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Abstract: Some studies of bicycle stability have applied the Whipple Carvallo Bicycle Model 

(WCBM), which describes the roll and steer behaviour of a bicycle, allowing analysis of its 

characteristics of stability and in particular self-stability. One of the limitations of this model is that 

all structural elements are assumed to be rigid bodies. In this paper, the WCBM is extended to 

include the effect of front assembly lateral compliance, and analysis focuses on study of the open 

loop stability of a benchmark bicycle. Experimental tests to identify fork and wheel properties are 

presented and discussed. Stability analysis is carried out by a MATLAB numerical code, and 

specific stability indexes are calculated from plots of eigenvalues against speed. In order to rank the 

influence of design parameters on stability, numerical calculations are carried out in a full factorial 

experiment with two levels of eight design parameters. The results show that introducing front 

assembly compliance generates a wobble mode, but this has little effect on the range of self-

stability. The forward displacement of the centre of mass of the rear frame and the increment in trail 

lead to large increments in the self-stability range, whereas increments in front wheel radius and 

wheelbase cause reduced stability. 

Keywords: bicycle, stability, weave, capsize, wobble, front fork, wheel. 
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1 Introduction 
The development of modern bicycles, as carried out by cyclists and technicians, has mainly been 

achieved by a trial-and-error approach, although bicycle dynamics have attracted the attention of 

scientists and engineers since the late 19th century. The first realistic dynamic model of a bicycle 

suitable for studying stability characteristics was developed by Whipple and Carvallo (WCBM) in 

1899 (Meijaard, 2007). It had three velocity degrees of freedom (DOF), and the model was based 

on three assumptions: that the rear frame and the rider form a single rigid body, the disc wheels roll 

without slipping and make point contact with the road surface, and all structural elements are rigid. 

In recent years, the WCBM has been extended with new features (Schwab, 2012), (Doria, 2014), 

and new models including tyre properties (Doria 2013) have been developed (Klinger, 2014), 

(Bulsink, 2015). Studies and simulations of motorcycle dynamics (e.g., Cossalter, 2007) have also 

provided useful information for studying bicycles. However, although these studies and simulations 

are interesting, it is still difficult to identify the design parameters which have the greatest effect on 

stability in the various ranges of speed. The present work focuses on open loop stability and 

contributes to more knowledge of this topic. 

The linear dynamics of a bicycle are mainly characterised by two modes of vibration (eigenvectors): 

capsize and weave. Capsize mode is dominated by roll rotation about an axis in the road plane 

which is instantaneously aligned with the rear frame of the bicycle. Weave mode is a combination 

of steer and roll rotations. Wobble (or shimmy) mode in bicycles, which mainly involves the front 

assembly, is generally significant only at high speeds (Klinger, 2014), (Magnani, 2013). The typical 

plots of the real and imaginary parts of the eigenvalues of bicycle modes against forward speed 

show two characteristic speeds: weave speed 𝑣𝑤 (lowest speed at which weave mode is stable) and 

capsize speed 𝑣𝑐 (highest speed at which capsize mode is stable). The range between 𝑣𝑤 and 𝑣𝑐 is 

the self-stability range. The speed range over which a bicycle is self-stable matches practical 

experience (Sharp 2008); self-stability is also related to rider-controlled stability (Kooijman 2011), 

(Åström 2005). For this reason, this work focuses on the effect of design parameters on the self-

stability range. 
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Although a rigid bicycle is described by 25 parameters (Meijaard, 2007), a reduced set of these 

parameters is taken into account here; first, because preliminary analyses showed that some 

parameters have a negligible effect on stability, and second, because some parameters are functions 

of others (e.g., the mass and inertia properties of a wheel are functions of wheel radius). Stiffness 

parameters which define the compliance of the front assembly are also examined in the parametric 

analysis of stability, for both technical and methodological reasons. The geometry of the front 

assembly plays an important role in the stability and handling of two-wheeled vehicles (Cossalter, 

2007), especially in steering into the fall phenomenon (Kooijman, 2011), so that the compliance of 

structural elements, which may alter nominal geometry (e.g., the attitude of the front wheel with 

respect to the road) may be important. As some recent studies (e.g., Klinger, 2014) include not only 

simple models of front assembly compliance, but also tyre models, it is sometimes difficult to 

understand the specific effect of compliance on the stability of capsize and weave modes. 

In this study, the effects of selected design parameters on bicycle stability are analysed numerically 

according to a large series of simulations, planned following a method based on a full factorial 

experimental design (Montgomery, 2008). For each combination of design parameters, an 

eigenvalue plot is obtained and indexes representing the stability properties of the bicycle are 

derived. Correlation analysis between stability indexes and design parameters is then carried out. 

The paper is organised as follows. The next section describes experimental analysis aimed at 

identifying the critical compliances of the front assembly (fork and wheel). Tests were carried out 

with the modal analysis approach and the stiffness values of components are given. In the third 

section, the WCBM is extended to include the effect of front assembly compliance, and a new 4-

DOF bicycle model is developed and implemented in MATLAB. The fourth section describes 

parametric analysis of stability. A survey was first carried out to find relationships among the 

various design parameters. A set of independent parameters was found and realistic ranges of their 

variations were defined. Stability indexes and correlation analysis were then implemented in 

MATLAB. Lastly, numerical results are presented and discussed, and the design parameters are 

ranked in order of importance. 

2 Identification of front assembly critical compliances 

2.1 Methods 
The components of the front assembly (fork and wheel) are mechanical systems with distributed 

mass, stiffness and damping properties. They were tested in the laboratory with the aim of 

identifying lumped stiffness properties suitable for implementation in an extended WCBM. This 

experimental approach was based on dynamic tests carried out with the modal analysis method 

(Ewins, 2000), since the stiffness properties exhibited by critical bicycle components in dynamic 

conditions are the most interesting from the viewpoint of stability analysis. Nevertheless, some 

static tests were also carried out for comparison and verification. 

Testing forks and wheels when they are mounted on an actual bicycle is difficult, because rigid 

rotations about the steering axis, wheel spin axis and chassis deformation may interfere with 

measurements. The components were therefore tested in a configuration which can be reproduced in 

future experiments. In particular, the steerer tube of the fork was attached to a fixed structure with a 
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clamp (Fig. 1). The wheel hub was attached at both ends by a special fixture stiffly mounted on a 

massive base (Fig. 2). Wheel rotation was prevented by a strap. Some tests were also carried out 

with the wheel mounted on the fork, with the fork fixed to the stiff structure. 

As the modal analysis approach required frequency response functions (FRFs) to be measured, the 

bicycle components were excited by a hammer for modal testing. Accelerations were measured in a 

mesh of testing points (14 for the fork, 8 for the wheel) by a tri-axial accelerometer which was 

moved each time to a different point of the mesh. To test the fork, the hammer impacts were applied 

in two directions perpendicular to the fork axis, so as to excite both lateral and longitudinal 

vibrations. The wheel was excited by hammer blows perpendicular to the wheel plane. 

Experimental FRFs were calculated as the ratios between the cross-spectrum of the input signal 

(hammer force) and the output signal (acceleration) and the auto-spectrum of the input signal. For 

each point, the average of three measurements was examined. Natural frequencies, damping 

coefficients and modal shapes were identified by ModalVIEW, a software for modal analysis. 

  
Figure 1. Front fork fixed in clamp. 

 

Figure 2. Wheel mounted with wheel hub attached at both ends. 



6 

 

 

2.2 Fork modes 
In this study, an ordinary steel fork was tested with the modal analysis approach. Since the fork was 

tested without the wheel, a fake axle joining the fork-ends was added, to avoid unrealistic relative 

motions between the blades. The sizes of the fake axle and clamping elements were similar to those 

of a real bicycle. 

Table 1 lists the test results, together with natural frequency f and viscous damping  (Ewins, 2000). 

The first vibration mode (Fig. 3) is lateral, dominated by the lateral bending of the two blades, 

which behave like two cantilever beams in parallel; the axle translates laterally and undergoes very 

little rotation. The whole behaves like a portal structure. The second mode of vibration is the 

longitudinal mode of the fork, dominated by longitudinal bending of the blades. The torsional mode 

takes place at high frequency and is characterised by rotation of the axle about the steer axis. It 

should be noted that a study carried out on a carbon fork and another steel fork (Doria, 2015) led to 

similar results, in both terms of natural frequencies and modal shapes. 

Table 1. Modal properties of fork alone. 

f (Hz)  (%) Description 

73.94 1.31 Lateral bending 
87.38 2.67 Longitudinal bending 
196.3 0.391 Torsion 
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Figure 3. Modes of fork alone (from top: lateral, longitudinal and torsional modes). 

2.3 Wheel modes 

Some ordinary front wheels were also tested. The wheels were excited by hammer blows 

perpendicular to the wheel plane. Since measurements and modal properties turned out to be 

similar, results referring to only one wheel are listed in Table 2. Figure 4 shows that the first typical 

mode of the wheel is diametric, characterised by rigid rotation of the rim with the tyre about the 

diameter of the wheel. Since the hub is fixed and the rim is not deformed, this mode is dominated 

by spoke deformation. At higher frequencies, modes dominated by rim deformation appear. The 

first mode with rim deformation is C-shaped, in which out-of-plane deformation shows four nodes 

and four anti-nodes in the circumferential direction. The pair of anti-nodes along the same diameter 

are in phase with each other and in phase opposition with the pair of anti-nodes along the 

perpendicular diameter. At high frequency, an S-shaped mode appears, with six nodes and anti-

nodes, and the adjacent points of the rim move in opposition. Higher-order modes could not be 

identified with only eight measurement points, owing to problems of spatial aliasing. 

 

Table 2. Modal properties of wheel alone. 

f (Hz)  (%) Description 

27.75 1.607 Diametric 
99.66 0.8707 C-shaped 
148.8 1.292 S-shaped 
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Figure 4. Modes of wheel alone (from top: diametric, C-shaped and S-shaped modes). 

 

2.4 Front assembly modes 
Modal analysis of the front assembly was carried out by testing the wheel and fork assembly. The 

results (Table 3) show that the first mode of the front assembly (17.7 Hz) is torsional, dominated by 

rotation of the front wheel about the diameter of the wheel, which is aligned with the steer axis. The 

modal shape (Fig. 5), shows that front fork deformability only plays a small role in this mode, as 

confirmed by the fact that the natural frequency of the torsion mode of the front assembly is much 

closer to that of the diametric mode of the wheel (27.75 Hz) than that of the torsional mode of the 

fork (196.3 Hz). 
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Figure 5. Modes of front assembly. From top: torsional, lateral, longitudinal and second lateral 

mode. 
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The second mode of the front assembly is lateral. This mode is the in-phase contribution of the 

lateral mode of the fork with the diametric mode of the wheel about the horizontal diameter. As the 

axle of the wheel moves almost parallel to itself, wheel rotation is mainly caused by wheel 

deformation. The natural frequency of this mode is closer to the natural frequency of the diametric 

mode of the wheel (27.75 Hz) than to that of the lateral mode of the fork (73.94 Hz). 

The third mode is the longitudinal mode of the whole assembly: it is dominated by bending 

deformation of the fork longitudinally, with a natural frequency which is much lower than that of 

the longitudinal mode of the fork, owing to the considerable inertia of the wheel. 

The fourth mode is the combination in phase opposition of the lateral mode of the fork with a 

diametric mode of the wheel; the deformation of the wheel dominates the modal shape. It should be 

noted that the natural frequency of this mode is higher than that of the lateral mode with in-phase 

vibrations of fork and wheel. 

Table 3. Modal properties of fork with wheel. 

f (Hz)  (%) Description 

17.7 0.181 Torsional 
24.99 0.552 Lateral bending 
26.86 0.586 Longitudinal bending 
53.38 1.041 Wheel diametric with fork in opposition 

 

2.5 Identification of fork stiffness 
This section identifies a lumped parameter model of the fork representing the behaviour of this 

component when the lateral mode is excited. Analysis of the lateral mode had shown that the blades 

of the fork behave like cantilever beams and that the rotation of the axle is less than the slopes at the 

ends of the blades, which allowed the model shown in Figure 6 to be developed. 
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Figure 6. Fork model for lumped stiffness calculation. 

The bending deformability of each blade (elements 1 and 2 in Fig. 6) is represented by introducing a 

revolute joint and a lumped rotational spring (stiffness 𝑘𝜃) at location 1/3 L, in which L is the total 

span of the blade. This location matches the basic theory of elastic beams (Doria, 2016). The axle 

(element 4 in Fig. 6) is connected to the fork-ends by two revolute joints, so that the elements of the 

fork (blades, upper plate and axle) make up a four-bar linkage with two nearly parallel rockers. In 

this mechanism, the axle moves almost parallel to itself, matching the results of modal analysis. The 

four-bar linkage can be studied with the typical methods of mechanism analysis (Doughty, 1988). 

The velocity ratios between the various links of the mechanism can be calculated from the velocity 

equations of the linkage. If rotation 𝜃1 of blade 1 is considered as the independent variable, the 

following velocity ratios can be calculated: 𝜏21 = 𝜃2̇/𝜃1̇ (between the angular velocities of blade 2 

and blade 1); 𝜏41 = 𝜃4̇/𝜃1̇ (between angular velocity of axle 4 and angular velocity of blade 1); 

𝜏𝑦41 = 𝑦4̇/𝜃1̇ (between lateral linear velocity of axle 4 and angular velocity of blade 1). Near 

configuration 𝜃1 = 0 (undeformed fork), the values of velocity ratios are: 𝜏21 = 0.99. 𝜏41 = 0.19, 

𝜏𝑦41 = 0.28 𝑚. Since only small rotations are considered (they represent fork deformation), these 

ratios may be assumed to be constant. Value 𝜏21 ≈ 1 means that the two blades in fact have the 

same rotation, whereas value 𝜏41 = 0.19 means that axle rotation is a small fraction of blade 

rotation. 

These velocity ratios can be used to transform the four-bar linkage into an equivalent bar rotating 

about a revolute joint (rotation 𝛽𝑓 = 𝜃1) equipped with a rotational spring 𝑘𝛽𝑓, (Fig.  6). 

The moment of inertia of the equivalent bar is given by equation 1: 

𝐼∗ = 𝐼1 + 𝐼2𝜏21
2 + 𝐼𝐺4𝜏41

2 + 𝑚4𝜏𝑦41
2     (1) 
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where 𝐼1 = 𝐼2 = 0.0079 kg ∙ m2 are the moments of inertia of blades 1 and 2 about points 𝑂1 and 

𝑂2, 𝐼𝐺4 = 0.00016 kg ∙ m2 is the moment of inertia of axle 4 about its centre of mass, and 𝑚4 =

0.079 kg is the mass of the axle (the wheel is not taken into account). The resulting moment of 

inertia of the equivalent bar is 𝐼∗ = 0.0219 kg ∙ m2. The stiffness of the equivalent spring is: 

𝑘𝛽𝑓 = 𝑘𝜃 + 𝑘𝜃𝜏21
2 = 2𝑘𝜃     (2) 

The natural frequency of the equivalent bar is: 

𝑓𝑛 =  
1

2𝜋
√

𝑘𝛽𝑓

𝐼∗
      (3) 

Since the equivalent moment of inertia is obtained from the mass properties of the fork and the 

natural frequency can be set at the natural frequency of the lateral mode of the fork, equivalent 

stiffness 𝑘𝛽𝑓 can be calculated from equation (3): 𝑘𝛽𝑓 = 4725 N ∙ m/rad. 

A static test was also performed, in order to verify this value of fork stiffness. Increasing loads were 

applied to the axle in lateral direction 𝑦, and displacements were measured on a dial gauge. The 

slope of the measured curve (Fig. 7) gives static stiffness in the lateral direction: 𝑘𝑦 = 55590 N/m. 

 

Figure 7. Static stiffness curve of fork in lateral direction. 

The equivalent rotational stiffness can be calculated according to the model of Figure 6. Since 

velocity ratio 𝜏21 is about 1, blades 1 and 2 move together and the two rotational stiffnesses are in 

parallel (𝑘𝛽𝑓 = 2𝑘𝜃). Equation 4 between linear stiffness at the axle and angular stiffness holds 

true: 

𝑘𝑦 = 2𝑘𝜃 (
�̇�1

�̇�4
)

2

= 𝑘𝛽𝑓
1

(𝜏𝑦41)
2     (4) 

Therefore, the rotational stiffness equivalent to the measured linear stiffness is: 

𝑘𝛽𝑓 = 𝑘𝑦𝜏𝑦41
2 = 4349 N ∙ m rad⁄     (5) 

This value is only slightly lower than that identified from dynamic tests. 
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2.6 Identification of wheel stiffness  

This section describes the lumped stiffness of the wheel, representing its behaviour when the 

diametric mode is excited. The rim with the tyre vibrates like a rigid ring, owing to spoke 

deformation; the wheel can therefore be modelled as a 1-DOF system in which the spokes behave 

like a mass-less spring of stiffness 𝑘𝛽𝑤 about the diameter, and the whole inertia of the wheel is 

concentrated on the rigid ring (due to the small contribution of the spokes to wheel inertia). 

The natural frequency of this system is given by: 

𝑓𝑛 =  
1

2𝜋
√

𝑘𝛽𝑤

𝐼𝑥𝑥
       (6) 

A trifilar pendulum was used to measure the moment of inertia of the wheel about its diameter (𝐼𝑥𝑥) 

resulting in 𝐼𝑥𝑥 = 0.095 kg ∙ m2. Lastly, wheel stiffness was identified from equation (6): 

𝑘𝛽𝑤 = (2𝜋𝑓𝑛)2 𝐼𝑥𝑥 = 2888 N ∙ m rad⁄     (7) 

This value is markedly smaller than that of front fork stiffness (4725 N ∙ m/rad), and confirms that 

the wheel is a critical component from the viewpoint of front assembly compliance. 

 

Figure 8. Static stiffness of wheel about diameter. 

Also in this case, the stiffness value identified by modal analysis was compared with that obtained 

from a static test: one point on the wheel rim was loaded with increasing forces perpendicular to the 

wheel plane and displacements were measured on a dial gauge. The slope of the measured curve 

gave linear stiffness 𝑘𝑦 (Fig. 8). The equivalent rotational stiffness about the wheel diameter is: 

𝑘𝛽𝑤 = 𝑘𝑦𝑟𝐹
2      (8) 

in which 𝑟𝐹 is wheel radius. The identified value, 2940 N ∙ m/rad, matches that from modal 

analysis. 
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2.7 Lumped element model of front assembly compliance 
The results of modal testing of the front assembly (Fig. 5), show that wheel rotation mainly depends 

on excitation of the diametric mode, due to spoke deformation, whereas the lateral displacement of 

the point of contact of the wheel depends on both the lateral mode of the fork and the diametric 

mode of the wheel. The front assembly model shown in Figure 9 was developed to represent this 

behaviour. It derives from the fork model of Figure 6, with the addition of the wheel, which was 

connected to the axle by a revolute joint and a rotational spring (stiffness 𝑘𝛽𝑤), representing the 

stiffness of the spokes. This model has 2 DOF. Due to the geometry of the four-bar linkage, which 

is nearly a parallelogram, wheel rotation mainly depends on spoke deformation, whereas the lateral 

translation of the point of contact of the wheel depends on both spoke deformation (rotation 𝛽𝑤) 

and fork blade deformation (rotation 𝛽𝑓). 

As it is rather difficult to add a 2-DOF model to the WCBM, an equivalent 1-DOF model was 

developed, which can generate the same behaviour of the front assembly when lateral force 𝐹𝐹𝑦 is 

applied to the point of contact of the wheel with the road surface. In this model (Fig. 9), the fork is 

represented by a simple bar, divided into two parts by a revolute joint. A lumped spring (stiffness 

𝑘𝛽) opposes the relative rotation 𝛽 between the parts of the bar. The wheel is rigidly clamped to the 

tip of the bar. The distance between the wheel hub and the revolute joint is represented by ℎ𝑊. 

 

Figure 9. Lumped element model of front assembly. 
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Stiffness 𝑘𝛽 and distance ℎ𝑊 of the equivalent system were calculated, taking into account the fact 

that lateral force 𝐹𝐹𝑦 must generate the same rotation of the wheel and the same lateral 

displacement. The condition on wheel rotation is: 

𝛽𝑊 = 𝛽       (9) 

On the left, only the contribution of wheel deformation is considered, since that of the four-bar 

linkage to wheel rotation is very small. Taking into account the relations between rotations and 

moments caused by lateral force 𝐹𝐹𝑦, equation (9) becomes: 

𝐹𝐹𝑦𝑟𝐹

𝑘𝛽𝑊
=

𝐹𝐹𝑦(𝑟𝐹+ℎ𝑊)

𝑘𝛽
     (10) 

The condition on lateral displacement y is: 

2

3
𝛽𝑓𝐿 + 𝛽𝑊𝑟𝐹 = 𝛽(𝑟𝐹 + ℎ𝑊)     (11) 

On the left, the first contribution comes from the linkage and the second from the wheel. When the 

condition of equation (9) is introduced, equation (11) becomes: 

𝛽𝑓
2

3
𝐿 = 𝛽𝑤ℎ𝑊     (12) 

Taking into account the geometry of the linkage and the relations between rotations and moment 

caused by 𝐹𝐹𝑦, equation (12) becomes: 

𝐹𝐹𝑦(
2

3
𝐿)

2

𝑘𝛽𝑓
=

𝐹𝐹𝑦𝑟𝐹ℎ𝑊

𝑘𝛽𝑤
     (13) 

Hence, distance ℎ𝑊 can be calculated: 

ℎ𝑊 =
𝑘𝛽𝑤

𝑘𝛽𝑓

(
2

3
𝐿)

2

𝑟𝐹
     (14) 

Stiffness 𝑘𝛽 can be calculated by introducing equation (14) into equation (10): 

𝑘𝛽 = 𝑘𝛽𝑤 +
𝑘𝛽𝑤

2

𝑘𝛽𝑓

(
2

3
𝐿)

2

𝑟𝐹
2      (15) 

The calculated parameters of the equivalent 1-DOF system were thus: ℎ𝑊 = 0.137 m and 𝑘𝛽 =

4018 N ∙ m rad⁄ . This stiffness value clearly matches the results reported by Klinger (2014) and 

Limebeer (2006). 

3 Bicycle model with front frame compliance 
The bicycle model was extended to take into account bending compliance of the front assembly (see 

Fig. 10). Forward speed 𝑣 is assumed to be constant and the rider’s hands do not control the 

handlebars. 
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Figure 10. Bicycle model with bending compliance of front assembly. 

The model is characterised by the presence of a revolute joint perpendicular to the steer axis which 

defines the deformation axis and divides the front assembly into two parts. A rotational spring with 

stiffness 𝑘𝛽 and a rotational damper with constant 𝑐𝛽 (not shown in Fig. 10) oppose rotation 𝛽 and 

angular velocity �̇� respectively. 

It should be noted that, in Figure 10, constants 𝑘𝛽  and 𝑐𝛽 represent the stiffness and damping 

properties of the front assembly, because the position of deformation axis ℎ𝑊 lies along the fork 

span. But the same model can also represent compliance by the front wheel or steer head. In the 

former case, the deformation axis crosses the centre of the wheel (ℎ𝑊 = 0) and stiffness and 

damping parameters represent its compliance about a diametrical axis. In the latter case, the 

deformation axis crosses the steer head and the stiffness and damping parameters represent the 

torsional compliance of the chassis, which causes lateral displacement of the front wheel. 

The equations of linearised WCBM derive from angular momentum balances (Meijaard, 2007). The 

first equation (roll) derives from the roll angular momentum balance for the whole bicycle 

(including its rider) about a fixed axis in the road plane, which is instantaneously aligned with the 

line where the rear frame of the bicycle intersects the road plane. The second equation (yaw) derives 

from the yaw angular momentum balance for the whole bicycle about a fixed vertical axis which 

instantaneously passes through the contact point of the rear wheel. The third equation (steer) derives 

from steer angular momentum balance of the front frame about the steer axis. 

In the model, rotation 𝛽 of the front wheel about the deformation axis generates new linear and 

angular momentum components which must be taken into account in the equations. 

The new linear momentum is given by equation (16), in which 𝑚𝐹 is the front wheel mass, ℎ𝑊 the 

distance between the bending axis and the centre of mass of the wheel, and 𝑗̂ is the unit vector 

perpendicular to the bicycle plane: 

𝑃𝑊 = −𝑚𝐹ℎ𝑊𝛽𝑗̂̇       (16) 

 

The corresponding angular momentum components about the roll, steer and yaw axes are shown in 

equation (17), where 𝑟𝐹, 𝑢𝑊 and 𝑤 are front wheel radius, wheel offset, and wheelbase, 

respectively: 

 

{

𝑀𝑚𝜑

𝑀𝑚𝛿

𝑀𝑚𝜓

} = {

−𝑚𝐹ℎ𝑊𝑟𝐹�̇�

−𝑚𝐹ℎ𝑊𝑢𝑊�̇�

−𝑚𝐹ℎ𝑊𝑤�̇�

}     (17) 
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Euler’s equation applied to the front wheel in the front wheel frame of reference (𝑥𝐹, 𝑦𝐹, 𝑧𝐹) is then 

developed to calculate the new angular momentum components due to �̇� and the inertia tensor of 

the wheel: 
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In equation (18) 𝐼𝐹𝑥𝑥 = 𝐼𝐹𝑧𝑧 is the moment of inertia of the front wheel about the diametric axis, 

𝐼𝐹𝑦𝑦 the spin moment of inertia, and −𝑣/𝑟𝐹 the spin velocity of the front wheel. 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 are the 

components of angular velocity of the front wheel due to roll (�̇�), yaw (�̇�), steer (�̇�) and 

deformation velocity (�̇�); if second-order terms are neglected, they are given by: 
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𝛼𝑥, 𝛼𝑦, 𝛼𝑧 are the components of angular acceleration of the front wheel: 
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After introducing equations (19) and (20),  Euler’s equation becomes: 
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 (21) 

 

𝑀𝑥, 𝑀𝑦, 𝑀𝑧 are the components of the moments of external forces about the centre of mass of the 

front wheel. In particular, 𝑀𝑥 (about the 𝑥𝐹 axis parallel to the deformation axis) is given by the 

following equation: 
 

        cossincos  WFyFyWx

F gRFrckRhM 
  (22) 

 
 

The first term is the moment of the lateral reaction force transmitted through the revolute joint:  
 

FyFFy FmyR         (23) 
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In equation (23), 𝐹𝐹𝑦 is the lateral ground force and �̈�𝐹 is the linear acceleration of the front wheel 

centre of mass, which depends on the linear acceleration of the rear contact point 𝑃 (�̈�𝑃) and on 

angular accelerations: 
 

 
WWFPF hurwyy       (24) 

 

The terms of equation (22) depending on 𝛽 and �̇� are the effects of elastic and damping forces.  The 

fourth term depends on lateral ground force. The last term takes into account the moment caused by 

the front vertical ground reaction and vertical reaction force transmitted through the revolute joint. 

Constant 𝑅𝑊 is given by equation (25): 
 

  







 WFFW

TT
W hmrh

w

xm
R cos(     (25) 

 

In equation (25), 𝑚𝑇 is total mass and 𝑥𝑇 the horizontal position of the global centre of mass. The 

first of equations (21) (about axis 𝑥𝐹 parallel to the deformation axis) is added to the other angular 

momentum equations and is the fourth equation of the model.  

The new terms deriving from deformation of the front frame are added to the equations for roll, 

steer and yaw, calculated projecting the left-hand side of equation (21) on the roll (𝑥), yaw (𝑧) and 

steer axes and selecting the new terms depending on �̇� and �̈�. The projection equations are: 
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The superscript “steer” indicates the steer coordinate system with axis 𝑧 aligned with the steer axis. 

The trigonometric functions of small angles are linearised in the rotation matrices. 

The four equations of the model contain five unknowns. They are 𝜑, 𝛿, 𝜓, 𝛽 and the lateral ground 

force at front contact point 𝐹𝐹𝑦. 𝐹𝐹𝑦  appears in the yaw, steer and front wheel equation, and this 

unknown is eliminated by means of the yaw equation, like Meijaard does (2007). Lastly, yaw 

velocity and acceleration are eliminated by means of rolling-contact lateral constraints: 
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 vyP           (30) 

 

Symbol 𝑐 represents the trail of the bicycle (Meijaard, 2007). It should be noted that, if the front 

assembly is rigid (𝛽 = �̇� = �̈� = 0), the last three equations become those presented by Meijaard 

(2007). 

The final set of equations includes three linear second-order coupled equations in variables 𝜑, 𝛿, 𝛽. 

They represent free oscillations of the system and are useful for studying uncontrolled stability 
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(when the rider does not hold the handlebars). The structure of these equations is similar to that of 

the WCBM: 

 

[𝑀] {

�̈�

�̈�
�̈�

} + 𝑣[𝐶1] {

�̇�

�̇�
�̇�

} + [𝑔[𝐾0] + 𝑣2[𝐾2]] {

𝜑
𝛿
𝛽

} + [𝐶] {

�̇�

�̇�
�̇�

} + [𝐾] {

𝜑
𝛿
𝛽

} = {
0
0
0

}   (31) 

 

Matrices [𝑀], [𝐶1], 𝑔[𝐾0], 𝑣2[𝐾2] have the same meaning as the corresponding WCBM matrices, 

but have dimension 3x3 and account for the additional terms due to front assembly deformation, 

when they occur. Matrices [𝐶], [𝐾] are the “true” damping and stiffness matrices and take into 

account the stiffness and damping properties of the front assembly. Matrix coefficients are listed in 

Appendix 1. The bicycle model with fork compliance was implemented in a MATLAB code. The 

complex eigenvalue problem was solved in order to perform stability analysis. 

4 Parametric analysis 
In order to rank the influence of bicycle parameters on stability, a series of numerical simulations 

was planned. The bicycle parameters included geometric and mass properties and front assembly 

stiffness. As regards the former, a rigid bicycle is described by 25 parameters (Meijaard, 2007). A 

reduced set of these parameters was taken into account here for the following reasons: some 

preliminary analyses had shown that some parameters had a negligible effect on stability; some 

were functions of other parameters (e.g., the mass and inertia properties of a wheel are functions of 

wheel radius). Rear mass and inertia actually depend on the rider, whose mass cannot be considered 

as a design parameter. 

Figure 11 shows the eight geometric and mass parameters chosen: front and rear wheel radii (𝑟𝐹 and 

𝑟𝑅), handlebar and fork assembly mass (𝑚𝐻), longitudinal and vertical position of the centre of 

mass (𝑥𝐵 and 𝑧𝐵), wheelbase (𝑤), caster angle (𝜆) and trail (𝑐). Note that, in parametric analysis, 

when 𝑟𝐹 and 𝑟𝑅 were varied, the mass and moment of inertia of the wheels also varied. Fitting 

curves derived from the measured values were used to calculate the proportions between wheel 

radius and mass properties. 

 

Figure 11. Bicycle parameters. 
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Our aim was to analyse the influence on the stability of the selected parameters one at a time. This 

approach poses some problems when variations in 𝑤, 𝑐 and 𝜆 are involved, because the coordinates 

of 𝑚𝐻 are defined with respect to coordinate system 𝑥𝑦𝑧 (with its origin at the rear contact point) 

and any variations in 𝑤, 𝑐 and 𝜆which define the position of the steer axis, can modify the position 

of 𝑚𝐻 with respect to the steer axis, thus introducing an additional dynamic effect. To give an 

example, Figure 12 shows the effect of a variation in trail 𝑐. In this case, 𝑢𝐻, which is defined as the 

distance between the centre of mass of the front assembly and the steer axis, changes. To avoid this 

effect, a kinematic analysis was carried out to correct the position of 𝑚𝐻 with respect to 𝑥𝑦𝑧 and to 

maintain the distance of 𝑚𝐻 from the steer axis constant. 

  

Figure 12. Effect of c on distance between 𝑚𝐻 and steer axis. 

As regards stiffness parameters, the equivalent rotational stiffness about the wheel diameter 

(equation 8) and the equivalent front assembly stiffness (equation 15) were taken into account in 

parametric analysis. The corresponding damping coefficients are difficult to estimate. Damping 

coefficients identified from modal tests on single components may underestimate those of the low-

frequency modes of the whole bicycle, which are largely affected by connections between elements. 

The stiffness parameters identified here match those reported by Limebeer (2006), Sharp (2008) and 

Klinger (2014). These authors also report damping coefficient values. For the above-mentioned 

reasons, damping coefficient 𝑐𝛽 about the deformation axis was set at 20 N∙m·s/rad for stiffness 

𝑘𝛽 = 2000 N∙m/rad, which are the values reported in Limebeer (2006). When different stiffness 

values were adopted, the damping coefficient was modified according to equation (32) in order to 

keep the damping ratio constant. 

𝑐𝛽 = 20√
𝑘𝛽

2000
      (32) 

For each design parameter, one low level and one high level were defined (see Table 4). The 

numerical values of the two levels were selected according to the following criteria: 

1) Their average values must be equal to the corresponding design parameter of the benchmark 

bicycle presented by Meijaard (2007). 
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2) High and low levels of the parameter must be compatible with a real-life bicycle. 

3) The ranges of the various parameters must be similar. 

In order to reduce the number of simulations and for more information on the effects of bicycle 

characteristics on stability, the first parametric analysis was carried out considering a rigid bicycle, 

so that only the eight geometric and mass parameters were used. Analysis of the results revealed the 

least influential parameter. The following analyses were carried out by removing it from the list and 

introducing a compliance parameter in its place: wheel compliance or front assembly compliance. 

With this approach, each parametric analysis included 28 = 256 simulations, because a full 

factorial experiment was planned (Montgomery, 2008). 

Table 4. Design parameters. 

Parameter Nominal value Low level High level 

Standard 

deviation / 

Nominal 

value 

Rear wheel radius rR 0.305 m (12 in) 0.254 m (10 in) 0.356 m (14 in) 0.167 

Front wheel radius rF 0.337 m (13.25 in) 0.305 m (12 in) 0.368 m (14.5 in) 0.0943 

Handlebar and fork mass mH 4 kg 3 kg 5 kg 0.25 

Rear body and frame 

horizontal coordinate XB 
0.3 m 0.2 m 0.4 m 0.333 

Rear body and frame 

vertical coordinate ZB 
-0.9 m -0.75 m -1.05 m 0.167 

Wheelbase w 1.02 m 0.80 m 1.24 m 0.216 

Trail c 0.08 m 0.05 m 0.11 m 0.375 

Caster angle λ 18° [π/10 rad] 15° [π/12 rad] 21° [7 π/60 rad] 0.167 

Wheel stiffness kβw 2888 N ∙ m/rad 2166 N ∙ m/rad 3610 N ∙ m/rad 0.25 

Assembly stiffness kβ 4018 N ∙ m/rad 3013 N ∙ m/rad 5022 N ∙ m/rad 0.25 

 

5 Numerical Results 

5.1 Eigenvalue plots 
Numerical stability analysis was carried out with a MATLAB code which calculates the 

eigenvalues and eigenvectors for assigned values of forward speed. The typical output of the code is 

shown in Figure 13, which deals with the benchmark bicycle. The blue dots are the real parts and 

the purple circles are the imaginary parts of the eigenvalues. 
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For each eigenvalue plot, weave speed 𝑣𝑤 and capsize speed 𝑣𝑐 were identified. Weave speed is 

defined as the speed at which the weave mode becomes stable; capsize speed is the speed at which 

the capsize mode becomes unstable. The difference between these speeds determines the self-

stability range. 

 

     

Figure 13. Eigenvalues of benchmark bicycle with rigid front assembly.  

       

Figure 14.  Eigenvalues of the benchmark bicycle with compliant wheel. 
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Figure 15. Modes of vibration of benchmark bicycle with compliant wheel at 5 m/s. Shapes are 

shown by vector diagrams. Arrows: amplitude and phase of modal components. 

 

The eigenvalue plot of Figure 14 shows the effect of front wheel compliance on bicycle stability. 

The benchmark bicycle with 𝑘𝛽𝑤 = 2888 N ∙ m/rad , 𝑐𝛽𝑤 = 24 N ∙ m ∙ s/rad  (according to 

equation 32) and ℎ𝑤 = 0 m  is examined. 

Capsize, weave and castering modes are only slightly affected by front wheel compliance. The real 

and imaginary parts of weave show small variations at high speed (20 m/s). Weave speed 𝑣𝑤 and 

capsize speed 𝑣𝑐 are not markedly affected by introducing the compliant wheel. 

The main difference between Figures 13 and 14 is the appearance of a new complex mode. The 

vector diagrams of the modes (Fig. 15) show that the new mode is dominated by steer rotation and 

wheel bending. It is therefore a wobble mode caused by compliance, which changes the orientation 

of the front wheel and the position of the front contact point. Wobble (or shimmy) modes caused by 

compliance have been discussed by some authors who have examined bicycle stability (Klinger 

2014) (Limebeer 2006) and motorcycle stability (Paceijka 2002). 

The imaginary part of the eigenvalue of wobble does not appear in Figure 14, because the natural 

frequency is high (about 12 Hz at low speed). The real part of the eigenvalue is large and negative 

at zero speed; it then decreases in modulus. In the range of speeds considered here, which are 

compatible with bicycles, wobble is always stable, but at higher speeds it may become unstable. 

This trend is similar to that discussed by Limebeer (2006). 
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Figure 16. Eigenvalues of benchmark bicycle with compliant front assembly. 

The effects of introducing front assembly compliance on the eigenvalue plot is shown in Figure 16. 

The benchmark bicycle with 𝑘𝛽 = 4018 N ∙ m/rad , 𝑐𝛽 = 28.3 N ∙ m ∙ s/rad  (according to 

equation 32) and ℎ𝑤 = 0.137 m  is examined. Also in this case, capsize, weave and castering 

modes are not greatly affected. The wobble mode still takes place at high frequency, but the curve 

of the real part of the eigenvalue shows that this mode is less damped than Figure 14 shows. 

5.2 Correlation analysis 
Three parametric analyses were performed: 1) the bicycle was considered rigid; 2) wheel 

compliance was included; 3) front assembly compliance was included. In each parametric analysis, 

the eigenvalue plots obtained with 256 combinations of parameters were taken into account, to 

show the effects of the various parameters on bicycle stability (see Figure 17). Weave speed 𝑣𝑤 and 

capsize speed 𝑣𝑐 were identified for each eigenvalue plot. The difference between these speeds 

determined the self-stability range. Then a self-stability area was calculated in the eigenvalue plot 

as the area defined by the speed axis and the real parts of the weave and capsize eigenvalues when 

both were negative (see Figure 18). In order to calculate the self-stability area, the weave and 

capsize curves were fitted with two polynomial functions and the integral of the functions between 

𝑣𝑤 and 𝑣𝑐 was calculated. The self-stability area in fact depends not only on the self-stability range, 

but also on the distance between stable eigenvalues and the condition of instability. 

 

Figure 17. (a) Rigid bicycle. (b) Bicycle with wheel compliance. (c) Bicycle with front assembly 

compliance. 
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Since numerical values are needed to evaluate the effect of the design parameters on weave speed, 

capsize speed, self-stability range and self-stability area, the numerical results were re-processed to 

calculate Bravais Pearson correlation coefficients 𝜌𝑥𝑦 (Box, 2005): 
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In the present case, 𝜎𝑦 is the square root of the variance of an output (e.g., capsize speed), 𝑦𝑖 are the 

values measured in the 256 tests, and �̅� is the arithmetic average of 𝑦𝑖. 𝜎𝑥 is the square root of the 

variance of a design parameter (e.g., wheelbase), 𝑥𝑖 are the levels, and �̅� is the arithmetic average of 

𝑥𝑖. 𝜎𝑥𝑦 is the covariance between an output and a design parameter. The correlation coefficient 

represents the normalised measure of the strength of relationship between variables, and ranges 

from −1 to 1. Values close to 1 indicate a strong linear positive relationship between the variables; 

values close to −1 indicate a strong linear negative relationship between them (anti-correlation); 

values close or equal to 0 indicate no evidence of any relationship between variables. 

 

Figure 18. Definition of stability indexes. 

 

Figure 19 shows the correlation coefficients and the eight design parameters of the rigid bicycle 

model. A closer look at the correlation coefficients between weave speed and design parameters 

shows that the former decreases greatly (stabilising effect) if the front radius is increased, increases 
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greatly when trail increases (destabilising effect) and increases moderately when wheelbase and 

caster angle increase. These data match the trends of weave speed reported by Moore (2006). As 

here the increment in 𝑟𝐹 leads to an increment in the spin moment of inertia of the wheel, this result 

also matches those reported by Plochl (2012), who examined variations in the spin moment of 

inertia. The correlation coefficients of the other four parameters are very small and show that these 

parameters do not significantly affect weave speed. 

As regards capsize mode, the correlation coefficients show that the effect of front wheel radius and 

trail on capsize stability is the opposite of that for weave stability: the front wheel radius has a 

strong destabilising effect, whereas the trail has a significant stabilising effect. These results match 

those of Moore (2006). 

A large stabilising effect is caused by the forward displacement of the centre of mass of the bicycle 

along horizontal axis 𝑥𝐵. The other five parameters have little effect on capsize speed. 

Taking into account the self-stability area and range, the rear wheel radius reveals a moderate 

stabilising effect. Instead, the front wheel radius has a significant destabilising effect: if this radius 

increases, bicycle stability decreases. The mass of the front assembly has a small stabilising effect. 

The longitudinal position of the centre of mass of the rear frame has a considerable effect on self-

stability range and area: when the centre of mass moves forward, stability increases, due to the large 

effect of 𝑥𝐵 on capsize speed. If the height of the centre of mass decreases, parameter 𝑧𝐵 increases 

(because axis 𝑧 points downwards) and correlation analysis shows a small increase in self-stability 

area and range. These results match those of the effect of rider position on stability found by 

Williams (2015). 

Wheelbase and trail have opposite effects on bicycle stability: when the wheelbase increases, 

stability decreases; when the trail increases, so does stability. Lastly, an increase in caster angle has 

a small negative effect on self-stability area and range. 

The self-stability area and range indexes essentially give similar information. When there is some 

difference between them (e.g., in the case of caster angle 𝜆), the indication given by the self-

stability area must be viewed as more reliable, because the self-stability area captures more details 

of the eigenvalue plot. 

The first cycle of 256 simulations showed that the caster angle has a minimum effect on bicycle 

stability. Front wheel stiffness was introduced and the caster angle was removed from the set of 

parameters for the second cycle. 
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Figure 19.  Results of correlation analysis results, rigid bicycle. 

The results of these simulations are shown in Figure 20. The introduction of front wheel compliance 

does not significantly affect the overall aspect of the histograms. As regards weave speed, the 

moduli of the indexes for front wheel radius, longitudinal position of the centre of mass and 

wheelbase show small increases, the first with a stabilising effect and the others with a destabilising 

one. Capsize speed is less affected by the introduction of front wheel compliance, as only small 

increments in the indexes of the longitudinal position of the centre of mass and wheelbase are 

measured. As regards self-stability area and range, small increments were measured in the moduli 

of the coefficients of wheelbase and the longitudinal position of the centre of mass, and a small 

decrement in the module of the trail index. They indicate that the influence on the self-stability of 

the geometric and mass parameters remains similar when wheel compliance is included. In addition, 

Figure 20 shows that front wheel stiffness has a negligible effect on bicycle stability. 
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Figure 20. Correlation analysis results, bicycle with compliant wheel. 

The third cycle of simulations was carried out on the combined effect of fork and wheel 

compliances, as shown in Figure 21: the variations are very small with respect to Figure 20. The 

bending compliance of the front assembly has a small destabilising effect. 

In the previous analyses, the damping coefficient was held constant. Figure 22 shows the effect of 

variations in damping coefficient with compliant front assembly (𝑘𝛽 = 4018 N ∙ m/rad  and 

ℎ𝑤 = 0.137 m ). When the damping coefficient is halved (𝑐𝛽 = 14.2 N∙m∙s/rad), wobble becomes 

unstable at 7.5 m/s, which is above the self-stability range. When the damping coefficient is reduced 

by ten (𝑐𝛽 = 2.83 N∙m∙s/rad ), wobble becomes unstable at low speed (about 1.3 m/s). In this case, 

the self-stability range has no meaning, since wobble is already unstable. It should be noted that, if 

damping coefficient 𝑐𝛽 is halved, the self-stability range only varies from 1.756 to 1.755 m/s. 
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Figure 21. Correlation analysis results, bicycle with compliant front assembly. 

     

Figure 22. Eigenvalues of  bicycle with compliant front assembly and decreasing values of 

damping. 

 

Lastly, the effects of wheel and front assembly compliance on self-stability were compared with 

those caused by other extensions of the WCBM reported in the literature. The benchmark bicycle 

parameters were used for comparison. 

  

𝑐𝛽 = 14.2 N ∙ m ∙ s/rad 𝑐𝛽 = 2.83 N ∙ m ∙ s/rad 
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Table 5 shows that introducing a linear tyre model has a greater effect than that of structural and 

rider compliance. A similar analysis was provided by Plöchl (2012), although a different bicycle 

was used; results show that tyre properties have the greatest effect on capsize and weave speed, 

followed by structural and rider compliance. 

Table 5. Self-stability ranges for various model extensions. 

Model 𝒗𝒘 [m/s] 𝒗𝒄 [m/s] Stability range 

[m/s] 

Reference 

WCBM 4.292 6.024 1.732 Meijaard 2007 

With wheel 

compliance 

4.344 6.061 1.717 Figure 14 

With front 

assembly 

compliance 

4.358 6.114 1.756 Figure 15 

With linear tyre 

model 

4.1* 5.4* 1.3* Sharp 2008 

With rider torsion 

compliance 

4.291 6.024 1.733 Doria 2014 

With rider 

leaning sideways  

4.237 6.018 1.781 Doria 2014 

*Data obtained from plot in which only two digits are significant. 

6 Conclusions 
Experimental results obtained with the modal analysis approach show that wheel compliance has a 

considerable effect on the compliance of the front assembly of a standard bicycle. Deformation of 

fork blades contributes to lateral displacement of the wheel, but has little effect on its attitude. A 

method for calculating the equivalent stiffness of the front assembly from experimental results is 

presented and the WCBM is extended to include front assembly compliance. 

Stability analysis results show that front assembly compliance generates a new mode, i.e., wobble, 

dominated by rotations about the deformation and steer axes. The wobble mode is stable in the 

range of speeds suitable for a bicycle, if the damping coefficient about the deformation axis is 

greater than 15-20 N∙m∙s/rad. Front assembly compliance has little effect on weave and capsize 

speeds and, hence, on self-stability. 

A parametric analysis was carried out in order to rank the influence of geometric, mass and 

compliance parameters on stability. Two stability indexes were applied: the difference between 

capsize and weave speeds (called here the self-stability range), and the area of the eigenvalue plots 

defined by the speed axis and the real parts of the weave and capsize eigenvalues when both are 

negative (self-stability area). Numerical results showed that the two indexes essentially give similar 

information, but that the self-stability area index includes more details than the self-stability range. 

If a rigid bicycle is examined, the most influential design parameters are the position of the centre 

of mass in the longitudinal direction, trail, and front wheel radius. Forward displacement of the 

centre of mass and incremented trail increase stability; an increase in front wheel radius decreases 

stability. 
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When front assembly compliance is introduced in the set of bicycle parameters, numerical results 

show that the geometric and mass parameters do not change their effect on stability and that 

compliance has a very small destabilising effect. 
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APPENDIX 1 
The equations of the model with compliance represented by rotation 𝛽 about the compliance axis 

are defined in matrix form in equation ( A1 ). 

[𝑀] {

�̈�

�̈�
�̈�

} + 𝑣[𝐶1] {

�̇�

�̇�
�̇�

} + [𝑔[𝐾0] + 𝑣2[𝐾2]] {

𝜑
𝛿
𝛽

} + [𝐶] {

�̇�

�̇�
�̇�

} + [𝐾] {

𝜑
𝛿
𝛽

} = {
0
0
0

} ( A1 ) 

 

Matrices [𝑀], [𝐶1], [𝐾0], [𝐾2] have the same meaning as the corresponding matrices of the 

benchmark model (Meijaard 2007), but they have 3x3 dimensions and account for the additional 

terms due to structural compliance rotation.  Mass matrix [𝑀] is defined in equation (A2).  

[𝑀] = [

𝑀𝜑𝜑 𝑀𝜑𝛿 𝑀𝜑𝛽

𝑀𝛿𝜑 𝑀𝛿𝛿 𝑀𝛿𝛽

𝑀𝛽𝜑 𝑀𝛽𝛿 𝑀𝛽𝛽

] ( A2 ) 

 

Terms 𝑀𝜑𝜑, 𝑀𝜑𝛿, 𝑀𝛿𝜑 and 𝑀𝛿𝛿  are defined according to Meijaard (2007). The new terms are 

defined in equations ( A3 ) to ( A7 ). 

  Mφβ = IFxx cos λ -hWmFrF +
1

w
[ITxz(hW + rF cos λ)] ( A3 ) 

𝑀𝛿𝛽 = −ℎ𝑊𝑚𝐹(𝑢𝑊 + 𝑐 cos 𝜆) 

( A4 ) 
 

+
1

𝑤
[𝐼𝐴𝜆𝑧ℎ𝑊 + 𝐼𝐴𝜆𝑧𝑟𝐹 cos 𝜆 − 𝐼𝐹𝑥𝑥  𝑐 cos 𝜆 sin 𝜆] 

 
+

1

𝑤2
[𝐼𝑇𝑧𝑧 𝑐 cos 𝜆 (ℎ𝑊 + 𝑟𝐹 cos 𝜆)] 
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  Mβφ = Mφβ 
( A5 ) 

 

  Mβδ = Mδβ ( A6 ) 

 

𝑀𝛽𝛽 = 𝐼𝐹𝑥𝑥 − ℎ𝑊
2 𝑚𝐹 − 2ℎ𝑊𝑚𝐹𝑟𝐹 cos 𝜆 

( A7 ) 
 

−
1

𝑤
[2𝐼𝐹𝑥𝑥 sin 𝜆 (ℎ𝑊 + 𝑟𝐹 cos 𝜆)] 

 
+

1

𝑤2
[𝐼𝑇𝑧𝑧(ℎ𝑊 + 𝑟𝐹 cos 𝜆)2] 

 

Damping matrix [𝐶1] is defined in equation ( A8 ). 

[𝐶1] = [

𝐶1𝜑𝜑 𝐶1𝜑𝛿 𝐶1𝜑𝛽

𝐶1𝛿𝜑 𝐶1𝛿𝛿 𝐶1𝛿𝛽

𝐶1𝛽𝜑 𝐶1𝛽𝛿 𝐶1𝛽𝛽

] ( A8 ) 

 

Terms 𝐶1𝜑𝜑, 𝐶1𝜑𝛿, 𝐶1𝛿𝜑 and 𝐶1𝛿𝛿 are defined according to Meijaard (2007). The new terms are 

defined in equations ( A9 ) to ( A13 ). 

𝐶1𝜑𝛽 = −𝑆𝐹 sin 𝜆 

( A9 ) 
 

−
1

𝑤
[𝐼𝑇𝑥𝑧 sin 𝜆 − 𝑆𝑇ℎ𝑊 + ℎ𝑊𝑚𝑇𝑧𝑇 − 𝑆𝑇𝑟𝐹 cos 𝜆 + 𝑚𝑇𝑟𝐹𝑧𝑇 cos 𝜆] 

 

𝐶1𝛿𝛽 = −𝑆𝐹  

( A10 ) 

 
+

1

𝑤
[ℎ𝑊𝑚𝐴𝑢𝐴 − 𝑆𝐹  𝑐 cos2 𝜆 − 𝐼𝐴𝜆𝑧 sin 𝜆 + 𝑆𝐹ℎ𝑊 sin 𝜆 + 𝑚𝐴𝑟𝐹𝑢𝐴 cos 𝜆 + 𝑆𝐹𝑟𝐹 cos 𝜆 sin 𝜆] 

 
+

1

𝑤2
[𝑐 cos 𝜆 (ℎ𝑊𝑚𝑇𝑥𝑇 − 𝐼𝑇𝑧𝑧 sin 𝜆 + 𝑚𝑇𝑟𝐹𝑥𝑇 cos 𝜆)] 

 

 𝐶1𝛽𝜑 = 𝑆𝐹 sin 𝜆 −
1

𝑤
[𝑆𝑇(ℎ𝑊 + 𝑟𝐹 cos 𝜆)] ( A11 ) 
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𝐶1𝛽𝛿 = 𝑆𝐹 − ℎ𝑊𝑚𝐹 cos 𝜆 

( A12 ) 
 

−
1

𝑤
[𝐼𝐹𝑥𝑥 cos 𝜆 sin 𝜆 − 𝑆𝐹  𝑐 cos2 𝜆 + 𝑆𝐹ℎ𝑊 sin 𝜆 + 𝑐 ℎ𝑊𝑚𝐹 cos 𝜆 + 𝑆𝐹𝑟𝐹 cos 𝜆 sin 𝜆] 

 
+

1

𝑤2
[cos 𝜆 (𝐼𝑇𝑧𝑧 + 𝑐 𝑚𝑇𝑥𝑇)(ℎ𝑊 + 𝑟𝐹 cos 𝜆)] 

 

𝐶1𝛽𝛽 = ℎ𝑊𝑚𝐹 sin 𝜆 

( A13 ) 

 
−

1

𝑤
[𝑚𝐹ℎ𝑊

2 + 𝑚𝐹𝑟𝐹 cos 𝜆 ℎ𝑊 − 𝐼𝐹𝑥𝑥 sin2 𝜆] 

 
+

1

𝑤2
[(ℎ𝑊 + 𝑟𝐹 cos 𝜆)(ℎ𝑊𝑚𝑇𝑥𝑇 − 𝐼𝑇𝑧𝑧 sin 𝜆 + 𝑚𝑇𝑟𝐹𝑥𝑇 cos 𝜆)] 

 

Stiffness matrix [𝐾0] is defined in equation ( A14 ). 

 

[𝐾0] = [

𝐾0𝜑𝜑 𝐾0𝜑𝛿 𝐾0𝜑𝛽

𝐾0𝛿𝜑 𝐾0𝛿𝛿 𝐾0𝛿𝛽

𝐾0𝛽𝜑 𝐾0𝛽𝛿 𝐾0𝛽𝛽

] 
( A14 ) 

 Terms 𝐾0𝜑𝜑, 𝐾0𝜑𝛿, 𝐾0𝛿𝜑 and 𝐾0𝛿𝛿 are defined according to Meijaard (2007). The new terms are 

defined in equations ( A16 ) to ( A20 ). The common term 𝑅𝑊 is introduced in equation ( A15 ) for 

the above-mentioned stiffness terms. 

 

  𝑅𝑤 = −𝑚𝐹ℎ𝑊 + (ℎ𝑊 + 𝑟𝐹 cos 𝜆)
𝑚𝑇𝑥𝑇

𝑤
 ( A15 ) 

  𝐾0𝜑𝛽 = −𝑅𝑤 ( A16 ) 

 

  𝐾0𝛿𝛽 = −𝑅𝑤 sin 𝜆 ( A17 ) 

 

 𝐾0𝛽𝜑 = 𝐾0𝜑𝛽  ( A18 ) 

 

 𝐾0𝛽𝛿 = 𝐾0𝛿𝛽 ( A19 ) 

 

 𝐾0𝛽𝛽 = −𝑅𝑤 cos 𝜆 ( A20 ) 
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Stiffness matrix [𝐾2]  is defined in equation ( A21 ). 

[𝐾2] = [

𝐾2𝜑𝜑 𝐾2𝜑𝛿 𝐾2𝜑𝛽

𝐾2𝛿𝜑 𝐾2𝛿𝛿 𝐾2𝛿𝛽

𝐾2𝛽𝜑 𝐾2𝛽𝛿 𝐾2𝛽𝛽

] 
( A21 ) 

 

Terms 𝐾2𝜑𝜑, 𝐾2𝜑𝛿, 𝐾2𝛿𝜑 and 𝐾2𝛿𝛿 are defined according to Meijaard (2007). The new terms are 

defined in equations ( A22 ) to ( A26 ). 

𝐾2𝜑𝛽 = −
1

𝑤
[sin 𝜆 (𝑆𝑇 − 𝑚𝑇𝑧𝑇)] ( A22 ) 

 

 𝐾2𝛿𝛽 = −
1

𝑤
[sin 𝜆 (𝑚𝐴𝑢𝐴 + 𝑆𝐹 sin 𝜆)] −

1

𝑤2 [𝑐𝑚𝑇𝑥𝑇 cos 𝜆 sin 𝜆] ( A23 ) 

 

 𝐾2𝛽𝜑 = 0 ( A24 ) 

 

 𝐾2𝛽𝛿 = −
1

𝑤
[cos 𝜆 (ℎ𝑊𝑚𝐹 − 𝑆𝐹 cos 𝜆)] +

1

𝑤2 [𝑚𝑇𝑥𝑇 cos 𝜆 (ℎ𝑊 + 𝑟𝐹 cos 𝜆)] ( A25 ) 

 

 𝐾2𝛽𝛽 =
1

𝑤
[sin 𝜆 (ℎ𝑊𝑚𝐹 − 𝑆𝐹 cos 𝜆)] −

1

𝑤2
[𝑚𝑇𝑥𝑇 sin 𝜆 (ℎ𝑊 + 𝑟𝐹 cos 𝜆)] ( A26 ) 

 

Matrices [𝐶], [𝐾]  are ‘true’ damping and stiffness matrices and take into account the stiffness and 

damping properties of structural compliance. They are shown in equations ( A27 ) and ( A28 ). 

[𝐶] = [

0 0 0
0 0 0
0 0 𝑐𝛽

] ( A27 ) 

[𝐾] = [

0 0 0
0 0 0
0 0 𝑘𝛽

] ( A28 ) 
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Figure 1. Front fork fixed in clamp. 
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Figure 2. Wheel mounted with wheel hub attached at both ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

 

 

 

 

 

Figure 3. Modes of fork alone (from top: lateral, longitudinal and torsional modes). 
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Figure 4. Modes of wheel alone (from top: diametric, C-shaped and S-shaped modes). 
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Figure 5. Modes of front assembly. From top: torsional, lateral, longitudinal and second lateral 

mode. 
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Figure 6. Fork model for lumped stiffness calculation. 
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Figure 7. Static stiffness curve of fork in lateral direction. 
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Figure 8. Static stiffness of wheel about diameter. 
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Figure 9. Lumped element model of front assembly. 
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Figure 10. Bicycle model with bending compliance of front assembly. 
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Figure 11. Bicycle parameters. 
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Figure 12. Effect of c on distance between 𝑚𝐻 and steer axis. 
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Figure 13. Eigenvalues of benchmark bicycle with rigid front assembly.  
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Figure 14.  Eigenvalues of the benchmark bicycle with compliant wheel. 
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Figure 15. Modes of vibration of benchmark bicycle with compliant wheel at 5 m/s. Shapes are 

shown by vector diagrams. Arrows: amplitude and phase of modal components. 
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Figure 16. Eigenvalues of benchmark bicycle with compliant front assembly. 
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Figure 17. (a) Rigid bicycle. (b) Bicycle with wheel compliance. (c) Bicycle with front assembly 

compliance. 
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Figure 18. Definition of stability indexes. 
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Figure 19.  Results of correlation analysis results, rigid bicycle. 
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Figure 20. Correlation analysis results, bicycle with compliant wheel. 
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Figure 21. Correlation analysis results, bicycle with compliant front assembly. 
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Figure 22. Eigenvalues of  bicycle with compliant front assembly and decreasing values of 

damping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑐𝛽 = 14.2 N ∙ m ∙ s/rad 𝑐𝛽 = 2.83 N ∙ m ∙ s/rad 
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Table 2. Modal properties of fork alone. 

f (Hz)  (%) Description 

73.94 1.31 Lateral bending 
87.38 2.67 Longitudinal bending 
196.3 0.391 Torsion 
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Table 2. Modal properties of wheel alone. 

f (Hz)  (%) Description 

27.75 1.607 Diametric 
99.66 0.8707 C-shaped 
148.8 1.292 S-shaped 
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Table 3. Modal properties of fork with wheel. 

f (Hz)  (%) Description 

17.7 0.181 Torsional 
24.99 0.552 Lateral bending 
26.86 0.586 Longitudinal bending 
53.38 1.041 Wheel diametric with fork in opposition 
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Table 4. Design parameters. 

Parameter Nominal value Low level High level 

Standard 

deviation / 

Nominal 

value 

Rear wheel radius rR 0.305 m (12 in) 0.254 m (10 in) 0.356 m (14 in) 0.167 

Front wheel radius rF 0.337 m (13.25 in) 0.305 m (12 in) 0.368 m (14.5 in) 0.0943 

Handlebar and fork mass mH 4 kg 3 kg 5 kg 0.25 

Rear body and frame 

horizontal coordinate XB 
0.3 m 0.2 m 0.4 m 0.333 

Rear body and frame 

vertical coordinate ZB 
-0.9 m -0.75 m -1.05 m 0.167 

Wheelbase w 1.02 m 0.80 m 1.24 m 0.216 

Trail c 0.08 m 0.05 m 0.11 m 0.375 

Caster angle λ 18° [π/10 rad] 15° [π/12 rad] 21° [7 π/60 rad] 0.167 

Wheel stiffness kβw 2888 N ∙ m/rad 2166 N ∙ m/rad 3610 N ∙ m/rad 0.25 

Assembly stiffness kβ 4018 N ∙ m/rad 3013 N ∙ m/rad 5022 N ∙ m/rad 0.25 
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Table 5. Self-stability ranges for various model extensions. 

Model 𝒗𝒘 [m/s] 𝒗𝒄 [m/s] Stability range 

[m/s] 

Reference 

WCBM 4.292 6.024 1.732 Meijaard 2007 

With wheel 

compliance 

4.344 6.061 1.717 Figure 14 

With front 

assembly 

compliance 

4.358 6.114 1.756 Figure 15 

With linear tyre 

model 

4.1* 5.4* 1.3* Sharp 2008 

With rider torsion 

compliance 

4.291 6.024 1.733 Doria 2014 

With rider 

leaning sideways  

4.237 6.018 1.781 Doria 2014 

*Data obtained from plot in which only two digits are significant. 

 

 

 

 

 


