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Multichannel, Low Nonlinearity Time-to-Digital
Converters Based on 20 and 28 nm FPGAs

Haochang Chen and David Day-Uei Li

Abstract—This paper presents low nonlinearity, compact,
and multichannel time-to-digital converters (TDC) in Xilinx
28 nm Virtex 7 and 20 nm UltraScale field-programmable
gate arrays (FPGAs). The proposed TDCs integrate several
innovative methods that we have developed: 1) the sub-
tapped delay line averaging topology; 2) tap timing tests; 3)
a direct compensation architecture; and 4) a mixed calibra-
tion method. The code density tests show that the proposed
TDCs have much better linearity performances than previ-
ously reported ones. Our approach is cost-effective in terms
of the consumption of logic resources. To demonstrate this,
we implemented 96 channel TDCs in both FPGAs, using
less than 25% of the logic resources. The achieved least
significant bit (LSB) is 10.5 ps for Virtex 7 and 5.0 ps for
UltraScale FPGAs. After the compensation and calibration,
the differential nonlinearity (DNL) is within [–0.05, 0.08] LSB
with σDNL = 0.01 LSB, and the integral nonlinearity (INL) is
within [–0.09, 0.11] LSB with σINL = 0.04 LSB for the Virtex
7 FPGA. The DNL is within [–0.12, 0.11] LSB with σDNL =

0.03 LSB, and the INL is within [–0.15, 0.48] LSB with σINL
= 0.20 LSB for the UltraScale FPGA.

Index Terms—Carry chains, field-programmable gate
arrays (FPGA), multichannel TDCs, time-of-flight, time-to-
digital converters (TDC).

I. INTRODUCTION

T
IME-TO-DIGITAL converters (TDCs) are extremely

high-precision stopwatches. They are key components in

many electronics systems and industrial products such as all-

digital phase-locked loops, time-of-flight (ToF) mass spectrom-

eters, and LIDAR or three-dimensional (3-D) ranging devices

[1]–[6] used for robotics, self-driving vehicles, and solar photo-

voltaic deployment optimization. TDCs are also widely applied

in space sciences [7], biomedical applications, such as positron

emission tomography and fluorescence lifetime imaging mi-

croscopy (FLIM) [8]–[12], nuclear and particle physics [13],

[14], and quantum communications [15].
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TDCs can be realized through analog or all-digital methods

[16]. Recently, all-digital topologies have become very popu-

lar, and they can be implemented in application-specific inte-

grated circuits (ASIC) [17], [18] or field programmable gate

arrays (FPGA) [14], [19]–[34] with a subnanosecond resolu-

tion. ASIC-based TDC is a mature solution because of its better

precision and linearity [35]. However, ASIC approaches tend to

be more suitable for large-scale application specific or general

purpose commercial developments. Compared with ASIC ap-

proaches, FPGAs are able to provide greater flexibility with a

lower cost and a shorter developing cycle. With the rapid ad-

vances of FPGA technologies, powerful design environments,

and a wide variety of applications, FPGAs are suitable for de-

sign verification, scientific experiments, and high-end instru-

ments, and have become an ideal platform for integrated system

design.

The timing resolution is a primary parameter for a TDC. For

the simplest counter-based TDCs, the resolution is limited by

the frequency of the driving clock [16]. To break the limita-

tion and achieve a picosecond resolution, the Vernier delay line

[33] and tapped delay line (TDL) [20], [32], [34] architectures

have been presented and widely applied. The TDL has become

a mainstream method for implementing FPGA-TDCs recently

[14], [19], [36], since it can be easily realized by using the

carry chain modules in FPGAs. The resolution of TDL-TDCs

is mainly determined by the manufacturing process of FPGAs,

and it has been improved from 200 to 3.9 ps root mean square

(rms) since 1997 to 2017 [34], [37].

The wave union method [19], multichain averaging method

[26], [38], matrices of counters [32], and two-dimensional (2-

D) Vernier structure [31] have been presented to break this

“process-related” limitation as well. These methods can achieve

a better resolution than raw-TDL TDCs, however, they usually

require much more logic resources, and have higher system

complexity or a much longer dead time.

The nonlinearity of a TDC is another vital parameter, since

it can influence the measurement precision directly. The non-

linearity can be characterized by the differential nonlinearity

(DNL) and the integral nonlinearity (INL) based on the code

density tests [16], [35], expressed as follows:

DNL[k] =
(W [k] − Q)

Q
, (1)

INL[k] =

k
∑

n=0

DNLn (2)
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respectively, where W[k] is the binwidth of the kth bin and Q

is the ideal code binwidth. By optimizing the circuit design

and layouts, ASIC-based TDCs can achieve DNL < 1 LSB

(least significant bit) and INL < 1 LSB [17], [35]. Compared

with ASIC-TDCs, FPGA-TDCs usually show worse linearity

performances. For TDL-TDCs, the clock skews and the poor

uniformity of carry chains [16], [24] are the main culprits for the

nonlinearity, missing codes, and bubble problems. It is difficult

to remove them completely. To reduce the nonlinearity, the dual-

phase [28], downsampling [36], TDL reorganization [24], [25]

and tuned-TDL [29] methods have been presented recently. A

ones-counter encoder was reported to remove the bubbles in

FPGA-TDCs [37]. However, these methods still cannot enhance

the linearity up to the level comparable to ASIC-TDCs [17].

The demand for multichannel TDCs has been growing

strongly especially for applications such as ToF measurements

for 2-D and 3-D ranging, LIDAR, time-resolved spectroscopy,

and fast-FLIM [11], [12], [39]–[41] that require real-time ac-

quisition. ASIC-based multichannel designs are reliable and

competitive in the aspects of the resolution, linearity, and power

consumption. The latest FPGAs have also great potential for

implementing multichannel TDCs, as they provide a massive

amount of logic and IO ports with fast and flexible development

tools. Many multiple-channel TDCs have been reported based

on both ASIC and FPGA devices in the last few years. For most

ASIC multichannel TDCs, the number of channels achieved is

around tens of channels [8], [42], [43]. Several designs with

hundreds, even to a thousand of channels TDCs were reported

specifically for fast FLIM and 3-D ranging applications [6],

[39], [44]. However, the targeted specifications of these TDCs

are not aimed for high linearity, but are limited due to sys-

tem requirements such as low power consumption and a higher

fill factor. FPGA-based multichannel TDCs [21], [25], [45]–

[47] are able to implement more than ten or even hundreds of

channels within a single FPGA, however their linearity cannot

compete with ASIC-TDCs. Most multichannel TDCs published

earlier are not able to achieve a large channel number, a high

resolution, and high linearity simultaneously.

Various procedures are required for calibrating process, volt-

age, temperature (PVT) variations and nonlinearities [48], [49].

In an FPGA, the influence of voltage jitters can be negligible

since the power noise has been effectively restrained [23]. The

temperature variations will influence the delay speed of a TDL

resulting in LSB variations. Several methods were reported [28],

[38], [45] to compensate them by using look-up table methods or

correcting temperature coefficients. The static nonlinearities are

mainly caused by the nonuniformity of TDLs and clock distri-

butions. The bin-by-bin calibration techniques [14], [21], [45],

[49] can be used for correcting nonlinearity offsets, whereas the

binwidth calibration techniques [22], [30] are for reducing the

nonlinearity of the binwidth.

Chen et al. [30] presented a missing-code free FPGA-TDC

through combining the direct-histogram architecture and the

tuned-TDL method. Although this method improved the lin-

earity greatly, it is not suitable for multichannel applications

due to the larger consumption of resources for implementing

histogram counters. To achieve a TDC with 1) high linearity,

Fig. 1. Block diagram of the sub-TDL TDC in a Virtex 7 FPGA.

2) a long measurement range, and 3) low consumption of digi-

tal resources, we present several new methods (and implement

multichannel TDCs) listed as follows.

1) A sub-TDL averaging topology is presented to achieve

fast removals of the bubbles and zero-width bins and

preliminary suppression of the nonlinearity.

2) A unique tap timing test based on the sub-TDL topology

is proposed to calculate the actual tap timings in a TDL.

3) A new direct histogram compensation architecture and a

mixed calibration method are developed to boost linearity

with minimum logic resource cost.

4) To demonstrate our approaches, we implemented 96-

channel TDCs in both the Virtex 7 XC7V690T and the

UltraScale XCKU040 FPGAs.

II. DESIGN AND ARCHITECTURE

Since the Virtex 7 FPGAs are different from UltraScale FP-

GAs in the arrangements of logic modules, we will describe

the proposed approaches, but with different configurations and

methods selected for implementing our multichannel TDCs. We

will demonstrate how the proposed methods achieve to improve

the linearity by comparing with traditional topologies.

A. TDL-TDC and Sub-TDL Averaging Topology

As shown in Figs. 1 and 2, TDLs were implemented with

the cascaded carry chain modules, CARRY4 in Virtex 7 and

CARRY8 in UltraScale shown in Fig. 2(a) and (b), with the

carry output ports as the taps and a column of sampling D-flip-

flops (D-FFs). The input port of the TDL can be connected to

photon sensors such as single-photon avalanche diodes (SPAD)

and photomultiplier tubes. When a new photon event is detected,

the hit signal with a 0-to-1 or 1-to-0 transition will propagate

along the TDL. The states of the hit signal in a TDL are regis-

tered by the D-FFs at the taps sampled by the clock. The states

are assembled and represented as thermometer codes (1 111

000 . . . or 0 000 111 . . . ), before being converted to one-hot
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Fig. 2. Block diagram of the carry chain and the TDL implemented in
(a) Virtex 7 and (b) UltraScale FPGAs

codes (0 001000 . . . ) by the thermometer code edge detectors

(T2OH) shown in Fig. 1. The one-hot codes will then be con-

verted to normal binary codes as the fine codes by the OH2BIN

converters. To construct the histogram, the fine codes are used

as the addresses of the memory. With coarse and fine code struc-

tures, the FPGA-TDC is able to achieve a longer measurement

range.

The carry chain module contains a series of multiplexers

(MUXs) as the basic delay elements of a TDL, as shown in

Fig. 2. The CARRY4 module contains four MUXs in Xilinx 7

(both Virtex 7 and Kintex 7) FPGAs, and the CARRY8 contains

eight MUXs in new 20 nm UltraScale and 16 nm UltraScale+
FPGAs. Traditional TDL-TDCs splice all carry outputs to a

single thermometer code directly. However, the dedicated fast

lookahead carry logic architecture in the CARRY modules con-

tributes to significant nonlinearity, missing codes, and serious

bubble problems due to the mismatch in the propagation de-

lay along the delay lines [27], [37]. The shorter the tap interval

becomes, the more serious the bubble and the missing code prob-

lems will be introduced. To solve this problem, we proposed a

sub-TDL averaging topology to rearrange and regroup the carry

outputs into several subsections with a shorter thermometer code

as shown in Fig. 1. For a Virtex 7 FPGA, a TDL is separated

into four sub-TDLs. The fine codes of the four sub-TDLs are

summed up to form averaged TDL subsequently. This method

is applied similarly to an UltraScale FPGA, but dividing a TDL

into eight sub-TDLs. Using the sub-TDL topology is equivalent

to using a less advanced process by elongating the tap interval,

and therefore removing the appearances of bubbles. The LSB

or the bin size of a TDL is equal to the full-scale range divided

by the number of taps. From Fig. 1 for a raw TDL (4n taps) and

a sub-TDL (n taps) built by n CARRY4s in Virtex-7 FPGA, the

LSB of a raw TDL is as follows [50]:

LSBraw =

⎛

⎝

n−1
∑

i=0

3
∑

j=0

∆tj,i

⎞

⎠ /4n = 4n · ∆tAVE/4n = ∆tAVE

(3)

Fig. 3. Code density test results of the (a) four sub-TDLs and (b) eight
sub-TDLs in Virtex 7 and UltraScale FPGAs, respectively.

where ∆tj,i is the propagation delay of the jth tap in the ith

CARRAY4 module, ∆tAVE is the average propagation delay of

a tap (the exact delay model should include all delays on the

routes and buffers to D-FFs, but here we only adopt a simple

model). Also from Fig. 1, the LSB of the sub-TDL (the total

delay divided by n) is around (note that the sampling instances

of the sub-TDLs are different, but the delays are similar)

LSBsub ≈

⎛

⎝

n−2
∑

i=0

3
∑

j=0

∆tj,i

⎞

⎠ /n ≈ [4(n − 1) · ∆tAVE]/n. (4)

The sub-TDL averaging method for using four sub-TDLs

together to obtain averaged TDL can be considered as a new

bubble-free version of the multichain-TDL technique [26]. The

original multichain-TDL technique used multiple TDLs to ob-

tain a TDL with a smaller binwidth, but it still requires extra

logic circuits to remove bubbles. Similar to [26, Eq. (4)], the

LSB of averaged TDL

LSBAve ≈ [4(n − 1) · ∆tAVE]/4n ≈ LSBsub/4. (5)

When n ≫ 1, we have LSBAve ≈ LSBraw.
The code density test results of the individual sub-TDLs for

both Virtex-7 and UltraScale are shown in Fig. 3. The advantage

of the sub-TDL averaging approach is that as the equivalent

binwidth of the sub-TDLs has been multiplied, the bubbles will

not exist anymore in the sub-TDLs. Averaged TDL has no zero-

width bins (DNL = –1) and the number of missing codes (DNL

�−0.9) [50] is reduced effectively, as shown in Fig. 5. Since the

missing codes still exist in averaged TDL, additional methods

are required to improve linearity.

B. Tuned-TDL and Tap Timing Test

The TDLs in the Virtex 7 and UltraScale FPGAs are shown

in Fig. 2(a) and (b). Each delay element “MUX” contains two

types (CO and O) of outputs. These two types of output signals

have different delays [29]. The tuned-TDL method selects one

of the two output types to improve the linearity. In our work,

the tuned-TDL method is used with the sub-TDL topology. For
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Fig. 4. Timing diagram based on the tap timing tests of the 16 taps in the UltraScale FPGA.

the CARRY4 module in a Virtex 7 FPGA, the CO and O output

ports are mutually exclusive, whereas in the CARRY8 module

in an UltraScale FPGA, the CO and O ports are all registered

within the same CLB module. Therefore, each CARRY8 is able

to generate 16 carry outputs. In 2016, a dual-sampling method

using all 16 carry outputs was presented with a bin size of 2.25 ps

[27]. However, the bubble problems and the nonlinearity are

exacerbated with the reduced binwidth.

The actual timings of the TDL taps are desired for investi-

gating the uniformities of the carry chains and the clock skews.

Since the circuits of CARRY chains are fixed in FPGAs, the

binwidth and location of missing-codes are static and therefore

predictable. We therefore proposed tap timing tests to quantita-

tively analyze the time intervals of taps and select the taps with

better intervals based on the sub-TDL topology. Similar to code

density tests, an amount of random hit signals are fed into the

TDC, and the 16 binary codes (Bn , n = 0, . . . , 15) converted

by the OH2BIN converters from all 16 sub-TDLs (CARRY8)

are directly readout and collected. This set of the binary codes

are generated after every measurement. The timing differences

between taps, Dn , can be calculated by the following equation:

Dn =

∑m=L−1
m=0 (Bn,m − Bn+1,m )

L
, n = 0, 1, . . . 14 (6)

where L is the number of the measurements and Bn,m is the nth

binary code for the mth measurement. From (6), a set of timing

differences from D0 to D14 can be quantified. Fig. 4 illustrates

the results of the tap timing tests. It shows the ideal and the

actual bin timings. The actual bin timings show that the widest

bin is about 2.3LSB (CO1 to CO5) and the narrowest bin is

less than 0.1LSB (CO7 to CO4). The highlighted sub-TDLs (in

red) indicate how the mismatched timings of the bin boundaries

contribute to the nonlinearity of FPGA-TDCs. The number of

the used TDL taps depends on the requirements of applications

TABLE I
LINEARITY PERFORMANCE BETWEEN A RAW-TDL AND THE AVERAGED-TDL

and the proper taps to be selected with relatively uniform time

intervals. There is a tradeoff between the resolution and the

linearity achieved. In this case, we selected 8 out of the 16 taps

in a CARRY8 with the average bin size of 5 ps (LSB).

Table I, and Fig. 5(a) and (b) show the code density test results

and the binwidth distributions of the raw TDLs and averaged

TDLs in both FPGAs. The DNL is reduced from [−1, 3.78] to

[−0.95, 1.77] LSB, and the σDNL is reduced from 1.15 to 0.52

LSB for the Virtex 7 device. For the UltraScale device, the DNL

is reduced from [−1, 8.09] to [−0.96, 2.56] and the σDNL is

reduced from 1.79 to 0.74 LSB. The binwidth distributions, see

Fig. 5(c) and (d), show that the zero-width bins (DNL = – 1) are

totally removed from both FPGAs, and the width of the widest

bins are well controlled such that DNL < 2 LSB. The root mean

square (rms) binwidth is improved from 1.53 to 1.13 LSB for

the Virtex 7 FPGA and from 1.85 to 1.12 LSB for the UltraScale

FPGA.

C. Compensated Histogram and Mixed Calibration

Method

The high consumption of FPGA resources makes the pre-

vious design not friendly for multichannel design [30]. To
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Fig. 5. DNL results of the raw and Averaged TDCs implemented for (a)
Virtex-7 and (b) UltraScale FPGAs, and binwidth distributions of the raw
and Calibrated TDCs for (c) Virtex-7 and (d) UltraScale FPGAs.

Fig. 6. Block diagram of the histogram compensation with mixed cali-
bration in Virtex-7 and UltraScale FPGAs.

simultaneously achieve the optimized linearity, fast calibration,

and low resource consumption, we proposed a direct histogram

compensation and a mixed calibration method, see Fig. 6.

The measured events are expressed by fine codes and counted

in the corresponding bins of the histogram. In a raw TDC, large

quantization errors are generated since the time intervals be-

tween two adjacent TDL taps are largely nonuniform, and only

one binary code is processed in each measurement. A compensa-

tion approach has been introduced in 2016 to solve this problem,

but it was only used for postprocessing, introducing much more

processing time especially in multichannel applications [46].

To achieve the fast and direct histogram compensation, we re-

assigned the fine code to a main bin calibration factor (BCFm )

and a compensation bin calibration factor (BCFc) when a hit

signal is measured. These two factors (BCFm , BCFc) are the

fine code outputs of compensated TDC. To calculate the BCFc

and BCFm , the binwidth of the raw TDC needs to be estimated

by performing code density tests first. The kth code transition

level T[k] is needed for calculating the main and compensated

Fig. 7. Concept of the histogram compensation method.

Fig. 8. (a) DNL plot and (b) binwidth distributions of the Compensated
TDCs for Virtex-7. (c) DNL plot and (d) binwidth distributions of the
compensated TDCs for UltraScale FPGAs.

binary codes

T [k] =

k−1
∑

n=0

W [n] =

k−1
∑

n=0

{LSB × (DNL[n] + 1)} (7)

where W [n] is the code binwidth of the nth bin. BCFm and

BCFc are calculated accordingly. For the bins located within a

single ideal normalized bin (highlighted in blue in Fig. 7), only

BCFm is valid for readdressing the measured result. For bins

which covers across different bins (highlighted in red), both

BCFm and BCFc will be generated to address two bins at once.

This process can be simplified as below pseudocode:

if (Tactual[k] < Tideal[k])

if (Tactual[k + 1] < Tideal[k])

BCFm = K − 1

BCFc = void

else if (Tideal[k] < Tactual[k + 1])

BCFm = K − 1

BCFc = K . . . . . .

The histogram compensation method will correct the mea-

surement bias by readdressing the fine codes, and the missing

codes are compensated as well. As shown in Fig. 8(a) and (c)

and Table II, the linearity of compensated TDC is further im-

proved. The DNL is reduced to [−0.73, 0.79] LSB, and σDNL

is reduced to 0.29 LSB for the Virtex 7 FPGA. The DNL is
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TABLE II
LINEARITY PERFORMANCE BETWEEN THE COMPENSATED TDC AND

THE CALIBRATED TDL

Fig. 9. Flow diagram of the TDC measuring events in the Virtex-7
FPGA.

reduced to [−0.75, 0.86] LSB, and σDNL is reduced to 0.35

LSB for the UltraScale FPGA. Fig. 8(b) and (d) show that the

distributions of the binwidths (for both TDCs) are well-shaped,

showing no missing codes. Since the minimum DNL has been

improved to be better than –0.8 LSB after the compensation,

the binwidth calibration is feasible for enhancing the linearity

further. The code density test needs to be re-executed after the

BCFm and BCFc are loaded. The binwidth calibration factor

set of calibrated TDC contains two vectors for the main and

compensation histogram(WCFm and WCFc), respectively. The

results of the second code density test can be used to calculate

the WCFm and WCFc :

WCFm [k] =
1

DNL{BCFm [k]} + 1

WCFc [k] =
1

DNL{BCFc [k]} + 1
. (8)

Fig. 10. (a) DNL and (b) INL plots of the compensated and calibrated
TDCs for the Virtex-7 FPGA, and (c) DNL and (d) INL plots of the com-
pensated and calibrated TDCs for the UltraScale FPGA.

BCFm , BCFc , WCFm , and WCFc can be calculated by us-

ing the offline methods (MATLAB) or on-the-fly approaches

(on-chip processing). A probability profile of the code distribu-

tion can be obtained through code density tests, and then the his-

togram compensation performs code reassignment based on the

probability profile and use of the binwidth calibration techniques

to correct the distribution. To save the resource consumption,

we splice two BCFs and two WCFs into a mixed-calibration

factor set, and they are stored in the calibration block random-

access memory (BRAM). The calibration BRAM dispatches the

stored calibrated factors to the histogram BRAMs when the fine

codes of averaged TDL are valid at the address ports. The flow

diagram of the proposed TDC in the Virtex 7 FPGA is shown

as Fig. 9. For different applications, a true dual-port BRAM or

a two BRAMs working at the simple dual-port mode can be

selected for histogramming.

III. EXPERIMENTS AND RESULTS

The results of the experiments and tests were used to eval-

uate the performances of the proposed calibrated TDCs. Two

independent low-jitter crystal oscillators (DSC1103) were used

as the signal sources for the code density tests. The temperature

and operating voltage on the FPGA chip were maintained within

a stable range.
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Fig. 11. Time interval measurement results and rms resolutions of the
calibrated TDCs for (a) Virtex-7 and (b) UltraScale FPGAs.

TABLE III
LOGIC RESOURCES UTILIZATION

A. Linearity Test Results of Calibrated TDCs

The DNL, INL, and standard deviations (σDNL and σINL) are

the main parameters to evaluate the linearity. When compen-

sated TDC is compared with calibrated TDC, both the DNL and

INL are improved significantly. The results are summarized and

illustrated in Table II and Fig. 10. After the calibration, DNLpk-pk

(peak to peak of the DNL) and INLpk-pk (peak to peak of the INL)

are improved by more than 11-fold and 16-fold for the Virtex 7

FPGA, respectively. For the UltraScale FPGA, the DNLpk−pk

and INLpk−pk are improved about 7-fold and 5-fold, respec-

tively. The standard deviations, σDNL and σINL, are improved by

about 29- fold and 15-fold for the Virtex 7 FPGA, respectively.

For the UltraScale FPGA, the σDNL and σINL, are reduced by 11-

fold and 4-fold, respectively. The equivalent binwidth weq and

the equivalent standard deviation σeq were proposed by Wu for

assessing the linearity performances of TDCs [51]. It is defined

as the following equations:

σ2
eq = Σi

(

W [i]2

12
× W [i]

Wtotal

)

where Wtotal = ΣiW [i], (9)

weq = σeq

√
12 =

√

√

√

√Σi

(

W [i]3

Wtotal

)

. (10)

B. Time Interval Measurements

To verify the measurement error and the rms resolution of

the proposed TDC, programmable delay generators (such as

IDELAYE2 and IDELAYE3) are used for generating the known

time intervals between an origin signal and a delayed signal. The

time intervals are measured by the presented calibrated TDCs

Fig. 12. Place and routing results of the 96-channel TDCs in Virtex-
7(left) and UltraScale (right) FPGAs.

and an oscilloscope (Teledyne LeCroy WaveRunner 640Zi) at

the same time. Both of the original signal and the delayed signal

are outputted via two SMA connectors. The external jitter is min-

imized, since the time intervals are generated in the FPGA chip

and sent to the TDC directly. The IDELAYE2 and IDELAYE3

are continuously calibrated by an IDELAYCTRL module based

on a low jitter reference clock to prevent PVT variations. The

time interval of IODELAY can be dynamically controlled with

a step of 39 and 4.6 ps in IDELAY2 and IDELAY3 modules, re-

spectively. With this arrangement, different time intervals were

generated to cover the entire TDLs of the TDC. Each experiment

captured 80 000 samples, and the time intervals were calculated

based on the histogram. The measurement results and the rms

resolution are shown in Fig. 11. The average rms resolution is

14.59 ps with σ = 0.84 ps for the Virtex 7 FPGA and is 7.80 ps

with σ = 0.45 ps for the UltraScale FPGA. The standard devi-

ations of the time intervals measured by the oscilloscope are

14.86 ps for the Virtex 7 FPGA and 8.55 ps for the UltraScale

FPGA, respectively. The standard deviations of the differences

between the measured results obtained by the TDC with the

results are 4.04 and 5.37 ps for the Virtex 7 and the UltraScale

FPGAs, respectively.

C. Configurations and Multichannel TDC Design

The configurations of the multichannel TDC are various. In

the Virtex 7 FPGA, each clock region contains 50 rows of

CARRY4s. In the UltraScale FPGA, each clock region con-

tains 60 rows of CARRY8s. To reduce the large nonlinearity

contributed by the clock distribution, the TDLs are placed in

two center clock regions in the Virtex 7 FPGA and are placed

within the single clock region in the UltraScale FPGA. The sin-

gle and dual sampling phases [28] can be selected according to

the length of TDL and the frequency of the sampling clock.

In this paper, we implemented 96-channel calibrated TDCs

in both Virtex 7 and UltraScale FPGAs. According to the

postimplementation utilization report shown in Table III, each
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TABLE IV
SUMMARY OF LINEARITY PERFORMANCES OF ∗16-CHANNEL TDCS (OUT OF 96-CHANNEL TDCS)

TABLE V
COMPARISON OF RECENT FPGA-BASED AND CUSTOM DESIGN CMOS TDCS

channel costs around 700 LUT modules and 1200 registers. The

BRAM usage depends on the configuration and the designated

measurement range. The minimum BRAM usage is 1.5 BRAM

per channel in the dual-BRAM mode. However, the number of

channels is not only limited by the resource usage. The timing

requirement, routing congestion level, and system expandability

should also be considered. Therefore, the space between two

TDC adjacent channels needs to be guaranteed. The previous

work [30] presented a high linearity, low dead time FPGA

TDC. However, the high logic consumption makes the TDC not

suitable for a multichannel design. For multichannel applica-

tions, we presented this work to achieve both high linearity and

low resource consumption. Fig. 12 shows the place and routing

results for the 96-channel TDCs in the Virtex 7 (left) and

UltraScale (right) FPGAs. To demonstrate the uniformity of the

proposed multichannel TDC, we demonstrated the code density

test results for 16 out of 96 channels (in both FPGAs). These 16

channels are evenly distributed in the used chip area. According

to test results shown in Table IV, the linearity performances of

the TDC channels in different locations show good uniformity.
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IV. CONCLUSION

In this paper, we proposed and evaluated the following:

1) a new sub-TDL averaging TDL topology;

2) an innovative tap timing test;

3) a new hardware-embedded histogram compensation and

a mixed calibration methods.

The sub-TDL averaging is able to remove bubbles and zero-

width bins without consuming additional resources and extra

process time. The novel taps timing test is able to quantify

the actual timing of TDLs. The histogram compensation and

mixed calibration methods are also used to correct the con-

version bias and the binwidth deviation directly with limited

resource consumption. By integrating these methods, high lin-

earity and low-cost FPGA-TDCs were implemented and tested

in the Virtex 7 and UltraScale FPGAs, respectively. The bin

size (LSB) achieved 10.5 and 5.0 ps with the rms resolution of

14.59 and 7.80 ps for the Virtex 7 and the UltraScale FPGAs,

respectively. Compared with previously published works, listed

in Table V, the linearity has been significantly improved. The

96-channel TDCs were also implemented and tested in both

FPGAs, and they show good uniformity from the test results.

Our solutions demonstrate significant improvements compared

with previously reported studies. They also have potentials for

future applications for fast 3-D ranging or time-resolved imag-

ing that were previously using other techniques (such as Raman

spectroscopy, agricultural research, and wind farm).
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