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Basal ganglia correlates of fatigue 
in young adults
Seishu Nakagawa1,2, Hikaru Takeuchi3, Yasuyuki Taki3,4,5, Rui Nouchi6,7, Yuka Kotozaki7, 
Takamitsu Shinada2, Tsukasa Maruyama2, Atsushi Sekiguchi2,4,7,8, Kunio Iizuka2,9, 
Ryoichi Yokoyama2,10, Yuki Yamamoto2, Sugiko Hanawa2, Tsuyoshi Araki7, 
Carlos Makoto Miyauchi2,11, Daniele Magistro2,10, Kohei Sakaki2, Hyeonjeong Jeong2,10, 
Yukako Sasaki2 & Ryuta Kawashima2,3,7

Although the prevalence of chronic fatigue is approximately 20% in healthy individuals, there are no 
studies of brain structure that elucidate the neural correlates of fatigue outside of clinical subjects. We 
hypothesized that fatigue without evidence of disease might be related to changes in the basal ganglia 
and prefrontal cortex and be implicated in fatigue with disease. We aimed to identify the white matter 
structures of fatigue in young subjects without disease using magnetic resonance imaging (MRI). 
Healthy young adults (n = 883; 489 males and 394 females) were recruited. As expected, the degrees of 
fatigue and motivation were associated with larger mean diffusivity (MD) in the right putamen, pallidus 
and caudate. Furthermore, the degree of physical activity was associated with a larger MD only in the 
right putamen. Accordingly, motivation was the best candidate for widespread basal ganglia, whereas 
physical activity might be the best candidate for the putamen. A plausible mechanism of fatigue may 
involve abnormal function of the motor system, as well as areas of the dopaminergic system in the basal 
ganglia that are associated with motivation and reward.

The prevalence of chronic fatigue is approximately 20% in some developed countries1 and more than 33% in 
Japan2. Chronic fatigue is sometimes irreversible, and the compensation mechanisms that are useful in reducing 
acute fatigue are not effective3. Chronic fatigue has been associated with an increase in traffic accidents due to 
inattention, and contributes to mental health issues, such as depression, burnout syndrome4, and karoshoi (death 
due to overworking)5. A younger age was related to fatigue levels in non-clinical samples that included Australian 
patients aged 18 to 70 years6. A high prevalence of fatigue was also demonstrated among graduate students in 
Taiwan (46.6%)7. Fatigue can have numerous implications on an individual’s health and well-being; thus, it is 
important to elucidate the mechanisms of fatigue in young adults.

Fatigue may be defined as the failure to initiate and sustain attention-oriented tasks and physical activities 
requiring self-motivation8. A loss of motivational influence from striato–thalamic inputs to the frontal lobe is 
integral to the development of fatigue8,9. Moreover, the evaluation of predicted rewards and energy costs might be 
central to the phenomenon of mental fatigue9. When tasks must be performed for a prolonged period, the amount 
of energy that must be invested in performing the task increases compared to the potential rewards, resulting in 
a decrease in motivation9. Dopamine is involved in the control of motivational processes10 and reward-seeking 
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behaviour11. Thus, a disruption within the dopamine system has been proposed as a common mechanism under-
lying fatigue12.

Previous functional imaging studies of fatigue with healthy individuals have predominantly addressed the 
relationship between certain brain regions and the subjective feeling of acute fatigue13–16. In those studies, neu-
ral activity during attention-demanding tasks decreased in the ventrolateral prefrontal cortex (PFC)14 and the 
posterior parietal cortex15 but increased in the cerebellar, temporal, cingulate and frontal regions15 and in the 
medial orbitofrontal cortex16. Functional imaging studies in patients with chronic fatigue syndrome and multiple 
sclerosis have suggested the basal ganglia and frontal lobes play a role in chronic fatigue17. As far as we know, 
all prior studies of brain structure and fatigue are clinical studies that examined patients with chronic fatigue 
syndrome18,19, multiple sclerosis20,21, Parkinson’s disease22 or fibromyalgia23. These studies identified a direct rela-
tionship between brain structure and the degree of fatigue. It was demonstrated that the degree of fatigue showed 
a relationship with a decline in total grey matter volume linked to a reduction in physical activity (an element of 
fatigue)18, white matter decreases in the midbrain19, decreases in tissue perfusion in the deep grey matter20, corti-
cal atrophy of the parietal lobe21, and lower grey matter density in the left supplementary motor area23. However, 
no significant correlation was identified between brain structure and the severity of apathy (a symptom similar to 
fatigue) in patients with Parkinson’s disease22. Interestingly, the combination of multimodal magnetic resonance 
imaging (MRI), such as mean diffusivity (MD) and fractional anisotropy (FA), has been shown to be the best 
discriminator between patients with Parkinson’s disease and healthy controls24.

Although fatigue is common during adolescence25, there are few studies that have examined fatigue in younger 
populations8,26. However, to our knowledge, there are no studies that have attempted to identify the anatomical 
correlates of fatigue in individuals outside of clinical subjects. Structural imaging studies are suitable measures 
for investigating the neural correlates of fatigue because the results of such studies are not limited to the regions 
engaged in a specified task.

In this study, we used voxel-based morphometry (VBM) to assess regional grey matter density (rGMD) and 
regional white matter density (rWMD) to identify the neural correlates of fatigue. We also used voxel-based FA 
for diffusion tensor imaging (DTI)27 to assess whether WM structural integrity is associated with fatigue. FA is 
interpreted as an indicator of WM pathway strength or integrity27. In addition, we used MD to examine white 
matter in healthy subjects to determine the neural correlates of fatigue. There are three diffusivities, i.e., the dif-
fusion coefficient along the direction of maximal diffusion (axial diffusivity; λ 1) and the diffusion coefficients 
along two orthogonal directions embedded in the plane perpendicular to the main diffusion direction (λ 2 and 
λ 3)28. The average diffusivity of λ 1, λ 2 and λ 3, known as MD, can be inferred from the overall dimensions of the 
diffusion ellipsoid28. MD, which is another measure of DTI, is the rate of diffusivity and a direction-independent 
measure of the average diffusivity reflecting water motility in a voxel. Reduction of MD is considered to reflect 
tissue changes caused by neural plasticity, which include astrocyte swelling, synaptic changes, dendritic spine 
changes, and angiogenesis29,30. Accordingly, we hypothesized that the degree of fatigue without disease may be 
related to basal ganglia and prefrontal cortex (PFC) function, and this relationship can be demonstrated using 
rGMD, rWMD, FA and especially MD in clinical cases with fatigue8. The purpose of this study was to identify the 
anatomical correlates of fatigue in young people without mental or physical disease.

Results
Behavioural data. Table 1 shows the mean and standard deviation (SD) for age, Raven’s advanced progres-
sive matrix scores and Checklist Individual Strength Questionnaire (CIS) scores for study participants. Figure 1 
shows the distributions of CIS scores in men and women. Between men and women, there was a significant differ-
ence in Raven’s Advanced Progressive Matrix (RAPM) scores (p <  0.05, one-way analysis of variance [ANOVA]), 
but not in CIS scores (p =  0.089). As the data in presented in Table 2 indicate, the scores for all four elements of 
fatigue (subjective feeling of fatigue, concentration, motivation and physical activity) were significantly and posi-
tively correlated to one another (p <  0.05, two-tailed corrected using the Bonferroni method).

MRI data. Analysis of VBM. We found no significant correlations between CIS scores and rGMD or rWMD.

Analysis of FA. We found no significant correlations between CIS scores and FA.

Analysis of MD. A whole-brain multiple regression analysis that controlled for sex, age, RAPM and both 
rGMD and regional cerebrospinal fluid density (rCSFD) at each voxel revealed a significant positive correlation 
between CIS scores and MD at areas corresponding to the right putamen that spanned from the palladium to 
the caudate (x, y, z =  32, − 12, 2; t =  4.69; p <  0.001, k =  2449; corrected for multiple comparisons at the clus-
ter with a cluster-determining threshold of p <  0.001, uncorrected) (Fig. 2a,b). Significant positive correlations 

Measure

Male Female

Mean SD Mean SD

Age 20.79 1.94 20.56 1.63

RAPM 28.89 3.66 28.06 3.78

CIS 70.37 17.52 68.34 11.77

Table 1.  Sex differences in age and scores on the RAPM and CIS; and one-way ANOVA results. 
Abbreviations: CIS, the Checklist Individual Strength Questionnaire; RAPM, Raven’s Advanced Progressive 
Matrix; SD, standard deviation.
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were detected between the motivation subscores in areas corresponding to the right putamen that spanned from 
the palladium to the caudate (x, y, z =  33, − 14, 2; t =  4.68; p <  0.001, k =  3503; corrected for multiple compar-
isons at the cluster with a cluster-determining threshold of p <  0.001, uncorrected) (Fig. 2c). Significant posi-
tive correlations were also observed between the physical activity subscores in areas corresponding to the right 
putamen (x, y, z =  35, − 12, 2; t =  4.47; p <  0.001, k =  651; corrected for multiple comparisons at the cluster with 
a cluster-determining threshold of p <  0.001, uncorrected) (Fig. 2d).

Discussion
To our knowledge, this study is the first to investigate an association between fatigue and brain structures 
in healthy individuals at the whole-brain level. Consistent with our hypothesis, we found that fatigue scores 
were associated with larger MD values (but not for rGMD or rWMD) in the basal ganglia, which included the 
putamen, pallidus and body of the caudate. That is, the degree of fatigue without disease was associated with 
changes in the basal ganglia, thus implicating an altered brain structure as a cause of fatigue in clinical cases. 
Furthermore, motivation was the best candidate for widespread basal ganglia, whereas physical activity might be 
the best candidate for the putamen.

First, we should discuss the mechanism through which the basal ganglia, including the putamen, pallidus 
and body of the caudate, are closely related to fatigue. As explained in the introduction, motivation and reward 
are related to fatigue8,12,31. Humans and animals will quickly take action when they expect the action will lead to 
a reward, and this action reflects their motivation10. In the basal ganglia, the percentage of tonically active neu-
rons that respond to an action is higher in the putamen than in the caudate nucleus, especially in anticipation 
of a reward32. The putamen has been implicated primarily in motor control and learning habits and skills33,34. 
Activation of the ventral pallidum can lead to reward and enhanced motivation via phasic bursts of excitation 
in response to an incentive or hedonic stimuli35. The vigour scale of the Profile of Mood States (POMS) appears 
to be the most widely used and accepted measure of the energy mood state, and it is also a valid measure for 
nutrition-related research, such as studies of caffeine intake36. Among the mood states included in the POMS, 
only factors related to vigour were negatively correlated with MD in widespread regions that included the 
putamen, pallidus and body of the caudate37. Hence, insufficient functioning of the putamen and ventral pallidum 
leads to a loss of motivation and physical activity.

Second, our aforementioned findings show two possibilities (i.e., cause and effect). One finding is that a natu-
rally higher MD (lower neuronal density) in the basal ganglia reflects a dysfunction of the basal ganglia that might 
cause fatigue (cause). Furthermore, the putamen, ventral pallidum and body of the caudate are associated with a 
loss of reward and motivation and are therefore related to fatigue. If these automatic functions are disrupted, then 
additional energy might be required to execute complex motor programmes, and a subsequent loss of motivation 
could occur. Hence, dysfunctions of the basal ganglia might lead to fatigue. This idea is consistent with the theory 
that fatigue results from a failure to integrate limbic inputs and motor functions in the basal ganglia, which subse-
quently affects the striatal–thalamic–frontal cortical system8. The other possibility is that fatigue affects the struc-
ture of the putamen (effect); fatigue may increase MD (decreasing neuronal density) in the basal ganglia. This 

Figure 1. Distribution of CIS scores for men and women (n = 883). Histograms show the distributions of CIS 
scores for men and women. Abbreviations: CIS, Checklist Individual Strength Questionnaire.

Feeling Concentration Motivation
Physical 
activity VIF

Feeling – 1.204

Concentration 0.391* – 1.654

Motivation 0.273* 0.445* – 1.498

Physical activity 0.310* 0.573* 0.551* – 1.786

Table 2.  Pearson’s correlation coefficients among the four fatigue elements. Abbreviations: feeling, 
subjective feeling of fatigue; VIF, variance inflation factor. *p <  0.001 (two-tailed correction using the 
Bonferroni method).
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idea is consistent with the fact that prolonged stress produces opposing effects on structural plasticity, notably the 
growth of dendrites and spines in the amygdala38, because repetitive and prolonged stress seems to cause fatigue39.

We should explain the mechanism through which MD alone could detect the neural correlates of fatigue. In 
the basal ganglia, MD showed a positive relationship with fatigue. From the molecular point of view, an increased 
MD, which is an increased water diffusivity measured on MRI, is related to a decreased tortuosity and increased 
volume fraction of the fast diffusivity extracellular compartment. Interestingly, the combination of MD, FA and 
R2* (inverse of relaxation times, i.e., relaxation rates values) in the dopaminergic system has been shown to be the 
best discriminator between patients with Parkinson’s disease and healthy controls24. There was a significant neg-
ative correlation between dopamine synthesis capacity and MD in the posterior caudate and putamen using MD 
with positron emission tomography (PET)40. Assuming that MD reflects the density of widespread axonal termi-
nals in the striatum, dopamine synthesis may be related to the density of dopaminergic neuronal fibres40. Hence, 
MD could detect neural plasticity, especially in the dopaminergic system. Further, we could speculate the neural 
mechanism of fatigue based on two important aspects of fatigue, i.e., motivation and reward8,9. When a reward 
is greater than expected, the firing rates of certain dopaminergic neurons increase, which consequently increases 
motivation for the reward11. Interestingly, Dobryakova et al. reported that dopamine may have an important role 
in fatigue and suggested that fatigue results from disruption of communication between the striatum and PFC41. 
Thus, MD seems to be more sensitive for identifying the neural correlates of fatigue than rGMD, rWMD or FA 
because the relationships among fatigue, motivation and reward are based on the dopaminergic system. However, 

Figure 2. Regions showing a correlation between MD and scores on CIS, motivation and physical activity 
subscores. The red-to-yellow colour scale indicates the t-score for the positive correlation between MD and 
CIS scores (p <  0.001, uncorrected). Regions showing correlations were overlaid on a single T1 image in the 
SPM5 toolbox. Areas of significant correlations are shown in the right putamen (a). Scatter plots illustrating 
the relationship between mean MD and CIS scores (b). A cluster with significant correlations was seen in the 
right putamen and spanned from the palladium to the caudate. We set the statistical significance of analyses at 
p <  0.05, which was corrected for multiple comparisons at the adjusted cluster level with an underlying voxel 
level of p < 0.001, uncorrected. The areas of the significant correlations are shown in the right putamen when 
the red-to-yellow colour scale indicates the t-score for the positive correlation between MD and the motivation 
subscore (p <  0.001, uncorrected) (c). The areas of significant correlations are shown in the right putamen when 
the red-to-yellow colour scale indicates the t-score for the positive correlation between MD and physical activity 
subscore (p <  0.001, uncorrected) (d). Abbreviations: CIS, Checklist Individual Strength Questionnaire; MD, 
mean diffusivity.
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in present report, we can only speculate on the relationships among fatigue, motivation, reward and dopamine 
functioning in the basal ganglia because dopamine was not measured in the present study. Future studies involv-
ing more direct measures of dopamine functioning, such as PET, should examine these relationships.

Finally, there are a few limitations of this study that should be mentioned. Because the present study used a 
cross-sectional design, the results cannot be used to determine the causality between fatigue and the basal ganglia. 
Thus, to overcome this limitation, a prospective study that confirms such causality is necessary. Furthermore, we 
used young healthy subjects who possessed high levels of education, and such individuals might be more likely to 
demonstrate a high degree of plasticity.

In conclusion, fatigue without disease might result from changes in the basal ganglia, which therefore impli-
cates the basal ganglia in fatigue in clinical cases. A plausible mechanism of fatigue may involve motivation and 
physical activity for maintaining performance. The neural correlates of fatigue in non-clinical and clinical sub-
jects might overlap.

Methods
Subjects. Eight hundred and eighty-three healthy, right-handed individuals (489 males and 394 females) 
participated in this study. The present study was a part of our ongoing project to investigate associations among 
brain imaging data, cognitive function, aging, genetics and daily habits. The mean age of the subjects was 20.7 
years (SD, 1.81). All of the subjects in our study were university or post-graduate students with normal vision, 
no history of neurological or psychiatric illness, and no report of recent psychoactive or antipsychotic drug use. 
Handedness was evaluated using the Edinburgh Handedness Inventory42. Written informed consent was obtained 
from each subject for the projects in which they participated. The procedures for all studies were approved by 
the Ethics Committee of Tohoku University. All experiments were performed in accordance with the approved 
guidelines. For more details regarding the study procedures, see the Supplemental Methods.

Psychological outcome measures. Fatigue assessment. The CIS, which was developed by Vercoulen et al.43,  
is the most frequently used fatigue questionnaire worldwide43,44. Further, the questionnaire has been used in 
patients other than those who suffer from chronic fatigue syndrome45,46 and in healthy populations that included 
graduate students26 and working individuals44,47. The CIS is divided into four dimensions: subjective feeling of 
fatigue, motivation, activity and concentration. The CIS consists of 20 statements. Examples of these statements 
are as follows: “I feel tired”, “I do quite a lot within a day”, “I feel very active” and “I can concentrate well”. The total 
score for the CIS is an index of fatigue44,47, with a higher score indicating a higher degree of fatigue. In the present 
study, participants were asked to rate any subjective symptoms that they perceived themselves as having during 
the previous 2 weeks using a rating scale that ranged from 1 to 7. Participants were administered the Japanese 
version of the CIS, which was translated into Japanese by Aratake et al.47. Using a cut-off score of 76, as suggested 
by a previous study48, 317 participants (35.9%; men: 190, 38.9%; women: 127, 32.2%) were regarded as possible 
chronic fatigue. For more details regarding the study procedures, see the Supplemental Methods.

Assessment of psychometric measures of general intelligence. The RAPM, which is the best meas-
ure of general intelligence49, was used and adjusted to examine the effect of general intelligence on brain struc-
tures50–54. This measure was also used to exclude the possibility that a significant correlation between MD and CIS 
scores was caused by (a) an association between CIS scores and general intelligence or (b) an association between 
MD and general intelligence.

Behavioural data analyses. Behavioural data were analysed with the IBM SPSS Statistics 22.0 software 
package (IBM Corp.; Armonk, NY, USA). Differences between men and women in age and the scores for cogni-
tive measures (RAPM and CIS) were analysed with one-way ANOVA. A two-tailed p value < 0.05 was considered 
to indicate statistical significance. We also used Pearson’s correlation coefficient to test for correlations among 
feelings of fatigue, concentration, motivation, physical activity scores and MD in the significant cluster in rela-
tion to the CIS scores. A two-tailed p value < 0.05 that was corrected using the Bonferroni method was deemed 
statistically significant.

Image acquisition. MRI data were acquired using a 3T Philips Achieva scanner.

Scan for VBM. Three-dimensional, high-resolution, T1-weighted images (T1WI) were collected using a 
magnetisation-prepared rapid gradient-echo (MPRAGE) sequence. The parameters were as follows: 240 ×  240 
matrix, TR =  6.5 ms, TE =  3 ms, TI =  711 ms, FOV =  24 cm, 162 slices, in plane resolution =  1.0 ×  1.0 mm, slice 
thickness =  1.0 mm and scan duration of 483 s.

Scan for FA and MD. Diffusion-weighted data were acquired using a spin-echo EPI sequence 
(TR =  10293 ms, TE =  55 ms, FOV =  22.4 cm, 2 ×  2 ×  2 mm3 voxels, 60 slices, SENSE reduction factor =  2, 
number of acquisitions = 1). The diffusion weighting was isotropically distributed along 32 directions (b 
value =  1,000 s/mm2). For more details regarding these procedures, see the Supplemental Methods.

Pre-processing and analysis of structural data. VBM. Pre-processing of the MRI data was performed 
using Statistical Parametric Mapping software (SPM12; Wellcome Department of Cognitive Neurology, London, 
UK) and following the protocol described for VBM analysis in our previous report55. For more details regarding 
these procedures, see the Supplemental Methods.

FA and MD. Pre-processing and analysis of imaging data were performed using SPM8 implemented in 
MATLAB. FA and MD maps were calculated from the collected images using a commercially available diffusion 
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tensor analysis package on the MR consol. These procedures involved correction for motion and distortion 
caused by eddy currents56. Calculations were performed according to a previously described method27. For more 
details regarding these procedures, see the Supplemental Methods.

Statistical group-level analysis of imaging and behavioural data. The whole-brain multiple regression 
analysis assessed the association between rGMD and CIS scores using SPM12. The whole-brain multiple regression 
analysis was performed using SPM12 and assessed the relationship between rWMD and CIS scores. The whole-brain 
multiple regression analysis was performed using SPM8 and assessed the relationship between FA and CIS scores. 
The covariates included sex, age, RAPM scores and total intra-cranial brain volume (TIV: total GM volume +  total 
WM volume +  total cerebrospinal fluid volume). For each covariate, the “overall mean” was used for mean centring.

For analyses involving MD, we used the biological parametric mapping (BPM) toolbox57, which is an exten-
sion software of SPM5, the latest available version for the BPM toolbox (Wellcome Department of Cognitive 
Neurology, London). Using the BPM toolbox, we performed multimodality voxel-wise multiple regression anal-
yses adjusted for the effects of rGMD and rCSFD to investigate associations between MD and CIS scores. These 
values were adjusted to exclude the possibility that the extent of GM, WM or CSF itself affected the results rather 
than MD (in the areas analysed, tissues were either GM, WM or CSF; thus, regressing out the effects of the rGMD 
or rCSFD should address these issues). The BPM toolbox can perform multiple regression analyses using multi-
modal images. We performed a voxel-by-voxel regression analysis, and in this analysis, the dependent variable at 
each voxel was the MD value at that voxel. The independent variables included the rGMD value and the rCSFD 
map at that voxel, as well as age, sex, RAPM score and the CIS score. The analyses were limited to areas within the 
grey +  white matter mask that was created using the procedures described above. Three of the Pearson’s correla-
tion coefficients among the four subscales were > 0.5. Accordingly, multicollinearity may be doubted among the 
four subscales based on the multiple regression analysis, which can have severe effects on parameter estimates. 
However, we performed voxel-by-voxel regression analyses using the same covariates and added the four CIS sub-
scales simultaneously, rather than the total CIS score. No significant MD was related to any of the CIS subscores. 
Furthermore, we also performed four voxel-by-voxel regression analyses using the same covariates mentioned 
above and added each CIS subscore in turn, rather than the total CIS score, to determine which subscore was the 
best candidate for the region. We set the statistical significance for these analyses at p <  0.05, and corrected for 
multiple comparisons at the adjusted cluster level with an underlying voxel level of p < 0.001, uncorrected.
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