80 70 66

JOB0012/00009 341 80 70 75

JOB0013/00001 14 80 60 31

JOB0014/00001 36 80 60 29

JOB0015/00001 220 120 81 38

JOB0016/00001 370 80 70 59

JOB0016/00002 880 105 75 92

JOB0016/00003 536 105 75 71

JOB0016/00004 580 120 81 72

JOB0016/00005 812 105 75 70

JOB0016/00006 304 80 70 76

Continued on next page

248

Appendix C: Hybrid Algorithm Problem Sets

Table C.12 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00007 800 105 75 70

JOB0016/00008 798 105 75 70

JOB0016/00009 348 80 70 64

JOB0016/00010 288 80 70 63

JOB0017/00001 325 80 70 77

JOB0017/00002 458 80 70 87

JOB0017/00003 937 105 75 85

JOB0017/00004 340 80 70 88

JOB0017/00005 280 105 75 71

JOB0017/00006 229 105 75 51

JOB0017/00007 983 105 75 85

JOB0017/00008 513 105 75 57

JOB0017/00009 709 105 75 70

249

Appendix C: Hybrid Algorithm Problem Sets

Table C.13: Problem Set #13

Pallet number Weight Length Breadth Height

JOB0001/00001 435 80 70 92

JOB0001/00002 614 105 75 76

JOB0001/00003 263 80 70 57

JOB0001/00004 317 80 70 78

JOB0001/00005 642 105 75 77

JOB0001/00006 306 80 70 79

JOB0001/00007 502 80 70 92

JOB0002/00001 324 80 70 79

JOB0002/00002 443 80 70 90

JOB0002/00003 433 80 70 82

JOB0002/00004 323 80 70 59

JOB0002/00005 795 120 81 75

JOB0002/00006 573 105 75 82

JOB0002/00007 666 120 81 79

JOB0002/00008 602 105 75 76

JOB0002/00009 620 105 75 68

JOB0002/00010 586 105 75 71

JOB0003/00001 477 80 70 87

JOB0003/00002 341 105 75 47

JOB0003/00003 601 105 75 70

JOB0003/00004 578 105 75 74

JOB0003/00005 442 80 70 94

JOB0003/00006 848 105 75 89

JOB0003/00007 268 80 70 71

JOB0003/00008 336 80 70 76

JOB0003/00009 232 80 70 72

JOB0004/00001 670 105 75 75

JOB0004/00002 281 105 75 66

Continued on next page

250

Appendix C: Hybrid Algorithm Problem Sets

Table C.13 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0004/00003 368 105 75 83

JOB0004/00004 534 105 75 71

JOB0004/00005 455 105 75 71

JOB0004/00006 371 80 70 78

JOB0004/00007 280 105 75 66

JOB0004/00008 535 105 75 71

JOB0004/00009 596 105 75 71

JOB0004/00010 595 105 75 71

JOB0004/00011 534 105 75 71

JOB0004/00012 504 105 75 76

JOB0004/00013 536 105 75 71

JOB0004/00014 386 105 75 87

JOB0004/00015 364 80 70 79

JOB0004/00016 201 80 70 46

JOB0005/00001 281 80 70 92

JOB0005/00002 400 80 70 67

JOB0005/00003 778 105 75 71

JOB0005/00004 209 80 70 62

JOB0005/00005 359 80 70 83

JOB0005/00006 339 80 70 84

JOB0005/00007 460 80 70 94

JOB0005/00008 403 105 75 87

JOB0005/00009 311 105 75 71

JOB0006/00001 169 80 70 59

JOB0006/00002 306 80 70 76

JOB0006/00003 875 120 81 76

JOB0007/00001 359 80 70 75

JOB0007/00002 486 80 70 88

JOB0007/00003 630 105 75 80

JOB0007/00004 516 105 75 70

Continued on next page

251

Appendix C: Hybrid Algorithm Problem Sets

Table C.13 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0007/00005 651 105 75 74

JOB0007/00006 464 105 75 74

JOB0007/00007 490 105 75 60

JOB0007/00008 379 105 75 57

JOB0007/00009 291 80 70 73

JOB0008/00001 237 80 70 61

JOB0008/00002 352 80 70 72

JOB0008/00003 443 105 75 64

JOB0008/00004 702 105 75 83

JOB0008/00005 476 80 70 96

JOB0008/00006 335 80 70 73

JOB0008/00007 581 105 75 79

JOB0008/00008 391 105 75 65

JOB0008/00009 607 105 75 64

JOB0009/00001 238 80 70 77

JOB0009/00002 412 105 75 69

JOB0009/00003 613 105 75 79

JOB0009/00004 217 80 70 64

JOB0009/00005 198 80 70 59

JOB0009/00006 389 80 70 76

JOB0009/00007 309 80 70 79

JOB0009/00008 358 80 70 66

JOB0009/00009 341 80 70 75

JOB0010/00001 14 80 60 31

JOB0011/00001 36 80 60 29

JOB0012/00001 220 120 81 38

JOB0013/00001 370 80 70 59

JOB0013/00002 880 105 75 92

JOB0013/00003 536 105 75 71

JOB0013/00004 580 120 81 72

Continued on next page

252

Appendix C: Hybrid Algorithm Problem Sets

Table C.13 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0013/00005 812 105 75 70

JOB0013/00006 304 80 70 76

JOB0013/00007 800 105 75 70

JOB0013/00008 798 105 75 70

JOB0013/00009 348 80 70 64

JOB0013/00010 288 80 70 63

JOB0014/00001 325 80 70 77

JOB0014/00002 458 80 70 87

JOB0014/00003 937 105 75 85

JOB0014/00004 340 80 70 88

JOB0014/00005 280 105 75 71

JOB0014/00006 229 105 75 51

JOB0014/00007 983 105 75 85

JOB0014/00008 513 105 75 57

JOB0014/00009 709 105 75 70

253

Appendix C: Hybrid Algorithm Problem Sets

Table C.14: Problem Set #14

Pallet number Weight Length Breadth Height

JOB0001/00001 354 80 70 55

JOB0001/00002 589 120 81 63

JOB0001/00003 589 120 81 63

JOB0001/00004 586 120 81 63

JOB0001/00005 589 120 81 63

JOB0001/00006 590 120 81 63

JOB0001/00007 591 120 81 63

JOB0001/00008 241 80 70 61

JOB0001/00009 312 80 70 75

JOB0001/00010 410 80 70 75

JOB0001/00011 306 80 70 75

JOB0001/00012 898 120 81 75

JOB0001/00013 198 80 70 58

JOB0001/00014 201 80 70 59

JOB0001/00015 923 120 81 75

JOB0002/00001 351 120 81 64

JOB0002/00002 378 80 70 80

JOB0002/00003 398 80 70 75

JOB0002/00004 459 80 70 75

JOB0002/00005 468 80 70 75

JOB0003/00001 371 105 75 68

JOB0003/00002 643 105 75 72

JOB0003/00003 322 80 70 87

JOB0003/00004 327 105 75 75

JOB0003/00005 600 105 75 72

JOB0003/00006 328 80 70 84

JOB0003/00007 212 80 70 77

JOB0003/00008 269 105 75 74

Continued on next page

254

Appendix C: Hybrid Algorithm Problem Sets

Table C.14 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00009 310 80 70 87

JOB0003/00010 330 105 75 75

JOB0003/00011 369 80 70 78

JOB0003/00012 578 105 75 73

JOB0003/00013 566 105 75 72

JOB0003/00014 225 80 70 56

JOB0003/00015 331 80 70 73

JOB0003/00016 172 80 70 72

JOB0003/00017 179 80 70 69

JOB0004/00001 212 80 70 62

JOB0004/00002 304 80 70 73

JOB0004/00003 282 80 70 76

JOB0004/00004 310 80 70 75

JOB0004/00005 306 80 70 88

JOB0004/00006 136 80 70 60

JOB0004/00007 522 105 75 69

JOB0004/00008 303 80 70 74

JOB0005/00001 503 105 75 72

JOB0006/00001 179 80 70 79

JOB0006/00002 452 80 70 87

JOB0007/00001 384 105 75 57

JOB0007/00002 563 105 75 67

JOB0008/00001 558 120 81 61

JOB0008/00002 341 80 70 74

JOB0008/00003 296 80 70 74

JOB0009/00001 61 80 70 58

JOB0009/00002 500 80 70 83

JOB0009/00003 318 80 70 73

JOB0009/00004 803 105 75 81

JOB0009/00005 357 105 75 62

Continued on next page

255

Appendix C: Hybrid Algorithm Problem Sets

Table C.14 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0009/00006 478 105 75 65

JOB0009/00007 594 105 75 79

JOB0009/00008 421 80 70 80

JOB0009/00009 320 80 70 89

JOB0009/00010 432 80 70 73

JOB0009/00011 204 80 70 56

JOB0009/00012 173 80 70 49

JOB0010/00001 296 80 70 80

JOB0010/00002 341 80 70 72

JOB0010/00003 280 80 70 72

JOB0010/00004 479 80 70 91

JOB0010/00005 577 105 75 72

JOB0010/00006 116 105 75 56

JOB0010/00007 346 80 70 82

JOB0010/00008 500 105 75 72

JOB0010/00009 429 80 70 81

JOB0010/00010 337 80 70 72

JOB0010/00011 347 80 70 72

JOB0010/00012 360 80 70 70

JOB0010/00013 330 80 70 75

JOB0010/00014 431 80 70 73

JOB0011/00001 487 80 70 76

JOB0011/00002 492 80 70 84

JOB0011/00003 383 80 70 74

JOB0011/00004 249 80 70 64

JOB0011/00005 357 80 70 79

JOB0011/00006 323 80 70 81

JOB0011/00007 293 80 70 61

JOB0011/00008 265 80 70 74

JOB0011/00009 515 105 75 72

Continued on next page

256

Appendix C: Hybrid Algorithm Problem Sets

Table C.14 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00010 261 105 75 76

JOB0011/00011 629 105 75 72

JOB0011/00012 486 105 75 73

JOB0011/00013 269 80 70 72

JOB0011/00014 167 80 70 76

JOB0011/00015 244 80 70 63

JOB0012/00001 535 105 75 71

JOB0012/00002 252 80 70 64

JOB0012/00003 300 80 70 73

JOB0012/00004 244 80 70 73

JOB0012/00005 400 80 70 72

JOB0012/00006 379 80 70 82

JOB0012/00007 322 80 70 75

JOB0012/00008 370 80 70 61

JOB0012/00009 345 80 70 73

JOB0012/00010 440 80 70 79

JOB0012/00011 440 80 70 81

JOB0012/00012 405 105 75 63

JOB0013/00001 547 105 75 80

JOB0013/00002 273 80 70 65

JOB0013/00003 377 105 75 62

JOB0013/00004 279 80 70 61

JOB0013/00005 278 105 75 63

JOB0013/00006 513 105 75 75

JOB0013/00007 382 105 75 74

JOB0013/00008 175 80 70 64

JOB0013/00009 407 80 70 87

JOB0013/00010 332 80 70 82

257

Appendix C: Hybrid Algorithm Problem Sets

Table C.15: Problem Set #15

Pallet number Weight Length Breadth Height

JOB0001/00001 465 80 70 96

JOB0001/00002 428 80 70 78

JOB0001/00003 512 80 70 100

JOB0001/00004 412 80 70 82

JOB0001/00005 215 80 70 77

JOB0001/00006 386 80 70 74

JOB0001/00007 382 80 70 84

JOB0001/00008 99 80 70 39

JOB0001/00009 329 80 70 74

JOB0001/00010 716 105 75 71

JOB0001/00011 291 80 70 69

JOB0001/00012 220 80 70 60

JOB0001/00013 326 80 70 78

JOB0001/00014 313 80 70 80

JOB0001/00015 599 105 75 71

JOB0001/00016 453 120 81 74

JOB0001/00017 329 105 75 71

JOB0002/00001 326 80 70 74

JOB0002/00002 391 80 70 74

JOB0002/00003 308 80 70 74

JOB0002/00004 620 105 75 71

JOB0002/00005 332 80 70 68

JOB0002/00006 363 80 70 74

JOB0002/00007 361 80 70 82

JOB0002/00008 417 105 75 70

JOB0002/00009 260 105 75 72

JOB0002/00010 225 120 81 60

JOB0002/00011 356 80 70 78

Continued on next page

258

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00001 470 80 70 76

JOB0003/00002 370 80 70 96

JOB0003/00003 576 105 75 72

JOB0003/00004 490 105 75 72

JOB0003/00005 351 80 70 66

JOB0003/00006 297 80 70 73

JOB0003/00007 267 80 70 75

JOB0003/00008 386 80 70 73

JOB0003/00009 504 80 70 83

JOB0003/00010 399 80 70 100

JOB0003/00011 458 80 70 97

JOB0003/00012 366 105 75 74

JOB0003/00013 411 105 75 72

JOB0003/00014 423 80 70 86

JOB0003/00015 419 80 70 86

JOB0003/00016 377 80 70 83

JOB0003/00017 142 80 70 46

JOB0003/00018 359 80 70 73

JOB0003/00019 359 80 70 79

JOB0003/00020 606 105 75 73

JOB0003/00021 417 80 70 73

JOB0003/00022 423 80 70 73

JOB0003/00023 283 80 70 79

JOB0003/00024 270 105 75 60

JOB0003/00025 639 105 75 73

JOB0003/00026 630 105 75 73

JOB0003/00027 637 105 75 73

JOB0003/00028 632 105 75 73

JOB0003/00029 575 105 75 73

JOB0003/00030 634 105 75 73

Continued on next page

259

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0003/00031 633 105 75 73

JOB0003/00032 289 80 70 80

JOB0003/00033 567 105 75 72

JOB0004/00001 111 80 70 48

JOB0004/00002 345 80 70 95

JOB0004/00003 325 80 70 84

JOB0004/00004 320 80 70 78

JOB0004/00005 240 80 70 84

JOB0004/00006 266 80 70 76

JOB0004/00007 408 80 70 73

JOB0004/00008 388 80 70 83

JOB0004/00009 266 80 70 79

JOB0004/00010 352 80 70 88

JOB0004/00011 449 105 75 39

JOB0004/00012 882 105 75 65

JOB0004/00013 551 105 75 52

JOB0005/00001 496 120 81 61

JOB0005/00002 824 120 81 76

JOB0005/00003 653 120 81 76

JOB0005/00004 296 80 70 74

JOB0005/00005 325 80 70 74

JOB0005/00006 320 80 70 74

JOB0005/00007 355 80 70 74

JOB0005/00008 657 120 81 76

JOB0005/00009 370 80 70 74

JOB0005/00010 306 80 70 74

JOB0005/00011 388 80 70 74

JOB0005/00012 615 105 75 75

JOB0005/00013 790 120 81 76

JOB0005/00014 659 120 81 76

Continued on next page

260

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0005/00015 315 80 70 74

JOB0005/00016 579 120 81 76

JOB0005/00017 721 120 81 76

JOB0005/00018 863 120 81 91

JOB0005/00019 612 120 81 76

JOB0005/00020 604 120 81 76

JOB0005/00021 335 105 75 44

JOB0005/00022 830 120 81 76

JOB0005/00023 470 120 81 60

JOB0006/00001 572 80 70 92

JOB0006/00002 664 105 75 60

JOB0006/00003 368 80 70 66

JOB0006/00004 290 80 70 84

JOB0006/00005 226 80 70 74

JOB0006/00006 319 80 70 66

JOB0006/00007 331 80 70 64

JOB0006/00008 624 105 75 71

JOB0006/00009 352 105 75 67

JOB0006/00010 490 105 75 61

JOB0006/00011 376 105 75 46

JOB0006/00012 645 105 75 71

JOB0006/00013 179 80 60 61

JOB0006/00014 550 105 75 74

JOB0006/00015 681 105 75 81

JOB0006/00016 542 105 75 73

JOB0006/00017 375 105 75 64

JOB0007/00001 98 80 70 45

JOB0008/00001 106 80 60 43

JOB0009/00001 53 80 60 30

JOB0010/00001 10 80 60 26

Continued on next page

261

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0011/00001 326 80 70 79

JOB0011/00002 507 80 70 85

JOB0011/00003 297 80 70 75

JOB0011/00004 325 80 70 85

JOB0011/00005 655 105 75 81

JOB0011/00006 523 105 75 79

JOB0011/00007 774 105 75 93

JOB0011/00008 307 80 70 74

JOB0011/00009 323 80 70 74

JOB0011/00010 467 80 70 94

JOB0011/00011 670 105 75 81

JOB0011/00012 383 80 70 83

JOB0011/00013 416 80 70 84

JOB0011/00014 326 105 75 56

JOB0012/00001 345 80 70 71

JOB0012/00002 359 80 70 75

JOB0012/00003 595 120 81 77

JOB0012/00004 678 120 81 77

JOB0012/00005 332 80 70 76

JOB0012/00006 311 80 70 74

JOB0012/00007 527 120 81 77

JOB0012/00008 313 80 70 75

JOB0012/00009 539 120 81 76

JOB0012/00010 701 120 81 77

JOB0012/00011 532 120 81 62

JOB0012/00012 689 120 81 78

JOB0012/00013 532 120 81 76

JOB0012/00014 541 120 81 76

JOB0012/00015 413 80 70 75

JOB0012/00016 497 120 81 61

Continued on next page

262

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0012/00017 537 120 81 76

JOB0012/00018 270 80 70 74

JOB0012/00019 650 120 81 76

JOB0012/00020 296 80 70 74

JOB0012/00021 543 120 81 75

JOB0012/00022 456 105 75 72

JOB0012/00023 696 120 81 77

JOB0012/00024 287 80 70 75

JOB0012/00025 459 120 81 62

JOB0012/00026 538 120 81 76

JOB0012/00027 626 120 81 77

JOB0012/00028 538 120 81 76

JOB0012/00029 541 120 81 76

JOB0012/00030 540 120 81 77

JOB0012/00031 537 120 81 77

JOB0013/00001 542 120 81 60

JOB0013/00002 476 80 70 89

JOB0013/00003 830 120 81 75

JOB0013/00004 538 120 81 77

JOB0013/00005 676 120 81 64

JOB0013/00006 669 120 81 64

JOB0013/00007 670 120 81 64

JOB0013/00008 260 80 70 60

JOB0013/00009 453 80 70 89

JOB0013/00010 498 80 70 87

JOB0013/00011 345 80 70 75

JOB0013/00012 353 80 70 75

JOB0013/00013 572 120 81 76

JOB0013/00014 681 120 81 76

JOB0013/00015 359 80 70 75

Continued on next page

263

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0013/00016 262 80 70 60

JOB0013/00017 511 120 81 62

JOB0013/00018 406 120 81 60

JOB0013/00019 535 120 81 77

JOB0013/00020 108 80 70 43

JOB0013/00021 816 120 81 77

JOB0013/00022 515 120 81 62

JOB0013/00023 523 120 81 77

JOB0013/00024 534 120 81 77

JOB0013/00025 817 120 81 77

JOB0014/00001 273 80 70 89

JOB0014/00002 301 80 70 78

JOB0014/00003 366 80 70 89

JOB0014/00004 216 80 70 71

JOB0014/00005 204 80 70 81

JOB0014/00006 316 80 70 70

JOB0014/00007 522 80 70 80

JOB0014/00008 480 120 81 67

JOB0014/00009 144 80 70 50

JOB0014/00010 574 120 81 65

JOB0014/00011 355 120 81 94

JOB0014/00012 163 120 81 72

JOB0015/00001 530 120 81 66

JOB0015/00002 484 105 75 62

JOB0015/00003 481 105 75 63

JOB0015/00004 481 105 75 64

JOB0015/00005 487 105 75 64

JOB0015/00006 488 105 75 63

JOB0015/00007 130 80 70 40

JOB0016/00001 685 105 75 69

Continued on next page

264

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0016/00002 224 105 75 72

JOB0016/00003 515 105 75 69

JOB0016/00004 304 105 75 56

JOB0016/00005 293 80 70 72

JOB0016/00006 185 80 70 75

JOB0016/00007 309 80 70 79

JOB0016/00008 334 80 70 78

JOB0016/00009 244 120 81 76

JOB0016/00010 211 120 81 76

JOB0016/00011 509 105 75 75

JOB0016/00012 277 105 75 60

JOB0016/00013 597 105 75 69

JOB0016/00014 311 80 70 83

JOB0016/00015 553 105 75 73

JOB0016/00016 343 105 75 93

JOB0016/00017 235 105 75 67

JOB0017/00001 407 80 70 85

JOB0017/00002 316 80 70 58

JOB0017/00003 437 80 70 68

JOB0017/00004 252 80 70 55

JOB0017/00005 413 80 70 73

JOB0017/00006 421 80 70 73

JOB0017/00007 247 80 70 54

JOB0017/00008 514 120 81 62

JOB0017/00009 455 120 81 62

JOB0017/00010 832 120 81 62

JOB0017/00011 467 80 70 68

JOB0017/00012 432 80 70 68

JOB0017/00013 513 80 70 90

JOB0017/00014 385 80 70 68

Continued on next page

265

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0018/00001 286 120 81 84

JOB0018/00002 296 105 75 94

JOB0018/00003 303 105 75 94

JOB0018/00004 296 105 75 94

JOB0018/00005 158 80 70 48

JOB0018/00006 298 105 75 94

JOB0018/00007 331 80 70 78

JOB0018/00008 627 105 75 71

JOB0018/00009 473 105 75 56

JOB0018/00010 276 105 75 47

JOB0018/00011 315 80 70 58

JOB0018/00012 358 80 70 72

JOB0018/00013 466 80 70 76

JOB0018/00014 273 80 70 88

JOB0018/00015 458 80 70 85

JOB0018/00016 288 80 70 69

JOB0019/00001 273 80 70 74

JOB0019/00002 389 80 70 72

JOB0019/00003 341 80 70 73

JOB0019/00004 225 80 70 75

JOB0019/00005 399 80 70 86

JOB0019/00006 181 80 70 42

JOB0019/00007 350 80 70 72

JOB0019/00008 256 80 70 76

JOB0019/00009 275 80 70 68

JOB0019/00010 474 105 75 79

JOB0019/00011 479 105 75 79

JOB0020/00001 362 80 70 84

JOB0020/00002 295 80 70 74

JOB0020/00003 491 80 70 95

Continued on next page

266

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0020/00004 369 80 70 80

JOB0020/00005 231 80 70 75

JOB0020/00006 308 80 70 74

JOB0020/00007 368 80 70 81

JOB0020/00008 212 80 70 71

JOB0020/00009 400 80 70 93

JOB0020/00010 289 80 70 79

JOB0020/00011 600 105 75 82

JOB0020/00012 351 80 70 76

JOB0020/00013 335 80 70 75

JOB0020/00014 304 80 70 75

JOB0020/00015 417 80 70 87

JOB0020/00016 344 80 70 81

JOB0020/00017 454 80 70 79

JOB0020/00018 215 120 81 45

JOB0021/00001 291 80 70 92

JOB0021/00002 278 105 75 76

JOB0021/00003 398 80 70 55

JOB0021/00004 736 105 75 74

JOB0021/00005 383 80 70 73

JOB0021/00006 353 80 70 81

JOB0021/00007 341 80 70 81

JOB0021/00008 333 80 70 83

JOB0021/00009 261 80 70 75

JOB0021/00010 306 80 70 77

JOB0021/00011 467 105 75 72

JOB0021/00012 393 105 75 67

JOB0021/00013 434 105 75 65

JOB0021/00014 390 105 75 72

JOB0021/00015 338 80 70 73

Continued on next page

267

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0021/00016 553 105 75 71

JOB0021/00017 597 105 75 81

JOB0021/00018 407 80 70 81

JOB0021/00019 401 80 70 73

JOB0021/00020 255 80 70 89

JOB0021/00021 381 80 70 88

JOB0021/00022 335 105 75 74

JOB0021/00023 61 80 60 45

JOB0021/00024 331 105 75 73

JOB0021/00025 600 120 81 78

JOB0022/00001 633 105 75 70

JOB0022/00002 255 80 70 66

JOB0022/00003 274 80 70 74

JOB0022/00004 638 105 75 70

JOB0022/00005 329 80 70 85

JOB0022/00006 466 80 70 93

JOB0022/00007 280 105 75 61

JOB0022/00008 313 80 70 84

JOB0022/00009 384 80 70 74

JOB0022/00010 337 80 70 74

JOB0022/00011 255 80 70 74

JOB0022/00012 157 80 70 74

JOB0022/00013 398 80 70 74

JOB0022/00014 385 80 70 74

JOB0022/00015 326 80 70 85

JOB0022/00016 420 80 70 85

JOB0022/00017 186 80 70 77

JOB0022/00018 210 80 70 77

JOB0022/00019 713 105 75 70

JOB0023/00001 305 80 70 83

Continued on next page

268

Appendix C: Hybrid Algorithm Problem Sets

Table C.15 – continued from previous page

Pallet number Weight Length Breadth Height

JOB0023/00002 350 80 70 91

JOB0023/00003 289 80 70 78

JOB0023/00004 354 80 70 76

JOB0023/00005 257 80 70 77

JOB0023/00006 352 80 70 84

JOB0023/00007 233 80 70 60

JOB0024/00001 83 80 70 30

269

References

Alcivar, I. and Abad, A. G. (2016). Design and evaluation of a gamified system

for erp training. Computers in Human Behavior, 58(Supplement C):109 – 118.

129, 130

Alonso, M., Alvarez-Valdes, R., Iori, M., Parreo, F., and Tamarit, J. (2017).

Mathematical models for multicontainer loading problems. Omega, 66(Part

A):106 – 117. 93

Bischoff, E. and Ratcliff, M. (1995a). Issues in the development of approaches to

container loading. Omega, 23(4):377 – 390. 14

Bischoff, E. E. and Ratcliff, M. S. W. (1995b). Loading multiple pallets. The

Journal of the Operational Research Society, 46(11):1322–1336. 93

Black, S. E. and Lynch, L. M. (2001). How to compete: The impact of work-

place practices and information technology on productivity. The Review of

Economics and Statistics, 83(3):434–445. 129

Bortfeldt, A. and Gehring, H. (2001). A hybrid genetic algorithm for the container

loading problem. European Journal of Operational Research, 131(1):143–161.

14, 93

Bortfeldt, A., Gehring, H., and Mack, D. (2003). A parallel tabu search algorithm

for solving the container loading problem. Parallel Computing, 29(5):641 – 662.

Parallel computing in logistics. 14, 15

Bortfeldt, A. and Wäscher, G. (2013). Constraints in container loading a state-

of-the-art review. European Journal of Operational Research, 229(1):1 – 20. 16,

20, 125

270

REFERENCES

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-

shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A

survey of monte carlo tree search methods. IEEE Transactions on Computa-

tional Intelligence and AI in Games, 4(1):1–43. 94

Bruns, F., Knust, S., and Shakhlevich, N. V. (2016). Complexity results for

storage loading problems with stacking constraints. European Journal of Op-

erational Research, 249(3):1074–1081. 1

Brynjolfsson, E. and Hitt, L. M. (2000). Beyond computation: Information tech-

nology, organizational transformation and business performance. Journal of

Economic Perspectives, 14(4):23–48. 129

Cant, R., Langensiepen, C., and Burton, A. (2012). Entropy as a computational

aesthetic measure. International Journal of Simulation: Systems, Science and

Technology, 13(3A):24–34. 75, 78, 94

Cant, R. J. and Langensiepen, C. S. (2010). Entropy measurement within graph-

ical scenes. In UKSim2010 - UKSim 12th International Conference on Com-

puter Modelling and Simulation, pages 474–481. IEEE. 76, 94

Cheng, C.-p., Liu, C.-w., and Liu, C.-c. (2000). Unit commitment by Lagrangian

relaxation and genetic algorithms. IEEE Transactions on Power Systems,

15(2):707–714. 33

Christensen, S. G. and Rousøe, D. M. (2009). Container loading with multi-drop

constraints. International Transactions in Operational Research, 16(6):727–

743. 123

Costa, M. d. G. and Captivo, M. E. (2016). Weight distribution in container

loading: a case study. International Transactions in Operational Research,

23(1-2):239–263. 1

Coulom, R. (2007). Efficient selectivity and backup operators in monte-carlo tree

search. In Proceedings of the 5th International Conference on Computers and

Games, CG’06, pages 72–83, Berlin, Heidelberg. Springer-Verlag. 94

271

REFERENCES

Davis, L. (1989). Adapting Operator Probabilities in Genetic Algorithms. In Pro-

ceedings of the Third International Conference on Genetic Algorithms, pages

61–69, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 33

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, Ann Arbor, MI, USA. AAI7609381. 33

de Marcos, L., Garcia-Lopez, E., and Garcia-Cabot, A. (2015). On the Effective-

ness of Game-like and Social Approaches in Learning: Comparing Educational

Gaming, Gamification & Social Networking. Computers & Education, 95:99–

113. 130

de Queiroz, T. A. and Miyazawa, F. K. (2013). Two-dimensional strip packing

problem with load balancing, load bearing and multi-drop constraints. Inter-

national Journal of Production Economics, 145(2):511–530. 123

Debrabander, B. and Edstrom, A. (1977). Successful Information System Devel-

opment Projects. Management Science, 24(2):191–199. 129

Dereli, T. and Sena Das, G. (2010). A Hybrid Simulated Annealing Algorithm

for Solving Multi-Objective Container-Loading Problems. Applied Artificial

Intelligence, 24(5):463–486. 15, 118

Dereli, T. T. and Da, G. S. (2010). Development of a Decision Support System

for solving Container Loading Problems. Transport, 25(2):138–147. 13

Deterding, S., Nacke, L., Dixon, D., and Khaled, R. (2011a). From Game Design

Elements to Gamefulness: Defining ”Gamification”. Proceedings of the 2011

annual conference extended abstracts on Human factors in computing systems

- CHI EA ’11, pages 9–15. 126, 129

Deterding, S., Sicart, M., Nacke, L., O’Hara, K., and Dixon, D. (2011b). Gam-

ification. using game-design elements in non-gaming contexts. Proceedings of

the 2011 annual conference extended abstracts on Human factors in computing

systems - CHI EA ’11, pages 2425–2428. 126

Dowsland, K. A. and Dowsland, W. B. (1992). Packing problems. European

Journal of Operational Research, 56(1):2–14. 13, 38

272

REFERENCES

Dyckhoff, H. (1990). A typology of cutting and packing problems. European

Journal of Operational Research, 44(2):145–159. 13, 20, 23

Eley, M. (2002). Solving container loading problems by block arrangement. Eu-

ropean Journal of Operational Research, 141(2):393–409. 14, 121

Eley, M. (2003). A bottleneck assignment approach to the multiple container

loading problem. OR Spectrum, 25(1):45–60. 18

Gehring, H. and Bortfeldt, A. (1997). A genetic algorithm for solving the con-

tainer loading problem. International Transactions in Operational Research,

4(5-6):401–418. 14, 15, 19, 35, 93

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). A Tabu Search

Algorithm for a Routing and Container Loading Problem. 93

George, J. and Robinson, D. (1980). A heuristic for packing boxes into a container.

Computers & Operations Research, 7(3):147–156. 14

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. 45

Groh, F. (2012). Gamification: State of the Art Definition and Utilization. Re-

search Trends in Media Informatics, pages 39–46. 140

Hamari, J., Koivisto, J., and Sarsa, H. (2014). Does gamification work? - A

literature review of empirical studies on gamification. Proceedings of the Annual

Hawaii International Conference on System Sciences, pages 3025–3034. 140

Hopgood, A. A. (2001). Intelligent Systems for Engineers and Scientists (2nd

Ed.). CRC Press, Inc., Boca Raton, FL, USA. 45

Huang, Y. H., Hwang, F. J., and Lu, H. C. (2016). An effective placement

method for the single container loading problem. Computers and Industrial

Engineering, 97:212–221. 1

Huotari, K. and Hamari, J. (2012). Defining gamification: a service marketing

perspective. Proceeding of the 16th International Academic MindTrek Confer-

ence, pages 17–22. 129

273

REFERENCES

Iori, M. and Riera-Ledesma, J. (2015). Exact algorithms for the double vehi-

cle routing problem with multiple stacks. Computers & Operations Research,

63:83–101. 93

Junqueira, L., Morabito, R., and Sato Yamashita, D. (2012a). MIP-based ap-

proaches for the container loading problem with multi-drop constraints. 123

Junqueira, L., Morabito, R., and Sato Yamashita, D. (2012b). Three-dimensional

container loading models with cargo stability and load bearing constraints.

Computers & Operations Research, 39(1):74–85. 17

Jylänki, J. (2010). A thousand ways to pack the bin - a practical approach to

two-dimensional rectangle bin packing. 53

Kocsis, L. and Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning, pages

282–293. Springer Berlin Heidelberg, Berlin, Heidelberg. 94

Le, X. T. and Knust, S. (2017). MIP-based approaches for robust storage loading

problems with stacking constraints. Computers & Operations Research, 78:138–

153. 1

Li, W., Grossman, T., and Fitzmaurice, G. (2012). Gamicad: A gamified tutorial

system for first time autocad users. In Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology, UIST ’12, pages 103–

112, New York, NY, USA. ACM. 130

Li, X., Zhao, Z., and Zhang, K. (2014). A genetic algorithm for the three-

dimensional bin packing problem with heterogeneous bins. pages 2039–2048.

14

Li Wang, Hui Zhang, Yan Xiong, and Dawei Li (2010). Ant colony optimiza-

tion algorithm based on space division for container loading problem. In 2010

Chinese Control and Decision Conference, pages 3448–3451. IEEE. 15

Lim, A. and Zhang, X. (2005). The container loading problem. In SAC ’05:

Proceedings of the 2005 ACM symposium on Applied computing, pages 913–

917. ACM. 121

274

REFERENCES

Liu, J., Yue, Y., Dong, Z., Maple, C., and Keech, M. (2011). A novel hybrid

tabu search approach to container loading. Computers & Operations Research,

38(4):797–807. 15

Lodi, A., Martello, S., and Monaci, M. (2002). Two-dimensional packing prob-

lems: A survey. European Journal of Operational Research, 141(2):241–252.

53

Lodi, A., Martello, S., and Vigo, D. (1999). Heuristic and metaheuristic ap-

proaches for a class of two-dimensional bin packing problems. INFORMS Jour-

nal on Computing, 11(4):345–357. 38

Majchrzak, A. and Klein, K. J. (1987). Things are always more complicated than

you think: an open systems approach to the organizational effects of computer

automated technology. Journal of Business and Psychology, 2(1):27–50. 129

Männel, D. and Bortfeldt, A. (2017). Solving the pickup and delivery problem

with three-dimensional loading constraints and reloading ban. European Jour-

nal of Operational Research. 1

Markus Ewald (2009). Nuclex Framework - Documentation (Rectangle Packing).

Accessed: 2017-04-24. 53, 66, 70

Markus Ewald (2011a). Nuclex Framework - Dowoload (r1404). Accessed: 2017-

04-24. 54, 66

Markus Ewald (2011b). Nuclex Framework - Home. Accessed: 2017-04-24. 70

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, Inc., New York, NY, USA. 34

McDaniel, R., Lindgren, R., and Friskics, J. (2012). Using badges for shaping

interactions in online learning environments. IEEE International Professional

Communication Conference, pages 12–15. 130

Morabito, R. and Arenalest, M. (1994). An AND/OR-graph Approach to the

Container Loading Problem. International Transactions in Operational Re-

search, 1(1):59–73. 15

275

REFERENCES

Mostaghimi, H., St Amour, B., and Abdul-Kader, W. (2017). Three-Dimensional

Container Loading: A Simulated Annealing Approach. International Journal

of Applied Engineering Research ISSN, 12(7):973–4562. 1

Moura, A. and Bortfeldt, A. (2016). A two-stage packing problem procedure.

International Transactions in Operational Research, 24(1–2):43–58. 1, 93, 94

Moura, A. and Oliveira, J. (2005). A GRASP approach to the container-loading

problem. IEEE Intelligent Systems, 20. 14

Moura, A. and Oliveira, J. F. (2008). An integrated approach to the vehicle

routing and container loading problems. OR Spectrum, 31:775–800. 94

Nepomuceno, N., Pinheiro, P., and Coelho, A. L. V. (2007). Tackling the con-

tainer loading problem: a hybrid approach based on integer linear programming

and genetic algorithms. In Cotta, C. and Hemert, J., editors, Evolutionary

Computation in Combinatorial Optimization, volume 4446 of Lecture Notes in

Computer Science, pages 154–165. Springer-Verlag Berlin Heidelberg, Heidel-

berger Platz 3, D-14197 Berlin, Germany. 13, 15

Palmer, C. C. and Kershenbaum, A. (1995). An approach to a problem in network

design using genetic algorithms. Networks, 26(3):151–163. 33

Peng, Y., Zhang, D., and Chin, F. Y. L. (2009). A Hybrid Simulated Annealing

Algorithm for Container Loading Problem. pages 919–922, 1515 Broadway,

New York, NY 10036-9998 USA. Assoc Computing Machinery. 15, 93

Pires de Araujo, L. J. and Pinheiro, P. (2010). Combining Heuristics Back-

tracking and Genetic Algorithm to Solve the Container Loading Problem with

Weight Distribution. volume 73 of Advances in Intelligent and Soft Computing,

pages 95–102, Heidelberger Platz 3, D-14197 Berlin, Germany. Springer-Verlag

Berlin. 15

Pisinger, D. (1995). Algorithms for Knapsack Problems. PhD thesis, University

of Copenhagen. 12, 33, 34

276

REFERENCES

Ramos, A. G., Oliveira, J. F., Gonçalves, J. F., and Lopes, M. P. (2016a).

A container loading algorithm with static mechanical equilibrium stability

constraints. Transportation Research Part B: Methodological, 91(Supplement

C):565 – 581. 1

Ramos, A. G., Oliveira, J. F., and Lopes, M. P. (2016b). A physical packing

sequence algorithm for the container loading problem with static mechanical

equilibrium conditions. International Transactions in Operational Research,

23(1-2):215–238. 1

Reeves, C. R. (1997). Genetic algorithms for the operations researcher. INFORMS

Journal on Computing, 9(3):231–250. 33

Remi-Omosowon, A., Cant, R., and Langensiepen, C. (2015). Deriving an En-

tropy Measure for 2D Container Layouts. In IEEE UKSim-AMSS 17th In-

ternational Conference on Computer Modelling and Simulation, UKSim2015

(UKSim2015), pages 103–108, Cambridge, United Kingdom. 4

Remi-Omosowon, A., Cant, R., and Langensiepen, C. (2016). Applying Gamifi-

cation Principles to a Container Loading System in a Warehouse Environment.

In IEEE UKSim-AMSS 18th International Conference on Computer Modelling

and Simulation, UKSim2016 (UKSim2016), Cambridge, United Kingdom. 5

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE

Transactions on Neural Networks, 5(1):96–101. 33

Scheithauer, G. (1992). Algorithms for the container loading problem. In Opera-

tions Research Proceedings 1991, volume 1991 of ORP, pages 445–452. Springer-

Verlag, Berlin, Heidelberg. 12

Shannon, C. E. (1948). The mathematical theory of communication. MD com-

puting computers in medical practice, 14(4):306–17. 75

Sheng, L., Xiuqin, S., Changjian, C., Hongxia, Z., Dayong, S., Feiyue, W.,

Changjia, C., Hongxia, Z., Dayong, S., and Feiyue, W. (2017). Heuristic Algo-

rithm for the Container Loading Problem with Multiple Constraints. Comput-

ers & Industrial Engineering, 108:149–164. 1

277

REFERENCES

Sridhar, R., Chandrasekaran, M., Sriramya, C., and Page, T. (2017). Opti-

mization of heterogeneous Bin packing using adaptive genetic algorithm. IOP

Conference Series: Materials Science and Engineering, 183(1):12026. 1

Sy, S., Zichermann, G., and Cunningham, C. (2011). Gamification by Design:

Implementing Game Mechanics in Web and Mobile Apps. Number 10. O’Reilly

Media, Inc. 129

Tang, C. H. (2011). A scenario decomposition-genetic algorithm method for solv-

ing stochastic air cargo container loading problems. Transportation Research

Part E: Logistics and Transportation Review, 47(4):520–531. 33

Tarantilis, C., Zachariadis, E., and Kiranoudis, C. (2009). A Hybrid Meta-

heuristic Algorithm for the Integrated Vehicle Routing and Three-Dimensional

Container-Loading Problem. IEEE Transactions on Intelligent Transportation

Systems, 10. 19

Techanitisawad, A. and Tangwiwatwong, P. (2004). A GA-based Heuristic for

the Interrelated Container Selection Loading Problems. 93

Thierens, D. and Goldberg, D. (1994). Elitist recombination: an integrated se-

lection recombination GA. In Evolutionary Computation, 1994. IEEE World

Congress on Computational Intelligence., Proceedings of the First IEEE Con-

ference on, pages 508–512 vol.1. 33

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology

of cutting and packing problems. European Journal of Operational Research,

183(3):1109–1130. 2, 13, 14, 20, 23

Wei, L., Oon, W.-C., Zhu, W., and Lim, A. (2011). A skyline heuristic for

the 2d rectangular packing and strip packing problems. European Journal of

Operational Research, 215(2):337 – 346. 99

Werbach, K. and Hunter, D. (2012). For the Win: How Game Thinking Can

Revolutionize Your Business. Wharton Digital Press (October 30, 2012). 129

278

REFERENCES

Yap, C. N., Lee, L. S., Majid, Z. A., and Seow, H. V. (2012). Ant Colony

Optimization for Container Loading Problem. Journal of Mathematics and

Statistics, 8(2):169–175. 15

Zhao, X., Bennell, J. A., Bekta, T., and Dowsland, K. (2014). A comparative

review of 3D container loading algorithms. International Transactions in Op-

erational Research, pages 287–320. 20

Zheng, J. N., Chien, C. F., and Gen, M. (2015). Multi-objective multi-population

biased random-key genetic algorithm for the 3-D container loading problem.

Computers and Industrial Engineering, 89:80–87. 14

Zhu, W. and Lim, A. (2012). A new iterative-doubling Greedy-Lookahead algo-

rithm for the single container loading problem. European Journal of Operational

Research, 222(3):408–417. 14

Zichermann, G. (2011). Designing Gamification Level 1. Udemy,

https://www.udemy.com/designing-gamification-level-1-certification/. 123

279

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Publications, Posters, Presentations
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Scope
	1.3 Structure of the Thesis
	1.4 Contributions of this Thesis
	1.5 Related Academic Publications

	2 Literature Review
	2.1 Introduction
	2.2 Optimisation Problems
	2.3 The Container Loading Problem
	2.3.1 Typology
	2.3.2 Solution Approches

	2.4 Container Loading in the Real World: Practical Constraints
	2.5 Conclusion

	3 Problem Overview
	3.1 Introduction
	3.2 Constraints
	3.3 The Manual Process
	3.3.1 Identified Shortcomings

	3.4 Initial Solution Approach
	3.5 Proposed Solution Approach
	3.5.1 The Selection Problem
	3.5.2 The Stacking Problem
	3.5.3 The Packing Problem

	3.6 Conclusion

	4 A Hybrid Algorithm for the Container Loading Problem
	4.1 Introduction
	4.2 The Selection Algorithm
	4.3 The Stacking Algorithm
	4.4 The Packing Algorithm
	4.4.1 The Simple Rectangle Packer

	4.5 Experiments and Results
	4.5.1 Parameter Tuning
	4.5.2 Results and Comparisons

	4.6 Conclusion

	5 Improvements to the Packing Algorithm
	5.1 Introduction
	5.2 The Cygon Rectangle Packing Algorithm
	5.3 The Cygon Packer integrated Genetic Algorithm
	5.4 The Sort-and-Pack Cygon Packer
	5.5 Experiments and Results
	5.5.1 Comparisons of integrated Rectangle Packing Algorithms
	5.5.2 Comparisons of the Packing GA and the Sort-and-Pack algorithm

	5.6 Conclusion

	6 Optimising Container Layouts for Real-World Packing
	6.1 Introduction
	6.2 Deriving an Entropy-based measure for Container Layouts
	6.2.1 Basic Definitions
	6.2.2 Selection Entropy
	6.2.3 Rotational Entropy
	6.2.4 Positional Entropy

	6.3 An Entropy-driven Genetic Algorithm for the Packing Problem
	6.4 Experiments and Results
	6.5 Conclusion

	7 An Entropy-Guided Monte-Carlo Method for Generating Optimal Container Loading Layouts
	7.1 Introduction
	7.2 Related Work
	7.3 Proposed Algorithm
	7.3.1 Placement Method
	7.3.2 Directed Choice
	7.3.3 Algorithm description

	7.4 Experiments
	7.5 Results
	7.5.1 Overall Performance Comparisons
	7.5.2 Visual Comparisons
	7.5.3 Layout Entropy

	7.6 Analysis
	7.6.1 Time Behaviour
	7.6.2 Layout Progression
	7.6.3 Further Discussion

	7.7 Conclusion

	8 Conclusion
	8.1 Context
	8.2 Summary of Key Contributions
	8.3 Future Work
	8.3.1 Solving the Multiple Container Loading Problem
	8.3.2 Dealing with Loading Priorities
	8.3.3 Keeping groups of related items together in close proximity
	8.3.4 Extending the application of Gamification
	8.3.5 Improving and extending the entropy measure
	8.3.6 Extending the entropy-driven Monte Carlo search to address additional constraints

	Appendix A: Applying Gamification principles to the Container Loading Problem
	A.1 Introduction
	A.2 Background
	A.3 Related Work
	A.4 Gamification Approach and Experiments
	A.4.1 Conventions for visual container layout representation
	A.4.2 An interface for interactive simulation

	A.5 Results and Discussion
	A.5.1 Gamified system use cases
	A.5.1.1 Loading Feasibility Checker
	A.5.1.2 Knowledge Discovery Tool
	A.5.1.3 Training Aid

	A.6 Conclusion

	Appendix B: Verified Hybrid Algorithm solutions
	Appendix C: Hybrid Algorithm Problem Sets
	References

