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Abstract. This paper presents a general framework for Shanks transformations of sequences of ele-
ments in a vector space. It is shown that Minimal Polynomial Extrapolation (MPE), Mod-
ified Minimal Polynomial Extrapolation (MMPE), Reduced Rank Extrapolation (RRE),
the Vector Epsilon Algorithm (VEA), the Topological Epsilon Algorithm (TEA), and An-
derson Acceleration (AA), which are standard general techniques designed to accelerate
arbitrary sequences and/or solve nonlinear equations, all fall into this framework. Their
properties and their connections with quasi-Newton and Broyden methods are studied.
The paper then exploits this framework to compare these methods. In the linear case, it is
known that AA and GMRES are “essentially” equivalent in a certain sense, while GMRES
and RRE are mathematically equivalent. This paper discusses the connection between
AA, the RRE, the MPE, and other methods in the nonlinear case.
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1. Introduction. In the computational sciences, it is often necessary to obtain
the limit of a sequence of objects of a vector space (scalars, vectors, matrices, . . . )
that converges slowly to its limit or even diverges. In some situations, we may be
able to obtain a new sequence that converges faster to the same limit by modifying
the method that produced the original sequence. However, in many instances, the
process by which the sequence is produced is hidden (black box) or too cumbersome
for this approach to be practical. Another common solution is to transform this
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sequence, by means of a sequence transformation, into a new sequence which, under
some assumptions, will converge faster. Notable among these general techniques is
the Shanks transformation [75]. As stated in [44], the so-called Shanks transformation
is arguably the best all-purpose method for accelerating convergence of sequences.

The aim of this paper is to present a general framework for Shanks transforma-
tion(s) of sequences of elements in a vector space. This framework includes Mini-
mal Polynomial Extrapolation (MPE), Modified Minimal Polynomial Extrapolation
(MMPE), Reduced Rank Extrapolation (RRE), the Vector Epsilon Algorithm (VEA),
the Topological Epsilon Algorithm (TEA), and Anderson Acceleration (AA). Their
application to the solution of systems of linear and nonlinear equations will be dis-
cussed throughout the paper. For details on these methods, which are widely used,
and their many applications, see, for example, [7, 21, 34, 35, 40, 52, 70, 77].

Section 2 provides a basic background on sequence transformations for accelerat-
ing convergence. The general framework containing all the methods mentioned above
is presented in section 3. Their properties and their connections with quasi-Newton
methods are also studied. In section 4, some of the transformations are discussed in
more detail, in particular AA, which is related to Broyden-type methods. VEA is
treated in section 5. Conclusions are drawn in section 6.

2. Prologue on Acceleration Methods. An acceleration technique takes a se-

quence (sn) and produces an accelerated sequence, or a set of such sequences (t
(k)
n ),

indexed by k, that, hopefully, converges faster than the original sequence; see, for
example, [12, 21]. Note that the si’s can be scalars, vectors, matrices, tensors, or even
other elements in general inner-product spaces.

For a historical perspective on acceleration and extrapolation methods, see the ar-
ticle [19]. The literature on acceleration schemes is rich and has a long history. Modern
acceleration methods started with Richardson’s deferred approach to the limit [68, 69],
followed a little later by Aitken’s well-known method for computing zeros of polyno-
mials [1]. In 1955, Shanks [75] generalized Aitken’s procedure. However, his method
was not very practical because it relied on ratios of determinants, and numerical
methods for evaluating these were complicated as well as unstable. Shortly there-
after, Wynn [84] discovered an elegant recursive algorithm to calculate these ratios.
This discovery set a new dynamic in motion, and many papers followed. Meanwhile,
physicists were also developing their own acceleration techniques using a viewpoint
akin to that of quasi-Newton methods;1 see, [2, 65, 66]. These techniques include
Anderson Acceleration (or Anderson mixing) and Pulay mixing, also known as Direct
Inversion in the Iterative Subspace (DIIS). These were widely studied and applied to
the solution of various problems in numerical analysis and applied mathematics. The
literature on these topics is quite broad, so we only mention a few papers to show
the variety of results obtained and problems treated [31, 34, 41, 48, 63, 70, 78, 81].
One can distinguish between two classes of methods among those just mentioned. In
the traditional acceleration techniques, such as the Aitken or the Shanks method,
a sequence to accelerate is available at the outset and the aim of the method is to
produce a faster-converging sequence from it. In contrast, in the second class of meth-
ods, which includes the quasi-Newton–based methods, DIIS, and AA, the sequence is
generated by the method itself.

We now introduce general acceleration methods starting with Aitken’s ∆2 pro-
cess [1]. We are given a scalar sequence (sn) whose limit is limn→∞ sn = s. Aitken’s

1Here we use the term quasi-Newton method in a broad way to describe a method in which a
first-order derivative, as represented by a Jacobian, is approximated using current secant information.
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acceleration is based on the observation that it is possible to find this limit exactly in
the special situation where consecutive iterates sn satisfy the relation

(2.1) sn+1 − s− λ(sn − s) = 0 ∀n,

where λ is a constant different from one. The above relation is the kernel of Aitken’s
process, that is, the set of sequences which are transformed into a constant sequence
whose terms are all equal to s. The scalar λ and the limit s can be easily determined
from sn, sn+1, sn+2 by writing

sn+1 − s
sn − s

= λ,
sn+2 − s
sn+1 − s

= λ → λ =
sn+2 − sn+1

sn+1 − sn
,

and, letting ∆si = si+1 − si and ∆2si = ∆si+1 −∆si = si+2 − 2si+1 + si, we obtain

s =
snsn+2 − s2n+1

sn+2 − 2sn+1 + sn
= sn −

(∆sn)2

∆2sn
,

which can also be written as the ratio of determinants

(2.2) s =

∣∣∣∣ sn sn+1

∆sn ∆sn+1

∣∣∣∣∣∣∣∣ 1 1
∆sn ∆sn+1

∣∣∣∣ =

∣∣∣∣ sn ∆sn
∆sn ∆2sn

∣∣∣∣
∆2sn

= sn −∆sn(∆2sn)−1∆sn.

Although a trivial observation in this case, the third part of the above formula shows
that s is the Schur complement of ∆2sn in the matrix(

sn ∆sn
∆sn ∆2sn

)
,

while the second formula is Schur’s determinantal formula for the complement. As
background, recall that if a square matrix M is partitioned as

(2.3) M =

(
A B
C D

)
,

where D is square and invertible, then det(M) = det(D)× det(M/D), where (M/D)
is the Schur complement of D in M , that is, (M/D) = A − BD−1C. Note that A
can be a 1× 1 matrix, as was the case above. More on Schur complements and Schur
determinantal formulas can be found in [15, 62, 86].

Now let (sn) be a sequence that does not belong to the kernel defined by (2.1).

Any of the previous formulas for s can still be used, and its result is denoted by t
(1)
n . In

particular, t
(1)
n = sn−∆sn(∆2sn)−1∆sn. The sequence transformation (sn) 7−→ (t

(1)
n )

defines Aitken’s ∆2 process, and, by construction, ∀n, t(1)n = s if and only if (sn)
satisfies (2.1). This kernel can also be written in the form

α0(sn − s) + α1(sn+1 − s) = 0 ∀n,

where α0, α1 are constants such that α0α1 6= 0 and α0 + α1 6= 0.
Shanks [75] extended the above idea by developing a transformation that yields

the exact limit for sequences that belong to a (k+1)-term kernel, that is, for sequences
that satisfy

(2.4) α0(sn − s) + α1(sn+1 − s) + · · ·+ αk(sn+k − s) = 0 ∀n.
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We now consider α0, . . . , αk and s as unknowns with α0αk 6= 0 and α0 + · · ·+αk 6= 0.
Since the αi’s are determined up to a multiplicative scalar, we will impose the following
normalization condition, a constraint that does not restrict generality:

(2.5) α0 + α1 + · · ·+ αk = 1.

From (2.4) and (2.5) we easily obtain the linear system{
α0 + . . . + αk = 1,

sn+iα0 + · · · + sn+k+iαk − s = 0, i = 0, . . . , k.

This is a (k+2)× (k+2) linear system with unknowns α0, . . . , αk, s. The unknown s,
which is the desired limit, can be obtained by using Cramer’s rule. This process can
now be applied to any sequence, not just one that satisfies the kernel relation (2.4),

and in this case we denote the resulting s by t
(k)
n . This process, which transforms an

original sequence (sn) into the new sequence (t
(k)
n ), is known as the Shanks transfor-

mation. A few row manipulations with determinants will lead to the expression

t(k)n =

∣∣∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

∆sn ∆sn+1 · · · ∆sn+k
...

...
...

∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆sn ∆sn+1 · · · ∆sn+k
...

...
...

∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣

.

By construction, t
(k)
n is such that ∀n, t(k)n = s if and only if (sn) satisfies (2.4). Clearly,

when k = 1 this is just Aitken’s process, as shown by (2.2).
The above formula can again be expressed using Schur complements. A remark-

able result due to Wynn [84] is that, for scalar sequences, t
(k)
n can be obtained by the

following recursive implementation, which he termed the ε-algorithm:

ε
(n)
k+1 = ε

(n+1)
k−1 + [ε

(n+1)
k − ε(n)k ]−1,

with ε
(n)
−1 = 0 and ε

(n)
0 = sn for n = 0, 1, . . . . As it turns out, we have ε

(n)
2k = t

(k)
n for

all k and n. Wynn extended this algorithm to vector sequences by defining the inverse
of a vector v ∈ Cp as its pseudoinverse, that is, v−1 = (v∗v)−1v∗. He thus obtained
the vector ε-algorithm (VEA) [85], which will be discussed in section 5. However, the
Shanks transformation does not extend as is to vector sequences. The more general
framework of projection will have to be used for this purpose. This is explained next.

3. Shanks Transformations in a Vector Space. Let (sn) be a sequence of ele-
ments of a vector space E on R or C satisfying, for a fixed value of k and for all n,
the following relation, which generalizes (2.4):

(3.1) α0(sn − s) + · · ·+ αk(sn+k − s) = 0,

with αi ∈ R, s ∈ E, and α0 + · · ·+αk = 1, the latter being a normalization condition
which does not restrict generality. The set of such sequences is called the Shanks
kernel.
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For a fixed value of k, we want to transform (sn) into a new sequence (t
(k)
n ) such

that, for sequences belonging to the Shanks kernel, t
(k)
n = s ∀n (now only a sufficient

condition). If the coefficients αi are known, it immediately follows, from (3.1) and
the normalization condition, that this Shanks sequence transformation is given by

(3.2) t(k)n = α0sn + · · ·+ αksn+k.

To determine the k + 1 coefficients αi, we will need to set up a linear system of k
(scalar) equations, in addition to the normalization condition. If the sequence to
be transformed does not belong to the Shanks kernel, the coefficients αi can still
be computed by the same system, but they will then depend on k and n, and the
transformed sequence will satisfy (3.2).

We will now present a general framework including all sequence transformations
whose kernel is the set of sequences satisfying (3.1). Let us mention that this kernel
includes sequences which behave like sums of exponential functions (see [20]), a com-
mon feature of many iterative procedures, which explains their efficiency in a number
of cases.

The main ingredients for building these schemes are the notions of Schur comple-
ment and Schur determinantal formula [15, 62, 86]. They were extended to matrices
M of the form (2.3) where now A ∈ E, B is a row consisting of q elements of E, C is
a vector of dimension q, and D is a square and invertible q × q matrix. In this case,
det(M) is the element of E obtained by expanding M with respect to the first row of
elements of E by the classical rules, and (M/D) ∈ E [14]. In what follows, ∆ is the
usual forward difference operator, its powers are defined as usual, and it always acts
on the lower index when applied to quantities with two indices. When discussing the
vector case, we always restrict ourselves to Rp. There is no difficulty in extending the
results to Cp.

3.1. Coupled Topological Shanks Transformations. Let (tn) be a known se-
quence of elements of E, called the coupled sequence, assumed to satisfy

(3.3) α0tn + · · ·+ αktn+k = 0

for all n, where the coefficients αi are the same as in (3.1). The corresponding
Shanks sequence transformation is called a Coupled Topological Shanks Transforma-
tion (CTST). The term topological is due to historical developments of the transfor-
mation [11] and from the fact that, to be able to discuss its convergence properties,
the vector space E must be equipped with a topology.

Let y and yi, i = 1, . . . , k, be linearly independent linear functionals (that is,
elements of E∗, the algebraic dual space of E) which can depend on n. Obviously,
when E is a vector space of dimension p, we must have k ≤ p. We denote by 〈·, ·〉 the
duality product (or bracket) between E∗ and E.

Three strategies for writing a linear system that yields the coefficients αi can be
employed and are discussed in turn.

3.1.1. The Polynomial Extrapolation Strategy. This strategy is obtained by
considering the system of linear equations

(3.4)

{
α0 + · · · + αk = 1,

α0〈yi, tn〉 + · · · + αk〈yi, tn+k〉 = 0, i = 1, . . . , k.
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Again invoking Cramer’s rule to solve this system, and substituting the resulting αi’s
in (3.2), leads to

(3.5) t(k)n =

∣∣∣∣∣∣∣∣∣
sn · · · sn+k

〈y1, tn〉 · · · 〈y1, tn+k〉
...

...
〈yk, tn〉 · · · 〈yk, tn+k〉

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

1 · · · 1
〈y1, tn〉 · · · 〈y1, tn+k〉

...
...

〈yk, tn〉 · · · 〈yk, tn+k〉

∣∣∣∣∣∣∣∣∣ ,
where, as explained above, the determinant in the numerator represents the element
of E obtained by developing it with respect to its first row by the usual rules for
expanding determinants.

We now replace each of the columns from column k + 1 down to column 2 by its
difference with the preceding column, and we do this in both the numerator and the
denominator of (3.5). This transforms this ratio of determinants into

(3.6) t(k)n =

∣∣∣∣∣∣∣∣∣
sn ∆sn · · · ∆sn+k−1

〈y1, tn〉 〈y1,∆tn〉 · · · 〈y1,∆tn+k−1〉
...

...
...

〈yk, tn〉 〈yk,∆tn〉 · · · 〈yk,∆tn+k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y1,∆tn〉 · · · 〈y1,∆tn+k−1〉

...
...

〈yk,∆tn〉 · · · 〈yk,∆tn+k−1〉

∣∣∣∣∣∣∣
.

Thus, according to the Schur determinantal formula, t
(k)
n can be written as a

Schur complement

(3.7) t(k)n = sn − [∆sn, . . . ,∆sn+k−1](Y T∆T (k)
n )−1Y TT

(k)
n,1 ,

where Y = [y1, . . . , yk], T
(k)
n = [tn, . . . , tn+k−1], and T

(k)
n,1 is the first column of the

matrix T
(k)
n (that is, tn in this case). Note that in this notation the matrix T

(k)
n

has k columns (denoted by an upper index) and that its first column is tn (which
has n as a lower index). An important point to notice is that, in a general vector

space E, the notations (Y T∆T
(k)
n ) and Y TT

(k)
n,1 have to be understood in the sense

of the duality product and not in the sense of the usual scalar product between

vectors. This means, for example, that (Y T∆T
(k)
n ) is the matrix whose elements are

〈yi,∆tn+j−1〉 for i, j = 1, . . . , k. Obviously, it has the original meaning when E = Rp.
In the matrix case, the duality product becomes the Frobenius inner product defined,
for P,Q ∈ Rp×q, by 〈P,Q〉 = 〈P,Q〉F = tr(PTQ) = tr(QTP ). These notational
conventions will also be valid below. It is also worth noting that when E = Rp and
k = p, this formula simplifies to

t(p)n = sn − [∆sn, . . . ,∆sn+p−1](∆T (p)
n )−1T

(p)
n,1 .

This transformation enters into the framework introduced in [22].
We saw that (3.6) is deduced from (3.5) by replacing each column in the numerator

and in the denominator, starting from the last one, by its difference with the preceding
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one. The same treatment can be reapplied several times to (3.6), thus leading to

t(k)n =

∣∣∣∣∣∣∣∣∣
sn ∆sn · · · ∆ksn

〈y1, tn〉 〈y1,∆tn〉 · · · 〈y1,∆ktn〉
...

...
...

〈yk, tn〉 〈yk,∆tn〉 · · · 〈yk,∆ktn〉

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣
〈y1,∆tn〉 · · · 〈y1,∆ktn〉

...
...

〈yk,∆tn〉 · · · 〈yk,∆ktn〉

∣∣∣∣∣∣∣(3.8)

= sn − [∆sn, . . . ,∆
ksn][Y T [∆tn, . . . ,∆

ktn]]−1Y TT
(k)
n,1 .(3.9)

3.1.2. The Shanks Strategy. We will now outline the strategy followed by Shanks
to obtain his scalar sequence transformation. Shanks considered extracting the αi’s
by solving the system of linear equations

(3.10)

{
α0 + · · · + αk = 1,

α0〈y, tn+i〉 + · · · + αk〈y, tn+k+i〉 = 0, i = 0, . . . , k − 1,

where y is now a fixed vector. Proceeding as before, we solve the system with Cramer’s
rule and then exploit (3.2) to obtain

(3.11) t(k)n =

∣∣∣∣∣∣∣∣∣
sn · · · sn+k
〈y, tn〉 · · · 〈y, tn+k〉

...
...

〈y, tn+k−1〉 · · · 〈y, tn+2k−1〉

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

1 · · · 1
〈y, tn〉 · · · 〈y, tn+k〉

...
...

〈y, tn+k−1〉 · · · 〈y, tn+2k−1〉

∣∣∣∣∣∣∣∣∣ .
Replacing each column, starting from the last one, by its difference with the preceding
one allows us to write this ratio of determinants as

(3.12) t(k)n =

∣∣∣∣∣∣∣∣∣
sn ∆sn · · · ∆sn+k−1
〈y, tn〉 〈y,∆tn〉 · · · 〈y,∆tn+k−1〉

...
...

...
〈y, tn+k−1〉 〈y,∆tn+k−1〉 · · · 〈y,∆tn+2k−2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y,∆tn〉 · · · 〈y,∆tn+k−1〉

...
...

〈y,∆tn+k−1〉 · · · 〈y,∆tn+2k−2〉

∣∣∣∣∣∣∣
.

Thus, according to the Schur determinantal formula, t
(k)
n can be written as the

Schur complement (a new result)

(3.13) t(k)n = sn − [∆sn, . . . ,∆sn+k−1](Y T∆T (k)
n )−1Y TT

(k)
n,1 ,

with

Y =


y z · · · z
z y · · · z
...

...
...

z z · · · y

 and T (k)
n =


tn tn+1 · · · tn+k−1
tn+1 tn+2 · · · tn+k

...
...

...
tn+k−1 tn+k · · · tn+2k−2

 ,

where z = 0 ∈ E∗, and where T
(k)
n,1 denotes the first column of the matrix T

(k)
n , as

before. In the particular case tn = ∆sn, such a formula was already given in [18].
Here are a few observations. The first observation, valid for the case when E = Rp,

is based on the fact that T
(k)
n,1 = T

(k)
n e1, where ei is the ith canonical basis vector of
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the range of T
(k)
n , that is, it consists of zeros except for a one in the ith entry. For

any j, where 0 ≤ j ≤ k − 1, we write

T
(k)
n,1 = T (k)

n (e1 − e2) + T (k)
n (e2 − e3) + · · ·+ T (k)

n (ej − ej+1) + T (k)
n ej+1

= T (k)
n ej+1 −

j∑
i=1

∆T (k)
n ei.

When substituted into (3.13), this immediately yields the alternative formula, valid
for any j with 0 ≤ j ≤ k − 1,

t(k)n = sn+j − [∆sn, . . . ,∆sn+k−1](Y T∆T (k)
n )−1Y TT

(k)
n+j,1,

where T
(k)
n+j,1 ≡ T

(k)
n ej+1 is the (j + 1)st column of T

(k)
n or, equivalently, the first

column of T
(k)
n+j . A more general result will be proved later (Theorem 3.1).

The second observation will lead to yet another formula for t
(k)
n , namely one that

expresses formulas (3.5) and (3.11) as the Schur complements

t(k)n = α0(sn − [sn+1, . . . , sn+k](Y TT
(k)
n+1)−1Y TT

(k)
n,1 ),

with, for each case, the corresponding matrices Y and T
(k)
n . This result is easily ob-

tained by dividing their respective numerators and denominators by the determinant

of the matrix Y TT
(k)
n+1. Thus, the numerators of (3.5) and (3.11) can be written as

sn − [sn+1, . . . , sn+k](Y TT
(k)
n+1)−1Y TT

(k)
n,1 , and their denominators can be written as

1/α0 = 1− [1, . . . , 1](Y TT
(k)
n+1)−1Y TT

(k)
n,1 , which gives the result.

The last observation is that (3.12) and (3.13) can also be written in a form similar
to (3.8) and (3.9).

Finally, we note that the matrix [∆sn, . . . ,∆sn+k−1](Y T∆T
(k)
n )−1Y T is a projec-

tor only when tn = sn ∀n, a choice that may not satisfy (3.3).

3.1.3. The Least-Squares Strategy. To discuss the least-squares strategy, we
begin by expressing the formulas (3.2) and (3.3) in an alternative form that will

invoke the differences ∆sn+j for j = 0, . . . , k − 1. These definitions for t
(k)
n can also

be written as

t(k)n = sn +

k∑
j=1

αj(sn+j − sn)

= sn +

k∑
j=1

αj

j∑
i=1

∆sn+i−1

= sn −
k∑
i=1

− k∑
j=i

αi

∆sn+i−1.

In other words, the accelerated sequence will satisfy

(3.14) t(k)n = sn −
k∑
i=1

βi∆sn+i−1,
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in which βi = −(αi + · · · + αk) for i = 1, . . . , k. Note that since the constraint (2.5)
has been used to derive (3.14), this new formulation implicitly assumes that the αi’s
sum up to one. Proceeding similarly for the sequence tn, we would obtain the relation

(3.15) tn −
k∑
i=1

βi∆tn+i−1 = 0.

In the least-squares strategy, the vector b = (β1, . . . , βk) ∈ Rk is obtained by solving
the (p+ 1)× k least-squares system (3.15), that is,

(3.16) [∆tn, . . . ,∆tn+k−1] b =LS tn,

where =LS stands for “equal in the least-squares sense”. Thus, using the same notation

T
(k)
n as in the polynomial extrapolation strategy, and assuming that T

(k)
n is of full

rank, we get b = [(∆T
(k)
n )T∆T

(k)
n ]−1(∆T

(k)
n )T tn. It then follows that the sequence

transformation (3.14) is given by

(3.17) t(k)n = sn − [∆sn, . . . ,∆sn+k−1][(∆T (k)
n )T∆T (k)

n ]−1(∆T (k)
n )T tn.

Since tn = T
(k)
n,1 , this formula is a particular case of (3.7) with, now, Y = ∆T

(k)
n . By

the Schur determinantal formula, we also have

(3.18) t(k)n =

∣∣∣∣ sn ∆sn · · ·∆sn+k−1
(∆T

(k)
n )T tn (∆T

(k)
n )T∆T

(k)
n

∣∣∣∣/ ∣∣∣(∆T (k)
n )T∆T (k)

n

∣∣∣ ,
which is a particular case of (3.6) with Y = ∆T

(k)
n .

As before, the matrix [∆sn, . . . ,∆sn+k−1][(∆T
(k)
n )T∆T

(k)
n ]−1(∆T

(k)
n )T in (3.17) is

a projector only when tn = sn ∀n, and this choice of tn may not satisfy (3.3). We also

remark that formula (3.17) shows that t
(k)
n is the pseudo-Schur complement of ∆T

(k)
n

in the matrix [67] (
sn ∆S

(k)
n

tn ∆T
(k)
n

)
with S(k)

n = [sn, . . . , sn+k−1].

Notice that (3.18) can also be written in a form similar to (3.8).

3.1.4. Choice of the Coupled Sequence. We will now discuss the choice of the
coupled sequence (tn). There are two common ways of selecting it.

General Choice. Writing (3.1) for the indices n + 1 and n and subtracting, we
see that the sequence tn = ∆sn satisfies (3.3). In fact, any sequence of the form
tn = ∆psn, p ≥ 2, will also satisfy (3.3) and is therefore a valid choice. It will lead to
a transformation proposed in [43, p. 68].

Fixed-Point Choice. Consider the fixed-point problem s = g(s) in E, and assume
that the sn’s are given by sn+1 = g(sn), n = 0, 1, . . . . Then, when the sn’s satisfy
(3.1), the g(sn)’s will also satisfy it, as well as their differences. Thus, we can select
tn = g(sn)− sn, which leads to variants of MPE [26], MMPE [11, 64], RRE [36, 58],
and TEA [11] in the appropriate vector space E. Other possible interesting choices
include tn = ∆psn+m or tn = g(sn+m)−sn+m, where m ∈ Z. Setting f(s) = g(s)−s,
this also motivates the choice tn = f(sn), where the sn’s are approximations of s.
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3.1.5. Choice of the Linear Functionals. Next we discuss the choice of the linear
functionals y and yi in the cases of the polynomial extrapolation and the Shanks
strategies (these functionals do not play a role in the least-squares strategy). These
functionals may or may not depend on n, thus leading to new transformations which
have not yet been studied. When E is Rp, the duality product becomes the usual
inner product. In the matrix case, the duality product is replaced by the Frobenius
inner product, as explained above.

3.2. Summary and Nomenclature. In this section, we summarize the various
transformations derived from the kernels (3.1) and (3.3), and the corresponding names
by which they will be called.

The sequence transformation defined by (3.2) is denoted by the generic term
Coupled Topological Shanks Transformation (CTST). Each method depends on two
selections. First we select one of three possible strategies for writing the linear system
that yields the coefficients αi. These are the polynomial extrapolation strategy (3.4),
the Shanks strategy (3.10), and the least-squares strategy (3.16). The three symbols
used for these strategies are Pol, Sha, and Lsq, respectively. Second, we have two pos-
sibilities for choosing the coupled sequence (tn) satisfying (3.3): the general choice and
the fixed-point choice. We will use the symbols Gen and Fxp for these, respectively.
Thus, we end up with six classes of transformations according to the strategy for the
computation of the coefficients αi and the choice of the coupled sequence (tn). The
naming for these methods will consist of the acceleration strategy selected followed
by the choice made for the coupling sequence, for example, Pol-Gen for polynomial
acceleration scheme, with the general choice for the coupling. These methods are
shown in the following table, where the columns determine the acceleration strategy
(polynomial, Shanks, least-squares) and the rows determine the choice of the coupling
sequence tn (general, fixed-point).

Polynomial Shanks Least-squares
tn : general Pol-Gen Sha-Gen Lsq-Gen
tn : fixed-point Pol-Fxp Sha-Fxp Lsq-Fxp

It must be made clear that, even when E = Rp, the choices of the sequence (tn) and
that of y and the yi’s are independent of each other.

We set S
(k)
n = [sn, . . . , sn+k−1]. We will now study, in particular, the following

methods:
• The Modified Minimal Polynomial Extrapolation (MMPE) [11, 64] enters into

the polynomial extrapolation strategy when the yi’s are arbitrarily fixed lin-
early independent linear functionals and tn = ∆sn. It is given by

t(k)n = sn − [∆sn, . . . ,∆sn+k−1](Y T∆2S(k)
n )−1Y T∆sn, Y = [y1, . . . , yk].

• The Minimal Polynomial Extrapolation (MPE) [26] corresponds to the poly-
nomial extrapolation strategy with tn = ∆sn and yi = ∆sn+i−1, and we
have

t(k)n = sn − [∆sn, . . . ,∆sn+k−1][(∆S(k)
n )T∆2S(k)

n ]−1(∆S(k)
n )T∆sn.

• The Reduced Rank Extrapolation (RRE) [36, 58] is obtained by the choices
tn = ∆sn and yi = ∆2sn+i−1. We have

t(k)n = sn − [∆sn, . . . ,∆sn+k−1][(∆2S(k)
n )T∆2S(k)

n ]−1(∆2S(k)
n )T∆sn.
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• Anderson Acceleration (AA) [2] is a method for the solution of fixed-point
problems. Modulo a shift of indices, the vectors x̄k that it constructs can be
seen to belong to the class Pol-Fxp, and the vectors f̄k and ḡk have the form
(3.17) from the least-squares strategy Lsq-Fxp (see formulas (4.6), (4.8), and
(4.10) of section 4.3).

• The Topological Epsilon Algorithm (TEA) [11]. Its first version falls into the
Shanks strategy with a fixed y ∈ E∗, and it is given by (3.11), (3.12), or
(3.13).

• The Vector Epsilon Algorithm (VEA) [85], discussed in section 5, also en-
ters into this framework after replacing determinants by designants which
generalize them in a noncommutative algebra [73].

MMPE and TEA can treat, without any change, sequences of elements of a general
vector space, in particular, matrices or tensors, while, in the matrix case, the other
transformations need the replacement of the duality product by the Frobenius inner
product.

3.3. Recursive Implementations. For all methods described above, when n is
fixed and k increases, the linear systems (3.4) and (3.10) can be recursively solved by
the bordering method described in [16] and [21, pp. 30–31]. Thus, the vector, matrix,
and tensor cases are treated in the same way.

Of these methods, only three benefit from a specific simple recursive algorithm
for their implementation in the case where y and the yi’s are independent of n. These
are MMPE, which can be implemented by the Sβ-algorithm of Jbilou [49] (see also
[51]); Sha-Gen which can be implemented by the TEAs [11] or by the less expensive
STEAs [23, 24]; Henrici’s method [46, p. 115], which can be implemented by the
H-algorithm [13, 25].

In the general case, that is, when the yi’s depend on n, some other recursive
algorithms also exist, but their implementation is quite tricky; see [82, p. 177] and [22].

3.4. Properties. We remark that, in all cases, formulas (3.7), (3.13), and (3.17)
have the same structure, independent of the choice of the linear functionals y and yi,
namely

t(k)n = sn − [∆sn, . . . ,∆sn+k−1]γ,

where γ is the solution of the system (Y T∆T
(k)
n )γ = Y TT

(k)
n,1 . The preceding result

can be generalized by isolating any column i in the determinants of (3.5) and (3.11),
and it leads to the following result.

Theorem 3.1. The following expression holds for any i = 0, . . . , k:

t(k)n =

∣∣∣∣∣ sn+i ∆S
(k)
n

Y TT
(k)
n+i,1 Y

T∆T
(k)
n

∣∣∣∣∣/ ∣∣∣Y T∆T (k)
n

∣∣∣ , with ∆S(k)
n = [∆sn, . . . ,∆sn+k−1];

that is,

t(k)n = sn+i −∆S(k)
n γi, with γi = (Y T∆T (k)

n )−1Y TT
(k)
n+i,1.

Proof. In (3.5) and (3.11), select any column i for 0 ≤ i ≤ k. For i = 0, we have
the formulas (3.7) and (3.13) given above. After selecting a column 1 ≤ i ≤ k− 1, we
subtract column j from column j + 1 for j = 0, . . . , i− 1. Then, for j = i+ 1, . . . , k,
we subtract column j from column j − 1. When i = k, the subtractions are done
only for the preceding columns. Finally, column i is moved to the first place in both
the numerator and the denominator. Since the exact same operations are performed
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on the numerator and the denominator, the sign of the ratio is unchanged. The
new ratio now appears as a Schur complement, and the result follows. For the least-
squares strategy, we first have to write (3.18) as a ratio of determinants, thus obtaining
a formula similar to (3.6) and (3.12). Then, the determinants have to be modified
by adding together their columns, and we get a representation like (3.5) and (3.11).
Finally, we proceed with any column i as above for the two other strategies.

Corollary 3.2. Assume that the si’s are vectors in Rp that are generated by the
linear recurrence sj+1 = Hsj + d, s0 arbitrary, where I −H is invertible. Then for

all three strategies of section 3.1, with tj = ∆sj ∀j, we have t
(m)
0 = s = (I −H)−1d,

where m is the degree of the minimal polynomial of H for the vector s0 − s.
This result is well known and has even been extended to some cases where the

matrix H is singular. It is based on the fact that, thanks to the definition of the
minimal polynomial of a matrix for a vector, the sj ’s and s satisfy (3.1). The complete
results and their proofs can be found in the literature [10, 42].

The corollary means that any of the Shanks transformations will yield the exact
solution in at most m steps, and this result is valid even if the original sequence (sn)
does not converge, i.e., without making any particular assumption on M .

The next property we prove is an orthogonality result that will establish a link
with projection methods. From Theorem 3.1, we have

t(k)n = sn+i − [∆sn, . . . ,∆sn+k−1]γ(i), i = 0, . . . , k,

where γ(i) is the solution of the system (Y T∆T
(k)
n )γ(i) = Y TT

(k)
n+i,1. We set

t̃(k)n = sn+i+1 − [∆sn+1, . . . ,∆sn+k]γ(i),

where γ(i) is the same as above. If tn = ∆sn, we have

Y T (t̃(k)n − t(k)n ) = Y T∆sn+i − Y T [∆2sn, . . . ,∆
2sn+k−1]γ(i)

= Y T∆sn+i − Y T∆T (k)
n (Y T∆T (k)

n )−1Y TT
(k)
n+i,1.

Thus, we obtain the following Galerkin orthogonality conditions that generalize a
property given in [53, eq. (2.4)] (see also [50]) and are valid for all coupled topological
Shanks transformations.

Theorem 3.3. We set

t̃(k)n = sn+i+1 − [∆sn+1, . . . ,∆sn+k]γ(i), i = 0, . . . , k − 1,

where γ(i) is the solution of the system (Y T∆T
(k)
n )γ(i) = Y TT

(k)
n+i,1. If ∀n, tn = ∆sn,

then

Y T (t̃(k)n − t(k)n ) = 0, i = 0, . . . , k − 1.

3.5. The Quasi-Newton Connection. Consider a system of p nonlinear equa-
tions in p unknowns, f(x) = g(x) − x = 0 ∈ Rp. Newton’s method consists of the
iteration xn+1 = xn − [f ′(xn)]−1f(xn), where f ′(x) denotes the Jacobian of f at x.

Under the assumptions of Lipschitz continuity of the Jacobian f ′ in the neigh-
borhood of x and the boundedness of its inverse, it is known that the sequence (xn)
converges locally to a solution and that the convergence is quadratic; see, e.g., [33]
and [30] or [29, pp. 478ff] for a detailed study. The main drawback of Newton’s
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method is the need to compute f ′, and so quasi-Newton methods were introduced as
a remedy. They replace Newton’s iteration by an iteration of the form

xn+1 = xn −Gnf(xn),

where Gn is an approximation of [f ′(xn)]−1 (see, for example, [17, pp. 287ff]).
We consider the following iterative method for computing the fixed point x of g:
1. Set s0 = xn.
2. Compute si+1 = g(si) for i = 0, . . . , k − 1.
3. Apply the transformation Pol-Fxp (that is, ti = fi = g(si) − si = ∆si) to

the iterates si, and compute (3.7) for n = 0, that is,

t
(k)
0 = s0 − [∆s0, . . . ,∆sk−1](Y T∆T

(k)
0 )−1Y TT

(k)
0,1 .

4. Set xn+1 = t
(k)
0 .

Since T
(k)
0,1 = t0 = f0 = f(xn), any of these methods can be considered as a quasi-

Newton method with

Gn = [∆s0, . . . ,∆sk−1](Y T∆T
(k)
0 )−1Y T ∈ Rp×p.

The Shanks strategy also leads to a fixed-point method by computing t
(k)
0 by

(3.13) and restarting the iterations with xn+1 = t
(k)
0 (a procedure first proposed for

VEA when k = p [8, 9, 42]). Although more complicated (since it needs to compute the
si’s up to i = 2k), this method (which is Sha-Gen or Sha-Fxp) can also be considered
as a quasi-Newton method, where Gn is as above but with dimension p × kp, and

where T
(p)
0,1 is now the vector (f(s0)T , . . . , f(sk−1)T )T of dimension kp. We will come

back to this procedure in section 4.1.
Among quasi-Newton methods, the Barnes secant method [3] uses an approxima-

tion Gn ∈ Rp×p that satisfies the conditions

Gn∆fi = ∆si, i = 0, . . . , p− 1,

where fi = f(si) = g(si) − si. Using the notation of the polynomial extrapolation
strategy, this can be written in matrix form as

Gn[∆f0, . . . ,∆fp−1] = [∆s0, . . . ,∆sp−1],

Gn∆T
(p)
0 = ∆S

(p)
0 ,

with ti = fi and S
(p)
0 = [s0, . . . , sp−1]. Thus, Gn = ∆S

(p)
0 (∆T

(p)
0 )−1, and the iteration

becomes

xn+1 = xn − [∆s0, . . . ,∆sp−1][∆f0, . . . ,∆fp−1]−1f(xn) = xn −∆S
(p)
0 (∆T

(p)
0 )−1T

(p)
0,1 .

As we will see in section 4.2, this is exactly the RRE when k = p, since ti = fi = ∆si.
As stated by Barnes [3], his method can be identified with the generalized secant

method as previously described by Bittner [6] and Wolfe [83]. The matrix Gn is
determined by the conditions

Gnfi = si − xn+1, i = 0, . . . , p,

which yield, in matrix form,

Gn[∆f0, . . . ,∆fp] = [∆s0, . . . ,∆sp],

Gn∆T
(p+1)
0 = ∆S

(p+1)
0 .
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As explained in [27], since the p+ 1 vectors fi must be linearly dependent, there
exist constants αi not all zero such that

α0f0 + · · ·+ αpfp = 0,

a relation identical to (3.3). The constants αi can be normalized to sum up to one.
Multiplying the two preceding relations by Gn, which is assumed to exist, we get

(3.19) α0(s0 − xn+1) + · · ·+ αp(sp − xn+1) = 0,

which gives xn+1 = α0s0 + · · · + αpsp. The vector a = (α0, . . . , αp)
T is obtained as

the solution of the system of linear equations(
1 · · · 1
f0 · · · fp

)
a = e1 = (1, 0, . . . , 0)T ∈ Rp+1.

It is easy to recognize that (3.19) is nothing else than the Shanks kernel (3.1) starting
from s0 and with k = p, and that the procedure falls into the class Lsq-Fxp (see
section 3.1.3).

Under some assumptions, all these methods converge quadratically to the fixed
point x of g k = p. This is proved in [51] for RRE and MPE, in [56] for TEA,
in [8] and [9] for VEA (although there is a gap in the proof), and in [61, p. 373] for
MMPE with the choice yi = ei (which corresponds to a method due to Henrici [46,
p. 115]; see section 4.1). As proved in Corollary 3.2, all methods presented in this
paper yield the exact solution in one iteration for a system of linear equations when
k = p, the dimension of the system. Indeed, it has been known since the 1980s
that RRE and MPE are Krylov subspace methods in the linear case [4, 5, 49] (see
also [52, 76]). Analogously, the sequence (xk) obtained by Lanczos’ method [55]
for solving the system of linear equations Ax = (I − M)x = d starting from x0
(which can be implemented by the biconjugate gradient algorithm of Fletcher [39])

and the sequence (t
(k)
0 ) obtained by applying TEA with y = r0 = (I −M)x0 − d to

the sequence generated by sn+1 = Msn + d with s0 = x0 are identical, as proved
in [12, pp. 186–189]. A simpler proof, given in [17, pp. 167–168], is based on the fact
that ∆sn = −rn = d−(I−M)xn and ∆isn = (−1)iAi−1rn, and on the determinantal

expressions of xk and t
(k)
0 (see (3.8)), or those of the corresponding Schur complements

(see (3.9)), which can be shown to be identical after some algebraic manipulations.

Remark 1. The preceding results are still valid if p is replaced by m, where m is
the degree of the minimal polynomial of the Jacobian f ′(x) for the vector xn − x.

4. Particular Methods. We will now consider some well-known particular cases
of our general framework.

4.1. The Modified Minimal Polynomial Extrapolation. The Modified Minimal
Polynomial Extrapolation (MMPE) belongs to the class Pol-Gen. It corresponds to
the choice tn = ∆sn and linearly independent yi’s.

We now apply MMPE to the solution of the fixed-point problem s = g(s) in Rp
and consider the vectors generated by si = g(si−1) for i = 1, 2, . . . , with s0 given.
Taking k = p and choosing yi = ei (the vectors of the canonical basis of Rp), the first
application of the MMPE produces the vector

t
(p)
0 = s0 − [∆s0, . . . ,∆sp−1][∆2s0, . . . ,∆

2sp−1]−1∆s0,
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which can be written as

t
(p)
0 = s0 − [∆s0, . . . ,∆sp−1]γ,

where γ is the solution of the system

[∆2s0, . . . ,∆
2sp−1]γ = ∆s0, that is, ∆T

(p)
0 γ = ∆s0.

As mentioned in section 3.5, to find the fixed point s = g(s), we consider the iterative
method which consists of constructing a sequence (xn) by setting s0 = xn, applying

the MMPE as above, defining the next iterate by xn+1 = t
(p)
0 , and restarting the

process with s0 = xn+1. This method is due to Henrici [46, p. 115], and, under some
assumptions, the sequence (xn) converges quadratically to the fixed point s of g. If

g is affine, then t
(p)
0 = x1 = s. As mentioned in section 3.5, a similar restarting

procedure to the other methods described above leads to methods that, under some
assumptions, converge quadratically to the fixed point of g.

Assume now that the vectors si are not given by fixed-point iterations (they
need not even be given a priori but may be generated by the transformation process
itself) and that, instead of taking k = p in the system that gives γ, we take k ≤ p.
Then this system does not have full rank. Solving it in the least-squares sense gives

(∆T
(k)
0 )T∆T

(k)
0 γ = (∆T

(k)
0 )T∆s0, and t

(k)
0 is nothing else than the first application

of RRE, which was discovered in this way [36, 58]. Notice that formula (3.17) is also
recovered for n = 0.

4.2. The Reduced Rank Extrapolation. As previously mentioned, the Reduced
Rank Extrapolation (RRE) corresponds to setting yi = ∆2sn+i−1 for i = 1, . . . , k and
tn+i = ∆sn+i for i = 0, . . . , k−1 in the polynomial extrapolation strategy. Therefore,

it is a member of the class Pol-Gen. Since Y = ∆T
(k)
n = [∆2sn, . . . ,∆

2sn+k−1], it
follows that

t(k)n = sn − [∆sn, . . . ,∆sn+k−1][(∆T (k)
n )T∆T (k)

n ]−1(∆T (k)
n )T∆sn.

Using the notation of Theorem 3.1, the vector γ(0) = [(∆T
(k)
n )T∆T

(k)
n ]−1(∆T

(k)
n )T∆sn

is such that

γ(0) = argminγ‖∆sn −∆T (k)
n γ‖2.

Thus, since tn = ∆sn, RRE also coincides with the method Lsq-Gen, as given by

(3.17). Note also that in the case when ∆T
(k)
n is not of full rank, the preceding

expression is still valid and the article [67] shows that t
(k)
n can be written using pseudo-

Schur complements.
As a particular case, assume that we fix n at n = 0 and use all forward differences

∆s0, . . . ,∆sk. In the linear case, t
(k)
0 is the solution obtained at the kth step of the

full GMRES [72]. Indeed, as proved in [45, eq. (3.3)], the iterates of the full GMRES
for solving the system Ax = (I −M)x = d can be written as a Schur complement.
Then, applying RRE to the sequence generated by sn+1 = Msn + d with s0 = x0,
one can easily see that, after some algebraic manipulations, the Schur complements
of both methods (and thus both methods) are identical since ∆sn = −rn and ∆isn =
(−1)iAi−1rn (see (3.9)). Therefore, GMRES can be written in a determinantal form.
These authors also showed that GMRES can be considered as a quasi-Newton method.

If the linear iterations are restarted from t
(k)
0 , then RRE and GCR(k)/GMRES(k) are
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mathematically equivalent, as proved in [76]. These results were also shown earlier
by Beuneu in an unpublished report [4] and in [5] (see also [49, 52]).

According to Theorem 3.1, we have the following corollary.

Corollary 4.1. For any 0 ≤ i ≤ k, we have

t(k)n = sn+i − [∆sn, . . . ,∆sn+k−1]γ(i),

where γ(i) = argminγ‖∆sn+i −∆T
(k)
n γ‖2.

4.3. Anderson Acceleration. Anderson Acceleration (AA) is aimed at the solu-
tion of systems of nonlinear equations f(x) = g(x)− x = 0; see [2].

Specifically, let xi, i = 0, 1, . . . , be a given sequence, and define fi = f(xi). As
presented by Walker and Ni [80], by Ni [59] in his thesis, or by Higham and Strabić [48],
AA consists of choosing x0 and m ≥ 1; computing x1 = x0 + β0f0, where β0 > 0 is
a parameter; and, for k = 1, 2, . . . , after setting mk = min(m, k), computing (using
common notation) the vector θ(k) that solves

(4.1) min
θ∈Rmk

‖fk −∆Fkθ‖2,

and finally of obtaining

x̄k = xk −
k−1∑

i=k−mk

θ
(k)
i ∆xi = xk −∆Xkθ

(k),(4.2)

f̄k = fk −
k−1∑

i=k−mk

θ
(k)
i ∆fi = fk −∆Fkθ

(k),(4.3)

where
Xk = [xk−mk

, . . . , xk−1], Fk = [fk−mk
, . . . , fk−1],

and

(4.4) θ(k) = (∆FTk ∆Fk)−1∆FTk fk.

Then, the next iterate of Anderson’s method is

(4.5) xk+1 = x̄k + βkf̄k = xk + βkfk − (∆Xk + βk∆Fk)θ(k),

where βk is a parameter, usually positive.
We have

(4.6) x̄k = xk − [∆xk−mk
, . . . ,∆xk−1](∆FTk ∆Fk)−1∆FTk fk.

Thus, x̄k is the Schur complement of (∆FTk ∆Fk) in the matrix Mk given by

Mk =

(
xk ∆xk−mk

· · ·∆xk−1
∆FTk fk ∆FTk ∆Fk

)
.

Therefore, from the Schur determinantal formula,

(4.7) x̄k =

∣∣∣∣∣∣∣∣∣
xk ∆xk−mk

· · · ∆xk−1
(∆fk−mk

, fk) (∆fk−mk
,∆fk−mk

) · · · (∆fk−mk
,∆fk−1)

...
...

...
(∆fk−1, fk) (∆fk−1,∆fk−mk

) · · · (∆fk−1,∆fk−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(∆fk−mk

,∆fk−mk
) · · · (∆fk−mk

,∆fk−1)
...

...
(∆fk−1,∆fk−mk

) · · · (∆fk−1,∆fk−1)

∣∣∣∣∣∣∣
.
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A similar expression for f̄k is obtained by replacing the first row of the determinant
in the numerator by fk,∆fk−mk

, . . . ,∆fk−1, and the following relation holds:

(4.8) f̄k = fk − [∆fk−mk
, . . . ,∆fk−1](∆FTk ∆Fk)−1∆FTk fk.

An alternative way to express the update (4.5) is to rewrite it by defining gi =
g(xi) = xi + fi and ḡk = x̄k + f̄k. This gives

(4.9) xk+1 = ḡk − f̄k + βkf̄k = ḡk − (1− βk)f̄k.

If we set Gk = [gk−mk
, . . . , gk−1], we also have Gk = Xk + Fk and ∆Gk = ∆Xk +

∆Fk = [∆gk−mk
, . . . ,∆gk−1]. Then ḡk satisfies

ḡk = xk + fk − (∆Xk + ∆Fk)θ(k)

= gk −∆Gkθ
(k)

= gk − [∆gk−mk
, . . . ,∆gk−1](∆FTk ∆Fk)−1∆FTk fk.(4.10)

Note also that ḡk can be expressed by a formula similar to (4.7) in which the first row
of the determinant in its numerator is replaced by the row gk,∆gk−mk

, . . . ,∆gk−1.
In practical situations, the mixing (also called damping) parameter βk is often set

to a fixed nonzero constant. In the case βk = 0 ∀k, the iterates simplify to xk+1 = x̄k,
which is a linear combination of the previous iterates, and this leads to a stagnating
sequence. The case βk = 1 ∀k is a common choice in the literature and leads to a new
iterate of the form xk+1 = ḡk, which is the same as in (4.10). This is the undamped
iterate.

We now return to the polynomial extrapolation strategy when E = Rp. We

replace k by mk and n by k−mk in the Schur complement formula (3.7) for t
(k)
n . By

the last expression in Theorem 3.1, we obtain

t
(mk)
k−mk

= sk − [∆sk−mk
, . . . ,∆sk−1]

[[y1, . . . , ymk
]T [∆tk−mk

, . . . ,∆tk−1]]−1[y1, . . . , ymk
]T tk

for k = 1, 2, . . . , where mk = min(m, k) with m ≥ 1. That is,

(4.11) t
(mk)
k−mk

= sk − [∆sk−mk
, . . . ,∆sk−1](Y T∆T

(mk)
k−mk

)−1Y T tk.

Now, consider (4.11) with the fixed-point choice ti = fi. This satisfies (3.3) and

Y = ∆T
(mk)
k−mk

= ∆Fk. Comparing this expression with (4.6), (4.8), and (4.10), we see
that AA relates to the polynomial extrapolation strategy. In fact, with the previous
choices, when (4.11) is applied to the sequence si = xi, the polynomial acceleration

yields t
(mk)
k−mk

= x̄k. By a similar argument, if we set si = fi, we obtain t
(mk)
k−mk

= f̄k,

and, when si = gi, we have t
(mk)
k−mk

= ḡk. Thus, by using both relations, we find the

new iterate xk+1 = x̄k+βkf̄k = ḡk−(1−βk)f̄k. When βk = 1, by only one application
of the transformation, we directly obtain the new iterate, since xk+1 = ḡk. Thus, AA
belongs to the class Pol-Fxp. From (3.17) with ti = fi, we see that it is also a method
of the class Lsq-Fxp.

Remark 2. We now comment on the situation where we want to find the fixed
point of a mapping g̃. Let us restrict ourselves to the situation where βk ≡ β is a
nonzero constant and set g̃(x) = x+ βf(x). Then a fixed point of g̃ is also a zero of
f . AA defines xk+1 in the first part of (4.5) (that is, xk+1 = x̄k + βf̄k) as a natural
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substitute for xk+1 = g̃(x̄k) = x̄k + βf(x̄k), which would have been verified if we had
f̄k = f(x̄k). We have instead, as a consequence of (4.5),

xk+1 = g̃(xk)− [∆g̃k−mk
, . . . ,∆g̃k−1]θ(k),

where θ(k) minimizes (4.1) and is equal to (4.4). Obviously, when β = 1, we have
g = g̃, and we recover (4.10).

In [45], the authors also discuss the quasi-Newton Inverse Least-Squares method
(QN-ILS) proposed in [32]. They prove that it is related to Krylov subspace methods
in general, and to GMRES in particular when applied to linear systems.

With our notation, one iteration of the QN-ILS method can be written as

xk+1 = gk − [gk − gk−1, . . . , gk − gnk
]γ(k),

with nk = max(0, k−m) and γ(k) = [fk − fk−1, . . . , fk − fnk
]†fk. On the other hand,

following [48], AA can be written as follows, for k = 1, 2, . . .:

uk = xk −
mk∑
i=1

θ
(k)
i (xk − xk−i),(4.12)

vk = g(xk)−
mk∑
i=1

θ
(k)
i (g(xk)− g(xk−i)),(4.13)

xk+1 = uk + βk(vk − uk),(4.14)

with mk = min(m, k), x1 = g(x0), and where θ(k) = (θ
(k)
1 , . . . , θ

(k)
mk)T minimizes

‖vk − uk‖2, that is, θ(k) = [fk − fk−1, . . . , fk − fk−mk
]†fk. Thus,

uk = xk − [xk − xk−1, . . . , xk − xk−mk
]θ(k),

vk = gk − [gk − gk−1, . . . , gk − gk−mk
]θ(k).

When k < m, we have mk = k and nk = 0. When k ≤ m, that is, when k = m+j,
j = 0, 1, . . . , then mk = m and nk = j. Thus, the vectors xk produced by the QN-ILS
method are the same as the vectors vk of AA defined above.

It is easy to see that the vectors vk correspond to the vectors ḡk as defined in
(4.10). Thus, in fact, the QN-ILS method is exactly AA with βk = 1, and its iterates
can also be written as ratios of determinants.

4.3.1. Comparison with RRE. We would like to compare the sequence (t
(k)
n )

obtained in RRE with the vector sequence obtained by AA. In the following, we
assume that k is fixed and that it is the same for RRE and AA.

The article [45] described a method that is identical to RRE and showed that
this method is mathematically equivalent to GMRES in the linear case. As discussed
earlier, this result was already known in the 1980s; see, for example, [76]. As proved
in [80], when all previous iterates are used, AA is “essentially equivalent” (but not
completely) in a certain sense to GMRES [71], and thus to RRE. Indeed, xAAk+1 =

g(xGMRES
k ) and thus also xAAk+1 = g(xRREk ). The question now is whether or not

there are relations with any one of the extrapolation techniques in the nonlinear case.

Let us consider again t
(mk)
k−mk

given by formula (4.11). For the general choice

ti = ∆si and Y = ∆T
(mk)
k−mk

, as previously seen, we recover RRE (which belongs to
the class Pol-Gen) expressed with this change in the indices. However, with this
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procedure, it is not possible to reproduce the vectors x̄k, f̄k, and ḡk of AA. Indeed, in
particular, we have fk = f(xk) in formulas (4.6), (4.8), and (4.10) of AA, while RRE
needs tk = ∆sk in (4.11). Other combinations of choices for si, ti, and Y do not allow
us to recover the vectors of AA in the general nonlinear case.

Instead, consider RRE in which we set si = g(xi) = gi for i = 0, . . . , k and, by
using Theorem 3.1, the accelerated member

s̄k = sk − [∆gk−mk
, . . . ,∆gk−1]θ(k) = gk − [∆gk−mk

, . . . ,∆gk−1]θ(k).

If in this formula we were to choose θ(k) to minimize (4.1), we would obtain s̄k = ḡk
given by AA, and, in the undamped version, we would have xk+1 = ḡk.

In RRE, the coefficient θ(k) satisfies a slightly different optimization criterion,
namely, it minimizes ‖∆gk − [∆2gk−mk

, . . . ,∆2gk]θ‖2, where ∆2gi = ∆(gi+1 − gi).
Thus, in the last case, we can also set xk+1 = s̄k, compute sk+1 = g(xk+1), and
continue in this way. This AA-like variation of RRE is similar in spirit, but not quite
equivalent, to AA because of the difference in the optimization criterion used to obtain
the coefficients θi. Note that this difference is subtle. Each vector fj involved in the
least-squares problem (4.1), the right-hand side and column vectors of Fk, is replaced
by ∆gj . In standard RRE, we have ∆gj = g(xj+1)−g(xj), but since xj+1 = g(xj) we
would have ∆gj = g(xj+1)− xj+1 = fj+1, which is what is used in the least-squares
problem (4.1) of AA. However, in the AA-like variation discussed above, the relation
xj+1 = g(xj) is no longer true because we defined xk+1 as xk+1 = s̄k 6= g(xk).

An attempt to compare RRE with AA was made in Capehart’s Ph.D. thesis [28]
using a nonstandard interpretation of AA.

4.3.2. The Broyden Connection. In generalized Broyden methods [37, 79], the
authors define a class of Broyden update techniques that give an approximate Jacobian
Gk satisfying m secant conditions:

Gk∆fi = ∆xi for i = k −m, . . . , k − 1,

with fi = f(xi) and where it is assumed again that the vectors ∆fk−m, . . . ,∆fk−1
are linearly independent and m ≤ k. In matrix form this can be written, using the
notation of AA as

Gk∆Fk = ∆Xk,

with Xk = [xk−m, . . . , xk−1] and Fk = [fk−m, . . . , fk−1] (thus a procedure entering
into the class Pol-Fxp). A least-squares condition is imposed:

(Gk −Gk−m)q = 0 ∀q ∈ span{∆fk−m, . . . ,∆fk−1}⊥.

After calculations we get the rank-m update formula

Gk = Gk−m + (∆Xk −Gk−m∆Fk)(∆FTk ∆Fk)−1∆FTk .

The update itself is of the form

xk+1 = xk −Gk−mfk − (∆Xk −Gk−m∆Fk)θ(k), θ(k) = (∆FTk ∆Fk)−1∆FTk fk.

Note that it is common in practice to vary m with k (so m could be replaced by
mk).

Setting Gk−m = −βkI yields exactly Anderson’s original method (4.5). This
result was shown by Eyert [37, 79] (see [38]).
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5. The Vector Epsilon Algorithm. To complete our overview, let us now discuss
the vector ε-algorithm (VEA) [85] as defined in section 2. When applied to a sequence

(sn) of real vectors (to simplify) satisfying (3.1), the algorithm yields ε
(n)
2k = s for all

n, a result proved in [57]. Thus, it fits into the general framework laid out in section 3.
However, its algebraic theory is more complicated. The first attempt to express these
vectors as a ratio of determinants was proposed in [74], but it involved determinants
of dimension 2k + 1 (formula (30)) instead of k + 1 as above. The second attempt
consisted of working in a noncommutative field, to use designants, which generalize
determinants in this setting, and to consider a real Clifford algebra for the theory [73].

There exist left and right designants, which were defined and studied in [47]. For

example, let ∆
(n)
r be the right designant

∆(n)
r =

∣∣∣∣∣∣∣
a11 · · · a1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣
r

,

where the aij ’s belong to a noncommutative field. This designant can be recursively
computed (and thus defined) as follows. We start from

∆(2)
r =

∣∣∣∣ a11 a12a21 a22

∣∣∣∣
r

= a22 − a12a−111 a21.

Let Apqr be the right designant of order p+ 1 obtained from ∆
(n)
r by keeping the rows

1 to q, the columns 1 to p, and the column r. Then we have

∆(n)
r =

∣∣∣∣An−2n−1,n−1 A
n−2
n−1,n

An−2n,n−1 An−2n,n

∣∣∣∣
r

= An−2n,n −An−2n−1,n(An−2n−1,n−1)−1An−2n,n−1.

Obviously, this formula looks like a Schur complement.
Designants are used in the solution of systems of linear equations in a noncommu-

tative field [60]. Thus, they are useful in our context, and it was proved by Salam [73]

that the vectors ε
(n)
2k obtained by applying VEA to a sequence of vectors (sn) are

given by

ε
(n)
2k =

∣∣∣∣∣∣∣
∆sn · · · ∆sn+k−1 Sn

...
...

...
∆sn+k · · · ∆sn+2k−1 Sn+k

∣∣∣∣∣∣∣
r

∣∣∣∣∣∣∣
∆sn · · · ∆sn+k−1 1

...
...

...
∆sn+k · · · ∆sn+2k−1 1

∣∣∣∣∣∣∣
−1

r

.

A similar result holds with left designants.

6. Concluding Remarks. Methods for accelerating the convergence of various
processes have been developed by researchers in a wide range of disciplines, often
without being aware of similar efforts undertaken elsewhere. Certainly, differences
in terminology and notation have played a role in hampering the exchange of ideas
across different arenas. In this paper, we gave a general framework for sequence
transformations based on kernels of the form (3.1) and (3.3). This framework includes
many known and widely used transformations, and it allows us to derive new ones.
Their connections with quasi-Newton and Broyden methods have been pointed out.

The Anderson Acceleration article appeared about a decade before the Kaniel
and Stein [54] version of RRE and 13 years before the RRE paper [36]. It is only
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recently that the literature has explored the various relations between these methods.
To be able to make links between different acceleration schemes, it was necessary to
overcome the scientific language barrier. In the case of RRE, MPE, and AA, it was
essential to express RRE and MPE accelerated sequences differently, specifically as
an update from the last iterate instead of a delayed iterate. It is hoped that these
alternative expressions will help unravel other, yet unknown, connections.
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Tech. Report ANO 80, Université de Lille I, 1982. (Cited on pp. 659, 661)
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