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Abstract

Background: Unfortunately, global efforts to promote “how much” physical activity people should be undertaking have been
largely unsuccessful. Given the difficulty of achieving a sustained lifestyle behavior change, many scientists are reexamining
their approaches. One such approach is to focus on understanding the context of the lifestyle behavior (ie, where, when, and with
whom) with a view to identifying promising intervention targets.
Objective: The aim of this study was to develop and implement an innovative algorithm to determine “where” physical activity
occurs using proximity sensors coupled with a widely used physical activity monitor.
Methods: A total of 19 Bluetooth beacons were placed in fixed locations within a multilevel, mixed-use building. In addition,
4 receiver-mode sensors were fitted to the wrists of a roving technician who moved throughout the building. The experiment was
divided into 4 trials with different walking speeds and dwelling times. The data were analyzed using an original and innovative
algorithm based on graph generation and Bayesian filters.
Results: Linear regression models revealed significant correlations between beacon-derived location and ground-truth tracking
time, with intraclass correlations suggesting a high goodness of fit (R2=.9780). The algorithm reliably predicted indoor location,
and the robustness of the algorithm improved with a longer dwelling time (>100 s; error <10%, R2=.9775). Increased error was
observed for transitions between areas due to the device sampling rate, currently limited to 0.1 Hz by the manufacturer.
Conclusions: This study shows that our algorithm can accurately predict the location of an individual within an indoor
environment. This novel implementation of “context sensing” will facilitate a wealth of new research questions on promoting
healthy behavior change, the optimization of patient care, and efficient health care planning (eg, patient-clinician flow,
patient-clinician interaction).
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Introduction

Background
Contextual characteristics of the physical and built environment
are known to affect health, both directly and indirectly, through
the influence on individual activities and health-related behaviors
[1-5]. Indeed, individual choices can be determined by social
and physical environmental context [6], which may also affect
the intervention strategies needed to influence and change
behavior. Therefore, it is crucial to measure the time (the
“when”), the place (the “where”), and the potential social
settings where human movement behaviors (physical activity
and sedentary time) occur. Recent methodological advances
have emphasized the need for more holistic approaches, which
can allow for greater specificity and flexibility in exploring and
understanding the relationships between behavior and place
[7,8]. Tracking and determining where specific movement
behaviors are performed could provide valuable information
and could greatly enhance research determining the correlates
of physical activity and sedentary behaviors. Most commonly,
movement behaviors (the “what”) are objectively measured
using wearable devices such as accelerometers, which can record
motion and postural changes over time [9]. However, there are
limitations to accelerometery—most notably, their inability to
accurately assess lifting and carrying, cycling, and water-based
activities, and the general lack of contextual information relating
to activity mode and/or location and domain [10,11]. Indeed,
current methods of objectively assessing behavior do not provide
information on the situational context of where behavior is
conducted within free-living enclosed environments. Therefore,
more appropriate technologies have been sought to measure the
behavioral context. Improved measures would be of use in
etiological studies in tracking trends in movement behavior
within populations, making objective comparisons between
populations, and monitoring the effect of interventions [12].

Global positioning systems (GPS) have been used to identify
activities in outdoor locations [13,14]; however, a GPS cannot
receive signals in the majority of indoor environments or provide
room-level location [15]. This is problematic as most people
spend the majority of their time in an indoor environment.
Indoor tracking systems are a potential alternative solution [8],
and according to the review of Loveday et al [16], several
technological tools are available which are able to measure
indoor location, for instance, Bluetooth low energy (BLE)
beacons, radio-frequency identification, and real-time locating
systems. These technologies have primarily been used to track
activities in warehousing environments [17] or identify when
a patient is in or out of their hospital bed [18]. Despite this, the
technologies offer a great opportunity to be applied to the
measurement of movement behaviors. BLE beacon functionality
has also been incorporated within physical activity monitors,
which provides the opportunity to assess duration, intensity,
and context of movement behaviors only using one monitor.
However, beacon functionality and support are limited, and
there is currently a lack of validated algorithms that are using
off-the-shelf activity monitoring products to aid behavioral
scientists to determine location from the data. Validated and
simple-to-implement algorithms for off-the-shelf activity

monitors would increase the ability of behavioral scientists to
utilize this innovative technology in their own research.

Furthermore, algorithms available in the literature use BLE and
accelerometry for precise localization inside a specific room
rather than multiple rooms or larger environments [14,19]. More
accurate assessments of free-living behavior would help to (1)
characterize the relationship between movement behaviors, (2)
context and disease prevention (ie, the dose-response
relationship), (3) assess the efficacy of intervention strategies,
and (4) monitor the behavior and activity patterns of various
populations [20].

Objectives
The primary aim of this study was to conceive, create, and test
a novel algorithm using accelerometry-based, proximity-enabled
sensors to detect location for a more sensitive and accurate
understanding of where specific movement behaviors are
occurring in an indoor context. The secondary aim of this study
was to provide a working example of how location and
accelerometer data can be combined. By assessing these data
together, a novel measurement and consequently a novel line
of research can be created that is focused on the interactions of
context and information about movement behaviors.

Methods

Experimental Protocol and Equipment
The algorithm was developed using data collected within a
typical indoor workplace location at Loughborough University.
The building comprised a multifloor, multiroom setting with a
mixture of open-plan and partitioned office spaces.

As a location prediction may be influenced by individual factors
such as walking speed and dwelling time in a given location, 4
trials were developed to model the potential effect upon indoor
location acquisition:

• Trial 1: normal walking speed (self-paced at approximately
1.4 m/s), stopping for at least 3 min in each area (rooms
and social areas) on a specified route.

• Trial 2: slow walking speed (self-paced relative to the
normal speed walk at approximately 0.9 m/s or slower),
stopping for at least 2 min in each selected area (rooms and
social areas) on a specified route.

• Trial 3: fast walking speed (self-paced at approximately 2.0
m/s), stopping for at least 1 min in each area (rooms and
social areas) on a specified route.

• Trial 4: the walking speed, dwelling time, and route were
not prescribed (ie, not previously decided).

Each trial started and finished in the same location, and all trials
were also video-recorded using a wearable camera (HD-1080p,
60 fps) which served as criterion validity. A second technician
recorded the sequence of the areas and the total time for each
trial. Figure 1 represents the walking speed and dwelling time
for each trial. Multimedia Appendix 1 represents the speed and
dwelling time of each trial, and Multimedia Appendix 2 shows
the path of trials 1 to 3.

ActiGraph accelerometers (GT9X Link, ActiGraph, Pensacola,
United States) were used to provide time-stamped acceleration
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and indoor location. ActiGraph provides the most widely used
accelerometers to measure physical activity and sedentary
behavior. ActiGraphs are used within several national
surveillance programs, including the US National Health and
Nutrition Examination Survey. Researchers using ActiGraph
in their own studies are therefore able to compare their own
data with nationally representative samples. Equipped with BLE
functionality, the devices can utilize proximity tagging, which
allows for identification of other nearby devices. To enable
location to be assessed, the devices are either initialized as a
beacon or a receiver.

Beacons should be placed around the environment in a high and
unobstructed placement, if possible. Certain rooms were
relatively small; therefore, one beacon was sufficient to cover
the whole room and provide a discreet room occupancy measure
(in line with ActiGraph recommendations). In these areas, the
beacon was placed on the wall, 20 cm above the room’s door.
To ensure sufficient social area coverage, more than one beacon
was required. These were placed on 2 opposing walls of the
area at 20 cm above the area’s door. Corridor beacons were
placed in such a way that one beacon was used to cover a

straight passage of a corridor (1 corridor required 2 beacons
due to the length of the corridor), with a second beacon then
placed when the corridor changed direction (always at 20 cm
above the corridor’s door). The beacons were placed in this way
to ensure reproducibility of the experimental situation in
different built environments. To evaluate the performance of
the proposed algorithm, 17 beacons were used in total, with 4
beacons used in 2 social areas (2 beacons in each), 1 beacon
each in 5 rooms, 6 in corridors, and 1 in stairway (1 beacon).
For a visual representation of the beacon locations, see Figure
2.

To track location, a receiver device is worn on the wrist, which
records received signal strength indication (RSSI) readings from
the beacons within the environment. In total, 4 ActiGraph
devices were used as receivers, and 1 individual wore all
devices, with 2 devices on each wrist. Receivers were initialized
to record proximity at the highest sample rate possible (10-s
intervals, 0.1Hz). Accelerometers were initialized and
downloaded using ActiLife Version 6.13.3 (ActiGraph,
Pensacola, United States).

Figure 1. A visual representation, based on the areas order, of the dwelling time for each trial. Trial 1 at normal walking speed (self-paced at approximately
1.4 m/s); Trial 2 at slow walking speed (self-paced at approximately 0.9 m/s or slower); Trial 3 at fast walking speed (self-paced at approximately 2.0
m/s); Trial 4, the walking speed, dwelling time and route were not prescribed (ie, not previously decided). The locations are named as follows: First
number indicates the floor: "1" indicates the first floor and "2" indicates the second floor; Uppercase letter indicates the type of room where the beacon
was installed: "S" indicates a social area, "R" indicates a standard room, "C" indicates a corridor; Second number is a counter for the same type of room
on the same floor; Lowercase letter is used only for long corridors or a large social area to indicate when multiple beacons were used; The label “Stairs”
indicates the beacon placed in the stairway (same beacon on both floors).
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Figure 2. Building floorplan and beacon positions: Top: First floor; Bottom: Ground floor. Each beacon is shown in red with an accompanying Bluetooth
symbol showing its direction.

In this study, accelerometers were initialized to collect
acceleration data at a sample rate of 100 Hz. Accelerometer
data were then processed to obtain a measure of activity every
10 s [21]. The metric selected is based on jerk (derivative of the
acceleration) and consists of the following steps: (1) Module
of acceleration:

(2) moving SD of the module of the acceleration with window
size 5 samples; and (3) average of the SD of the acceleration
calculated in step 2 with nonoverlapping windows (window
size 1000 samples, ie, 10 s at 100 Hz).

The first 2 steps aim to cancel the gravitational effect on the
accelerometer data independently from the orientation of the
sensor, while the third step defines the metric, which is
proportional to the jerk level in the last 10 s. A k-mean classifier
was then used to classify activity levels into low, middle, or
high by using the previous metric from each test.

Localization Algorithm
To produce the algorithm, a 4-step process is conducted that
derives indoor location from receiver RSSI data: “graph
generation,” “Bayesian filtering,” a priori motion model

generation and state update, and “exception management.” This
process is summarized in Figure 3.

Graph Generation
The position of the beacons on the floorplan is first represented
as a graph, where each state represents the proximity to a
specific beacon and the arrows indicate the possible paths among
the beacons. Figure 4 shows the first and second floor graph
used within the experiment; the first floor is connected to the
second floor by the beacon “Stairs.” We grouped the beacons
inside the same social area or corridor and named them
excluding the lowercase letter.

The sparse transition matrix A represents the graph of the
beacons:

This matrix contains elements ai,j that will assume the value:

1: if the beacons i and j are connected with a walking pathway,

0: if the beacons i and j are not connected with a walking
pathway, and
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N: number of beacons in the map.

i,j = 1 … N

Bayesian Filtering
Bayesian filtering aims to apply Bayesian statistics and Bayes
rule to probabilistic inference problems [22]. It describes the
probability of an event, in this case, the proximity to a beacon,
based on prior knowledge of conditions that might be related
to the event, such as the step counts and the proximity to a

beacon in the previous sample. The criterion of optimality used
for Bayesian filtering is the Bayes risk of minimum mean-square
error [23]. Bayesian filtering is optimal because it searches for
the posterior distribution, which integrates and uses all available
information, in this case the RSSI measurement, expressed by
probabilities [22]. Bayesian filtering works in 2 stages: (1) “a
priori motion models” based where only the generated graph
or step count measurements are used to estimate the probability
of being in a specific room and (2) “state update” then corrects
the estimation based on RSSI measurements.

Figure 3. A schematic representation of how the localization algorithm was derived.

Figure 4. Map graph: the position of the beacons in the map transposed as a graph.
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A Priori Motion Models
In total, 3 a priori motion models were tested based on heuristic
hypothesis on the movement of the participant.

Model 1
The connection weight among the beacons is constant, meaning
that the technician can move to another room or stay in the same
one with the same probability. This model can be described
using a transition matrix model M=A.

Model 2
The connection weight among the beacons changes accordingly
to the step count measurements. We can describe this model
using a transition matrix model in which the elements mi,j of
the transition matrix model M are built as follows:

mi,j= ai,j if i ≠j;

mi,j = 0.5 if i = j and the step counts estimates more than 2 steps
in the last 10 s (a higher number of steps indicates a lower
probability of remaining in the same room); and

mi,j = 2.0 if i = j and the step counts estimates 2 or less steps in
the last 10 s (a lower number of steps indicates a higher
probability of changing room).

Model 3
The connection weight among the beacons changes according
to the step counts measurements but not for the corridors. This
hypothesis is reasonable because the likelihood of a transition
does not depend so strongly from the step counts measurements
due to the length of a corridor. This model can be described
using a transition matrix model in which the elements mi,j of
the transition matrix model M are built as follows:

mi,j= ai,j if i ≠j;

If i is a beacon in a standard room or social area:

mi,j = 0.5 if i = j and the step counts estimates more than 2 steps
in the last 10 s;

mi,j = 2.0 if i = j and the step counts estimates 2 or less steps in
the last 10 s;

else

mi,j = w

The value of w was manipulated in increments of 0.25 from
0.25 to 1.25. A lower value of w would indicate a higher
likelihood to move into another room while in a corridor; in
contrast, a higher value of w would indicate a lower likelihood
to move in another room while in a corridor. If w=1.0, then the
corridor was treated neutrally with respect to other transitions.

The position of the receiver can be defined as a state vector that
contains the probability to be closer to a specific beacon. The
position was estimated at the time k, based on the current state
vector at the time k and the probability transition matrix as:

X ̃k + 1 = norm (XkM)

where

Xk 1 × N state vector of the N probabilities (1 for each beacon)
at the sample k;

X k̃ + 1 1 × N estimation of the N probabilities (1 for each beacon)
at the sample k + 1; and

the state vector Xo is initialized with equal probability for all
the beacons.

State Update
The probability of being in proximity to a beacon i at the sample
time was heuristically estimated k, indicated as yi(k), based on
the Bluetooth RSSI strength RSSIi:

The rationale for these selections was:

1. The distance is inversely proportional to the RSSI in case
of free air, although there are limitations on the estimation
of distance indoor because of reflection and scattering [24].

2. The value of the RSSI does not exceed −45dB when the
receiver is less than 1 m away from the beacon.

3. The communication is interrupted when the RSSI is less
than −90dB.

The measurement vector was normalized at each sample time
Yk with respect to the sum of the probabilities of all the beacons:

It is possible to measure the posterior probability Xk + 1 based
on Yk + 1 measurements and the estimation from the a priori
model using the Bayes equation:

Xk + 1 = norm (X ̃k + 1 ⨀ Yk + 1)

where Xk + 1 is the state vector of the N probabilities (one for
each beacon) at the sample k + 1 and ⨀ indicates a point-wise
vector multiplication.

The most probable position is the beacon i:

Exception Management
A block for exception management was implemented to make
the algorithm more robust with respect to the following 3
failures:

1. This exception manages cases in which the estimated
position based on the model is not in accordance with the
RSSI measurements. Indeed, the measurement could not
fit the estimated probability when there is at least one RSSI
measurement (c ≠0) but the previous estimation is not fitting
the a priori motion model (Xk + 1 = 0 for all the beacons).
This exception was managed by imposing a uniform
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probability for all the areas (resampling) and setting the
updated state as the previous one because the RSSI
measurement might have been corrupted by a glitch due to
reflection or scattering.

2. There are no RSSI measurements (c=0), and therefore no
update was performed in that step.

3. Due to reflection and scattering, the RSSI measurement
could create hopping effects between 2 contiguous rooms.
To improve the characteristic of stability in these cases, it
was imposed that hopping from a room A to a room B and
then back to the room A can happen only if the transition
is stable for at least 2 samples (20 s). In this case, the
updated probability of the room was left unchanged, and
the most probable room before the hopping event was
selected.

Statistical Analysis
For the analyses, each transition period was defined as when
the receiver moved from one room to the next. The total
transition period for the trial l was indicated as Tt,l. The total
nontransition period for the trial l was defined as the remaining
period and was indicated as Tnt,l

The total time of the trial Tl was:

Tl= Tt,l + Tnt,l

We considered the errors on the transitions (êt,l) and the errors
on the nontransition (ênt,l) for trial l, and we calculated the
relative transition errors for trial l:

e t,l = 100 × ê t,l / T t,l

The relative nontransition errors for trial l was:

e nt,l = 100 × ê nt,l / T nt,l

The error caused by tracking problems on the transitions for
trial l was:

ē nt,l = 100 × ê nt,l / T l

The relative error in trial l was:

The average error on transitions was:

The average error on nontransitions was:

The average error caused by tracking problems on the transitions
was:

The average error was:

Furthermore, the total dwelling time within each room was
evaluated for each trial to quantify the consistency of the
location and videotaped tracking time. A two-way mixed
intraclass correlation coefficients with absolute agreement was
performed. Differences between estimates are reported as mean
differences (95% CI). The regression model between the location
tracking time and the videotaped tracking time was analyzed.
The goodness of fit between the measured values and the
expected value (videotaped tracking time) was tested by the
following: sum of squares due to error (SSE), which is a measure
of the discrepancy between the data and the model estimated
R2, between 0 and 1, with a value closer to 1 indicating that a
higher proportion of variance is accounted for by the model;
adjusted R2, (ie, R2 adjusted for the residual degrees of freedom);
and finally, root mean square error (RMSE, ie, the sample SD
between predicted and observed values).

Accelerometry step counts were synchronized with the criterion
video using timestamps from an exported .csv file, and the error
was evaluated by measuring the time for which the estimated
room position and the criterion were different. The validity of
the algorithm was determined using the absolute percentage
error scores calculated for each trial.

Results

Algorithm Performance
In general, all algorithm models calculated an average
percentage error ranging from 14% to 17%. The two main
sources of error within these models were (1) transition state,
that is, moving from a room to a corridor or vice versa in the
transition period and (2) nontransition state, defined as the
dwelling time longer than 20 s (equal to two recorded samples
of RSSI). Transition estimates improved when the algorithm
used model 3 and the corridor was treated neutrally with respect
to other transitions, where the connection weight among the
beacons changed according to the step count measurements but
not for the corridors (in which the weight was constant). The
results for each model and trial are outlined in Table 1.

All algorithm models calculated low average error in the
nontransition state with a decrease in error from 3% in the model
1 to between 0.31% and 0.47% in model 3 variations. In the
transition state, an average error of between 31% and 34% was
exhibited across all algorithm models. Generally, the relative
error is affected more by transition errors if there is a higher
transition rate.

The tracking quality is represented by Figure 5 for all trials.
The red line represents the criterion location obtained from the
video, and the blue line represents the locations obtained from
the 4 receivers. From these graphs, it is evident that the quality
of tracking is better for trials with lower transition rates.
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Table 1. Percentage error of transition and nontransition states for each trial and algorithm model. Italics is used to reflect the model that showed the
best results. The letter w is the weight.

Average errorTrial 4
(random)

Trial 3 (brisk
pace)

Trial 2 (medium
pace)

Trial 1
(slow pace)

Algorithm model

Model 1a, %

68683Error on nontransitions ent,l

323254027Error on transitions et,l

43414147Error caused by tracking problems on the transitions ēnt,l

173516209Error el

Model 2b, %

5873Error on nontransitions ent,l

313829325Error on transitions et,l

143516136Error caused by tracking problems on the transitions ēnt,l

163517178Error el

Model 3c (w=1.25), %

38240.31Error on nontransitions ent,l

3138313923Error on transitions et,l

143517146Error caused by tracking problems on the transitions ēnt,l

153518166Error el

Model 3 (w=1.00), %

14210.31Error on nontransitions ent,l

3135303925Error on transitions et,l

133216146Error caused by tracking problems on the transitions ēnt,l

143317156Error el

Model 3 (w=0.75), %

14210.31Error on nontransitions ent,l

3234313925Error on transitions et,l

133117146Error caused by tracking problems on the transitions ēnt,l

143217157Error el

Model 3 (w=0.50), %

14010.47Error on nontransitions ent,l

3035313926Error on transitions et,l

143217147Error caused by tracking problems on the transitions ēnt,l

143217157Error el

Model 3 (w=0.25), %

14010.31Error on nontransitions ent,l

3436344127Error on transitions et,l

143318147Error caused by tracking problems on the transitions ēnt,l

153318157Error el

aModel 1: The connection weight among the beacons is constant.
bModel 2: The connection weight among the beacons changes according to the step count measurements.
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cModel 3: The connection weight among the beacons changes according to the step counts measurements but not for the corridors.

Figure 5. Tracking quality graphs for trials 1-4 (model 3; w=1.0). The red line represents location derived from the criterion measurement (camera),
and the blue lines represent the locations obtained from the algorithm.

Linear regression models y = p1x + p2 showed coefficients with
95% CI of p1=1.069 (1.046-1.061) and p2=−7.098 (−10.27 to
−3.925) between algorithm and criterion time in seconds (Figure
6). Moreover, the intraclass correlation highlighted a very high
goodness of fit of the model R2=.9780 (Table 2).

Greater location prediction robustness was obtained when the
receivers spent over 100 s within a specific area, which is
equivalent to more than 10 samples (quantization error less than
10%), for which we obtained an R2=.9775 (Table 2). Conversely,
the algorithm poorly estimates dwelling time (R2=.4719) when
the time spent in an area is under 100 s (Table 2).

RMSE is between 15.28 s and 15.62 s (see Table 2) independent
from the time spent in a specific area. For this reason, the main
source of error can be attributed to the transitioning of the
receiver from one area to another because:

1. the highest amount of error is observed during transitions
(3%-34%; Table 1); and

2. the sampling rate of the sensor is 10 s. The sampling effect
is evident in the gaps between the estimations in Figure 5.

Column A of Figure 7 displays the confusion matrices of model
3 (w=1.0) for all trials. A darker diagonal line represents a better
prediction from the algorithm. From the graphs, it is evident
that errors often occur between adjacent beacons. For trial 1
(column A), the algorithm confused 1C1 with 1S1 because
beacon 1C1b is close to 1S1a. Likewise, for trial 3 (column A),
the algorithm confused 1C1 with 1C3 because beacon 1C1b is
close to 1C3. The close proximity of certain beacons increases
the possibility that refraction effects lead to a misclassification
of the room that the receiver is located within. However, this
effect is only evident in the case of transitions, and it never
happens for beacons placed on different floors even though the
distance between the beacons is relatively small, such as in the
case of the beacons 2C1 and 1C3.

Column B displays the confusion matrices of model 3 (w=1.0)
for all trials but only in nontransition states. Location prediction
was high (values higher than 0.99) within nontransition states
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such as the standard rooms (R), the social areas (S), and the
stairs. However, within trial 2, the algorithm confused the
standard room 1R3 and the corridor 1C2 in 10% of the cases

because of the proximity between the beacons. Therefore,
precautions must be taken in the placement of the sensors to
avoid such ambiguities.

Figure 6. Linear regression model between accelerometry and criterion measure (video) tracking time in seconds.

Table 2. The goodness of fit between the measured and the expected values of model 3 (w=1.0). SSE: sum of squares due to error, which is a measure
of the discrepancy between the data and the model estimated; RMSE: root mean square error that is the standard error of a measurement, the standard
error of the regression.

RMSE (s)Adjusted R-squaredbR-squaredaSSE (s^2)Measurements

15.62.4719.475931,700Measurements under 100 s (130 points)

15.28.9772.977517,290Measurements over 100 s (73 points)

15.51.9779.978049,543All measurements (203 points)

aR2, between 0 and 1, with a value closer to 1 indicating that a higher proportion of variance is accounted for by the model.
bAdjusted R2 that adjusts R2 for the residual degrees of freedom.
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Figure 7. Confusion matrices of model 3 (w=1.0) for trials 1-4. Column A represents all the transition and nontransition states, and B only nontransition
states.
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Figure 8. The combination of localization tracking and activity data of trial 1. The green, yellow, and red color indicate low, middle, and high level of
activity, respectively.

Behavioral Analysis
Given that the proposed algorithm is able to accurately
determine indoor location, it is worth considering the utility this
offers researchers in assessing where behavior occurs indoors.
Figure 8 shows the combination of localization tracking and
activity data in the case of trial 1. It is evident that the highest
levels of activities are conducted between rooms, in corridors
and stairs, just before and after transition. Conversely, activities
of a low or moderate nature were most commonly conducted
within rooms.

The combination of localization tracking and activity levels can
be used to create a Lasagna plot. The absolute time associated
to each room and activity level is represented by a color gradient
from blue (time equal to 0) to yellow (time equal to 230 s). The
graphs were initially produced without sorting the data by
absolute time, and this made it difficult to extract useful
information. Therefore, for Figure 9 (trial 1), locations were

sorted in descending order based upon absolute time. It is clear
that there are areas where the receiver spent longer periods of
time such as within rooms and social areas and areas where the
time spent was minimal such as within corridors and stairs.
Multimedia Appendix 3 represents the combination of
localization tracking and activity levels with the area sorted
based on the route of trial 1.

We also considered the relative time to compare the activity
levels in each room regardless of the time the participant stays
in a specific area. Figure 10 represents sorted location data based
upon the relative time at low-level activity. The rooms and social
areas are mainly represented on the left side of the plot
(indicating predominantly low activity in these areas), while
the corridors and stairs on the right-hand side (indicating
predominantly high activity in these areas). Multimedia
Appendix 4 represents the combination of localization tracking
and activity levels with the area sorted based on the route of
trial 1.
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Figure 9. Lasagna plots representing the combination of localization tracking and activity levels. Areas are sorted in descending order depending on
the absolute time. The color between blue (time equal to zero) and yellow (time equal to 230 s) represents the activity level spent-time.

Figure 10. Lasagna plots representing the combination of localization tracking and activity levels. Areas are sorted in descending order depending on
the relative time. The color between blue (time equal to zero) and yellow (time equal to 230 s) represents the activity level spent-time.
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Discussion

Understanding the contribution of context to the health-behavior
relationship first requires the accurate measurement of location,
which is often overlooked when quantifying movement
behaviors. In this study, an algorithm was presented that
integrated indoor location and accelerometer measured step
counts to create a better representation of the
human-environment interactions. This approach to indoor
location facilitates the assessment of 3 main elements: (1) time,
(2) location, and (3) activity level. This is advantageous over
deriving time and activity levels alone, as discerning the
contribution of context to movement behaviors will allow
researchers to create location-specific interventions that may
act as more potent “levers” for sustained lifestyle behavior
change.

Algorithm Performance
Generally, the algorithm models calculated lower error during
nontransition states, which could be explained by the fact that
the time of each transition was always faster than the sampling
rate of the sensors (see Table 2). Consequently, the transition
state error is always higher, where the location time was shorter.
This is not related to the time per se but the RSSI recording as
the signal may be collected in the previous or next location
during the sample interval of 10 s. Transitional error is high
probably using the current methodology and contributes
approximately 30% of error within the models. Sampling rate
is currently manufacturer limited; however, an investigation
into higher sampling rates should be explored to ascertain if
error associated with transitional states can be reduced, or if
specific guidance can be provided to account for the RSSI
transition. Moreover, a potential way to improve the
performance of the algorithm could be by modeling the RSSI
distribution [14,19], but this kind of static model is not
practically applicable in realistic environments due to dynamic
changes in RSSI brought about by refraction and scattering. In
this study, we endeavored to test the algorithm in a realistic
environment, where it is more likely there will be a
nontransitional situation (ie, dwelling in 1 location) than
transitional (ie, not making frequent transitions between areas).

Context and Activity
Considering the combination of accelerometric and location
data within specific built environments makes it possible to
objectively assess the contribution of different environments to
overall levels of behavior [7]. This type of data can answer
questions about environmental exposure and behaviors that are
specific in particular locations or at certain times of day.
Typically, accelerometers provide objective information on
physical activity intensity and duration. While the intensity of
the activity may be an important concept for health, it lacks
specificity to recognize specific activities [10]. The addition of
context to accelerometer data provides an opportunity to develop
a novel line of research focused on the interactions of
environment and movement behaviors in a temporal, spatial,
and behavioral way [7]. Moreover, intervention studies that
measure changes in locations and behavior will provide more

robust evidence of the effects of the interventions and their
causality [25].

Typically, to record and analyze location and accelerometer
data, different devices are used, which requires the
synchronization of multiple data sources. This can be
challenging; in fact, poor synchronization could directly impact
the proper processing and interpretation of the data. In this study,
only one sensor was used to record both measures. This is an
important and, to our knowledge, novel step in indoor location
research. The timestamped data from the ActiGraph receivers
can give a rich and detailed sequence of the types of activities
people are engaging in (intensity, duration, etc), what spaces
are used, and at what time in the day. In fact, as time-based
analysis is further integrated into behavioral studies, more
complex space-time modeling analysis and strategies can be
applied to model the possible range of activities that an
individual can engage in, and to determine if events and
exposures during one day could influence activities during the
next day [7]. A prerequisite for this level of space-time modeling
is an accurate measure of time spent in a given location.
Additionally, location data could help researchers better
understand if spending more time in one environment influences
certain behaviors, if there is a specific number of times a person
must be in an environment to exhibit certain behaviors, or if
there are specific times of the day to observe certain behaviors.
Subsequently, the introduction of the additional time and
behavioral variables could offer a novel insight into locations
that are promoting or inhibiting of a behavior.

The combination of location data with behavior is a starting
point for researchers to understand the determinants of different
behaviors in indoor environments. For example, the illustrative
combination of accelerometer and location data from this study
showed that more activity was performed during the transitions
from one area to another than within certain rooms or social
areas. Furthermore, it was possible to identify a third cluster of
areas (2S1-IC3) in which the participant performs mostly
middle-level activities. From this, behavior could be classified
as mainly low, middle, or high, potentially giving insight on
where the participant mainly performs their daily activities.

To the best of the authors’ knowledge, the approach
implemented herein is novel. In particular, being able to provide
objectively measured data regarding changes in location and
activities, rather than self-reported information, may provide
greater utility and relevance to researchers and stakeholders.
Simple epidemiological measures of behavior and activity, such
as questionnaires, have performed adequately to demonstrate
associations with a number of chronic disease outcomes;
however, they rarely separate activity into its different
dimensions, nor have they facilitated an estimation of
dose-response effects [12]. Therefore, improved measurement
methods, such as indoor location tracking, would be of use in
epidemiological studies to record trends in behavior and activity
within populations, making objective comparisons between
populations, and in monitoring the effect of interventions and
programs [12]. Nevertheless, due to the lack of research within
the contextual domain, it is still unclear what additional benefit
will be added to our current understanding. It is therefore
essential that algorithms such as the one presented within this
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paper be refined and used in practice before the quantification
of context is advocated as a necessary measurement within
behavioral research.

Limitations
Some technical and practical difficulties associated with the
approach reported within this paper must be highlighted. First,
one issue relates to difficulties in establishing a valid protocol
that can ensure consistent performance in different
environments, without the need for ad hoc testing and
calibration. In fact, some aspects are likely to deviate to some
degree, such as the possible variation in performance coming
from differences in building materials and morphology.

Quantifying contextual movement behaviors using the presented
technologies could be considered costly due to the number of
devices required to accurately capture location over multiple
domains. These limitations equally apply to existing
measurement practices such as the combination of accelerometry
and GPS [7]; however, these practices do not appear to have
been decisively held back by these limitations. This is,
presumably, due to the idea that the value added by the
combination of activity data and GPS outweighs these
limitations [7]. Future iterations of contextual technologies will
hopefully alleviate these concerns.

A final limitation is related to the contextual tracking system
that was used. The ActiGraph model does not allow the user to
adjust the strength of the BLE signal or the sampling rate for
data collection. In our opinion, the possibility to adapt the signal
of the beacons to the size of the different areas could improve
the performance of the tracking location algorithm. Indeed, this
could avoid situations where signals from beacons in multiple
rooms are recorded simultaneously. Additionally, the maximum
sampling rate for the BLE signal is 10 s. There are situations
where transitioning between 2 or more adjacent areas could take
place between samples and consequently, the algorithm would
not be able to accurately track location. A higher sample rate
of the BLE signal, for example, 5 s or even every second, would
make it possible to have a more precise indoor tracking output.

Conclusions
The aim of this study was to create and test a novel algorithm,
using accelerometry-based proximity-enabled sensors, to
combine the “where,” the “when,” and the “what” of movement
behaviors by the novel exploitation of existing technologies
(conventionally used only to understand the “what”). Compared
with a criterion measure, it has been demonstrated that the new
approach can reliability predict location within rooms and social
areas; however, there is increased error for transition between
areas. This combination allows us to objectively and reliably
determine the individual characteristics of contextual behavior.
This new information can be used to better inform
evidence-based practice and research interventions. The results
have shown that it is possible to capture location information
in indoor environments and that this can be combined with
activity monitoring data to create variables previously
unavailable for research.

It is clear that many behaviors and health issues are directly
related to the context; thus, this novel approach is a powerful
tool for researchers to monitor the “where,” “when,” and “what”
of daily activities. As a first step into utilizing both context and
behavior from one device, there is a need to conduct more
research to refine the algorithm and bring about more
technological advancement to reduce the current limitations,
before indoor location can be utilized within intervention and
epidemiological research.

Our study shows that a novel implementation of “context
sensing” will facilitate a wealth of new research questions on
promoting healthy behavior change, the optimization of patient
care, and efficient health care planning (eg, patient-clinician
flow; patient-clinician interaction). This fresh perspective will
help both researchers to develop new strategies to study human
behavior, and policy makers to design new public health
initiatives aimed at improving positive and functional behavior
within the population.
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Multimedia Appendix 1
A visual representation of the speed and dwelling time of each trial.

[PNG File, 11KB - mhealth_v6i4e100_app1.png ]

Multimedia Appendix 2
A two-dimensional floorplan representing the beacon locations and path of trials 1-3.

[PNG File, 369KB - mhealth_v6i4e100_app2.png ]

Multimedia Appendix 3
Lasagna plots representing the combination of localization tracking and activity levels. Areas are not sorted by absolute time.
The color between blue (time equal to zero) and yellow (time equal to 230 s) represents the time being active.

[PNG File, 47KB - mhealth_v6i4e100_app3.png ]

Multimedia Appendix 4
Lasagna plots representing the combination of localization tracking and activity levels. Areas are not sorted in descending order
by relative time. The color between blue (time equal to zero) and yellow (time equal to 230 s) represents the activity level
spent-time.

[PNG File, 53KB - mhealth_v6i4e100_app4.png ]
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