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Abstract. We provide a simple proof of a result, due to G. Alberti, concerning a rank-one property
for the singular part of the derivative of vector-valued functions of bounded variation.
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In this paper we provide a short, elementary proof of the following result by G. Alberti [1]
concerning a rank-one property for the derivative of a function with bounded variation.

Theorem. Let � ⊂ Rn be an open set, u : �→ Rm a function with bounded variation,
and let Dsu be the singular part of Du with respect to the Lebesgue measure Ln. Then
Dsu is a rank-one measure, i.e., the (matrix-valued) function Dsu

|Dsu|
(x) has rank one for

|Dsu|-a.e. x ∈ �.

We recall that a function u ∈ L1(�,Rm) has bounded variation in� (u ∈ BV(�,Rm)) if
the derivatives Du of u in the sense of distributions are represented by a (matrix-valued)
measure with finite total variation. The measure Du can then be decomposed as the sum
Du = Dau + Dsu of a measure Dau that is absolutely continuous with respect to Ln,
and a measure Dsu that is singular with respect to Ln. The Radon–Nikodym deriva-
tive Dsu

|Dsu|
of Dsu with respect to its total variation |Dsu| is a |Dsu|-measurable map

from � to Rm×n. The Theorem states that this map takes values in the space of rank-one
matrices. See [3] for more details on BV functions.

The Theorem above was conjectured by L. Ambrosio and E. De Giorgi [4]. It was first
proved by G. Alberti [1] (see also [2, 5]) by introducing new tools and using sophisticated
techniques in geometric measure theory. A new proof follows from the profound PDE re-
sult [6], where a rank-one property for maps with bounded deformation is also proved.
The Theorem is important for applications to vectorial variational problems (lower semi-
continuity, relaxation, approximation and integral representation theorems, etc.) and to
systems of PDE.
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On the contrary, our proof of the Theorem is elementary: it stems from well-known
geometric properties relating the derivative of a BV function and the perimeter of its
subgraph. The main new tool is the following lemma, where we denote by Hk the stan-
dard k-dimensional Hausdorff measure and by π : Rn+1

→ Rn the canonical projection
π(x1, . . . , xn+1) := (x1, . . . , xn).

Lemma. Let 61, 62 be C1 hypersurfaces in Rn+1 with unit normals ν61 , ν62 . Then the
set

T := {p ∈ 61 : ∃q ∈ 62 ∩ π
−1(π(p)) with

(ν61(p))n+1 = (ν62(q))n+1 = 0 and ν61(p) 6= ±ν62(q)}

is Hn-negligible.

We postpone the proof of the Lemma in order to directly address the proof of the main
result.

Proof of the Theorem. Let u = (u1, . . . , um) ∈ BV(�,Rm). It is not restrictive to as-
sume that � is bounded. For any i = 1, . . . , m we write Dsui = σi |Dsui | for a |Dsui |-
measurable map σi : �→ Sn−1. We also let Ei := {(x, t) ∈ �× R : t < ui(x)} be the
subgraph of ui ; it is well known that Ei has finite perimeter in �×R. Denoting by ∂∗Ei
the reduced boundary of Ei and by νi the measure-theoretic inner normal to Ei , we have
(see e.g. [8, Section 4.1.5])

|Dsui | = π#(Hn Si) for Si := {p ∈ ∂∗Ei : (νi(p))n+1 = 0},

where π# denotes push-forward of measures. The set Si is n-rectifiable and we can assume
that it is contained in the union

⋃
h∈N6

i
h of C1 hypersurfaces 6ih in Rn+1.

By [8, Section 4.1.5], the Lemma above and the well-known properties of rectifiable
sets, the following properties hold for Hn-a.e. p ∈ Si :

ν∂∗Ei (p) = (σi(π(p)), 0); (1)

if p ∈ 6ih, then νi(p) = ±ν6ih(p); (2)

if p ∈ 6ih and q ∈ Sj ∩6
j
k ∩ π

−1(π(p)), then ν6ih(p) = ±ν6jk
(q). (3)

Up to modifying Si on an Hn-negligible set and σi on a |Dsui |-negligible set, we can
assume that (1)–(3) hold everywhere on Si and σi = 0 on � \ π(Si).

Since Dsu = (σ1|Dsu1|, . . . , σm|Dsum|) and |Dsu| is concentrated on the union
π(S1) ∪ · · · ∪ π(Sm), it is enough to prove that the matrix-valued function (σ1, . . . , σm)

has rank 1 on π(S1) ∪ · · · ∪ π(Sm). This will follow if we prove the implication

i, j ∈ {1, . . . , m}, i 6= j, x ∈ π(Si) =⇒ σj (x) ∈ {0, σi(x),−σi(x)}.

If i, j, x are as above and x /∈ π(Sj ), then σj (x) = 0. Otherwise, x ∈ π(Si) ∩ π(Sj ),
i.e., there exist p ∈ Si and h ∈ N such that π(p) = x and σi(x) = ±ν6ih(p) and there
exist q ∈ Sj and k ∈ N such that π(q) = x and σj (x) = ±ν6jk

(p). By (3) we obtain
σj (x) = ±σi(x), as wished. ut
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Proof of the Lemma. Consider the C1 hypersurfaces 6̃1, 6̃2 in Rn+2 defined by

6̃1 := {(x, t, s) ∈ Rn × R× R : (x, t) ∈ 61, s ∈ R},
6̃2 := {(x, t, s) ∈ Rn × R× R : (x, s) ∈ 62, t ∈ R},

and let

T̃ := {(x, t, s) ∈ 6̃1 ∩ 6̃2 : (ν6̃1
(x, t, s))n+1 = (ν6̃2

(x, t, s))n+2 = 0,

ν6̃1
(x, t, s) 6= ν6̃2

(x, t, s)}.

Clearly, T̃ is contained in the n-dimensional C1 submanifold R := {(x, t, s) ∈ 6̃1 ∩ 6̃2 :

ν6̃1
(x, t, s) 6= ν6̃2

(x, t, s)} and π̃(T̃ ) = T , where π̃ denotes the projection π̃(x, t, s) =
(x, t). Given (x, t, s) ∈ T̃ it can be easily checked that the vector (0, . . . , 0, 1) is tangent
to R and belongs to the kernel of dπ̃ : T(x,t,s)R→ T(x,t)61. It follows that dπ̃ is not sur-
jective at points of T̃ and, by the area formula, we deduce that Hn(T ) = Hn(π̃(T̃ )) = 0,
as desired. ut

We finally mention that the proof above can be adapted to prove a rank-one theorem for
BV functions in sub-Riemannian Heisenberg groups, as well as in a more general class of
Carnot groups [7].
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