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Abstract 

The constantly increasing complexity of marine and offshore machinery is a consequence 

of a constant improvement in ship powering, automation, specialisation in cargo transport, 

new ship types, as well as an effort to make the sea transport more economic. Therefore, 

the criteria of reliability, availability and maintainability have become very important factors 

in the process of marine machinery design, operation and maintenance. 

An important finding from the literature exposed that failure to marine machinery can cause 

both direct and indirect economic damage with a long-term financial consequence. Notably, 

many cases of machinery failures reported in databases were as a result of near misses 

and incidents which are potential accident indicators. Moreover, experience has shown that 

modelling of past accident events and scenarios can provide insights into how a machinery 

failure can be subsisted even if it is not avoidable, also a basis for risk analysis of the 

machinery in order to reveal its vulnerabilities. This research investigates the following 

modelling approach in order to improve the efficiency of marine and offshore machinery 

operating under highly uncertain environment.  

Firstly, this study makes full use of evidential reasoning’s advantage to propose a novel 

fuzzy evidential reasoning sensitivity analysis method (FER-SAM) to facilitate the 

assessment of operational uncertainties (trend analysis, family analysis, environmental 

analysis, design analysis, and human reliability analysis) in ship cranes.  

Secondly, a fuzzy rule based sensitivity analysis methodology is proposed as a 

maintenance prediction model for oil-wetted gearbox and bearing with emphasis on ship 

cranes by formulating a fuzzy logic box (diagnostic table), which provides the ship crane 

operators with a means to predict possible impending failure without having to dismantle 

the crane. 

Thirdly, experience has shown that it is not financially possible to employ all the suggested 

maintenance strategies in the literature. Thus, this study proposed a fuzzy TOPSIS 

approach that can help the maintenance engineers to select appropriate strategies aimed 

at enhancing the performance of the marine and offshore machinery.  

Finally, the developed models are integrated in order to facilitate a generic planned 

maintenance framework for robust improvement and management, especially in situations 

where conventional planned maintenance techniques cannot be implemented with 

confidence due to data deficiency.



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

v 
 

Table of Contents 

 
Declaration ......................................................................................................................................... i 

Dedication .......................................................................................................................................... ii 

Acknowledgements ......................................................................................................................... iii 

Abstract ............................................................................................................................................. iv 

List of Figures .................................................................................................................................. xi 

List of Tables ................................................................................................................................... xii 

Abbreviations ............................................................................................................................... xviii 

Chapter 1 ........................................................................................................................................... 1 

Introduction ........................................................................................................................................ 1 

Summary ........................................................................................................................................... 1 

1.1 Research Background ..................................................................................................... 1 

1.2 Statement of Problem ...................................................................................................... 4 

1.3 Research Aim and Objectives ........................................................................................ 5 

1.4 Research Data Mining ..................................................................................................... 6 

1.5 Marine and Offshore Machinery Investments .............................................................. 6 

1.6 Researcher’s Background ............................................................................................... 7 

Chapter 2 ......................................................................................................................................... 11 

Literature Review ........................................................................................................................... 11 

Summary ......................................................................................................................................... 11 

2.1 Introduction ...................................................................................................................... 11 

2.2 An Overview of Marine and Offshore Industry ........................................................... 12 

2.3 An Overview of Maintenance Concepts and Practices ............................................ 13 

2.3.1  Run-To-Failure Maintenance (RTFM) Strategy ................................................. 14 

2.3.2 Preventive Maintenance (PM) Strategy .............................................................. 14 

2.3.3 Condition-Based Maintenance (CBM) Strategy ................................................. 15 

2.3.4 Reliability-Centred Maintenance (RCM) Strategy ............................................. 16 

2.4 Current Status of Maintenance Management in the Marine and Offshore Industry

 17 

2.5 Dealing with Uncertainty in Marine and Offshore Machinery Design and 

Operation ..................................................................................................................................... 18 

2.6  Machinery Oil/Grease Analysis .................................................................................... 20 

2.7 Oil Sampling .................................................................................................................... 21 

2.7.1 Oil Sampling Kit ...................................................................................................... 21 

2.7.2 General instructions for Correct Oil Sampling ................................................... 22 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

vi 
 

2.7.3 How to Take a Good Oil Sample ......................................................................... 23 

2.7.4 Laboratory Oil/Grease Test Methods and Results ............................................ 23 

2.8 Machinery Oil Condition Monitoring ............................................................................ 24 

2.9 Faces of Errors in Machinery Operation ..................................................................... 25 

2.9.1 Internal (System Design) Error ............................................................................. 26 

2.9.2 External (Human) Error ......................................................................................... 26 

2.10 Lessons from Major Accidents in the Marine and Offshore Industry ..................... 27 

2.10.1 Savannah Express Engine Failure ...................................................................... 27 

2.10.2 FPSO Cidade De São Mateus Explosion ........................................................... 28 

2.10.3 Maersk Doha Machinery Breakdown .................................................................. 29 

2.11 Proposed Risk and Decision-Making Management Model ...................................... 30 

2.11.1 Risk Analysis Techniques ..................................................................................... 30 

2.11.2 Decision Making Analysis Techniques ................................................................ 35 

2.12 Expert System ................................................................................................................. 51 

2.12.1 Performance Thresholds ....................................................................................... 52 

2.12.2 Fixed Limits ............................................................................................................. 52 

2.12.3 Absolute Alarm Limit .............................................................................................. 52 

2.12.4. Trend (statistical) Alarm Limit ........................................................................... 53 

2.12.5 Combination of Absolute and Statistical Alarm Limits ...................................... 53 

2.12.6 Upper and Lower Limits ........................................................................................ 54 

2.13 Conclusion ....................................................................................................................... 54 

Chapter 3 ......................................................................................................................................... 56 

1 Research Methodology ......................................................................................................... 56 

Summary ......................................................................................................................................... 56 

3.1 The Scope of the Thesis ............................................................................................... 56 

3.2 Structure of the Thesis .................................................................................................. 57 

3.3 The Research Framework ............................................................................................ 59 

3.4 Conclusion ....................................................................................................................... 60 

Chapter 4 ......................................................................................................................................... 61 

A Proposed Methodology for Condition Monitoring of Marine and Offshore Machinery 

using Evidential Reasoning Techniques ..................................................................................... 61 

Summary ......................................................................................................................................... 61 

4.1 Introduction ...................................................................................................................... 61 

4.2 Methodology .................................................................................................................... 62 

4.2.1 Identification of Risk Criteria (Step one) ............................................................. 63 

4.2.2  Application of Analytic Hierarchy Process (Step two) ....................................... 63 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

vii 
 

4.2.3  Evaluation of Trend Analysis (TA) (Step three) ................................................. 66 

4.2.4  Evaluation of Family Analysis (Step four) ........................................................... 67 

4.2.5  Evaluation of Environmental Analysis (Step five) .............................................. 68 

4.2.6  Evaluation of Human Reliability Analysis (Step six) ......................................... 69 

4.2.7  Evaluation of Design Analysis (Step seven) ...................................................... 69 

4.2.8 Aggregation Operations on Criteria Results Using ER (Step eight) ............... 70 

4.2.9  Obtaining a Crisp Number for the Goal (Step nine) .......................................... 70 

4.2.10 Perform Sensitivity Analysis (Final step) ............................................................ 71 

4.3  Test Case ........................................................................................................................ 73 

4.3.1  Ship Crane Machinery ........................................................................................... 74 

4.3.2  Slewing ring bearings ............................................................................................ 75 

4.3.3 Gearboxes ............................................................................................................... 75 

4.3.4 Clutches ................................................................................................................... 76 

4.3.5 Hydraulic Pump ...................................................................................................... 77 

4.3.6 Identification of Risk Criteria (Step one) ............................................................. 78 

4.3.7 Application of Analytic Hierarchy Process Results (Step two) ........................ 78 

4.3.8  Evaluation of Trend Analysis (Step three) .......................................................... 86 

4.3.9  Evaluation of Family Analysis (Step four) ........................................................... 94 

4.3.10  Evaluation of Environmental Analysis (Step five) .......................................... 99 

4.3.11  Evaluation of Human Reliability Analysis (Step six) ..................................... 99 

4.3.12  Evaluation of Design Analysis (Step seven) ................................................ 100 

4.3.13  Aggregation Operations on Criteria Results using ER (Step eight).......... 100 

4.3.14  Obtaining a Crisp Number for the Goal (Step Nine) ................................... 102 

4.3.15 Sensitivity Analysis (Final step) .......................................................................... 103 

4.4  Discussions ................................................................................................................... 105 

4.5  Conclusion ..................................................................................................................... 107 

Chapter 5 ....................................................................................................................................... 108 

An Integrated Risk Assessment for Maintenance Prediction of Oil Wetted Gearbox and 

Bearing in Marine and Offshore Industries Using a Fuzzy Rule Base Method .................. 108 

Summary ....................................................................................................................................... 108 

5.1 Introduction .................................................................................................................... 108 

5.2. Used Oil Sampling Analysis of Marine Crane Bearing and Gearbox ................... 109 

5.3 Methodology .................................................................................................................. 109 

5.3.1 Identification of Grease/Oil Sample Test Results (Step one) ........................ 111 

5.3.2 Pre-Screening of the Test Results (Step two) ................................................. 111 

5.3.3 Development of Fuzzy Membership Function (Step three) ........................... 112 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

viii 
 

5.3.4 Development of Fuzzy Rule-Based Diagnosis for Risk Prediction (Step four)

 112 

5.3.5 Determining the Risk Levels of each Component (Step five) ........................ 112 

5.3.6 Defuzzification Process (Step six) ..................................................................... 113 

5.3.7 Perform Sensitivity Analysis (Final step) .......................................................... 114 

5.4 Test Case ...................................................................................................................... 114 

5.4.1 Identification of Grease/Oil Sample Test Results (Step one) ........................ 114 

5.4.2 Test Results Pre-Screening (Step two)............................................................. 115 

5.4.3 Development of Fuzzy Membership Function (Step three) ........................... 118 

5.4.4 Development of Fuzzy Rule Base (Step four) ................................................. 119 

5.4.5 Determination of Risk Levels for the Sample Test Elements of each Crane 

Component and the Acquirement of its Fuzzy Conclusion (Step five) ......................... 121 

5.4.6 The Defuzzification Process (Step six) ............................................................. 125 

5.4.7 Sensitivity Analysis (Final step) .......................................................................... 125 

5.5 Discussions ................................................................................................................... 132 

5.6 Conclusion ..................................................................................................................... 133 

Chapter 6 ....................................................................................................................................... 135 

Application of a Multiple Attribute Group Decision Making (MAGDM) Model for Selection 

of the best Maintenance Strategy for Marine and Offshore Machinery based on Fuzzy 

Technique for Order Preference by Similarity to Ideal Situation (FTOPSIS) ...................... 135 

Summary ....................................................................................................................................... 135 

6.1 Introduction .................................................................................................................... 135 

6.2 Methodology .................................................................................................................. 136 

6.2.1  Identification of Decision-Making Alternatives (Step one) ............................. 137 

6.2.2 Identification of Evaluation Criteria (Step two) ................................................. 138 

6.2.3 Rating Phase - Determination of Importance Weights (Step three) ............. 140 

6.2.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance 

Rating of Decision Alternatives (Step four) ...................................................................... 143 

6.2.5 Perform Sensitivity Analysis (Final) ................................................................... 146 

6.3 Application of Methodology to a Test Scenario ....................................................... 146 

6.3.1 Identification of Decision Making Alternatives (Step one) .............................. 147 

6.3.2 Identification of Evaluation of Criteria (Step two) ............................................ 147 

6.3.3 Rating Phase - Determination of Importance Weight (Step three) ............... 148 

6.3.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance 

Rating of Decision Alternatives (Step four) ...................................................................... 152 

6.3.5 Perform Sensitivity Analysis (Final) ....................................................................... 156 

6.4 Discussion of Results .................................................................................................. 158 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

ix 
 

6.5 Conclusion ..................................................................................................................... 159 

Chapter 7 ....................................................................................................................................... 160 

Conclusions and Recommendations ......................................................................................... 160 

Summary ....................................................................................................................................... 160 

7.1 Main Conclusions ......................................................................................................... 160 

7.2 Advantages and Disadvantages of the Models ....................................................... 161 

7.2.1 Advantages ........................................................................................................... 161 

7.2.2 Disadvantages ...................................................................................................... 161 

7.3 Research Contribution to Knowledge ........................................................................ 162 

7.4 Research Findings ....................................................................................................... 162 

7.5 Research Novelty ......................................................................................................... 163 

7.6 Research Limitations ................................................................................................... 163 

7.7 Recommendation for Future Research ..................................................................... 163 

References .................................................................................................................................... 165 

APPENDICES ............................................................................................................................... 184 

Chapter 4 Appendices ................................................................................................................. 185 

Appendix 4A - Experts Ratings .............................................................................................. 185 

Appendix 4B - Evaluation of Trend Analysis ........................................................................ 201 

4B1 – Membership Functions for Crane Bearing Grease Sample Elements.............. 201 

4B2 – Membership Functions for Crane Clutch Oil Sample Elements ........................ 203 

4B3 – Membership Functions for Crane Gearbox Oil Sample Elements .................... 205 

4B4 – Membership Functions for Crane Hydraulic Pump Oil Sample Elements ....... 207 

Appendix 4C - Evaluation of Family Analysis ...................................................................... 209 

4C1 – Membership Functions for Crane Bearing Grease Sample Elements ............. 209 

4C2 – Membership Functions for Crane Clutch Oil Sample Elements ........................ 211 

4C3 – Membership Functions for Crane Gearbox Oil Sample Elements .................... 213 

4C4 – Membership Functions for Crane Hydraulic Pump Oil Sample Elements ....... 215 

Appendix 4D - Aggregation of Sub-Criteria .......................................................................... 217 

Appendix 4E - Alteration of Sample 2 Oil Condition Values due to Variation in each Sub-

Criterion by 0.2 ......................................................................................................................... 221 

Appendix 4F - Aggregation of the Original Values with the Alteration Values of the Main 

Criteria for Sample 2 ................................................................................................................ 223 

Chapter 5 Appendices ................................................................................................................. 225 

Appendix 5A – Development of Fuzzy Membership Functions ........................................ 225 

5A1 Grease Sample Elements in Port Crane bearing ................................................ 225 

5A2 Grease Sample Elements in Starboard Crane bearing ...................................... 226 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

x 
 

5A3 Oil Sample Elements in Port Crane Gearbox ...................................................... 226 

5A4 Oil Sample Elements in Starboard Crane Gearbox ............................................ 227 

Appendix 5B - Fuzzy Rule-Based Table for Risk Screening of Crane Bearing/Gearbox

 .................................................................................................................................................... 229 

Appendix 5C - Risk Level Determination for Decrement by 0.1 ....................................... 233 

5C1 Risk level for port crane bearing grease sample test elements (Decrement of 

0.1) 233 

5C2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements ........ 236 

5C3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (Decrement of 

0.1) 237 

5C4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (Decrement 

of 0.1) ..................................................................................................................................... 238 

Appendix 5D - Risk Level Determination for Decrement by 0.2 ....................................... 240 

5D1 Risk level for port crane bearing grease sample test elements (0.2 decrement)

 240 

5D2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements (0.2 

decrement). ........................................................................................................................... 243 

5D3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (0.2 decrement)

 244 

5D4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (0.2 

decrement) ............................................................................................................................ 245 

Appendix 5E - Risk Level Determination for Decrement by 0.3 ........................................ 247 

5E1 Risk level for port crane bearing grease sample test elements (0.3 decrement)

 247 

5E2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements (0.3 

decrement) ............................................................................................................................ 250 

5E3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (0.3 decrement)

 251 

5E4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (0.3 

decrement) ............................................................................................................................ 252 

Appendix 5F - Risk Values for Decremented Set of Fuzzy Conclusions ......................... 254 

Appendix 6 - Research Questionnaires ................................................................................ 256 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

xi 
 

List of Figures 

Figure 1.1: Typical Marine & Offshore Investments...............................................................7 

Figure 2.1: Oil Sampling Kit Box.........................................................................................22 

Figure 2.2: Steps to Take Good Oil Sample........................................................................23 

Figure 2.3: Machinery Oil Condition Monitoring Cycle.........................................................25 

Figure 2.4: Membership Function of the Triangular Fuzzy Number.....................................32 

Figure 2.5: Membership Functions of Linguistics Variable for Measuring the Performance 

        Values of Alternatives......................................................................................33 

Figure 2.6: Absolute and Statistical Alarms.........................................................................53 

 

Figure 3.1: A Novel Planned Maintenance Framework for Marine and Offshore       

       Machinery….....................................................................................................59 

Figure 4.1: Flow Diagram for Evaluating the Condition of Equipment………………………64 

Figure 4.2: A Generic Model for Condition Monitoring of Machinery…………………………65 

Figure 4.3: Dongnam Hydraulic Crane on FPSO Main Deck...............................................74 

Figure 4.4: Crane Slewing Bearing.....................................................................................75 

Figure 4.5: Crane Gearbox.................................................................................................76 

Figure 4.6: Crane Clutch.....................................................................................................77 

Figure 4.7: Crane Hydraulic Pump......................................................................................77 

Figure 4.8: Specific Model for Condition Monitoring of a Ship Crane…...............................80 

Figure 4.9: Membership Functions of the Iron (Fe) Element – Trend Analysis……………88 

Figure 4.10: Membership Functions of the Iron (Fe) Element – Family Analysis…..............96 

Figure 4.11: Sensitivity of the Model Output to the Variation of the Alteration with Original in 

          each Main Criterion…..................................................................................105 

Figure 5.1: Diagnostic Flow Chart….................................................................................110 

Figure 6.1: Hierarchical Model of Decision Making Analysis for Equipment………………137 

Figure 6.2: Membership Degree for Linguistic Ratings………………………………………140 

Figure 6.3: Hierarchical Structure of Maintenance Strategy Selection…………………….147 

Figure 6.4: Ranking Order of the Maintenance Strategies………………………………….156



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

xii 
 

List of Tables 

 

Table 2.1: Value of RI versus Matrix Order…………………………………………………….40 

Table 2.2: Comparison Scale……………………………………………………………………40 

Table 4.1: Composition of Experts......................................................................................66 

Table 4.2: Weighting of Expert Judgements…....................................................................79 

Table 4.3: Expert 1 Pair-wise Comparison Matrix for the Five Criteria………………………81 

Table 4.4: Developing Expert 1 Rating for each Decision Alternative for the Crane 

      Bearing…..........................................................................................................82 

Table 4.5: Combined Pair-Wise Comparison Matrix for Crane Bearing…………………….84 

Table 4.6: Combined Pair-Wise Comparison Matrix for Crane Clutch….............................85 

Table 4.7: Combined Pair-Wise Comparison Matrix for Crane Gearbox……………………85 

Table 4.8: Combined Pair-Wise Comparison Matrix for Crane Hydraulic Pump……………85 

Table 4.9: Weights of the Sub-Criteria….............................................................................86 

Table 4.10: Description for Test Elements and General Interpretation………………………86 

Table 4.11: Grease Sample Report for Port Crane Bearing…………………………………87 

Table 4.12: Absolute Limits for Crane Bearing Used Grease Sample………………………88 

Table 4.13: Fuzzy Sets for Crane Bearing Grease Samples – Trend Analysis....................90 

Table 4.14: Grease Sample Report for Ship Port Crane Clutch….......................................90 

Table 4.15: Absolute Limits for Crane Clutch Oil Tests………………………………………91 

Table 4.16: Fuzzy Sets for Crane Clutch Oil Samples – Trend Analysis..............................91 

Table 4.17: Oil Sample Report for Ship Port Crane Gearbox…………………………………91 

Table 4.18: Absolute Limits for Crane Gearbox Oil Tests……………………………………92 

Table 4.19: Fuzzy Sets for Crane Gearbox Oil Samples – Trend Analysis..........................92 

Table 4.20: Oil Sample Report for Ship Port Crane Hydraulic Pump……………………….93 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xiii 
 

Table 4.21: Absolute Limits for Crane Hydraulic Pump Oil Tests…………………………….93 

Table 4.22: Fuzzy Sets for Crane Hydraulic Pump Oil Samples – Trend Analysis...............93 

Table 4.23: Standard Deviation for Port and Starboard Cranes Bearing Grease Test  

        Results………………………………………………………………………………95 

Table 4.24: Fuzzy Sets for Crane Bearing Oil Samples – Family Analysis..........................96 

Table 4.25: Standard Deviation for Port and Starboard Cranes Clutch Oil Test Results…..97 

Table 4.26: Fuzzy Sets for Crane Clutch Oil Samples – Family Analysis.............................97 

Table 4.27: Standard Deviation for Port and Starboard Cranes Gearbox Oil Test  

        Results............................................................................................................98 

Table 4.28: Fuzzy Sets for Crane Gearbox Oil Samples – Family Analysis.........................98 

Table 4.29: Standard Deviation for Port and Starboard Cranes Hydraulic Pump Test  

        Results............................................................................................................98 

Table 4.30: Fuzzy Sets for Crane Hydraulic Pump Oil Samples – Family Analysis..............99 

Table 4.31: Aggregation Results of Sub-Criteria for Sample 1…………………………….100 

Table 4.32: Aggregation Results of Sub-Criteria for Sample 2….......................................100 

Table 4.33: Aggregation Results of Sub-Criteria for Sample 3….......................................101 

Table 4.34: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 1………….101 

Table 4.35: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 2………….101 

Table 4.36: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 3………….102 

Table 4.37: Utility Values……………………………………………………………………….103 

Table 4.38: Aggregation Results for Sample 2 Due to Decrement by 0.2…………………104 

Table 4.39: Aggregation Results for the Variation of each 0.2 Decrement Values with the 

        Original Fuzzy Sets in the Main Criteria…......................................................105 

Table 5.1: Critical Wear Elements Test Results for Port Crane Bearing Grease Sample...114 

Table 5.2: Critical Wear Elements Test Results for Starboard Crane Bearing Grease  

      Sample….........................................................................................................114 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xiv 
 

Table 5.3: Absolute Limits for Crane Bearing Used Grease…...........................................115 

Table 5.4: Critical Wear Elements Test Results for Port Crane Gearbox Oil Sample…...115 

Table 5.5: Critical Wear Elements Test Results for Starboard Crane Gearbox Oil 

       Sample............................................................................................................115 

Table 5.6: Absolute Limits for Crane Gearbox Used Oil……………………………………115 

Table 5.7: Port Crane Bearing…………………………………………………………………116 

Table 5.8: Starboard Crane Bearing……………………………………………………….….116 

Table 5.9: Port Crane Gearbox………………………………………………………………...117 

Table 5.10: Starboard Crane Gearbox....................…………………………………………117 

Table 5.11: Description for Test Elements and General Interpretation…………………….118 

Table 5.12: Fuzzy Set for Port Crane Bearing Grease Sample Test Elements……………118 

Table 5.13: Fuzzy Set for Starboard Crane Bearing Grease Sample Test Elements….....118 

Table 5.14: Fuzzy Set for Port Crane Gearbox Oil Sample Test Elements…....................118 

Table 5.15: Fuzzy Set for Starboard Crane Gearbox Oil Sample Test Elements…………119 

Table 5.16: Linguistic Term Grades & Risk Ranking…………………………………………120 

Table 5.17: The Minimum Value of each Combination for Port Crane Bearing……………122 

Table 5.18: The Maximum Value Associated with the same Category of Linguistic Priority  

        Terms for Port Crane Bearing……………………………………………………122 

Table 5.19: The Minimum Value of each Combination for Starboard Crane Bearing….....123 

Table 5.20: The Minimum Value of each Combination for Port Crane Gearbox….............123 

Table 5.21: The Minimum Value of each Combination for Starboard Crane Gearbox…....124 

Table 5.22: The Set of Fuzzy Conclusions of the Ship’s Crane……………………………124 

Table 5.23: The Ship Crane Components Risk Values…..................................................125 

Table 5.24: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.1…...126 

Table 5.25: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.1....

        ...................................................................................................................... 125 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xv 
 

Table 5.26: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.1….........126 

Table 5.27: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.1…126 

Table 5.28: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.2…...127 

Table 5.29: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.2.... 

        ...................................................................................................................... 127 

Table 5.30: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.2….........127 

Table 5.31: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.2…127 

Table 5.32: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.3…...127  

Table 5.33: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.3.... 

       .......................................................................................................................128  

Table 5.34: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.3….........128 

Table 5.35: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.3…128 

Table 5.36: The Maximum Value Associated with the Same Category of Linguistic Priority 

                   Terms for Decrement of Port Crane Bearing Grease Sample Elements….....129 

Table 5.37: The Maximum Value Associated with the Same Category of Linguistic Priority 

                   Terms for Decrement of Starboard Crane Bearing Grease Sample Elements.... 

          ....................................................................................................................129 

Table 5.38: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Decrement of Port Crane Gearbox Oil Sample Elements…………129 

Table 5.39: The Maximum Value Associated with the Same Category of Linguistic Priority 

                 Terms for Decrement of Starboard Crane Gearbox Oil Sample Elements…129 

Table 5.40: The Set of Fuzzy Conclusions of the Ship’s Crane from Decrement values…129 

Table 5.41: Risk Values from the Decremented Set of Fuzzy Conclusions………………130 

Table 5.42: Using Two Elements for Decrement of Port Crane Bearing by 0.3……………130 

Table 5.43: The Minimum Value of each Combination for Port Crane Bearing……………131 

Table 5.44: The Maximum Value Associated with the same Category of Linguistic Priority 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xvi 
 

        Terms for Port Crane Bearing….....................................................................132 

Table 6.1: Fuzzy Linguistic Scale for Alternative Rating……………………………………141 

Table 6.2: Classification of Experts……………………………………………………………141 

Table 6.3: Criteria for Maintenance Strategy Selection…..................................................148 

Table 6.4: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 1.          

      ........................................................................................................................148 

Table 6.5: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 2.     

      ........................................................................................................................149 

Table 6.6: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 3.   

      ........................................................................................................................149 

Table 6.7: Selected Experts and their Assigned Degree of Competency………………….149 

Table 6.8: Weights of Criteria…........................................................................................150 

Table 6.9: Decision Alternatives and Evaluation Criteria...................................................150 

Table 6.10: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 1…..........151 

Table 6.11: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 2…..........151 

Table 6.12: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 3…..........151 

Table 6.13: Aggregation Calculation for Reliability with Respect to RTFM…....................151 

Table 6.14a: Aggregation Results of Criteria Ratings with Respect to Alternatives...........152 

Table 6.14b: Aggregation Results of Criteria Ratings with Respect to Alternatives...........152 

Table 6.15: Transformation of the Fuzzy Numbers into Crips Values................................152 

Table 6.16: Fuzzy-TOPSIS Decision Matrix…..................................................................153 

Table 6.17: Normalised Decision Matrix………………………………………………………153 

Table 6.18: Weighted Normalized Decision Matrix………………………………………….154  

Table 6.19: Representation of FPIRP and FNIRP Values………………………………….154 

Table 6.20: Distance of each Alternative to the FPIRP and FNIRP…………………………154 

Table 6.21: CC Results and Ranking Order of the Maintenance Strategies……………….155 

Table 6.22: Results of Fuzzy TOPSIS Analysis………………………………………………155 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xvii 
 

Table 6.23: Conditions for Changing Input Values by Percentages…...............................157 

Table 6.24: Fuzzy-TOPSIS Decision Matrix when Criteria are changed by 10%...............157 

Table 6.25: Normalised Decision Matrix when Criteria Values are changed…..................157 

Table 6.26: Weighted Normalised Decision Matrix when Criteria are changed….............157 

Table 6.27: Sensitivity Analysis Results………………………………………………………157 

 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

xviii 
 

Abbreviations 

 

AHP    Analytical Hierarchy Process 

AIS    Automatic Identification System 

ASTM   American Society for Testing and Materials 

BDM    Belief Degree Matrix 

BN   Bayesian Network 

BPN   Bayesian Probability Network 

CBM   Condition Based Maintenance 

CM   Condition Monitoring 

CMA   Condition Monitoring Approach 

COC   Certificate of Competency 

CR   Consistency Ratio 

CRS   Crane Reliability Survey 

DM    Decision Maker 

DMP   Data Mining Process 

DRGW   Denver, Rio Grande and Western Railway 

D-S    Dempster-Shafer 

ECM   Effective Centred Maintenance 

ELECTRE  Elimination and Choice Expressing Reality 

EMM   Effective Maintenance Modelling 

ER    Evidential Reasoning 

FAHP    Fuzzy Analytical Hierarchy Processing 

FER   Fuzzy Evidential Reasoning 

FER-SAM   Fuzzy Evidential Reasoning Sensitivity Analysis Model 

FL   Fuzzy Logic 

FMADM   Fuzzy Multiple Attribute Decision Making 

FMECA   Failure Mode, Effects and Criticality Analysis 

FNIS    Fuzzy Negative Ideal Solution 

FPIS    Fuzzy Positive Ideal Solution 

FPSO   Floating Production Storage and Offloading 

FRB    Fuzzy Rule Base 

FRB-SAM  Fuzzy Rule Base Sensitivity Analysis Model 

FRA    Fuzzy Risk Assessment 

FSA   Formal Safety Assessment 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

xix 
 

FSM   Fuzzy Set Modelling 

FST    Fuzzy Set Theory 

FTOPSIS  Fuzzy Technique for Order Preference by Similarity to Ideal  

   Solution 

GMM   Geometric Mean Method 

HAZOPs   Hazard and Operability Studies 

IMO   International Maritime Organisation 

ISIC   International Standard Industrial Classification 

ISO   International Organisation for Standardization 

MADM   Multiple Attribute Decision Making 

MAGDM  Multiple Attribute Group Decision Making 

MAIB   Marine Accident Investigation Branch 

MCDA   Multiple Criteria Decision Analysis 

MCDM   Multiple Criteria Decision Making 

MFs    Membership Functions 

MMIS   Maintenance Management Information System 

NACE Statistical Classification of Economic Activities in the European 

Community 

NIRP Negative Ideal Reference Point 

PLB   Predictive Logic Box 

PIRP   Positive Ideal Reference Point 

PM   Preventive Maintenance 

PMS   Planned Maintenance System 

PRA    Probabilistic Risk Assessment 

PROMETHEE  Preference Ranking Organisation Method for Enriching Evaluation 

QDT   Quantitative Data Transformation 

QRA    Quantitative Risk Assessment or Qualitative Risk Assessment 

QSMS   Quality and Safety Management System 

RCM   Reliability Centred Maintenance 

SCR   Ship Crane Reliability 

STCW   Standards of Training, Certifications & Watch-keeping 

TFN    Triangular Fuzzy Number 

TOPSIS   Technique for Order Preference by Similarity to Ideal Solution 

TPM   Total Productive Maintenance 

WAM   Weighted Arithmetic Mean 

ZFN    Trapezoidal Fuzzy Number



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

1 
 

Chapter 1 

Introduction 

Summary 

This chapter introduces the background of the research, and in doing so highlights the 

problems faced by monitoring the condition of marine and offshore machinery operating in 

an uncertain environment. The research objectives and hypothesis are also highlighted. 

They set out a logical platform aimed at addressing the outlined problems. There is an ever-

increasing need for improving efficiency, reducing costs and increasing safety and reliability, 

each intrinsically linked with one another. The main research methodology is briefly 

described along with the scope and structure of the research. 

1.1 Research Background  

The marine and offshore industry today exists in a competitive market, which is a complex 

entity to examine for several reasons. Firstly, the industry has no nomenclature of economic 

activities (NACE) code, which therefore makes it difficult to define the sector (Olesen, 2016). 

NACE is the European statistical classification of economic activities which groups 

organizations according to their business activities. Statistics produced based on NACE are 

comparable at European level and, in general, at world level, in line with the United Nations' 

International Standard Industrial Classification (ISIC). Secondly, the industry consists of a 

multitude of different markets with different value chains. For example, the turbine 

installation company operates in a market that is very different from the market of the pump 

manufacturer or the supplier of safety equipment, although they are all part of the marine 

and offshore sector. Thirdly, the importance of the marine and offshore sector varies 

between the different actors. For instance, the drilling contractor is totally dependent on the 

offshore sector, but for the pump manufacturer, however, the offshore sector may only 

account for a smaller part of the total turnover. 

Marine and offshore machinery are susceptible to diverse failures in their challenging field 

of operations due to their interactions and interdependence often associated with a high 

level of uncertainty. The alarming increase in cost, maintenance complications, and their 

effect on operation has prompted a need for effective maintenance planning, management 

and supervision of the maintenance process.  
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The maintenance of marine and offshore machinery increasingly involves a large number 

of engineering services and supplier companies. Thus, there is strong competition among 

suppliers to provide the best services to the operators. In order for services and supplier 

companies to win contracts, they must be able to quickly react to manufacturers’ 

requirements and provide high quality and innovative solutions in a timely manner. It is also 

essential for them to develop and deliver planned maintenance systems as efficiently as 

possible. 

Maintenance is an integral part of the marine and offshore industry, with a successful 

maintenance strategy delivering improvements to a company through increased 

productivity and efficiency whilst reducing the associated costs. The main aim of 

maintenance is threefold. Firstly, the equipment or system must have the highest possible 

reliability. Secondly, the downtime of equipment must be minimal. Thirdly, maintenance 

costs should be minimised (Bousdekis et al., 2016). As alluded by Bengtsson and Kurdve 

(2016), the total cost of maintenance is extremely difficult to calculate because of the 

number of factors which are affected when a machine or a piece of equipment fails. Typical 

factors may include: disruption to productivity, loss of productivity, downtime of failed 

equipment, quality of a product, inefficient use of personnel, repair time and repair costs. It 

is therefore essential to have an effective maintenance strategy in place in order to remain 

competitive.  

Effective maintenance modelling (EMM) can deliver greater efficiency in the form of 

reductions in downtime of equipment, optimisation of inspection intervals, and reduced 

downtime for inspections, with each improvement bringing about its own reductions in costs 

to the business. EMM provides an informed and cost-effective basis to assist firms in 

decision-making and a means to keep system performance at a desired level. As such, 

research on maintenance modelling has attracted considerable attention. However, in the 

case of a company producing a product which is considered harmful to the environment, 

should failure take place, the prevention of failures becomes vital to the company. However, 

the inspection interval is often devised through subjective means (i.e. discussions with 

maintenance personnel). Andrews and Moss (2002) claim that maintenance is often 

performed for years without consideration to costs relating to inspection, breakdowns or 

downtime of equipment. Meanwhile, the advanced tools and techniques, which may be 

used for streamlining, updating and assessing current methods, are either unknown or 

inefficiently applied to a maintenance department. This may be down to a lack of knowledge, 

insufficient time allowed to study problems or situations, failure to understand modern 

techniques available, or limited knowledge within the company. 
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There are several maintenance concepts and tools that enable equipment, machines or 

processes to be maintained in a cost effective manner whilst minimising downtime and 

maximising reliability. Such concepts and tools include Reliability Centred Maintenance 

(RCM) (Tang et al., 2016), Preventative Maintenance (PM), Condition-Based Maintenance 

(CBM) or Predictive Maintenance, and Total Productive Maintenance (TPM) (Borris, 2006). 

However, they must be utilised in an effective manner, and often, adopting several of these 

methods in combination helps to achieve cost effective results (Pillay and Wang, 2003).  

Toms and Toms (2008) claim that the increasing corporate support and improved analytical 

procedures have paved the way for condition-based maintenance (CBM) which became 

predominant in the railway industry during the 1980s. However, this is not the case in the 

maritime industry as CBM is still a subject of debate in certain areas of maritime operations 

due to its inability to meet operators' satisfactions. Mills (2012) defines CBM as a 

maintenance strategy whereby symptoms and parameters are measured to detect and 

monitor potential faults. CBM enables maintenance to be carried out only when it is 

indicated to be necessary, rather than at fixed intervals. It is also known as predictive 

maintenance or condition monitoring, and it is covered in a range of ISO Standards. 

Condition monitoring techniques include: 

 Vibration Monitoring 

 Infra-red Thermography 

 Acoustic Emission 

 Ultrasonic 

 Tribology and Lubrication (Oil Condition Monitoring) 

 
Applying modelling techniques such as evidential reasoning (ER) (Liu et al., 2015), (Zhang 

et al., 2015), (Dymova and Sevastjanov, 2014), (Liu et al., 2011), (Xu and Yang, 2005) and 

rule-base (Ramezani and Memariani, 2011), (Liu et al., 2005) to complex systems can be 

valuable. These techniques, given certain parameters, can establish an inspection interval 

based on minimising downtime or reducing inspection costs. There are several examples 

for applying planned maintenance strategies in machinery components such as bearing in 

pumps (Woodard and Wolka, 2011), slewing bearing in ship cranes (Rezmireş et al., 2010), 

(LYC, 2006), gearboxes in domestic wastewater pumps (Tiffany, 2014), winches on fishing 

vessels (Pillay and Wang, 2003a) and hydraulic systems in rotary drilling machines 

(Rahimdel et al., 2013). At present though, no research has been carried out applying such 

modelling techniques to an environmentally hazardous industry, taking into account trend 

analysis, family analysis, human reliability analysis, design analysis, and environmental 

impact analysis should failure occur. 
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1.2 Statement of Problem  

Most of the planned maintenance systems available fail to measure the reliability of the 

machinery with respect to trend analysis, family analysis, design analysis, environmental 

analysis, and the human errors common in marine and offshore operations. The challenge 

of this research is to extract the required information, from objective and subjective sources, 

in order to produce an effective planned maintenance methodology. The process of 

gathering data, the use of existing data or reliance on expert judgement has shown to be a 

troublesome process in terms of accuracy (Black et al., 2003), (Pillay and Wang, 2003b).  

The gathering of objective data in order to apply a modelling technique can be difficult, as 

it generally requires many months or even years to attain sufficient data (Aggarwal, 2015). 

The use of subjective data gathered from expert judgement can often come in a form which 

requires standardisation with existing data in order to establish consistency of data and 

ensure confidence in the modelling results. The combination of both objective and 

subjective data requires elicitation in order to establish the data, which is required to apply 

advanced modelling techniques to a marine and offshore company’s maintenance 

management programme. 

The risk of major failures in marine and offshore machinery is an area that is not thoroughly 

described in academic literature, and it is clear that complexity of the machinery stems from 

the interaction of their dependencies and the high levels of uncertainty in their operations. 

Moreover, complexity in the system often results in lack of visibility to monitor the safety 

performance of operations, as the analysts may have no detailed knowledge about the other 

part of the system. As a result of this, the analyst is unable to understand the optimisation 

measures required to enable the machinery to cope with unforeseen extortions and 

hazards, and maintain functionality of their operations to an acceptable level of 

performance. 

Obviously, uncertainty associated with the marine and offshore machinery’s operations 

makes it extremely difficult to clearly identify the vulnerability of the machinery in order to 

assess their risks. The interactive dependence of the machinery could significantly reduce 

the effectiveness of any maintenance strategies. However, in order to achieve reasonable 

safety and reliability, maintain cost-effectiveness and stay competitive, risk dependence of 

the machinery has to be accounted for when carrying out a collaborative modelling of the 

planned maintenance system for machinery management. 
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1.3 Research Aim and Objectives 

The primary aim of this research is to propose a risk-based and decision-based planned 

maintenance methodology capable of delivering a maintenance strategy in the marine and 

offshore industry, to enable operators to move from current maintenance programme to a 

more efficient condition-based maintenance platform. This will lead to the enhancement of 

safety and sustainability of the marine and offshore machinery and transportation systems. 

The modelling of an advanced decision-based framework is a vital part of this thesis as it 

sets the foundation of the whole project. The planned maintenance methodology will serve 

to establish inspection intervals based on reducing downtime, reducing costs or 

understanding the risks relating to trend analysis, family analysis, design analysis, human 

reliability analysis and environmental analysis. In order to achieve this aim, this thesis 

outlines five objectives:  

1. Investigation into the machinery and available planned maintenance programmes in 

the marine and offshore industries to identify key machinery system uncertainties 

and model failure risks associated with their operations. 

2. Development of an integrated condition monitoring methodology to predict the 

condition of marine and offshore machinery operating under highly uncertain 

environment. This will be achieved in Chapter 4 utilising fuzzy set theory with 

evidential reasoning and analytical hierarchy process algorithms. 

3. Development of a novel risk assessment model capable of predicting the risk levels 

of machinery components based on their laboratory oil sampling reports. This will 

achieved in Chapter 5 using the concept of belief degree and fuzzy rule-based 

theory. 

4. Application of a multiple-attribute, group decision-making (MAGDM) model to select 

the best maintenance strategy for marine and offshore machinery. This will be 

achieved in Chapter 6 using based on a fuzzy techniques for order preference by 

similarity to ideal situation (FTOPSIS). 

5. Discussion of the results and provision of partial validations of the risk assessment 

and decision-making models through the use of case studies with sensitivity 

analysis, in order to demonstrated a reasonable level of confidence in the results. 

This will be achieved in Chapters 4, 5 and 6. 

The objectives are set out in order to achieve the aim of the research. The hypothesis is 

that it is possible to develop a maintenance and inspection strategy capable of tackling a 

variety of circumstances found in industry, with special consideration placed on machinery 
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operating under a highly uncertain environment. This hypothesis must utilise historical data, 

available data and expert judgement using risk-based tools and techniques. 

The test of the hypothesis relies on the application of the widely used uncertainty treatment 

methods such as the evidential reasoning, fuzzy logic, fuzzy rule base and TOPSIS. These 

methods can serve as the basic building blocks, as well as making a significant contribution 

to the development of a novel and advanced expert system, and decision-making models 

for condition monitoring of marine and offshore machinery. 

1.4 Research Data Mining 

Primary data: 

- Test results from the industry laboratories 

- Historic data from reputable oil companies 

- Surveys from industry experts 

Secondary data: 

- Information from documents 

- Published journals/reports 

- Conference papers 

1.5 Marine and Offshore Machinery Investments 

A large-scale infrastructure project such as a ship in maritime transport or a floating 

production, storage and offloading in offshore investments affects the economic prosperity 

of nations across the globe. The design and construction of machinery systems for marine 

and offshore infrastructures inevitably involves a high degree of uncertainty. Figure 1.1 

shows a $12bn Shell Prelude floating liquefied natural gas plant, and a Statoil's Oseberg 

offshore oil and gas field platform in the North Sea - typical marine and offshore investments 

with hundreds of machinery that need to be monitored and maintain for operational safety 

and reliability. 

Figure 1.1: Typical Marine & Offshore Investments 
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Sources:https://www.theaustralian.com.au/news/bn-prelude-floating-plant-has-shell-fired-for-lng/news-

story/ac91ce9c044be11681a5c6da79ddd057?sv=742721929c7b12b4cb3cbf2042fd9dbe 

http://www.esa.int/spaceinimages/Images/2013/11/Offshore_platform 

1.6 Researcher’s Background 

The researcher have sound knowledge in modelling and simulation of marine and offshore 

machinery, maintenance and reliability of engineering systems, and with considerable 

working experience in both marine and oil & gas industries. He holds National and Higher 

diplomas in marine engineering, first and master’s degrees in “mechanical & marine” and 

“marine and offshore” engineering respectively. Currently working with Shell as services 

development & deployment engineer where he gains extensive insight into design, built, 

development and deployment of Shell LubeAnalyst planned maintenance platform based 

on oil condition monitoring plus the integration of other Shell customer value proposition, 

which are related to his research area. The researcher's education, and work experience 

provide a strong evidence of his knowledge in the research area. 

 

 

https://www.theaustralian.com.au/news/bn-prelude-floating-plant-has-shell-fired-for-lng/news-story/ac91ce9c044be11681a5c6da79ddd057?sv=742721929c7b12b4cb3cbf2042fd9dbe
https://www.theaustralian.com.au/news/bn-prelude-floating-plant-has-shell-fired-for-lng/news-story/ac91ce9c044be11681a5c6da79ddd057?sv=742721929c7b12b4cb3cbf2042fd9dbe
http://www.esa.int/spaceinimages/Images/2013/11/Offshore_platform
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Chapter 2 

Literature Review 

Summary 

This chapter reviews the relevant literature that has influenced this research. The literature 

review reveals the contribution that this research makes to the marine and offshore 

industries. By doing this, it provides insights into the structure of the research, articulates 

ideas from other authors in a flexible manner as well as ensures that the research is 

independent and original in structure and composition. The work focuses on published 

studies regarding planned maintenance, condition (predictive) based maintenance, 

reliability centred maintenance, oil condition monitoring, and oil analysis. It then generates 

a further understanding within the subject area of study. This serves to position the research 

into the context of what is already known and what knowledge gaps exist. Finally, a 

framework emerges for further research of originality that avoids unnecessary repetition of 

existing research (Blaxter et al., 1996).  

Relevant journals, magazines, textbooks, and conference papers are extensively reviewed. 

A number of studies from other relevant conference and journal articles, books and websites 

are sourced to provide a solid background for the proposed research. Collaborations are 

also made with experts using existing planned maintenance systems, researchers, lubricant 

laboratories and industries in the proposed subject to ensure that relevant data/information 

is tracked and monitored for the purpose of this research.

2.1 Introduction 

Accidents have underpinned the need for practical and efficient condition monitoring of the 

machinery aboard ships. Engine failure, for example, in Savannah Express led to her 

subsequent contact with a link-span at Southampton docks in July 2005, and machinery 

breakdown and subsequent fire on-board Maersk Doha in October 2006 (MAIB, 2010). Due 

to economic needs, high safety, reliability, the need for their efficient operations in the face 

of disruption and adverse sea conditions, there is a strong desire for these machinery to be 

closely monitored, maintained and operated in such a manner that they can recover from 

design and human errors with little losses and less susceptible to breakdown.  
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This and many other reasons highlighted in the literature indicate a key factor that will 

ensure and assure the safety and continuity of operations of these machinery in the face of 

severe and catastrophic failure. When critical machinery such as cranes, main engines, 

etc., do not have the robustness to recover in the face of failure, the entire ship operations 

can be disrupted and delayed. Given that approximately 90% of the world’s trade is 

transported by sea (IMO, 2006), the global economy is heavily dependent on the effective 

operation of marine and offshore machinery. Due to an increasing high level of systemic 

complexity, disruptions within their operation can be catastrophic and have long-term 

negative consequences.  

Building an efficient planned maintenance system for machinery is thus crucial. To fulfil this 

requirement there must be a sustained engagement from the stakeholders involved in 

marine and offshore operations. Academics and industrialists have long acknowledged that 

purposeful maintenance can reduce catastrophic marine failures as it reaches a point of 

diminishing returns. Optimising the machinery’s performance capability would require the 

establishment/adoption of a culture of a systematic maintenance in order to bring and 

maintain its operations to a desired level of functionality. By developing an effective 

maintenance framework for marine and offshore machinery operating under a highly 

uncertain environment, it provides a flexible and collaborative modelling of efficient planned 

maintenance system to address the risks of failure proactively, particularly as new 

machinery designs are constantly emerging. 

2.2 An Overview of Marine and Offshore Industry  

The marine and offshore industry operates in harsh environments, including a varying range 

of air and water temperatures, high-pressure conditions, salt water, and sea roughness. 

The complexity of marine and offshore machinery can be constructed (theorised) by 

components, and interacting functional connections with diverse and specific tasks in 

different conditions of operations. This constantly increasing complexity claims a constant 

improvement in ship powering, automation, specialisation in cargo transport, and new ship 

types. A well-planned effort is paramount to make the sea transport safer and more yielding. 

Therefore, the criteria of reliability, availability and maintainability have become very 

important factors in the process of marine and offshore machinery design, operation and 

maintenance.  

Today’s competitive market drives marine and offshore companies to improve quality, 

product variety, availability, and productivity whilst constantly reducing operations costs. 

Moreover, competition, which is intensified by technological innovations and a continuously 

changing market, creates opportunities for marine and offshore operators to examine every 
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function of their business that is connerstoned by the maintenance of their machinery to 

achieve a competitive advantage (Pintelon et al., 2006). The integration of the maintenance 

function with other operation functions would mean that a management system is needed 

to deal with reliability, availability and maintainability issues (Moubray, 2003). 

2.3 An Overview of Maintenance Concepts and Practices  

Maintenance is defined as ensuring that a facility, equipment or other physical asset 

continues to perform its intended functions (ABS, 2016). The ultimate goal of maintenance 

is to ensure the reliability of equipment, machines or processes so that they meet the 

business needs of the company. When maintenance is correctly developed and managed, 

it serves to preserve a company's assets to meet the need for reliability at an optimal cost. 

The importance of maintenance lies in its indispensable function in marine and offshore 

operations. The total cost of maintenance is extremely difficult to calculate because of the 

number of factors affected by the breakdown of a machine. Ashayeri et al. (1996) ascertain 

that these factors include: 

 Disruption to operation. 

 Downtime of failed equipment. 

 Downtime due to inspection. 

 Inefficient use of personnel. 

 Repair time. 

 Costs associated with all of the above. 

Given these factors, the importance of maintenance should not be underestimated, as it is 

one of the areas that contribute heavily to marine and offshore machinery operations. Not 

only can effective maintenance extend the life of the machinery, but it can also improve 

marine and offshore operations as a whole. Anderson and Neri (1990) believe that 

successful maintenance policies help in reducing machinery downtime, improving quality 

and increasing productivity. Maintenance may be broken down into two main categories: 

reactive and proactive (Fredriksson and Larsson, 2012), which all the four widely known 

maintenance strategies (run-to-failure maintenance, preventive maintenance, condition-

based maintenance, and reliability centred maintenance) fall into. Reactive maintenance 

responds to an identified need, for example, a breakdown of a machine or equipment. This 

maintenance approach (which is also referred to as the run-to-failure maintenance strategy) 

relies on the speed of the maintenance department to respond and react to be effective. 

The overall goal of reactive maintenance is to reduce response times and reduce equipment 

downtime. Proactive maintenance (which covers the preventive maintenance and condition-

based maintenance strategies) according to Fredriksson and Larsson (2012) is primarily 
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concerned with stabilising machines or equipment, and relies on the detailed assessment 

of equipment.  

2.3.1  Run-To-Failure Maintenance (RTFM) Strategy 

Run-to-failure maintenance is basically the “run it till it breaks” maintenance approach. It is 

also known as reactive maintenance (Sullivan et al., 2010) or corrective maintenance (Toms 

and Toms, 2008). In this type of maintenance approach, no actions or efforts are taken to 

maintain the equipment, as the designer originally anticipated the use of the equipment until 

the design life is reached. However, Toms and Toms (2008) believe that this type of 

maintenance is the action of affecting repairs when some part breaks down or ceases to 

function properly. 

Advantages 

 Low equipment capital cost. 

 Low operational safety issues. 

 Fewer staff required. 

 High equipment life cycle reliability. 

Disadvantages 

 Increases costs due to unplanned downtime of equipment. 

 Increases labour costs, especially if overtime is needed. 

 Costs involved with repair or replacement of equipment. 

 Possible secondary equipment or process damage from equipment failure. 

 Inefficient use of staff resources. 

2.3.2 Preventive Maintenance (PM) Strategy  

Preventive maintenance can be defined as an action performed on a time or machine-run-

based schedule that detects, prevents, or mitigates degradation of a component or system, 

with the aim of sustaining or extending its useful life through controlling degradation to an 

acceptable level (Sullivan et al., 2010). It is a periodic component replacement. According 

to Pillay and Wang (2003b), preventive maintenance (PM) is a maintenance strategy that 

is performed before equipment failure takes place. This method is often used in industry 

with routine inspections at set intervals.  

Preventive maintenance is not the optimum maintenance program, but it does have several 

advantages over that of a purely reactive program. By performing the preventive 

maintenance as the equipment designer projected, the life of the equipment can be 
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extended nearer to design. Preventive maintenance that involves lubrication, a filter change, 

etc. will generally ensure the efficient running of the equipment and will result in cost 

savings. While catastrophic equipment failures cannot be prevented, the number of failures 

can be decreased. Thus, minimizing failures can translate into maintenance and capital cost 

savings. 

Advantages 

 Increases equipment availability. 

 Increases operational safety. 

 Reduces unscheduled downtime. 

 Improves workload distribution for easy management of maintenance. 

Disadvantages 

 Labour intensive and requirement of sufficient resources. 

 Includes performance of unneeded maintenance. 

 Unscheduled downtime not completely eliminated. 

 High cost of equipment maintenance. 

2.3.3 Condition-Based Maintenance (CBM) Strategy 

Condition-based maintenance is a type of maintenance used in determining the optimum 

time at which to perform specific maintenance by monitoring the operation and condition of 

each component in a given application (Toms and Toms, 2008). According to Sullivan et al. 

(2010), CBM is also known as “Predictive Maintenance”, and can be described as an 

attempt to refine maintenance activities to only those times when they are functionally 

necessary, based on data collection, analysis, and (negative) trend determination from an 

established “healthy” base level. Condition-based maintenance is best used in situations 

where equipment is critical to operations and the appropriate monitoring system is reliable 

and economical. Condition-based maintenance uses non-intrusive testing techniques such 

as sensors, visual inspections or performance data in order to assess the condition of the 

equipment. Continual feedback of the condition of the equipment allows for the planning 

and scheduling or repairs before failure occurs (Sullivan et al., 2010). The data collected in 

condition-based maintenance can be used in one of several ways in order to identify the 

causes of failure or simply the condition of the equipment: 

 Pattern recognition - this is about understanding the relationship between certain 

events and failure. 
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 Tests against limits and ranges - alarms could be set at upper or lower limits to 

inform when a certain aspect of equipment moves outside the limits (Sherwin and 

Al-Najjar, 1999). 

 Statistical process analysis - if there is published failure data on a component or 

system, a comparison of the failure data that has been collected on site with the 

published data can be useful to verify or disprove that the published data can be 

used for the analysis of a component or system (Arthur, 2005). 

 

Advantages  

 Increases equipment operational life/availability. 

 Decreases in equipment or process downtime. 

 Better product quality. 

 Improves worker and environmental safety. 

 Improves worker morale. 

 Reduces maintenance running hours. 

 Shortens repair times. 

 Reduces spare parts requirements; therefore, decrease in costs for parts and 

labour. 

 
Disadvantages  

 Increases investment in diagnostic equipment. 

 Increases investment in staff training. 

 Savings potential not readily seen by management. 

2.3.4 Reliability-Centred Maintenance (RCM) Strategy  

Reliability centred maintenance (RCM) is a systematic approach to evaluate a facility’s 

equipment and resources to a high degree of facility reliability and cost-effectiveness 

(Sullivan et al., 2010). The philosophy of RCM employs the three maintenance strategies 

mentioned above in an integrated manner to increase the probability that a piece of 

equipment / component will function as expected over its design life cycle with minimum 

maintenance. The goal of this philosophy is to provide the stated function of the facility, with 

the required reliability, and at the lowest cost. One of the prerequisites of RCM is that 

maintenance decisions be based on maintenance requirements supported by rigorous 

technical and economic justification. 

Advantages  



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

17 
 

 Can be the most efficient maintenance program. 

 Lowers costs by eliminating unnecessary maintenance or overhauls. 

 Minimises frequency of overhauls. 

 Reduces probability of sudden equipment failures. 

 Able to focus maintenance activities on critical components. 

 Increases component reliability. 

 Improves feedback to other organisations.  

Disadvantages 

 Can have significant start-up cost, training, equipment, etc. 

 Savings potential not readily seen by management. 

2.4 Current Status of Maintenance Management in the Marine and Offshore 

Industry  

The marine and offshore industry by its unique nature and historical regulatory perspective 

has developed into an industry that is controlled by compliance. The vast majority of ships 

are built and operated to a minimum standard. However, according to Shorten (2012), less 

than 17% of world-class ships operate with an approved planned maintenance system, and 

the reason for this is not yet clear but may be entrenched by a power shift where control 

has moved away from the ship towards the office. Maintenance engineering and 

maintenance management are becoming more and more vital to the success of any ship 

operator. This is due to the high capital costs of machines and equipment as well as their 

high maintenance costs. Maintenance however can often be applied in a haphazard way, 

with poor integration of various maintenance techniques.  

Often a company will implement one or more of the best known maintenance techniques 

such as RCM and CBM without inter-links to maintenance philosophy and even to their own 

business. In many companies, PM tasks can be perceived as unnecessary because they 

seem to be having little impact on machinery operations. Conversely, PM can also be over 

utilised, in the sense that PM activities are performed more frequently than is actually 

needed. While each of these will certainly contribute to the success of the maintenance 

department, the way in which they are introduced can often lead to future problems 

(Coetzee, 1999). As a result, maintenance planning in the marine and offshore industry 

today faces many challenges.  

With the advancement of data collection techniques available to most marine and offshore 

companies, improvements in accuracy of failure data, diagnosis and prediction can be 
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realised. The data collection process is attained using a maintenance management 

information system. The MMIS collects, processes, and transmits maintenance information, 

to be used by the maintenance personnel, managers, and those who need to make 

decisions, which may affect machinery operation and performance. Many organisations, 

however, have implemented the MMIS with different levels of success (Labib, 1998). 

Successful implementation of such a system depends on both the planning strategy of the 

company and the maintenance practice adopted.  

Maintenance departments in the marine and offshore industry often utilise a general PM 

strategy with the integration of other maintenance philosophies. This maintenance 

approach is then fine-tuned to suit each individual company. This method has the potential 

to create problems such as establishing a root cause when a problem arises due to the 

multiple encrusted maintenance strategy. Implementation of new machines or equipment 

may also create problems, as the existing maintenance strategy has to cope with this 

change. Thus, Shorten (2012) recommends the use of a more specific and targeted method, 

which is to perform a formal consultative review of the current situation based upon a wider 

and less process-based analysis using industry experts who have first-hand experience of 

the difficulties faced in the application of efficient maintenance management practices. 

2.5 Dealing with Uncertainty in Marine and Offshore Machinery Design and 

Operation  

The main issue discussed in literature when designing machinery for operation in marine 

and offshore environment is about how to deal with uncertainties and unpredictable events 

that lead to the machinery’s failure. This is because when such machinery does not have 

the robustness to recover in the face of failures, it poses a high level of risk to the entire 

marine operation. A more realistic way to optimise the machinery’s capability is to 

incorporate planned maintenance culture into its operations to adapt to, cope with and 

recover to a desired level of functionality. Nevertheless, an emphasis on machinery 

maintenance provides a flexible and collaborative modelling of planned maintenance 

framework to address many risks of machinery failures proactively, particularly as new 

hazards and threats are constantly evolving. 

Uncertainties are things that are not known or imprecisely known. Based on expert opinions, 

the lack of consideration of uncertainty in the design of marine machinery systems has led 

to unclear goals in their development with often no clarity in the short and long-term vision 

of the machinery operation, resulting in conflicting performance criteria. According to 

Daalhuizen et al. (2009), uncertainty is a fundamental element in machinery design because 

designers are often unable to predict the design process, and as a result, they may have to 
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rely on the knowledge of the previous processes that led to the successful designs. Thus, 

uncertainties which are associated with complexity, multi-disciplinary issues, and outcomes 

that are unforeseeable in the early phase of the marine and offshore machinery operations 

are to be dealt with while working on the machinery design. 

These and many more reasons necessitate a holistic approach towards marine and offshore 

machinery design and operation in order to optimise its efficiency. In response to the 

aforementioned challenges and in order to reduce or eliminate the effect of disruptions on 

marine and offshore operations, decision-makers are left with the task of implementing risk 

management programmes to address various concerns impacting on their operations. 

Several methods such as quantitative risk assessment, which has been used in the 

process/oil and gas industry (Delvosalle et al., 2006), and formal safety assessment (FSA), 

used in the maritime industry to describe a rational and systematic risk-based approach for 

safety assessment (Wang and Trbojevic, 2007), (Pillay and Wang, 2003b), have evolved to 

address the particular need of stakeholders in a variety of ways.  

Although FSA for maritime application is criticized by many researchers, Kontovas and 

Psaraftis (2009) affirm that the approach presents a great opportunity for relating safety and 

reliability engineering to maritime risk assessment for a better understanding of the 

machinery vulnerabilities in a very simplified manner. Risk analysis and strategic 

maintenance planning of marine and offshore machinery are treated as independent 

activities and implemented in different time frames. Little scope is left to incorporate 

flexibility into the front-end operations of the systems to anticipate, cope with and adapt to 

the ever-changing and dynamic environment. Patelli et al. (2015) claim that the aspect of 

managing the uncertainty in multi-disciplinary design of critical systems requires not only 

the availability of a single approach or methodology to deal with uncertainty, but it also 

requires a set of different strategies and scalable computational tools. The lack of a coherent 

and integrated approach has led to many parallel initiatives being devised by designers, 

resulting in overlap or neglect of the core responsibilities with long-term financial 

consequences. For critical components in important machinery used in marine and offshore 

operations, a factor of safety may not be sufficient to account for uncertainties, thus, it is 

imperative to consider reliability. 

Risk composes of two elements, frequency and consequence. Risk is defined as the 

product of the frequency with which an event is anticipated to occur and the severity of the 

consequence of the event’s outcome (ABS, 2016). Risks according to Knight (2014) are 

“known unknowns” while uncertainties are “unknown unknowns”. Knight (2014) further 

argues that risk will not generate profit, but can be calculated using theoretical models, or 
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by calculating the observed frequency of events to deduce probabilities. Consequently, Zio 

and Pedroni (2012) claim that managing and treating uncertainty in risk assessment, 

maintenance management of complex systems is a major concern to analysts because the 

causes of uncertainty are diverse, and it occurs infrequently.  

For example, based on the machinery design knowledge and operational experiences and 

data familiarization, analysts can predict the risk of failures of the machinery components 

before they occur (i.e. known unknowns), but based on the underlines uncertainty, analysts 

are unable to predict the severity of this failure and the cost to the operations (i.e. unknown 

unknowns).  Besides, Knight (1921) further established that objective probability is the basis 

for risk, while subjective probability underlies uncertainty. Therefore, the deficiency of 

machinery risk assessment resulting from a lack of data or a high level of uncertainty should 

be compensated by the general valuation capacity of humans who are able to comprehend 

the essence of the subject matter in an unclear and imprecise situation. 

2.6  Machinery Oil/Grease Analysis  

In the early 1940s, Denver and Rio Grande Western Railway (DRGW) were the first to 

develop work in machinery oil analysis. But after the move from steam to diesel locomotives 

in the railway industry (Capasso et al., 2015), oil analysis became firmly established as a 

reliable machinery monitoring technique. This programme was then used to determine the 

running condition of locomotive diesel engines. Today, most naval shipboard and aviation 

equipment is monitored by oil analysis as a pre-emptive measure against unscheduled 

equipment malfunction (Toms and Toms, 2008). 

In today’s exploding computer and information age, oil analysis has evolved into a 

mandatory tool in the predictive maintenance arsenal. Therefore, the goal of an effective oil 

analysis programme is to increase the reliability and availability of the machinery while 

minimising maintenance costs associated with oil change, labour, repairs, and downtime. 

Toms (1998) claims that accomplishing this goal takes time, training, and patience, while 

Barrett (2004) ascertains that the results are dramatic and the documentation savings in 

cost avoidance are significant.  

Lube oil analysis is used extensively to help companies maintain their equipment, especially 

on-board ships following cases of accidents originated from machinery failures. While it is 

true that some failure mechanisms, such as misalignment, are better detected using 

vibration monitoring devices, most experts, including those that specialize in vibration 

analysis, recognize that oil analysis will generally detect active machine wear before 

vibration occurs for it to be detected by vibration monitoring device. Barnes (2008) is of 
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opinion that the combination of oil analysis for early detection coupled with the advanced 

diagnostic capabilities of vibration analysis make the benefits of these two techniques far 

greater when treated as teammates rather than opponents. 

The analysis of used lubricating grease has become a benchmark procedure as part of the 

UK Health and Safety Executive (HSE) guidelines on managing the safety of pedestal 

cranes, specifically in the offshore exploration and production industries. Considering the 

failure modes and the probability of such failures against the cost of performing the 

monitoring, the study found grease analysis to offer the most effective solution (Shorten, 

2001). 

The issue with grease analysis, however, is the veracity of the sample. The sample must 

be as representative as possible. A feature of grease analysis, as opposed to oil analysis, 

is that contaminants and wear debris are not uniformly distributed throughout the lubricant. 

This can lead to samples with huge variances in debris content. 

2.7 Oil Sampling 

The first step in any oil analysis program is obtaining oil sample. An oil sample is a major 

help in monitoring the quality of oil in a piece of machinery. The objective of sampling is to 

obtain a test specimen that is representative of the entire quantity. Thus, lab samples must 

be taken in accordance with the instructions in ASTM Practice D 4057. The specific 

sampling technique can affect the accuracy of this test method. Most lubricant condition 

monitoring services use an oil sample of only 100ml to represent a system that may hold 

hundreds or thousands of litres of oil. Regular sampling provides the information needed to 

continually maximize asset reliability and increase profits. However, this will only be 

achieved if every sample contributes to building an accurate history from which trends in 

wear, contamination, and degradation can be determined. 

2.7.1 Oil Sampling Kit 

Great care must be taken when using sampling kits to drawn off oil samples during transport 

at sea to ensure that the test results from the lab represent the state of the machinery. 

Figure 2.1 shows a typical oil sample kit that includes the following: 

 Reinforced tubing with quick coupling connectors. 

 Tubing with Luer Lock connection for syringes. 

 Adaptors (screws: G1/2“; G3/8“; G3/4“; G5/8“). 

 Screwing bottle cap with quick coupling connection. 

 Multi-functional gripper. 
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 Sample packing envelop 

 Sample submission label 

 Tubing for oil discharge with quick coupling connection. 

Figure 2.1: Oil Sampling Kit Box 

2.7.2 General instructions for Correct Oil Sampling 

 Ensure health and safety conditions by always taking particular care with high-

pressure piping and thermal systems and any sampling close to electrical 

equipment. 

 Ensure the quality of the sample is maintained by always taking the sample at the 

same point, in the same way and after the same amount of time. For example, if  

previously took the sample half an hour after the machine has been started, make 

sure that the next sample is taken half an hour after the start of the machine as well. 

 Sample a component while it is running (if it is safe to do so) or within 30 minutes 

after shutdown. Always keep in mind to refrain from sampling right after a large 

volume of oil has been added. 

 Always be sure to draw sufficient of the sample to fill the bottle. 80% full is a good 

level to aim for, as this will ensure that there is adequate sample to complete all 

tests and will ensure adequate ullage to allow sample agitation by the laboratory. 

 Avoid contamination of the sample by always taking the sample in the most hygienic 

conditions. In this way, contaminating the sample, which could lead to an incorrect 

analysis, can be avoided.  

 Always use the right sampling equipment and the bottles and make sure that they 

are clean. Clean the sampling kit immediately after use. After taking the samples, 

check to make sure that the bottles are tightly closed.  

 It is important that the gun/bottle assembly is kept upright while in use to prevent oil 

entering the gun. Should this occur, disassemble it immediately and flush thoroughly 

with white spirit or kerosene. Dry before reassembling. Note: Never flush the gun 

with petrol or decreasing fluid. 
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2.7.3 How to Take a Good Oil Sample 

1. Use a sample bottle; remove the cap and screw into the pump body. 

2. Using a new length of tube for each sample, push the tube through the top of the 

pump until it appears half way down the sample bottle. Make sure to tighten the 

thumbscrew to secure the tube. 

3. Place the end of the tube into the sampling point. 

4. Ensure that the sample bottle is vertical throughout the sampling operation and that 

it is not overfilled. 

5. Unscrew the bottle and immediately screw on the cap to avoid any contamination. 

6. Complete the sample label, send the sample, and sample label to the laboratory. 

 

Figure 2.2: Steps to Take Good Oil Sample 

2.7.4 Laboratory Oil/Grease Test Methods and Results 

Most oil analysis requires test methods and these test methods are not straightforward; 

thus, necessitate having regulations to be carefully follow (Fitch, 2016). The regulations 

from standards provided by ASTM, ISO or other comparable standardization organizations 

are commonly used by the laboratories. These test standards define the generally accepted 

procedure, the proper application of the test, the method’s repeatability or reproducibility, 

calibration requirements and other relevant data (ASTM D445, ASTM D5185, ISO/IEC 

17025, ISO 11500). For example, Iron (Fe) element in oil sample with a test result range 2 
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– 140 has a repeatability of 0.13 𝑋0.80 and reproducibility of 0.52 𝑋0.80, where 𝑋 = mean 

concentration, µg/g (ASTM D 5185, 2009). 

Tests performed during an oil analysis to find the particles floating in oil sample include an 

ICP Spectroscopy, Particle Count, Ferrous Density, FT-IR, and Analytical Ferrography. 

Elements found in oil sample are measured in parts per million (PPM) - a very small amount. 

A single PPM is equivalent to 0.0001%. To put that in perspective, it takes 10,000 PPM to 

equate to 1.0%. Concentrations seen in oil analysis reports will be from one to several 

hundred PPM. The following elements are commonly the cause of component wear: iron, 

chromium, aluminum, copper, lead, tin, nickel, antimony, silver, titanium, and manganese. 

2.8 Machinery Oil Condition Monitoring 

According to Toms and Toms (2008), oil condition monitoring is the assessment of oil failure 

modes through the monitoring of reliable condition indicators. Machinery condition 

monitoring based oil analysis is beginning to gain its momentum in the marine industry as 

it is now regarded as a vital maintenance practice. It is worth mentioning that an effective 

oil analysis programme will keep not only engines, but other important assets such as 

gearboxes, hydraulic systems, turbines, compressors, generators and every other oil-

wetted machinery, in operation by reducing unexpected failures and costly unscheduled 

down time.  

The machinery condition monitoring based on oil analysis has been in use in general 

industry for almost two decades, and has proved its effectiveness and sensitivity to faults, 

giving plenty of warning to allow for maintenance activities to be planned and carried out 

with minimum disruption to operations and limiting the opportunity for costly secondary 

damage to occur (Bannister, 2007). The machinery condition monitoring based on oil 

analysis is also well suited for routine marine use where it can put the power of condition-

based maintenance into the hands of every ship owner and offshore operator. 

Many experts, such as Courrech et al. (2014), Galloway (2014), and many others, have 

conducted research in this area. Given that the input data for determining the condition of 

the machinery are normally expressed in both quantitative and qualitative terms, decision 

makers may often carry out their judgements based on both quantitative data and 

experiential subjective assessments of the machinery. Consequently, a proposed 

methodology for monitoring the condition of the marine and offshore machinery should be 

capable of processing both quantitative and qualitative data. Figure 2.3 shows the generic 

machinery oil condition monitoring cycle. 
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Figure: 2.3: Machinery Oil Condition Monitoring Cycle 

 

2.9 Faces of Errors in Machinery Operation  

The analysis of error in complex sociotechnical systems’ operations is essential to the 

investigation of machinery failures. Errors are situations or events of high uncertainty that 

can lead to obstruction or impediment of a system’s normal operations by creating 

discontinuity, confusion, disorder or displacement of its functions in a dynamic environment 

(Madni, 2007). It is the state or condition of being wrong in conduct or judgement. These 

adverse situations can take a variety of forms such as operational contingencies, defects in 

design, and human mistakes. According to Whittingham (2004), two types of errors can 

occur in machinery: 

1) Internal error. 

2) External error. 

These types of errors must be evaluated in order to ensure that machinery cope with the 

adverse effect of disruption that may arise due to these errors. Thus, since disruptions are 

uncertain due to the nature of their occurrence, scenarios that lead to their occurrence may 

be defined probabilistically. 
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2.9.1 Internal (System Design) Error  

The advancement in technology has cause the demand of high accurate parts to become 

a conventional need in the marine and offshore industry. With this progress in technology, 

errors in machinery design still become the norm in many of the marine and offshore 

machinery. The errors in machinery design are often associated with knowledge-based 

tasks and it is open to speculation as to exactly what the designer was thinking at the time 

the error was made (Whittingham, 2004). 

2.9.2 External (Human) Error 

External error in machinery operation in this context involves mainly human errors. Human 

errors can occur in different forms and can be exhibited in immeasurable manners.  

In complex systems, such as vessels and commercial ships, the ability to understand and 

influence human behaviour is essential to ensure safety and reliability (Barbarini and de 

Andrade, 2010). Thus, as machinery systems are now becoming more complex, the 

difficulties of the human operator in managing the new technologies are exacerbated and 

the possibilities for machinery failure due to human error are increasing. Due to the growing 

imbalance between system reliability and human reliability, the need arose for methods of 

assessing the frequency or probability of a human error in the operation of technical 

systems. This need was supported by the developing science of ergonomics, which 

attempted to overcome the problem of human error by addressing how the design of the 

interface between human and machine could take more account of human capabilities and 

limitations (Whittingham, 2004). There are two basic approaches to the design of equipment 

from a human error point of view (Whittingham, 2004): 

1) The system-centred approach. Emphasis is placed upon the system rather than the 

human being. 

2) The user-centred approach. The system is matched as closely as possible to human 

capabilities and limitations. 

Regrettably, up until now, many machinery designers have not fully understood the need to 

adopt a user-centred approach and there are numerous examples of complex technological 

systems on-board ships that have been designed mainly with system functionality in mind, 

but ignoring the capabilities and limitations of the user (Whittingham, 2004). Such systems 

invariably will result in degraded levels of human performance with severe consequences 

for reliability, equipment availability and safety. Systemic sources of error cover human-

related elements, automated design systems and a combination of the two. It is worth 

mentioning that both human and design sources of errors can be referred to as agents of a 
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system and can be seen as a source by which to respond to and recover from errors (IAEA, 

2007 and 1991).  

2.10 Lessons from Major Accidents in the Marine and Offshore Industry  

This section describes a selected set of accidents within the marine and offshore industry 

where strengths and weaknesses are expressed in terms of either the robust attributes, 

personnel training and related concepts, or in terms of specific analytical processes that 

may have been neglected, such as design requirements, verification, reliability or interface 

management. Based on Jackson (2010), reviewing past accident events and scenarios has 

the following advantages: 

 Provides insights into how a disruption can be survived even if it is not avoidable. 

 Provides an avenue for system definition. 

 Provides the basis for risk analysis of the system in order to reveal its vulnerabilities. 

Many cases of disruption reported in databases were a result of near misses and other 

incidents, which are potential accident indicators. The research conducted by Leveson et 

al. (2005) and Reason (1997) acknowledged the importance of the proactive evaluation of 

near misses and incidents in order to assess the potential accident occurrence in a 

systematic fashion. The literature review revealed a strong correlation between the causes 

of near misses and major accidents, which have led to disruption of operations within the 

high reliability organisations (Wright and Van der Schaaf, 2004). Based on the report 

released by Marine Accident Investigation Branch (MAIB) in 2010, a total of 141 accidents 

were recorded for merchant vessels, of which a total of 25 accidents were caused by 

machinery failure, amounting to 18% of the total accidents recorded for the merchant 

vessels in 2010. However, this figure can be reduced when an effective and efficient 

planned maintenance tool is in place to address the most relevant deterioration and failure 

mechanisms.  

2.10.1 Savannah Express Engine Failure  

On July 19, 2005 at 1146 hours, the Savannah Express, one of the largest container ships 

in the world, a German flagged, weighing 94,483 gross tonnes was maneuvering prior to 

berthing at Southampton Container Terminal, when her main engine failed. The engine was 

unable to be started astern to reduce the vessel’s headway, and she made contact with a 

linkspan, which was seriously damaged.  

The investigation report by MAIB (2006) reveals that the engine control system had suffered 

a series of technical problems since the vessel had come into service. The report also 

reveals that the Savannah Express was equipped with a slow speed diesel engine of a 
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novel design, with no mechanical timing gear (including camshaft and timing chains or 

gears) but, instead, was fitted with a fully integrated, and computer controlled, 

electrohydraulic control system. The vessel’s first chief engineer had attended a basic 

training course designed by the engine manufacturers. However, the engineer officers 

onboard at the time of the accident had not received any type specific training from the 

engine manufacturers. Thus, they were unable to correctly diagnose the reason for the 

engine fault at the Nab Tower and, later, at the Upper Swinging Ground.  

The increasing levels of electrification of engine control and propulsion systems required 

more training in the operation, maintenance and fault finding of these technically complex, 

and multi-discipline systems. MAIB (2006) claims that the STCW training standards for 

ships’ engineers have not been updated to account for modern system engineering 

requirements. The accident has also highlighted the essential need for the machinery 

manufacturers to develop an adequate type specific training course for the operators, and 

for International Maritime Organization (IMO) to improve training requirements for ships’ 

engineers and electricians. 

2.10.2 FPSO Cidade De São Mateus Explosion 

On Wednesday February 11th, 2015 at approximately 1130 hours, an explosion occurred 

on-board the floating production storage and offloading (FPSO) unit Cidade de São Mateus, 

once operated by BW Offshore Brazil Ltd, in the field under concession of Petróleo 

Brasileiro S. A (Petrobras). Based on the investigation report by ANP (2015), the explosion 

occurred due to the leakage of the condensed material into the pumps room, when the 

officers on-board attempt to drain the liquid waste from the central cargo tank, with the 

utilization of the alternative pump (stripping pump).  

Nine people were reported dead in the explosion while twenty-six others were injured. There 

was also damage to the facility. The accident is recorded as the most serious oil and gas 

incident that has ever happened in Brazil in the last 14 years. The report reveals that this 

deadly incident was caused by series of technical failures, incomplete procedures, poor 

managerial decision-making, and improper training of the personnel on-board the vessel. It 

cited a failure to follow improper fluid pumping procedures as well as the installation of an 

incompatible piece of equipment as the main causes of the explosion. 

The investigation report identified 28 root causes, all of which are correlated with the 

requirements established by ANP Resolutions No. 43/2007, and 61 recommendations, 

setting additional requirements in the report. Some of the recommendations in the report 

include: 
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 Inclusion of equipment information and critical systems arising from safety studies 

in computerized integrity management systems before the operation. 

 Inclusion of critical procedures related to maintenance, inspection and testing in 

computerized integrity management systems. 

 Updating the previously existing systems in converted ships to platforms at the time 

of conversion, considering the same design criteria and safety philosophy of the 

processing plant. 

2.10.3 Maersk Doha Machinery Breakdown 

On October 1st, 2006, the container vessel, Maersk Doha was in Norfolk, Virginia loading 

and unloading containers as she was scheduled to depart at 2100hrs but was delayed until 

midnight. The engineers took the opportunity to do maintenance work on the main engine 

and the auxiliary boiler was kept running with its feed water circulating through the exhaust 

gas economizer to keep it warm and ready for sailing. The problems began as one of the 

generators proved hard to start and a faulty reversing mechanism on the main engine left 

one cylinder stuck in the reverse position restricting her speed to 16 knots. 

At about 0200hrs, a rapid rise in the temperature of the EGE was noticed and the Chief 

engineer realised that there was a fire inside the EGE casing. According to the MAIB (2007) 

report, the most likely cause of the fire was a malfunction of the auxiliary boiler control 

mechanism, which allowed the burner to keep firing with too little water in the boiler. This 

overheated the furnace, causing the distortion and cracking of the fire tube. As feed water 

was lost through the crack, the supply of water to the EGE failed, causing it to overheat. 

Soot deposits, which had accumulated within the EGE, then ignited. It is likely that the 

temperatures in the EGE rose sufficiently high for hydrogen and iron fires to develop. 

Inappropriate techniques were used to fight the fire initially, because either the crew lacked 

the understanding of the construction of the EGE or how to deal with the fire effectively.  

However, the vessel had an extensive quality and safety management system (QSMS), but 

it lacked sufficient detail to assist the crew in dealing with either the machinery breakdown, 

or the subsequent fire. Further problems became evident during the emergency when other 

equipment did not work correctly. The records of emergency drills and maintenance of 

machinery made it difficult for the vessel’s managers to assess the quality of the work being 

carried out on-board. Neither these systems, nor the quality and technical audits carried out 

on the vessel, had been able to detect the underlying condition of equipment which 

subsequently failed during the emergency. Further measures were instigated to change 

emergency procedures and improve response of the entire ship.  
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2.11 Proposed Risk and Decision-Making Management Model  

Against the background that traditional engineering risk and reliability analyses provide a 

general framework for the identification of uncertainties and quantification of risks, the 

application of this process to marine and offshore machinery safety management would 

facilitate the identification of stochastic variables and quantification of the associated risks 

in machinery operations. The techniques applied so far in assessments of the ship’s crane 

have been based on assessment end-points that are either component-specific or based 

on matching similarities. It is however pertinent to note that the likelihood of component 

failure establishment and maintenance strategies in a particular machinery is inarguably a 

subject of probability, because the boundaries of machinery operations are notoriously 

vague, and risk estimation in the marine and offshore environment can be characterised by 

uncertainty and variability. 

2.11.1 Risk Analysis Techniques  

In this section, the generic risk analysis techniques proposed in this research work will be 

discussed. The model utilises fuzzy logic in combination with the fuzzy set technique to 

identify hazards associated with a crane of a floating production, storage and offloading 

(FPSO) vessel. Fuzzy logic theory has been applied in this model because the risk factors 

inherent in FPSO machinery are often incomplete and sometimes ill-defined for which 

traditional quantitative risk assessment approaches do not give adequate answers and 

solutions. 

2.11.1.1 Fuzzy logic theory  

Fuzzy logic theory was developed in 1965 by Zadeh as an extension of classical Boolean 

logic from crisp sets to fuzzy sets and grew to become the first new method of dealing with 

uncertainty and problems that are too complex or ill-defined to be susceptible to analysis 

by convectional techniques. Aside from modelling the qualitative aspect of human 

knowledge and the reasoning process without employing precise quantitative analysis, 

fuzzy logic does not require an expert to provide a precise point at which a risk factor exists 

(Liu et al., 2004). Fuzzy logic has been applied in many fields and applications that include: 

engineering; research and development projects; business management; information and 

control; economics and marketing; education; health and medicine; safety engineering; risk 

modelling and management; and decision making analysis (Wang et al., 1995). Various 

fuzzy logic techniques have been used in uncertainty treatment. They include fuzzy sets 

and fuzzy rule-bases. 
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2.11.1.2 Fuzzy set theory  

The use of natural language to express perception or judgement is always subjective, 

uncertain, imprecise or vague (Wang and Chang, 2007). Such uncertainty and imprecision 

have long been handled with probability and statistics (Dubois and Prade, 1997). Notable 

among the methods of representing and reasoning with uncertain knowledge are Bayesian 

probability theory (Pearl, 1988); Demspster-Shafer theory of evidence (Shafer, 1978), 

(Dempster, 1969), (Dempster, 1968b), and fuzzy set theory (Liu et al., 2003), (Zadeh, 1965). 

Fuzzy set theory (FST) was devised by Zadeh to provide an approximate and yet effective 

means of describing the behaviour of situations which are too ambiguous to allow 

mathematical analysis. It employs human analysis and linguistic variables to represent risks 

and model uncertainty inherent in natural language (Zadeh, 1965). It is therefore 

complementary to traditional safety analysis methodologies and can be an effective tool in 

dealing with ill-defined and imprecise information, especially linguistic information 

(Duckstein, 1994). 

2.11.1.3 Fuzzy membership functions  

A membership function, normally referred to as ‘MF’, describes the degree of membership 

of a value in a fuzzy set. Membership function can be express as 𝜇(𝑥) where x is the value 

being fuzzified. There are many types of membership function, namely: 

 Singleton 

 Rectangular 

 Triangular 

 Gaussian 

Depending on the problem being considered, any one of the above membership functions 

can be used to solve that particular problem. 

Fuzzy membership functions and linguistic terms are extensions of numerical variables 

which can represent the condition of an attribute at a given interval by taking fuzzy sets as 

their values (Wang, 1997). They are generated by utilising the linguistic categories identified 

in the knowledge acquisition stage and consist of a set of overlapping curves used to define 

the fuzzy input subset from an input variable. 

2.11.1.3.1 Degree of membership 

Items can belong to a fuzzy set to different degrees: degrees of membership. An item that 

is completely within a set has a membership degree of 1, while those completely outside a 

set have a membership degree of 0. All degrees of membership must sum to 1. An item can 
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be both A and not-A to different degrees e.g. A to a degree of 0.8, not-A 0.2. Degrees of 

membership are expressed with membership functions. The range of values a variable can 

take is called the universe of discourse (Watts, n.d). 

2.11.1.3.2 Triangular membership functions 

For the purpose of this work, only triangular membership functions will be considered in 

detail. Amongst the various shapes of fuzzy numbers, the membership function of the 

triangular fuzzy number (TFN) is the most popular and frequently used. A triangular fuzzy 

number is a fuzzy number represented with three points, as follows:  

𝐴 =  (𝑎, 𝑏, 𝑐) 

This representation is interpreted as membership functions (Figure 2.4). 

𝜇𝐴(𝑥) = {
(𝑥 − 𝑎)/(𝑏 − 𝑎),      𝑎 ≤ 𝑥 ≤ 𝑏
(𝑐 − 𝑥)/(𝑐 − 𝑏),       𝑏 ≤ 𝑥 ≤ 𝑐

 

where, 𝑎 and 𝑏 stand for the lower and upper bounds of the TFN respectively, and 𝑐 for 

the modal value. 

 

 

 

 

 

 
 

The TFN can be denoted by �̃�𝑛 = (𝑎𝑛, 𝑏𝑛, 𝑐𝑛) and the following operational laws of two TFN 

can be applied: 

�̃�1 = (𝑎1, 𝑏1, 𝑐1), and �̃�2 = (𝑎2, 𝑏2, 𝑐2)  

Fuzzy number addition is calculated as: 

�̃�1  �̃�2 = (𝑎1, 𝑏1, 𝑐1)  (𝑎2, 𝑏2, 𝑐2) = (𝑎1 + 𝑎2,  𝑏1 +  𝑏2, 𝑐1 +  𝑐2)         (2.1) 

Fuzzy number multiplication is calculated as: 

�̃�1 ⨂ �̃�2 = (𝑎1, 𝑏1, 𝑐1) ⨂ (𝑎2, 𝑏2, 𝑐2) = (𝑎1𝑎2,  𝑏1𝑏2, 𝑐1𝑐2)          (2.2) 

 

a b c x 

1 . 0 

Figure  2 . 4 :  Membership Function of the Triangular Fuzzy Number 

Q 
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for 𝑎1, 𝑎2  > 0; 𝑏1, 𝑏2 > 0; 𝑐1𝑐2  > 0 

Fuzzy number subtraction is calculated as: 

�̃�1 ⊖ �̃�2 = (𝑎1, 𝑏1, 𝑐1) ⊖ (𝑎2, 𝑏2, 𝑐2) = (𝑎1 − 𝑐2,  𝑏1−𝑏2, 𝑐1−𝑎2)         (2.3) 

Fuzzy number division is calculated as: 

�̃�1 ⊘ �̃�2 = (𝑎1, 𝑏1, 𝑐1) ⊘ (𝑎2, 𝑏2, 𝑐2) = (𝑎1/𝑐2,  𝑏1/𝑏2, 𝑐1/𝑎2),          (2.4) 

For 𝑎1, 𝑎2  > 0; 𝑏1, 𝑏2 > 0; 𝑐1𝑐2  > 0 

Fuzzy number reciprocal is calculated as: 

�̃�1
−1

= (𝑎1, 𝑎1, 𝑐1)
−1 = (1/𝑐1, 1/𝑏1, 1/𝑎1)            (2.5) 

For 𝑎1, 𝑎2  > 0; 𝑏1, 𝑏2 > 0; 𝑐1𝑐2  > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.11.1.3.3 Linguistic variables 

A linguistic variable is a variable whose values are words or sentences in a natural or 

artificial language. According to Zadeh (1975), it is very difficult for conventional 

quantification to express reasonably those situations that are clearly complex or hard to 

define. Therefore, the concept of a linguistic variable is necessary in such situations. 

Linguistic variables are currently being used extensively. The linguistic effect values of the 

best metal element alternatives found in this study are primarily used to assess the linguistic 
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1 

Figure 2.5: Membership Functions of Linguistics Variables for Measuring the Performance Value of Alternatives 
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ratings given by the evaluators. Here each membership function (scale of fuzzy number) is 

defined by three parameters of the symmetric triangular fuzzy number: the left point, middle 

point, and right point of the range over which the function is defined.  

Moreover, linguistic variables are used as a way to measure the performance value of the 

best metal element alternative for each criterion as “very good,” “good,” “fair,” “poor” and 

“very poor” (Chen et al., 2009). TFN, as shown in Figure 3.2, is used to indicate the 

membership functions of the linguistic terms. The horizontal axis indicates the quantitative 

number and the vertical axis indicates the degree of belief (membership value). If any 

quantitative number (𝑒. 𝑔.  ℎ𝑖) is found in the range of ℎ𝑛+1,𝑖  (with a grade 𝐻𝑛+1) and ℎ𝑛,𝑖 

(with a grade 𝐻𝑛), its belief degrees can be evaluated as follows: 

If ℎ𝑛,𝑖 < ℎ𝑖 < ℎ𝑛+1,𝑖 𝑡ℎ𝑒𝑛 𝛽𝑛,𝑖 = 
ℎ𝑛+1,𝑖 − ℎ𝑖

ℎ𝑛+1,𝑖 − ℎ𝑛,𝑖
            (2.6) 

𝛽𝑛+1,𝑖 = 1 − 𝛽𝑛,𝑖               (2.7) 

where,  𝛽𝑛,𝑖 is the degree of belief of the concerned quantitative number with the grade  𝐻𝑛, 

and 𝛽𝑛 +  1,𝑖 is the degree of belief of the concerned quantitative number with the grade 

𝐻𝑛 +  1. 

2.11.1.4 Fuzzy rule-base method  

A fuzzy rule-base allows more coherent and intuitive simulation for evaluating risk in marine 

and offshore operations. There has been a significant increase in the number and variety 

of applications using fuzzy rule based approaches. Zadeh (1965) first introduced the fuzzy 

set theory as a classical set for grouping together elements that all have at least one 

common characteristic (MIT GMBH, 2006), as cited by Ramezani and Memariani (2011). 

The fuzzy rule-based method does not require a utility function to define the probability of 

occurrence, severity and detectability considered for the analysis (Pilay and Wang, 2003a). 

A fuzzy rule base provides a coherent and intuitive model for evaluating faults in marine 

machinery.  

One realistic way to analyse a risk with incomplete objective data is to employ a fuzzy IF-

THEN rule built from human understanding, where premise and conclusions contain the 

linguistic variables used to describe risk parameters (Yang et al., 2009). Such a rule has 

been used because probabilistic risk assessment (PRA) is considered inadequate to 

address the need of complex systems with high degrees of uncertainty. For example, IF-

THEN rules with a belief structure can be constructed to simulate a maintenance 

management scenario. An IF-THEN rule can be developed as follows: 
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If Threat Likelihood is “Medium”, Machinery Vulnerability is “High” and Impact or 

Consequent Severity is “Serious”, then Machinery Failure is “High”.  

Due to the high degree of uncertainty associated with the expert judgement when forming 

or representing a relationship between premise and conclusion, or rather, when the 

evidence available is not adequate to support any viable decision, or when the expert is not 

100% sure whether to believe in an assumption, but only to a certain degree of credibility, 

it is possible to have fuzzy rules with a prudent belief structure as follows:  

If Threat Likelihood is “Medium”, Machinery Vulnerability is “High” and Impact or 

Consequent Severity is “Serious”, then Machinery Failure is {(Very Low, 0), (Low, 0), 

(Medium, 0.6), (High, 0.4), (Very High, 0)}.  

In light of the above, {(Very Low, 0), (Low, 0), (Medium, 0.6), (High, 0.4), (Very High, 0)} is 

a belief distribution of the machinery evaluation where experts are 60% sure that the 

machinery failure level is Medium, and 40% sure that the machinery failure level is High. 

2.11.2 Decision Making Analysis Techniques  

According to Reichert et al. (2007) as cited in John et al. (2014), decision analysis 

techniques were originally developed to support individual decision makers in carefully 

considering all aspects of the decision making process. Nonetheless, Ananda and Herath 

(2003) and Marttunen and Hamalainen (1995) are of the view that because these 

techniques are used to structure the problem under consideration and to make clear the 

expectations about outcomes and preferences, they can also be used to support group 

decisions as well as communicating decisions. 

The significant issues described in literature for the effective application of multiple criteria 

decision making (MCDM) revolve around the information and data available to characterize 

a piece of equipment, and the related uncertainties that affect the models and parameters 

supporting the decision process. Several decision making problems involve uncertainty; 

thus, methods that facilitate better and optimum management decisions must account for 

variations in decision makers’ preferences for attributes and conflicting interests in a 

systematic fashion. As the complexity of decisions increases in complex machinery, it 

becomes more challenging for decision makers to identify appropriate alternatives. As a 

result, robust but flexible analytical tools that can account for these difficulties are required 

to consider the numerous criteria and decision outcomes (John et al., 2014).  

Risks, benefits and costs are considered the most important attributes associated in all 

decision making problems. This research is an attempt to use quantitative risk assessment 

(QRA) to support correct decision-making and improve the condition of marine and offshore 
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machinery operating under highly uncertain environment. Quantitative risk assessment is a 

formal and systematic risk analysis approach used in quantifying the risks associated with 

the operation of an engineering process. Therefore, it is important to establish the link 

between QRA and some decision analysis techniques in a formal, systematic and 

transparent manner. A brief description of the MCDA techniques applied in these models is 

briefly discussed in the ensuing subsections.  

2.11.2.1 Fuzzy analytic hierarchy process  

Fuzzy analytical hierarchy processing (FAHP) method is an approach that employs the 

structuring of criteria of multiple options into a system and subsystem hierarchy of a complex 

engineering product like a ship. This includes relative values for all criteria and comparing 

alternatives for each particular criterion and further defining the average importance of 

alternatives using the concept of FST in a hierarchical analysis. When considering a group 

of attributes for evaluation, the main objective is to provide sufficient judgements on the 

relative importance of these attributes to ensure that those judgements are made 

appropriately (Pillay and Wang, 2003). FAHP modelling is employed in this work to calculate 

the weight of each criterion in a simplified and straightforward manner based on pair-wise 

comparisons. Given the differences in weights of the risk elements and their contributions 

to the failure of the marine and offshore machinery, FAHP can be utilised to solve the 

dynamic risk information loss in the hierarchical level of the model, while ensuring the 

progression of a smooth risk assessment from the bottom level of each subsystem’s 

hierarchy to the goal’s level (failure level).  

One paramount advantage of FAHP is its ability to be integrated with other techniques such 

as the ER approach in risk assessment. FAHP offers a unique and effective way of 

modelling a system’s uncertainties that is different from the conventional AHP. The initial 

work on FAHP was made by Laarhoven and Pedrycz (1983). They described fuzzy ratios 

by triangular fuzzy numbers (TFN) and computed weights using the logarithmic least square 

method. Buckley (1985), who proposed a geometric means to solving fuzzy weight priorities 

and performance scores, identified shortcomings in the initial work. Boender et al. (1989) 

modified the initial work on normalisation by integrating a regression equation. Cheng 

(1996) introduced a robust approach for handling FAHP using TFNs for pair-wise 

comparison and the extent analysis method for the synthetic extent values of the pair-wise 

comparisons. Zhu et al. (1999) made improvements on the extent analysis theory.  

Deng (1999) presented an improved fuzzy-based approach for tackling multi-criteria 

analysis problems in a simplified manner and making them more interesting. Lee et al. 

(1999) further proposed a novel method based on the stochastic optimisation to achieve 
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global consistency. Leung and Cao (2000) also discussed the consistency issue and 

proposed a concept of fuzzy consistency and tolerant deviation. Chou and Liang (2001) 

presented a fuzzy multi-criteria decision-making model by combining FAHP and the entropy 

concept for shipping company performance evaluation under uncertainty.  

Furthermore, Yu (2002) proposed a robust computational programming goal method for 

fuzzy priority vectors, while Kuo et al. (2002) developed a decision support system for 

locating a convenience store. Arslan and Khisty (2005) proposed a set of “if-then” rules to 

select the cognitive comparison made between each alternative. Other details regarding the 

application of this method include: the evaluation of services; generation of weight from 

interval comparison matrices using the two-stage logarithmic goal programming method; an 

algorithm for evaluating naval tactical missile systems; evaluation of machine tool 

alternatives with quantitative variables; new product development processes; quality 

function deployment; project risk evaluations; computer integrated manufacturing systems 

selection; personnel selection problems; selecting wastewater facilities at prefecture level; 

evaluating wafer supplier in the semiconductor industry; and supplier selection in washing 

machine companies (Kilincci and Onal, 2011), (Cheng et al., 2009), (Gungor et al., 2009), 

(Anagnostopoulos et al., 2007), (Ayag and Ozdemir, 2006), (Tuysuz and Kahraman, 2006), 

(Wang et al., 2005), (Mikhailov and Tsvetinov, 2004), (Bozdag et al., 2003) and (Kwong and 

Bai, 2003).  

The conventional AHP method has been widely used and accepted to solve complex multi-

criteria decision making problems, but its major shortcoming is that it uses a scale of one to 

nine (1-9), which, in many circumstances, cannot handle uncertainty in comparison of the 

attributes and also does not reflect the experts’ imprecise subjective judgements associated 

with uncertainty. FST is incorporated into the main steps of AHP to perform a rigorous 

analysis using fuzzy ratios instead of the conventional crisp values in AHP. This is to ensure 

that uncertainty is reflected in the process of the entire risk assessment from the bottom 

level to the goal level. 

2.11.2.1.1    Forms of analytic hierarchy process 

Decision makers in a variety of industries use different forms of AHP. The two most 

commonly and widely used are: 

 
i. The original version of AHP developed by Dr Thomas L. Saaty (Saaty, 1983). 

The original AHP version calculates the nth root of the product of the pair-wise 

comparison values in each row of the matrices and then normalizes the 
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aforementioned nth root of products to obtain the corresponding weights and 

ratings.   

ii. The modified AHP version, which normalizes the pair-wise comparison values 

within each of the matrices and then averages the value in each row to obtain 

the corresponding weights and ratings.     

2.11.2.1.2  The geometric mean method (GMM) 

The geometric mean method is commonly employed in the AHP to combine the opinions of 

different experts when they have equal weightages in forming the group opinion 

(Ramanathan et al., 1994). In this procedure, the geometric mean of the values provided 

by the experts is entered into the pairwise comparison matrix and then the eigenvector of 

the positive reciprocal matrix are computed.  

For example, in computing element 𝑖 with element 𝑗, if 𝑒𝑖𝑗
1 , 𝑒𝑖𝑗

2 …… 𝑒𝑖𝑗
𝑁 are the individual 

judgements made by experts 1, 2 ….., N respectively, then under the geometric mean 

method, the combined judgement value to be entered in the group pairwise comparison 

matrix, according to Saaty (1989) is: 

(𝑒𝑖𝑗
1  ×  𝑒𝑖𝑗

2  × …× 𝑒𝑖𝑗
𝑁)

1
𝑁⁄                                                        (2.8) 

Aczel and Saaty (1983) proved that the geometric mean is consistent and satisfies the four 

axioms underlying the AHP theory. One important property of the geometric mean is its 

ability to dampen the effect of very high or low values, where such values might bias the 

arithmetic mean. In other words, the geometric mean is less affected by extreme values 

than the arithmetic mean. 

2.11.2.2 Analytic hierarchy process algorithm 

A weight can be assigned to each criterion by using established methods such as simple 

rating methods or more elaborate methods based on pairwise comparisons. Using the AHP 

to calculate the relative importance of each attribute requires a careful review of its 

principles and background (Saaty, 1990).  When considering a group of attributes for 

evaluation, the main objectives of this technique are to provide judgements on the relative 

importance of these attributes and to ensure that the judgements are quantified to an extent 

that permits quantitative interpretation of the judgement among these attributes (Pillay et 

al., 2003a). The quantified judgements on pairs of attributes 𝐴𝑖 and 𝐴𝑗 are represented by 

an n-by-n matrix E. The entries 𝑎𝑖𝑗 are defined by the following entry rules. 

Rule 1: If 𝑎𝑖𝑗  = α, then 𝑎𝑗𝑖 = 1 𝛼⁄  , α ≠ 0 

Rule 2: If 𝐴𝑖 is judged to be of equal relative importance as 𝐴𝑗, then 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1. 
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According to above rules, the matrix E has the form as follows: 

E = 

[
 
 
 
 
 

1  𝑎12      ⋯ 𝑎1𝑛
1

𝑎12
     1     ⋯ 𝑎2𝑛

⋮     ⋮       ⋮ ⋮                 
1

𝑎1𝑛
        

1

𝑎2𝑛
     ⋯     1    ]

 
 
 
 
 

 

 
where, 𝑖, 𝑗=1, 2, 3..., n and each 𝑎𝑖𝑗 is the relative importance of attribute 𝐴𝑖 to attribute 𝐴𝑗. 

Having recorded the quantified judgements of comparisons on pair (𝐴𝑖 , 𝐴𝑗) as the numerical 

entry 𝑎𝑖𝑗 in the matrix E, what is left is to assign to the n contingencies 𝐴1, 𝐴2, …, 𝐴𝑛 a set 

of numerical weights 𝑤1, 𝑤2, …, 𝑤𝑛 that should reflect the recorded judgements.  

In general, the weights 𝑤1, 𝑤2..., 𝑤𝑛 can be calculated (Pillay et al., 2003a) using the following 

equation: 

𝑤𝑘 = 
1

𝑛
∑

𝑎𝑘𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

𝑛
𝑗=1  (𝑘 = 1, 2, 3, . . . , 𝑛)             (2.9) 

where, 𝑎𝑖𝑗 represents the entry of row 𝑖 and column 𝑗 in a comparison matrix of order 𝑛. 

The weight vector of the comparison matrix provides the priority ordering. However, it 

cannot ensure the consistency of the pairwise judgements. Hence the AHP provides a 

measure of the consistency for the pairwise comparisons by computing a consistency ratio 

(CR). The CR informs the decision makers how consistent they have been when making 

the pair-wise comparisons (Kunz, 2010). It is designed in such a way that a value greater 

than 0.10 indicates an inconsistency in the pair-wise judgements and according to Andersen 

et al. (2008), the decision maker should review the pair-wise judgements before proceeding.  

Consequently, if the CR is 0.10 or less, the consistency of the pair-wise comparisons is 

considered reasonable, and the AHP can continue with the computations of the weight 

vectors. A higher number means the decision maker has been less consistent, whereas a 

lower number means the decision maker has been more consistent (Kunz, 2010). If the CR 

is > 0.10, the decision maker should seriously consider re-evaluating the pair-wise 

comparisons. The source(s) of inconsistency must be identified and resolved and the 

analysis re-done. The CR value is computed according to the equations (Andersen et al., 

2008). 

CR = 
𝐶𝐼

𝑅𝐼
               (2.10) 

CI = 
𝜆𝑚𝑎𝑥 −  𝑛

𝑛−1
                 (2.11) 

 

𝜆𝑚𝑎𝑥  =   
∑ [(∑ 𝑤𝑘𝑎𝑗𝑘)/𝑤𝑗

𝑛
𝑘=1 ]𝑛

𝑗=1

𝑛
              (2.12) 
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where, CI is the consistency index, RI is the average random index, 𝑛 is the matrix order as 

shown in Table 2.1 (Saaty, 1990) and 𝜆𝑚𝑎𝑥 is the maximum weight value of the 𝑛-𝑏𝑦-𝑛 

comparison matrix E. 

Table 2.1: Value of RI versus Matrix Order 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 
Source: Hypothetical data [Saaty, (1990)] 

Table 2.2: Comparison Scale 

Relative Importance 
of Attribute (Scale) 

 
Definition 

1 Equal importance (EQI) 

3 Moderate importance of one over another (MI) 

5 Essential or strong importance (SI) 

7 Very strong importance (VSI) 

9 Extreme importance (EI) 

 
2, 4, 6, 8 

Intermediate values between the two adjacent judgements 
(Int2, Int4, Int6, Int8) 

Source: Hypothetical data [Saaty, (1990)] 

Saaty (2004) recommended equivalent scores from 1 to 9, as shown in Table 2.2. A 

preference of 1 indicates equality between two attributes, while a preference of 9 indicates 

that one attribute is nine times larger or more important than the attribute with which it is 

being compared.    

2.11.2.2.1 Analytic hierarchy process procedure 

According to Moore and Weatherford (2001), and as cited by Kunz (2010), there are three 

basic steps involved when using AHP. These steps are summarized as follows: 

Step 1: Development of the weights for the criteria by 

 Developing a single pair-wise comparison matrix for the criteria. 

 Multiplying the values in each row together and calculating the nth root of said 

product. 

 Normalizing the aforementioned nth root of products to get the appropriate weights. 

 Calculating and checking the consistency ratio. 

Step 2: Development of the ratings for each decision alternative for each criterion by 

 Developing a pair-wise comparison matrix for each criterion, with each matrix 

containing the pair-wise comparisons of the performance of decision alternatives on 

each criterion. 
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 Multiplying the values in each row together and calculating the nth root of said 

product. 

 Normalizing the aforementioned nth root of product values to get the corresponding 

ratings. 

 Calculating and checking the consistency ratio. 

Step 3: Calculating the weighted average rating for each decision alternative by choosing 

the one with the highest score. 

2.11.2.3  Fuzzy TOPSIS  

The technique for order of preference by similarity to ideal solution (TOPSIS) is a multi-

criteria decision analysis method, which was originally developed by Hwang and Yoon in 

1981, with further developments by Yoon in 1987, and Hwang, Lai and Liu in 1993. Pam 

(2010) in his PhD thesis cited Hwang and Yoon (1981) as alluding to the fact that TOPSIS 

was developed based on the concept that the chosen alternative should have the shortest 

distance from the positive ideal reference point (PIRP) and the farthest distance from the 

negative ideal reference point (NIRP). In their further work, Yoon and Hwang (1995) make 

the assumption that if each attribute in the decision matrix takes either a monotonically 

increasing or monotonically decreasing utility, it will be easier to locate the positive ideal 

solution, which is a combination of all the best attribute values attainable, while the negative 

ideal solution is a combination of all the worse attribute values attainable.  

Monotonic criteria could be classified as either benefits (B) or costs (C). A criterion can be 

classified as a benefit if the more desirable the candidate, the higher its score versus this 

criterion. On the contrary, cost criteria see the least desirable candidate scoring at the 

lowest. In FTOPSIS, the cost criteria are defined as the most desirable candidates scoring 

at the lowest, while the benefit criteria are described as the most desirable candidate scoring 

at the highest. 

Based on the work carried out by Bottani and Rizzi, (2006), TOPSIS is said to be one of the 

best methods in changing the rank of alternatives when a non-optimal alternative is 

introduced. Moreover, it is proved not to be sensitive to the number of alternatives with worst 

performance when dealing with a very limited number of criteria (John et al., 2014). TOPSIS 

has been applied in various fields such as: new car selection (Srikrishna et al., 2014); 

evaluation and selection of an initial training aircraft (Wang and Chang, 2007); outsourcing 

of third party logistics service providers (Bottani and Rizzi, 2006); evaluation of competitive 

companies (Deng et al., 2000); the assessment of service quality in the airline industry 

(Tsaur et al., 2002); materials selection (Jee and Kan, 2000); determination of strategic 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

42 
 

priorities by SWOT analysis (Ghorbani et al., 2011); and service selection (Lo et al., 2011 

and Chao et al., 2010). 

According to Sodhi and Prabhakar (2012), the FTOPSIS method can help in objective and 

systematic evaluation of alternatives on multiple criteria. It has been demonstrated to be a 

robust tool for handling complex and real-life problems for collaborative modelling and 

decision-making processes in an uncertain environment. A fuzzy approach to TOPSIS is 

useful because it assigns the relative importance of attributes using fuzzy numbers instead 

of precise numbers. Linguistic preferences can easily be converted to fuzzy numbers and 

TOPSIS allows for the use of these fuzzy numbers in the calculation (Pam, 2013). 

Other advantages of the FTOPSIS technique as highlighted in Bottani and Rizzi (2006), 

Olson (2004), and Deng et al, (2000) include the fact that: 

1. The logic is rational and understandable. 

2. Computation processes are straightforward. 

3. The concept permits the pursuit of best alternatives for each criterion depicted in a 

simple mathematical form. 

4. It allows the straight linguistic definition of weights and ratings under each criterion, 

without the need of cumbersome pairwise comparisons and the risk of 

inconsistencies. 

5. The obtained weights of evaluation criteria are incorporated into the comparison 

procedures.  

The triangular fuzzy numbers are applied in the FTOPSIS used in this study. This is because 

it is intuitively easy for the decision-makers to use and calculate (Dagdeviren et al., 2009). 

Secondly, modelling using triangular fuzzy numbers has proven to be an effective way to 

formulate the decision making problem where the information is subjective and inaccurate 

(Dagdeviren et al., 2009).  

While the uncertainty issue is tackled by means of fuzzy logic, the application of TOPSIS 

makes it possible to appraise the distances of each decision option from the positive ideal 

solution and the negative ideal solution. The capability and efficiency of FTOPSIS in 

handling complex engineering solutions, simultaneously considering positive and negative 

ideal solutions, having flexibility in computational analysis, and providing systematic and 

logical results’ evaluation, make it useful for strategic decisions to select the most ideal 

maintenance strategy for marine and offshore machinery. Moreover, the way linguistic 

ratings and weights are given is very straightforward. A Fuzzy-TOPSIS approach has been 

applied in this study in order to support the evaluation of decision-making criteria and 

attributes. 
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2.11.2.4  Evidential Reasoning theory  

The mathematical theory of evidence was first generated by Dempster in the 1960s and 

later extended and refined by Shafer in the 1970s (Dempster, 1968a), (Shafer, 1976). The 

evidence theory was initially developed in the early 1990s to deal with multi-attribute 

decision making problems under uncertainty and was used to design a novel belief decision 

matrix that can create a unique attribute aggregation process based on the Dempster rule 

of combination (Fu and Yang, 2012), (Liu and Gong, 2011). The theory is widely referred to 

as Dempster-Shafer (D-S) theory.  

The D-S evidence theory found a significant sister relationship with the Bayesian probability 

network (BPN) theory in the sense that, given new evidence, both can update subjective 

beliefs in a rational manner (Yang, et al., 2006), (Shafer, 1976), (Dempster, 1968b). 

However, the difference between the two theories lies in the fact that the evidence theory 

has the capability of grouping evidence and also of dealing with ignorance in the evidence 

grouping process (Liu and Gong, 2011). The D-S theory was originally used for information 

aggregation in a complex expert system. For example, a computer system that emulates 

the decision-making ability of a human expert as an approximate reasoning tool (Lopez de 

Mantaras, 1990), (Buchanan and Shortliffe, 1984). Subsequently, it has been used in 

system design and operations to support decision-making under uncertainty (Yager, 1992). 

There are a number of studies where ER is used. For example, Riahi (2010) used a fuzzy 

evidential reasoning (FER) to evaluate a seafarer’s reliability; Wang and Elhang (2007) 

used fuzzy group decision making for bridge risk assessment; Zeng et al. (2006) applied an 

aggregative risk assessment model for information technology project development; Yang 

et al. (2005) carried out risk analysis of container supply chains using discrete fuzzy sets 

and an ER approach using fuzzy set theories and ER specifically on risk assessment and 

decision making; and Liu et al. (2003) used the fuzzy rule-based ER approach to analyse 

the safety of an engineering system with various types of uncertainties.  

While MCDM is described using a decision matrix, the ER approach applies an extended 

decision matrix, in which each attribute of an alternative is described by a distributed 

assessment using a belief structure (Xu et al., 2001). Each criterion is assigned with belief 

degrees on several linguistic evaluation grades to assess the subjective uncertainties and 

ambiguities associated with both quantitative and qualitative criteria. Incompleteness (or 

ignorance) and vagueness (or fuzziness) are among the most common uncertainties in 

decision analysis. Subjective judgments may be used to differentiate one alternative from 

another on qualitative attributes. To evaluate the quality of the operation of equipment, for 

example, typical judgments may be that “the condition of that equipment is poor, good, or 
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very good to certain degrees.” In such judgments, poor, good, and very good represent 

distinctive evaluation grades. In equipment evaluation problems, such as in a ship 

propulsion engine, a set of evaluation grades is defined by: 

E = {𝑝𝑜𝑜𝑟 (𝛽1) 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟 (𝛽2) 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝛽3) 𝑔𝑜𝑜𝑑 (𝛽4) 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑 (𝛽5)} 

where, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 stand for belief degrees. 

The operational condition of the engine is a broad technical idea that is not easy to assess 

directly. The detailed components of the engine, such as piston, connecting rod, and 

crankshaft, etc. need to be considered separately to simply the assessment. If a detailed 

component is still too abstract to assess directly, it may be further broken down to more 

detailed sub-components. For instance, the piston component (y) may be measured by 

examining the condition of rings (B1), pin (B2), and skirt (B3), which can be directly assessed 

and therefore referred to as basic attributes. Assessment attributes often constitute a 

multilevel hierarchy (Yang and Xu, 2002). 

In hierarchical assessment, a high level attribute is assessed through associated lower level 

attributes. For example, if the ring, pin, and skirt of the engine piston are all assessed to be 

exactly good, then its piston should also be good. According to Yang and Xu (2002), when 

evaluating qualitative attributes, uncertain judgments can be used. For example, in 

assessment of the engine piston, assessors may be: 

1. 30% sure that its ring is at average condition and 60% sure that it is good. 

2. Absolutely sure that its pin is good. 

3. 50% sure that its skirt is good and 50% sure that it is very good. 

In the above assessments, 30%, 50%, 60%, and 100% (absolutely sure) are referred to as 

degrees of belief and can be used in decimal format as 0.3, 0.5, 0.6, and 1, respectively.  

 Assessment (1) is incomplete as the total degree of belief is 0.9 (0.3 + 0.6).  

 Assessments (2) and (3) are complete.  

 The missing 0.1 in assessment (1) represents the degree of ignorance or 

uncertainty.  

Difficulty can be encountered as to how to generate an overall assessment about the engine 

piston by aggregating the above three judgments in a rational manner. The ER approach 

provides a means for dealing with such an aggregation problem. The basic ER applications 

and algorithm are discussed in the next two subsections. 

2.11.2.4.1 Evidential reasoning algorithm 

ER is one of the many multiple criteria decision analysis (MCDA) methods, such as 

analytical hierarchy process (AHP), TOPSIS, elimination and choice expressing reality 
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(ELECTRE), and preference ranking organization method for enrichment evaluation 

(PROMETHEE). ER is applied to deal with MCDA problems for aggregating multiple criteria 

based on belief degree matrix (BDM) and D-S theory.  

A belief degree represents the strength to which an answer is believed to be true. It must 

be equal to or less than 100% or it can be described as the degree of expectation that, given 

an alternative, it will yield an anticipated outcome on a particular criterion. The use of 

individual belief degrees depends on the decision makers’ expertise, knowledge of the 

subject matter and level of experience regarding the operations of the system. The 

justification for the use of belief degrees is as a result of the fact that human decision making 

involves ambiguity, uncertainty, and imprecision where individuals make judgements in 

probabilistic terms aided by their knowledge. 

For instance, let S represent a set of five condition monitoring expressions that are 

synthesized by two subsets, 𝑆1 and 𝑆2 from two different assessors. Then, 𝑆, 𝑆1 and 𝑆2 can 

be expressed independently as follows: 

𝑆 =  {𝛽1 "Very low", β2"Low",  β3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽4 "High",   𝛽5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

𝑆1 = {𝛽1
1 "Very low", 𝛽1

2"Low", 𝛽1
3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽1

4 "High",   𝛽1
5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

𝑆2 = {𝛽2
1 "Very low", 𝛽2

2"Low", 𝛽2
3"𝑀𝑒𝑑𝑖𝑢𝑚",   𝛽2

4 "High",   𝛽2
5 "𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ"} 

where “Very low”, “Low”, “Medium”, “High”, and “Very high” (the condition monitoring 

expression) are assessed with their respective degrees of belief. 

If the normalised relative weights of the two assessors in the evaluation of the condition 

monitoring process are given by 𝑤1 and 𝑤2 (𝑤1 + 𝑤2 = 1), then 𝑤1 and 𝑤2 can be estimated 

by using established methods such as a simple rating method or based on pair-wise 

comparisons (Yang et al., 2001). 

Suppose 𝑀1
𝑚 and 𝑀2

𝑚 (m = 1, 2, 3, 4 or 5) are individual degrees to which the subsets 𝑆1 

and 𝑆2 support the hypothesis that the condition monitoring evaluation is confirmed to the 

five evaluation grades and condition monitoring expressions. Then, 𝑀1
𝑚 and 𝑀2

𝑚 can be 

derived as follows: 

𝑀1
𝑚=𝑤1𝛽1

𝑚 ;  𝑀2
𝑚= 𝑤2𝛽2

𝑚                                                                   (2.13) 

where m = 1, 2, 3, 4, and 5 respectively. 
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𝑀1
1=𝑤1𝛽1

1
 ; 𝑀2

1=𝑤2𝛽1
1
, 

𝑀1
2=𝑤1𝛽1

2 ; 𝑀2
2=𝑤2𝛽1

2, 

𝑀1
3=𝑤1𝛽1

3 ; 𝑀2
3=𝑤2𝛽1

3, 

𝑀1
4=𝑤1𝛽1

4 ; 𝑀2
4=𝑤2𝛽1

4, 

𝑀1
5=𝑤1𝛽1

5 ; 𝑀2
5=𝑤2𝛽1

5 

Suppose 𝐻1 and 𝐻2 are the individual remaining belief values unassigned, then 𝐻1 and 𝐻2 

can be obtained as follows (Yang and Xu, 2002): 

H1 = �̅�1 + �̃�1 ; H2 = �̅�2 + �̃�2                  (2.14) 

where �̅�𝑛(𝑛 = 1 𝑜𝑟 2) represents the degree to which the other assessor can play a 

significant role in the assessment. 

�̃�𝑛(𝑛 = 1 𝑜𝑟 2), causes the likely incompleteness in subsets 𝑆1 and 𝑆2. 𝐻𝑛 (𝑛 =

1 𝑜𝑟 2) 𝑎𝑛𝑑 �̃�𝑛(𝑛 = 1 𝑜𝑟 2) can be described as follows: 

�̅�1 = 1-𝑤1 = 𝑤2 ;  �̅�2 = 1-𝑤2 = 𝑤1 

�̃�1 = 𝑤1(1 − ∑ 𝛽1
𝑚5

𝑚=1 ) =  𝑤1[1 − (𝛽1
1 + 𝛽1

2 + 𝛽1
3 + 𝛽1

4 + 𝛽1
5)]                     (2.15) 

�̃�2 = 𝑤2(1 − ∑ 𝛽2
𝑚5

𝑚=1 ) = 𝑤1[1 − (𝛽2
1 + 𝛽2

2 + 𝛽3
2 + 𝛽4

2 + 𝛽2
5)]                    (2.16) 

Suppose 𝛽𝑚′
 (𝑚 = 1, 2, 3, 4 𝑜𝑟 5) represents the non-normalised degree to which the five 

condition monitoring expressions are confirmed as a result of the synthesis of the 

judgements obtained by assessors 1 and 2 respectively. Suppose 𝐻𝑈′ represents the non-

normalised remaining belief unassigned after the commitment of belief to the five condition 

monitoring expressions because of the synthesis of the judgements obtained from 

assessors 1 and 2. The ER algorithm can be derived as follows (Yang and Xu, 2002): 

𝛽𝑚′
= 𝐾(𝑀1

𝑚𝑀2
𝑚 + 𝑀1

𝑚𝐻2 + 𝐻1𝑀2
𝑚)            (2.17) 

𝐻𝑈′ = 𝐾(𝐻1𝐻2)                          (2.18) 

�̃�𝑈′ = 𝐾(�̃�1�̃�2 + �̃�1�̅�2 + �̅�1�̃�2)                                          (2.19)   
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𝐾 = [1 − ∑ ∑ 𝑀1
𝑇5

𝑅=1
𝑅≠1

5
𝑇=1 𝑀2

𝑅]
−1

                      (2.20) 

After the above aggregation, the combined degree of belief 𝛽𝑚 is generated by assigning 

𝐻𝑈′ back to the five condition monitoring expressions in the normalisation process below 

(Yang and Xu, 2002): 

𝛽𝑚 =
𝛽𝑚′

1−�̅�
𝑈′

, (𝑚 = 1, 2, 3, 4, 5)                 (2.21) 

𝐻𝑈 = 
�̃�

𝑈′

1−�̅�
𝑈′

                     (2.22) 

where, 𝐻𝑈 is the unassigned degree of belief representing the level of incompleteness in 

the assessment. The process above highlights the sequence of combining two given sets. 

The algorithm can also be followed when encountering three or more sets in a hierarchical 

structure. If three subsets are required to be combined, the result obtained from the 

combination of any of the two subsets can be further synthesized with the third subset using 

the above algorithm. Similarly, the judgement of multiple assessors or the evaluations of 

the condition of the lower-level criteria in the chain systems (components or sub-

components) can also be combined. 

2.11.2.4.2 Application of evidential reasoning 

Over the years, ER has progressively been applied to diverse multi-attribute problems 

(Yang, 2001), (Yang and Sen, 1997), (Wang et al., 1996), (Yang and Sen, 1996), (Wang et 

al., 1995), (Yang and Singh, 1994), and (Yang and Sen, 1994). The unique features of the 

ER approach have made it necessary for use in tailoring decisions that represent 

incomplete and fuzzy subjective judgements for machinery condition monitoring. ER has 

been initiated for wider application in many real-world decision making issues (Zhou et al., 

2010). Some areas in which it has been applies include: Strategic research and 

development projects’ assessments (Liu et al., 2008); Experts systems (Beynon et al., 

2001); Knowledge reduction (Wu et al., 2005); The oil reserve forecast (Zhang et al., 2005); 

Prequalifying construction contractors (Sonmez et al., 2002); Risk analysis (Srivastava and 

Liu, 2003), (Srivastava and Lu, 2002); Motor-cycle evaluation (Yang and Xu, 2002), (Yang, 

2001), (Yang and Singh, 1994), (Yang and Sen, 1994); New product development (Chin et 

al., 2008); Marine system safety analysis and synthesis (Wang et al., 1996), (Wang et al., 

1995); and General cargo ship design (Sen and Yang, 1995). 
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Riahi (2010) believes that in real-world decision making, ER applications have been found 

to have the following advantages:  

 Offers a rational and reproducible methodology to aggregate data in a hierarchical 

evaluation process. 

 Capability to provide its users with greater flexibility by allowing them to express 

their judgement in a subjective and quantitative manner. 

 Capability to accept or represent the uncertainty and risk that is inherent in decision-

making. 

 Great effectiveness in processing and obtaining assessment outputs using mature 

computing software called Intelligent Decision System (IDS). 

 Capability to handle incomplete, uncertain, and vague data as well as complete and 

precise data. 

2.11.2.5 Analysis of multiple attribute group decision making methods  

MADM methods are designed to evaluate and select the desired alternative from a set of 

alternatives, which are characterised by multiple criteria. If more than one person is 

interested in the same MADM problem, it then becomes a multiple attribute group decision 

making (MAGDM) problem (Yang et al., 2014). For both MADM and MAGDM problems, 

consistency among the preference relations is crucial to the result of the final decision. Guo 

(2013) perceives MAGDM as one of the most common activities in modern society, 

involving the selection of the optimal option, from a finite set of alternatives with respect to 

a collection of predefined criteria, by a group of experts with a high collective knowledge 

level on these particular criteria.  

Moreover, as stated in Bozóki (2008), the determination of attribute weight is also a key 

issue to be considered when using the MAGDM approach. In many decision cases, some 

attributes are considered to be more important in the experts’ judgment than the others. 

However, for these vital attributes, the preference relation provided by experts may be quite 

similar for all alternatives. Even for the attribute with the highest weight, the degree of 

influence on the final decision could be very small. Consequently, Wang and Fan (2007) 

regard this kind of attribute as being unimportant to the final decision. Thus, during the 

multiple attribute group decision process, the following five guidelines should be noted: 

1. Different assessment types need to be considered concurrently. 

2. Experts' preference relations that have been provided need to be consistent. 

3. Diverse expert’s opinions need to be taken into consideration. 

4. The weight of each attribute needs to be determined. 
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5. All alternatives need to be carefully ranked. 

MADM is an algorithm deployed to solve problems involving selection from a list of 

alternatives. It specifies how criteria or attribute information can be processed in order to 

arrive at a choice suitable for investment. MADM methods generally require comparisons 

of criteria with respect to alternatives for efficient trade-offs. In a MADM process, each 

decision table (also called decision matrix) has four main parts; these can be summarised 

as follows: 

 Alternatives. 

 Criteria or Attributes. 

 Weight of experts or relative importance of each attribute. 

 Performance measure of alternatives with respect to criteria. 

Based on the analysis of MCDA methods, the basic information in a MADM model can be 

represented in the matrix as presented in (2.23). 

                  𝐶1        𝐶2    ⋯   𝐶𝑚 
                 (𝑤1        𝑤2    ⋯   𝑤𝑚) 

𝑍 =  

𝐴1

𝐴2

⋮
𝐴𝑛 [

 
 
 
𝑦1,1 𝑦1,2

⋯ 𝑦1,𝑚

𝑦2,1 𝑦2,2
⋯ 𝑦2,𝑚

⋮
𝑦𝑛,1

⋮
𝑦𝑛,2

⋮
⋯

⋮
𝑦𝑛,𝑚

 

]
 
 
 
            (2.23) 

where 𝐴𝑖  (𝑖 = 1, 2, …𝑛) is the 𝑖𝑡ℎ alternative; 𝐶𝑖 (𝑖 = 1, 2, …𝑚) is the 𝑖𝑡ℎ set of criterion with 

which each alternative’s performances can be measured; 𝑦𝑖.𝑗 (𝑖 = 1, 2, …𝑛); (𝑗 = 1, 2, …𝑚) 

is the measure of performance of the 𝑖𝑡ℎ alternative with respect to the 𝑚𝑡ℎ criterion; and 

𝑤𝑗 (𝑗 = 1, 2, …𝑚) is the 𝑗𝑡ℎ criterion weight. It is important to stress here that all the elements 

in the decision matrix must be normalised to the same units, so that all the possible 

attributes in the decision problem can be dealt with easily to eliminate any computational 

difficulty. 

There are four means of normalisation in a MADM problem (Lavasani et al., 2012). The two 

most popular methods are summarised as follows: 

 Linear Normalisation: This method divides the rating of 𝑛 attribute by its maximum 

value. Usually, the normalised value of 𝑝𝑖,𝑗 can be obtained using Equation 2.24. 

𝑝𝑖,𝑗 = 
𝑦𝑖,𝑗

𝑦𝑗
∗ , 𝑖 = 1, 2, …𝑚            (2.24) 

where 𝑦𝑗
∗ is the maximum value of 𝑦𝑖,𝑗 . 𝑝𝑖.𝑗, values range between 0 to 1 (0 ≤ 𝑝𝑖,𝑗  ≤ 1). 
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 Vector normalisation: This method divides the ratings of each attribute by its means 

square, so that each normalised rating of 𝑦𝑖,𝑗 can be obtained by Equation 2.25. 

𝑝𝑖,𝑗 = 
𝑦𝑖,𝑗

√∑ 𝑦𝑖,𝑗
2𝑛

𝑖=1

 , 𝑖 = 1, 2, …𝑛; 𝑗 = 1, 2, …𝑚          (2.25) 

Both Equations 2.24 and 2.25 are used for cost and benefit criteria respectively. Normally, 

an alternative in a MADM problem is often described using qualitative variables expressed 

by decision makers. However, when no criteria evidence or information is available, the 

preferred approach is to use fuzzy set theory, which has the capability of handling such a 

situation under varying constraints (John et al., 2014).  

One of the theoretical approaches to preference relations used for MADM problems is fuzzy 

preference relations. The majority of real-life complex problems have fuzzy information 

about the alternatives with respect to criteria, and it is usually difficult for crisp numerical 

values to be provided by the subjective opinions of decision makers due to their inadequate 

knowledge, and the intrinsic complexity and uncertainty within the decision-making 

environment. The Fuzzy Multiple Attribute Decision Making (FMADM) technique can then 

be used to handle these complex decision making problems, which are incomplete and 

unquantifiable. FMADM is an attractive approach, as it is able to actualise decision-making 

processes for complex equipment that has uncertainty in its operational procedures.  

Hypotheses, approximations and judgments of experts are very often required in studies 

involving complex machinery, in order to handle the imprecision and vagueness associated 

with making strategic decisions about the operations of these machinery under uncertain 

conditions. Obviously, criteria values information is presented in the form of linguistic 

variables, which are generally calibrated from fuzzy scales. According to Yang et al. (2011), 

the calibration of this information from fuzzy scales is due to the fact that fuzzy logic provides 

the needed flexibility to represent vague information that results from a lack of data or 

knowledge of the piece of equipment under investigation. Therefore, there is a need for a 

user-friendly fuzzy decision support algorithm that can guide effective decisions in a 

simplified manner. 

A FMCDM problem can be defined as follows: 

 Let 𝐴 = {𝐴𝑖, for 𝑖 = 1, 2, 3..., m} be a (finite) set of decision alternatives and G = {𝑔𝑗, for j = 

1, 2, 3…, n} be a (finite) set of goals according to which the desirability of an action is judged. 

Determine the optimal alternative 𝐴+ with the highest degree of desirability with respect to 

all relevant goals 𝑔𝑗 (Zimmermann, 1991). 
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According to Hipel et al. (1993), a decision problem is said to be complex and difficult where 

the following conditions apply:  

1. Multiple criteria exist, which can be both quantitative and qualitative in nature.  

2. There may be multiple decision makers.  

3. Uncertainty and risk is involved. 

4. Decision (input) data may be vague, incomplete or imprecise.  

 
The FMCDM is applied in this model due to the fact that the decision-making process for 

the selection of an ideal maintenance strategy for a piece of equipment in a marine and 

offshore environment involves a subjective analysis of uncertain and/or incomplete data. 

2.12 Expert System 

The expert system for effective condition monitoring of marine machinery by means of oil 

sampling analysis is based on an understanding of the equipment, components, physical 

properties, and additives in the oil, as well as an understanding of the failure modes and 

mechanically what action needs to be taken to fix a problem.  

Expert systems are very beneficial and most valuable to large organisations that have high 

levels of technical expertise and experience that cannot be easily transferred / shared 

across the business between people (Welsh, 2006). An expert system holds and maintains 

significant levels of information that provides consistent answers for repetitive decisions, 

processes, and tasks. It is a subject specific knowledge database system that contains 

analytical skills for knowledge management.  

Generally, expert systems are made up of rules that analyse supplied information about a 

specific class of problems (Tyler, 2007), as well as providing diagnosis of the given 

problem(s) and suitable recommendations in order to implement corrections. The most 

important aspect of a knowledge base is the quality of information it contains; it needs to be 

kept up-to-date. In order to make a business secure and safe, it is ideal to have such 

knowledge captured in a system that can be accessible when needed, rather than in people. 

In this case, if the people/staff leave employment, the knowledge will be retained and 

accessible to others. 

Highly trained professionals are still generally performing oil analysis in condition monitoring 

of ship cranes. The use of expert systems would allow a greater diagnostic throughput as 

well as enabling technicians to perform routine analysis. For multi-national companies, this 

will give them the opportunity to monitor performance of their lubricants and help influence 

their technology strategy around their products. Having a single global database is not only 
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beneficial to achieve global business objectives but also enables the company to 

benchmark performance of products and applications. This therefore puts them in a very 

strong position when discussing how good their product is with customers and original 

equipment manufacturers (OEM). Furthermore, the expert system possesses great 

potential value for business for both laboratory and on-site maintenance operations. 

2.12.1 Performance Thresholds  

Using manufacturers’ established limits and defining alerts as thresholds for the crane’s 

performance can create effectively monitoring of the condition of the ship crane. This 

involves the collection and monitoring of data from the crane at each sample interval and 

comparing the trend against set thresholds. It is worth noting that ignoring limits or trends 

can have a significant impact on business performance and in some cases may invalidate 

the crane warranties.  

Crucially, the alert limits are there to notify the responsible person that values related to 

precursory failure symptoms have changed in a way that is not normal – i.e. that are 

statistically remarkable (Noria Corporation, 2003). This does not necessarily mean that a 

failure is in progress, nor necessarily imminent, but that there has been unusual change. 

The person in charge should be able to understand the root cause of the change and then 

perform a risk analysis. 

2.12.2 Fixed Limits 

A fixed limit evaluates a simple predetermined criterion (pass or fail) for each component. 

The drawback to this type of technique is that it does not account for different contributing 

factors. For example, there are many differently sized and shaped gearboxes. Some 

gearboxes are lightly loaded and at constant speed, which would lend itself to a low wear 

rate. Such a gearbox might be in serious trouble if the iron (Fe) level were to reach 200 part 

per million (ppm). On the other side, there may be a low speed, reversing, and heavily 

loaded gearbox that has not had less than 500 ppm of iron (Fe) in its oil since it was last 

tested at the assembly plant. 

2.12.3 Absolute Alarm Limit 

These are limits based on manufacturers’ recommendation. These alarms generally define 

the working ranges or condemnation limits and are most applicable to lubricant and 

contamination conditions. Extensive research is normally carried out to arrive at these limits, 

thus providing a good starting point for any analysis program. An absolute alarms limit is 

vital when warranties on the new equipment are of greater concern (Bots, 2014). 
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2.12.4. Trend (statistical) Alarm Limit  

Manufacturers’ guidelines for alarm limits or general standards are extremely poor and 

lacking in that they are based on average operational and performance situations, which 

may not precisely reflect the definite conditions of a specific machine. This is predominantly 

applicable to machine condition. Trend alarm limits are based on gathering a small sampling 

of data from equipment, analysing the distribution of that data, and using this trending 

characterization to set specific alarm limits (Bots, 2014). Statistical trend analysis allows the 

identification of the equipment in greatest need of attention, thus allocating maintenance in 

an efficient way. With sufficient historical data, reliable alarm limits can be established and 

maintained by statistical analysis. 

2.12.5 Combination of Absolute and Statistical Alarm Limits  

Effective oil analysis management relies on the combination of both types of alarm limits. 

The following illustration is an example of the alarm combination. The condemnation limit is 

the absolute alarm. Statistical trending, taking into account variability based on the 

sampling, contamination, make-up oil etc. will develop the standard deviations. Departure 

from this normal variability signals that real problems are taking place. This is the earliest 

possible time to take action. Neglecting this, as the trend approaches its warning limit, action 

such as changing or cleaning the oil, or inspection of the unit is required (Bots, 2014).  

The idealized graph shown in Figure 2.6 is an example of how absolute and trend line 

alarms are used together. The test used could be on iron content, viscosity, or other 

parameters. The normal result variability range takes into account minor variations caused 

by analytical accuracy, sample homogeneity, etc. 

 

Figure 2.6: Absolute and Statistical Alarms             Source: Bently Tribology Services (n.d) 
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2.12.6 Upper and Lower Limits  

The upper limit is the value that indicates the highest level of quality acceptable for products 

or services, while the lower limit is the value that indicates the lowest level of quality 

acceptable for products or services. Both the upper control limit and the lower control limit 

are used in conjunction to create the range of variability for quality specifications, thus 

enabling experts within an organisation to provide the top level of excellence by adhering 

to the established guidelines. 

Analysts who are familiar with the lubricants, machines, and historical problems with general 

reliability goals (Fitch, 1998) set the upper and the lower limits. A population mean and 

associated standard deviation are generated from the available data. The data from a 

sample is compared to the mean of the population. If the result exceeds two standard 

deviations, the value is considered in critical alarm as it is higher (i.e. upper), or lower as 

the case may be, than 95 percent of the population. Should the value exceed three standard 

deviations, it is a critical situation indeed, as the value exceeds the 99th percentile of the 

population (Fitch, 2011). 

2.13 Conclusion  

In this chapter, a systematic literature review of marine and offshore machinery operations 

has been presented together with relevant aspects of machinery maintenance concepts 

and lessons learned from major accidents in marine and offshore industry. These serve as 

building blocks for the development of frameworks and methodology to be used in the 

subsequent chapters. The current research status in maintenance planning justifies the 

need for further research in the field of risk-based techniques. It has convincingly revealed 

that a machinery maintenance programme is dependent on a number of factors including 

technical, operational, organisational and external issues. All these necessitate the 

development of a specifically tailored model that can be used to generate possible or likely 

failure scenarios in a straightforward manner to enhance the reliability of marine and 

offshore machinery operating under highly uncertain environment.  

Hence, building an efficient planned maintenance strategy into these machinery systems is 

the next key step to assuring safety, reliability and efficiency of operations. The review of 

literature further revealed that collaborations with multiple stakeholders involved in marine 

and offshore operations would lead to good maintenance practices, which are currently 

much needed. The system can maximize its performance depending on the input of the 

correct information, be it quantitative or qualitative. Quantitative information needs to be 

assured and complemented by qualitative information in order to provide a convincing view 

of the system and propose a maintenance strategy aimed at improving the machinery 
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operations. The literature review also revealed that the cost of maintenance is directly 

proportional to the ability of the maintenance system to measure its reliability. Thus, in order 

to implement necessary maintenance strategies, key factors need to be built into the 

process of group decision-making. 
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Chapter 3 

1 Research Methodology 
 

Summary 

The methodology of the research carried out outlines a framework for the development of 

an efficient planned maintenance model for marine and offshore machinery operating under 

highly uncertain environments. The research integrates fuzzy set modelling and ER 

modelling into the maintenance model in order to improve the overall model results. The 

research will discuss methods of understanding a machinery maintenance process, 

identifying the problems encountered and establishing data that is required. This data is 

interpreted and parameters are then established for applying planned maintenance 

strategies. Further development of the maintenance model is achieved by integrating fuzzy 

set modelling into the rule-based model in order to improve the accuracy and level of detail 

of the subjective information required. The maintenance model is further expanded by 

integrating fuzzy set modelling into the fuzzy-TOPSIS model. This introduction serves to re-

evaluate and improve a key parameter of the fuzzy-TOPSIS model.  

3.1 The Scope of the Thesis 

The scope of this research is to develop a maintenance methodology, utilising varying 

information from both objective and subjective sources. The purpose of the maintenance 

methodology is to:  

a) Reduce the downtime of equipment due to breakdown and failures. 

b) Reduce costs associated with maintenance and inspection activities. 

c) Reduce the risks associated with possible environmental damage due to failure.  

Based on the literature review in the field of machinery failure and maintenance 

management, the lack of research in the subject of condition-based maintenance and its 

effects on organisational and machinery in the context of marine and offshore industries is 

observed. In order to fill the gap, firstly, wider scopes of machinery failure and maintenance 

management that have received little attention and have been partially investigated by the 

researchers will be assessed. Secondly, trend, family, environmental-based, design, and 

human reliability will be analysed, and the influence of these five elements on the operation 

of machinery will be evaluated. Thirdly, a novel condition monitoring model in marine and 
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offshore industries by employing advanced analytical methodologies will be developed. 

Finally, based on the evaluated results and to encounter and mitigate the evaluated risk 

sources and to enhance the reliability of the marine and offshore machinery, control options 

will be suggested.  

Following the identification of the research needs and to establish an efficient condition-

based maintenance and management system, a series of uncertainty methodologies such 

as fuzzy evidential reasoning, fuzzy analytic hierarchy process, predictive logic box (PLB), 

fuzzy rule-based (FRB), and multiple attribute group decision making (MAGDM) will be 

deployed. The frameworks of this research, in order to be applicable in marine and offshore 

industries, will be developed in a generic sense. To demonstrate the case studies a number 

of planned maintenance systems from some global companies will be selected. As a result, 

this research will contribute to knowledge of planned maintenance systems for the marine 

and offshore industries. 

3.2 Structure of the Thesis 

This thesis is compiled of seven chapters. Chapter 1 has outlined a brief introduction relating 

to the background of the research, an introduction of the research objectives and 

hypotheses, a statement highlighting the problems currently encountered. 

Chapter 2 will examine the current literature which has influenced this study, giving a brief 

overview of current maintenance concepts as well as the marine and offshore industry in 

general. Following this overview, a detailed review of the current practices in maintenance 

planning and management, dealing with uncertainty in marine and offshore machinery 

design and operation, phases of errors in machinery operation, machinery oil analysis, and 

lessons from some major incidents in the marine and offshore industry are considered. 

These will serve to draw attention to the possible inadequacy and limitations of the current 

practices, thus demonstrating the need and justification of this research thesis. This chapter 

will close with a brief introduction to each of the risk-based and decision-making modelling 

techniques used in the thesis.  

Chapter 3 discusses the methodology and scope of this thesis. It also attempts to integrate 

conceptual models that will be developed in Chapters 4, 5, and 6 of the research into a 

coherent framework that can be used for marine and offshore machinery maintenance 

improvement and operational management. 

Chapter 4 gives a detailed and exhaustive review of what will be the cornerstone of this 

research thesis, fuzzy set theory (FST), analytical hierarchy process (AHP) and an 

aggregation algorithm (i.e. Evidential Reasoning), which are utilised to produce quantitative 
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results that can be used by decision-makers for making robust decisions on a machinery 

planned maintenance management programme. This evaluation will scrutinise various 

applications of this modelling technique, examining some of the quantitative and qualitative 

information regarding machinery operations. The information includes trend analysis, family 

analysis, human reliability analysis, design analysis and environmental analysis. The 

methodology developed has been applied to a case study in order to demonstrate the 

process involved.  

Chapter 5 looks specifically at the problems relating to the standardisation of information 

derived in Chapter 4 when applying fuzzy evidential reasoning sensitivity analysis model 

(FER-SAM) to a maintenance management framework. This chapter outlines the inherent 

problem of combining subjective judgement and objective data, and presents a powerful 

rule-based analysis tool fuzzy rule base sensitivity analysis model that is flexible yet robust 

enough to be used in a range of practical applications connected with the machinery 

operations.  

Based on the results obtained from the analysis performed in Chapter 4, a specific model 

of facilitating quantitative risk analysis which integrates FST, rule based diagnosis, belief 

degree and mini-max concepts, with the uncertainties especially the unavailability of data 

is developed. This methodology has been applied to a case study in order to demonstrate 

the process involved. This analysis highlights the advantages of using fuzzy set modelling 

to elicit information from differing sources whilst overcoming the uncertainties and 

inaccuracies which previously surrounded this problem.  

Chapter 6 generates a conceptual methodology, a strategic fuzzy decision support system 

for maintenance strategy selection to assist decision makers to select from the appropriate 

maintenance strategies suggested in Chapter 2. The methodology utilises the fuzzy multiple 

attribute decision-making method, which is suitable for treating group decision-making 

problems under a fuzzy environment. The FMADM method provides a management and 

engineering decisions aid in evaluating and selecting appropriate maintenance strategies 

from a finite number of alternatives, which are characterised by multiple attributes.  

Chapter 7 will draw conclusions from the overall study. The chapter will begin by discussing 

the main conclusions and whether these conclusions have been addressed in this research 

study. This chapter will also ascertain if this research work has contributed to knowledge. 

The advantages and disadvantages of the models, the novel and the limitations of this 

research will also be given together with possible future research, which can expand and 

explore the body of research. 
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3.3 The Research Framework 

The developed models discussed in Chapters 4, 5, and 6 using different decision-making 

tools, such as FST, ER, and Fuzzy Analytical Hierarchy Process (FAHP), can be integrated 

to develop a generic framework for an efficient planned maintenance system for marine and 

offshore machinery operational improvement and management. The integrated model is 

presented in Figure 3.1 and unveils the logical flow of the developed models in this study. 

The method of applying this modelling technique shows an appreciation of many elements 

that are generally overlooked when attempting to establish a planned maintenance 

schedules for particular machinery. It is this incorporation of several divergent pieces of 

information that establishes a cost-effective maintenance schedule, which makes 

maintenance analysis a potentially powerful tool for most planned maintenance frameworks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A Novel Planned Maintenance Framework for Marine and Offshore Machinery 
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3.4 Conclusion 

The framework offer a transparent and systematic way to monitor the conditions of the 

marine and offshore machinery in a logical and straightforward manner. As revealed in this 

chapter, the integrated models in the framework supports maintenance management and 

improvement of operations more effectively than isolated processes. Moreover, the 

approach links maintenance and susceptibility, provides insights from different perspectives 

regarding the machinery’s operations, and highlights how both qualitative and quantitative 

information can be utilised in a transparent manner, especially in situations where data is 

lacking, so that machinery’s uncertainties can be revealed and addressed logically.   
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Chapter 4 

A Proposed Methodology for Condition Monitoring of Marine and 

Offshore Machinery using Evidential Reasoning Techniques 

Summary 

This chapter will first assess the operational uncertainties of a particular piece of equipment 

in marine and offshore system. Trend analysis, family analysis, environmental analysis, 

human reliability analysis and design analysis for each criterion will be aggregated using 

ER and AHP algorithms. Data will be collected from reputable oil companies and 

supplemented by expert judgement from the related industry. The results that will be 

provided by these algorithms in this study will be beneficial to the marine and offshore 

industries as indicators for the monitoring and diagnosis of faults in machinery and thus 

assisting practitioners to make better decisions in their maintenance management process.  

Furthermore, by changing the conditions that affect the operation of ideal machinery, and 

through calculating a value for this operation, a benchmark is constructed. The operational 

condition of machinery depends on many variables and their dependencies; thus, alteration 

of a criterion value will ultimately alter the operational conditions of the machinery. For any 

deviation to be corrected in a timely manner, the operational condition of the machinery has 

to be monitored properly and frequently. 

4.1 Introduction 

According to Zhao (2014), machine condition monitoring is the practice of assessing a 

machine’s condition by periodically gathering data on key machine-health indicators to 

determine when to schedule maintenance. The existence or amount of debris and particles 

from wearing parts, erosion and contamination provide insights about the issues affecting 

performance and reliability. The increase in failure of marine and offshore machinery, such 

as main engines, cranes, pumps, etc., coupled with intense operator concern over their 

reliability, has motivated this research and the development of an efficient condition 

monitoring methodology and reliability procedures. Furthermore, with the increasing 

complexity and cost of equipment, accurate diagnosis is important. As a result, 

Classification Societies are putting pressure on marine and offshore companies, urging 

them to streamline their machinery condition monitoring operations. The fundamental 

element of machinery condition monitoring on-board ship is watch-keeping (Lloyd Register, 
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2013). Watch-keeping involves the ability to recognize changes in performance, as 

indicated by alarms, alerts, gauges and readings, as well as responding aptly to these 

changes. However, as the industry becomes more dynamic, there is a need to introduce 

concepts of flexibility and agility (Bastos et al., 2012), to enable companies to deliver 

customized condition monitoring (CM) which can react swiftly to machinery operating in 

highly uncertain environments. 

In their normal day-to-day schedules, deck and engineering officers do carry out many 

condition monitoring activities, such as monitoring the performance of individual 

components in a piece of equipment. For example, some of the routine condition monitoring 

activities carried out in marine vessels include the installation of temperature sensors in 

cylinder liners to monitor piston rings blow-by, and visual inspection of piston rings and 

liners through scavenge space (Lloyd Register, 2013).  

Thus, within this chapter, the framework of monitoring and diagnosing machinery in marine 

and offshore industries will be demonstrated. ER and AHP algorithms will be employed to 

synthesise the data gathered from all the components, in what is called a data mining 

process (DMP). This will identify the behaviour patterns of each component, thus allowing 

more accurate early detection of faults in the equipment. 

The structure of this chapter will be as follows. The second section presents the process of 

building a generic model of a hierarchical structure for monitoring the condition of the 

machinery, in which trend, family, environment, human reliability, and design analysis 

information is processed. The methodology is then explained and applied to the monitoring 

of the operational conditions of machinery in the third section. This proposed methodology, 

along with a previously accepted condition monitoring methodology, is then tested by a case 

study, followed by a discussion and conclusion. 

4.2 Methodology 

The procedures specified in the literature review that were found to be considerable in their 

relationships to machinery condition monitoring are used as the basis of the generic model. 

The condition of the equipment is evaluated using a combination of different decision 

making techniques, such as AHP, ER, and data mining process utilizing expert judgements 

and historical data from the relevant industry. The proposed methodology will assess the 

operational condition of different components in a piece of equipment to ascertain which 

components are prone to failure. The proposed methodology in a stepwise regression is 

presented in the following sections. The flow diagram for evaluating the condition of 

equipment is shown in Figure 4.1. 
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4.2.1 Identification of Risk Criteria (Step one) 

It is very important for the decision makers to fully understand and have a clear picture of 

the whole problem before attempting to find a solution, especially when there are many 

criteria that need to be considered, which may in turn consist of sub-criteria and sometimes 

even sub-sub-criteria. In such situations, the problem can be displayed in the form of a 

hierarchical structure. Using hierarchical order, the goal of the problem is indicated at the 

first level, while in the second level, there are several criteria, each of which contribute to 

measuring and helping to achieve the overall goal. Then some of these criteria can further 

be broken down. This process can continue up to the point where the decision makers are 

able to make practical evaluation. When constructing a hierarchical structure, it is important 

to pay attention to only significant criteria, in order to avoid a superfluously large model size. 

Based on the literature review of the condition monitoring of the marine and offshore 

machinery, a generic model with a hierarchical structure is constructed, and the main 

criteria, sub-criteria, and sub-sub-criteria that contribute to the condition monitoring of the 

machinery (goal) are presented in Figure 4.2. The goal (E) of the condition monitoring is 

stated in the first level. In the second level, the main criteria (C1, C2, C3 and C4) contributing 

to the condition monitoring of the goal (E) are stated. Then in the third level, the sub-criteria 

{(C11, C12, C13,), (C21, C22, C23), (C31, C32, C33), (C41, C42, C43)} contributing to the condition 

monitoring of the main criteria and the goal are stated. Then finally, in the fourth level, sub-

sub-criteria showing different contributions to measuring and achieving the goal of the 

problem are stated. However, this can be further broken down into sub-criteria sub-sub-

sub-criteria until a point where decision makers can make practical and informed decisions 

on the lower level criteria.  

4.2.2  Application of Analytic Hierarchy Process (Step two) 

Analytical Hierarchy Process (AHP) is used to determine the weights of each risk factor by 

conducting a pair-wise comparison. Triangular fuzzy numbers (TFNs) are used to calculate 

the preference of one criterion over another because of their computational simplicity in 

promoting representation of information in an uncertain environment. The comparison is 

usually based on an estimation scheme which places intensity of importance using 

qualitative variables. Each of the variables has a corresponding TFN that is employed to 

transfer experts’ judgement into a corresponding matrix. 
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Figure  4 . 1 :  Flow diagram for evaluating the condition of equipment  
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Figure 4.2 - A Generic Model for Condition Monitoring of Machinery 
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4.2.2.1  Experts composition 

Table 4.1 indicates the position, service time and the qualifications of the experts used for 

the survey. 

Table 4.1: Composition of Experts 

Composition Classification 

Industry Position     Senior Manager 

Service Time >  30 years 

Academic Qualification  Master degree 

 Bachelor degree 

 HND 

 Class 1 Certificate of Competency 

 

4.2.3  Evaluation of Trend Analysis (TA) (Step three) 

Trend analysis is an aspect of technical analysis that tries to predict the future performance 

of machinery based on past data recorded. It is centred on the idea that what has happened 

in the past gives an idea of what will happen in the future. Trend analysis allows the 

development of a pattern of behaviour for a particular unit. This pattern of behaviour may 

develop within a short or long term period. In trend analysis, graphs of a condition-related 

parameter versus time can be utilized to determine when the parameter is likely to exceed 

a given limit. This time could be dates or running hours.  

The goal of a successful condition monitoring program is to predict the time of an expected 

breakdown well in advance of its occurrence in order to shut down the machine in ample 

time and allow for the ordering of spare parts for repairs, thus minimizing the shutdown time. 

According to Courrech and Eshleman (2014), all condition monitoring criteria indicate that 

equal changes on a log scale correspond to equal changes in severity; therefore, data for 

a trend analysis should be plotted on a logarithmic scale in decibels. A linear trend on a 

logarithmic scale is found occasionally, but the actual trend may follow another path; for 

example, when the fault feeds back on the rate of deterioration (e.g. gear wear), the trend, 

when plotted on a logarithmic scale, may then be exponential. In some cases, the fault 

changes suddenly in finite steps, making it very difficult to extrapolate the time of the 

shutdown. An example is a spall caused by gradual subsurface fatigue.  

The following precautions are very vital in ensuring that accurate trend analysis is being 

obtained (Courrech and Eshleman, 2014): 
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1. Determining a trend based on measurements of a parameter directly related to a 

specific type of fault, not on measurements of overall levels. 

2. Diagnosing faults before attempting to interpret a trend curve in order to:  

a) Select the appropriate parameter for the type of fault that is being monitored. 

For example, the parameter may be the level of an individual component, or 

of a selected frequency range. 

b) Observe critically the results of the trend analysis so as to determine if the 

linear or exponential interpolation is adequate. 

3. Employing a trend of the most recent measurements to obtain the best estimate of 

the lead time.  

Several techniques can be applied in evaluating trend data, such as standard deviations, 

averages, linear regression, etc. All of these techniques are intended to identify a condition 

that is not normal in relation to the equipment’s past behaviour. In this research, trend 

analysis is evaluated by means of quantitative data transformation (QDT). Each quantitative 

criterion (i.e. grease/oil sample element test result) is transformed to a qualitative criterion 

(i.e. linguistic variables with the associated belief degree) by using the triangular 

membership functions of continuous fuzzy sets.  

4.2.4  Evaluation of Family Analysis (Step four) 

Family Analysis compares the results (e.g. wear metal levels) of groups of similar or 

identical machinery to identify the usual or typical pattern. The extraction of such information 

provides the data necessary to characterize operating cycles, maintenance schedules, 

periodic breakdowns, and most importantly, to identify and address abnormal failure rates 

before critical problems arise. In many cases, systems are grouped together to form a 

family. A family may consist of identical equipment located in one or many vessels. 

Equipment can also be grouped together based on: load, size, lubrication type, and 

operating parameters, such as a group of pumps on-board a vessel. In this way, the wear 

metal data can then be evaluated as a whole. The data for each component can then be 

compared to the family to evaluate its wear rate to the family (Clarke 2005). 

In family analysis, component patterns are classified to obtain component groups, and 

machine patterns are also classified to machine groups. The machine component matrix is 

arranged by placing components within a component group adjacently and repeating the 

same for machines. The resulting matrix can then be inspected for bottleneck machines 

and the number of exceptional cells can be minimized. Comparable to the similarity 

coefficient in similarity coefficient methods, a degree of similarity between the obtained 

pattern and the ideal pattern is used. The similarity is measured to ensure whether the 
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obtained pattern is properly classified or not (Dagli et al., 1995). However, when determining 

the family analysis of two similar systems, the similarity is compared with a pre-specified 

threshold. A different threshold can be specified for the classification of components and 

machines. From there a different degree of clustering is obtained for each threshold (as in 

the similarity coefficient method). 

Clark (2005) opines that family analysis techniques can have a significant impact on both 

large and small companies’ condition monitoring programmes. A large company can use 

such a programme to monitor large fleets of similar equipment among their plants, as well 

as benchmark the performance of individual plants. Conversely, a company with less 

equipment can use family analysis techniques to compare their equipment wear rates with 

equipment in many other plants, or taking advantage of the vast laboratory database of 

equipment data for comparison. 

The family analysis is also evaluated using a quantitative data transformation method. 

Unlike the trend analysis, in which only one deck crane was considered, in family analysis, 

two deck cranes (Port & Starboard) are being evaluated by calculating the standard 

deviations of the test results from the laboratory for each of the criterion (element). Each 

quantitative criterion is then transformed to a qualitative criterion by using triangular 

membership functions of continuous fuzzy sets. To move from inaction to action required 

status, standard deviations are calculated to reveals whether the failure modes under 

review are very similar and the standard deviation is low and predictable, using the following 

formula: 

Standard Deviation = √
∑(𝑥− �̅�)2

(𝑛−1)
               (4.1) 

where 𝑥 is the sample mean average and 𝑛 is the sample size. 

4.2.5  Evaluation of Environmental Analysis (Step five) 

The health and performance of machinery as a whole is vitally important. Rather than 

focusing on the performance of one part, analysts look at everything together in order to 

obtain a more complete view of what is achievable and what problems might arise along 

the way. When machinery operators have comprehensive views of their internal and 

external environments, they are often better able to plan an effective growth strategy. At the 

same time, early threat identification allows operators to take timely action in developing a 

survival plan and setting remediation plans in motion to get the machinery back to good 

condition.  
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Environmental analysis evaluates the environmental conditions under which the machinery 

is currently operating. Environmental conditions will be based on vibration measurement, 

velocity, and acceleration. However, in the current situation, there is no system to collect 

the data regarding the environmental conditions of the components involved. Good 

environmental analysis depends on a constant stream of pertinent information 

(Camponovo, et al., n.d). In view of this, the test case will be handled in different types of 

environment, as suggested. 

4.2.6  Evaluation of Human Reliability Analysis (Step six) 

Human reliability is related to the field of human factors and ergonomics. As it is common 

today, human is a crucial part of the large socio-technical systems. Thus, human reliability 

is very significant due to the contributions of humans to the resilience of systems and to 

possible adverse consequences of human errors or oversights. Human reliability analysis 

(HRA) will assess the operator's performance during the machinery operations practice. 

According to MAIB (2010), human error is a factor in the majority of marine machinery 

failures. Psaraftis et al.’s (2000) analysis of maritime accident reports indicated that most of 

the accidents had a human factor as the prevalent cause.  

Researchers have done several studies to evaluate human reliability. Riahi et al. (2012) 

assessed the reliability of a seafarer incorporating subjective judgement; in their 

assessment, Riahi et al. (2012) present a dynamic model capable of coping with changing 

conditions that affect the performance of a seafarer. Adams (1982) analysed the issues 

affecting human reliability; Askren (1967) evaluated the reliability of human performance in 

work; Meister (1964) produced a method of predicting human reliability in man machine 

systems; and Swain (1963) produced a method for performing a human factors reliability 

analysis. Given that extensive research works on evaluation of human reliability have been 

conducted by many researchers and experts, the test case on HRA will rely extensively on 

the results obtained by Riahi et al. (2012) from their assessment and evaluation of a 

seafarer’s reliability. 

4.2.7  Evaluation of Design Analysis (Step seven) 

Machinery and equipment for shipboard use is designed to operate successfully under 

severe condition. Ship machinery systems incorporate all the on-board machinery that is 

used for propulsion, manoeuvring, cargo handling, fresh water production, space heating, 

etc. This set of equipment constitutes the ship's energy conversion systems, often referred 

to as the marine energy system (Kakalis et al., 2012). These marine energy systems are 

designed to convert the chemical energy of the fuel (lubricants) to the forms required to be 
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used in shipboard, and they tend to be highly complex, having many functions, with variable 

mission profiles, as well as requirements for flexibility, redundancy, and safety. In addition, 

the systems have to be cost-effective, energy efficient, and environmental friendly. In order 

to manage such complexity, it is imperative to adopt a structured and effective approach 

during the design phase. 

Design Analysis will assess the physical behaviour of the machinery and its component as 

specified by the manufacturer (good or bad). It is based on the prediction of the physical 

behaviour of just about any part or assembly, under any loading condition. In a safe design, 

the load is not excessive, the stress does not exceed the yield point (i.e. the type of material 

used operates within its elastic range or limit), and the part deforms elastically (i.e. when 

the load is released, the part returns to its original shape). On the other hand, if the load is 

such that the yield point is exceeded, the part will become partially plastic and, on removal 

of the load, the part will be permanently deformed. Subsequently, greater increase in load 

will cause the part to eventually break (fracture). This is normally attributed to bad design.  

4.2.8 Aggregation Operations on Criteria Results Using ER (Step eight) 

The ER algorithm is used to synthesise the risks in a hierarchical structure. Complex 

decision making problems are represented hierarchically in a structured and systematic 

manner, as constructed in the generic model shown in Figure 4.2. In order to find how well 

an alternative performs across all criteria, the lowest level criteria evaluation is transformed 

to the upper level and ultimately to the top level criterion. This complex process requires a 

robust and systematic decision making tool and ER is a method that can be tailored towards 

such situations where there is high uncertainty and imprecision in information processing. 

With the help of ER, the results obtained from the AHP and the criteria are aggregated. 

4.2.9  Obtaining a Crisp Number for the Goal (Step nine) 

To obtain a single crisp number for the top-level criterion (goal) of each alternative, a utility 

approach is used in order to rank them. If the utility of an evaluation grade 𝐻𝑛 is denoted by 

𝑢(𝐻𝑛) 𝑎𝑛𝑑 𝑢(𝐻𝑛+1)  > 𝑢(𝐻𝑛), where 𝐻𝑛+1 is preferred to 𝐻𝑛, 𝑢(𝐻𝑛) can be estimated using 

the decision maker’s preferences. However, in a situation where no preference information 

is available, it could be assumed that the utilities of evaluation grades are equidistantly 

distributed in a normalised utility space. The utilities of evaluation grades that are 

equidistantly distributed in a normalised utility space are calculated as follows:  

𝑢(𝐻𝑛) =  
𝑉𝑛− 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥− 𝑉𝑚𝑖𝑛
                (4.2) 
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where, 𝑉𝑛 is the ranking value of the linguistic term 𝐻𝑛 that has been considered, 𝑉𝑚𝑎𝑥 is the 

ranking value of the most-preferred linguistic term 𝐻𝑁, and 𝑉𝑚𝑖𝑛 is the ranking value of the 

least-preferred linguistic term 𝐻1.  

The utility of the top-level or general criterion 𝑆(𝐸) is denoted by 𝑢(𝑆(𝐸)). If 𝛽𝐻  ≠ 0 (i.e. the 

assessment is incomplete, 𝛽𝐻 = 1 − ∑ 𝛽𝑛)𝑁
𝑛=1  there is a belief interval [𝛽𝑛, (𝛽𝑛 + 𝛽𝐻)], 

which provides the likelihood that 𝑆(𝐸) is assessed to 𝐻𝑛. Without loss of generality, 

suppose that the least-preferred linguistic term having the lowest utility is denoted by 𝑢(𝐻1) 

and the most preferred linguistic term having the highest utility is denoted by 𝑢(𝐻𝑁). Then 

according to Yang (2001), the minimum, maximum, and average utilities of 𝑆(𝐸) are defined 

as:  

𝑢𝑚𝑖𝑛(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛) + (𝛽1 + 𝛽𝐻)𝑢(𝐻1)

𝑁

𝑛=2

 

 

𝑢𝑚𝑖𝑛(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛) + (𝛽𝑁 + 𝛽𝐻)𝑢(𝐻𝑁)

𝑁−1

𝑛=1

 

 

𝑢𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑆(𝐸)) =  
𝑢𝑚𝑖𝑛(𝑆(𝐸))+ 𝑢𝑚𝑎𝑥(𝑆(𝐸))

2
             (4.3) 

 
If all the assessments are complete, then 𝛽𝐻 = 0 and the maximum, minimum, and average 

utilities of 𝑆(𝐸) will be the same. Therefore, 𝑢(𝑆(𝐸)) can be calculated as: 

 

𝑢(𝑆(𝐸)) =  ∑ 𝛽𝑛 𝑢(𝐻𝑛)                                                                                                                           (4.4)

𝑁

𝑛=1

 

 
According to Riahi et al. (2012), an assessment based on a single value is much easier and 

more instinctive as a practical tool for a professional decision maker to rank the alternative. 

Thus, to obtain a single crisp number for the goal, the utility value associated with each 

linguistic term has to be calculated from Equations (4.2) to (4.4). 

4.2.10 Perform Sensitivity Analysis (Final step) 

It is humanly impossible to define a condition monitoring strategy that has every potential 

failure covered and it is equally very challenging to have good statistical data which reveals 

that the failure modes under review are very similar and the standard deviation is low and 

predictable. As a result, owing to the lack of precise data and the novelty of this model, it 

has not been possible to find any proven benchmark results for its full validation. Given such 
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difficulties and challenges, a possible method for fully validating the model can be achieved 

only by using an incremental process and through conducting more industrial case studies. 

The model that will be developed can then be refined and applied in real-world industrial 

applications. 

In view of the above, sensitivity analysis will be used to partially validate the model. The 

reason for using sensitivity analysis is to test the sensitivity of the proposed model. 

Sensitivity analysis refers to analysing how sensitive the model outputs are to a minor 

change in the inputs. The change may be a variation in the parameters of the model or may 

be changes in the belief degrees assigned to the linguistic variables used to describe the 

parameters. Sensitivity analysis is very useful when attempting to determine the impact the 

actual outcome of a particular variable will have if it differs from what was previously 

assumed. By forming a given set of scenarios, how changes in one variable(s) will impact 

the target variable can be determined. If the methodology is sound and its conclusion 

reasoning is logical, then the sensitivity analysis must follow the following three axioms 

(Riahi et al., 2012): 

Axiom 1: A slight increment or decrement in the degree of belief associated with any 

linguistic variables of the lowest-level criteria will certainly result in a relative increment or 

decrement in the degree of belief of the linguistic variable and the preference degrees of 

the model output. 

Axiom 2: If the degree of belief associated with the highest-preference linguistic term of the 

lowest-level criterion is decreased by 𝑚 and 𝑛, simultaneously the degree of belief 

associated with its lowest-preference linguistic term is increased by 𝑚 and 𝑛 (1 > 𝑛 > 𝑚), 

and the utility values of the model output are evaluated as 𝑈𝑚 and 𝑈𝑛 respectively, then 𝑈𝑚 

should be greater than 𝑈𝑛. 

Axiom 3: If 𝑆 and 𝑅 (𝑅 < 𝑆) criteria from all the lowest-level criteria are selected and the 

degree of belief associated with the highest-preference linguistic term of each of such 𝑆 and 

𝑅 criteria is decreased by the same amount (i.e. simultaneously the degree of belief 

associated with the lowest-preference linguistic term of each of such 𝑆 and 𝑅 criteria is 

increased by the same amount) and the utility values of the model output are evaluated as 

𝑈𝑅 and 𝑈𝑆 respectively, then 𝑈𝑅 should be greater than 𝑈𝑆. 

The implementation of the axioms will help to test the certainty of the delivery of the analysis 

result. The degrees of belief associated with the highest preference linguistic terms of each 

sub-criterion are decreased by 𝑘 and simultaneously, the degrees of belief associated with 

the lowest preference linguistic terms of the corresponding sub-criterion are increased by 
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𝑘. Thus, the corresponding results are obtained. It is worth noting that when the belief 

degree of the highest preference linguistic term 𝛽𝛼 of a criterion is decreased by 𝑘, 

simultaneously, the belief degree of its lowest preference linguistic term has to be increased 

by 𝑘. However, if 𝛽𝛼 is less than 𝑘, then the remaining belief degree (i.e. 𝑘 − 𝛽𝛼) can be 

taken from the belief degree of the next linguistic term. This process continues until 𝑘 is 

consumed (Riahi et al., 2012). The comparative ship crane reliability (SCR) results obtained 

from this methodology are used to determine which crane’s components are susceptible to 

failure. The component with a low SCR value is identified as the one more prone to failure. 

4.3  Test Case 

In order to investigate the possibility of failure throughout the lifespan of a ship crane (Figure 

4.3) and during its operations, it is essential to monitor the conditions of its components 

(main criteria) in terms of their reliability during frequently changing sea conditions, by 

evaluating the laboratory oil sample test results for these components based on the given 

absolute limits for oil. The operating condition of both port and starboard cranes in an oil 

tanker operating within European nautical environments is evaluated based on the following 

information. Furthermore, the disparity in their conditions during frequently changing sea 

conditions is calculated. The characteristics of the cranes, the intended use, type, and size 

of the vessel, and the environment are listed as follows: 

1. Crane type: DONG Nam hydraulic crane on main deck – 10 Ton. 

2. Offshore crane used in floating production storage and offloading (FPSO). 

3. Crane arrangement: Port and Starboard. 

4. Degree of rotation: 3500. 

5. Environmental operating conditions: extremes temperature -200C to +450C. 

6. Personnel allowed to be lifted with the crane. 

7. The crane has an operator’s cabin. 

8. Lift Height/Depth: 1200m depth double fall. 

9. Overload alarm: set to 100% of SWL. 

10. The crane has the following main components: slewing rings bearing, clutches, 

gearboxes, and hydraulic pumps. Regular oil sample analysis is carried out for these 

components, and their laboratory test results are recorded. 

11. Using a crane for tasks outside its design intent can significantly increases safety 

risks, crane failures, and downtime. Consequently, the manufacturer, taking into 

account indication of the design loads, life, and estimated average running time, 

evaluated the overall design of the crane as Good. 
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4.3.1  Ship Crane Machinery 

Cranes are fitted on board most ships and offshore installations for cargo handling and 

lifting of personnel. These cranes appear to be fairly robust units which will continue to work 

when only a minimum of maintenance is carried out. They are highly complex pieces of 

machinery that incorporate numerous components manufactured to very fine tolerances, all 

of which must function correctly throughout a working period of the crane, as a unit, to be 

operated as the manufacturers recommended. The machinery of a crane includes all 

electrical control equipment and systems, motors, hydraulic oil pumps, filters and coolers, 

winches, clutches, brakes and control gear, limit switches, bearings and other pieces of 

equipment. Routine maintenance of these various pieces of machinery is essential for their 

continuing correct operation.  

In accordance with the planned maintenance regime, inspections and testing of the various 

parts should be carried out, with renewal of items as necessary. If any component is not in 

the appropriate good condition, failures are likely to occur during cargo operations. In this 

study, only the four key components (bearing, clutches, gearboxes and hydraulic pump) will 

be considered in the maintenance model in order for simplify the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Dongnam Hydraulic Crane on FPSO Main Deck 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

75 
 

4.3.2  Slewing ring bearings 

Slewing ring bearings shown in Figure 4.4 are commonly used in marine cranes for 

transferring/supporting axial, radial, and moment loads, singularly or in combination. They 

consist of rings mounted with threaded fasteners, usually with a gear integral with one of 

the rings. The slew bearing, which is a main structural load-bearing device that attaches the 

crane to the vessel, is a potential source for catastrophic failure. There are many instances 

in which cranes have been detached from the vessel because of failure in the slewing 

bearing. 

 

Figure 4.4: Crane Slewing Bearing 

The lubricants normally recommended by slewing ring bearing manufacturers are greases 

or oil bath lubrication for slowly rotating continuous operating enclosed bearings, where 

adequate sealing of the bearing enclosure exists (Rezmireş et al., 2010). Grease in itself 

may be defined as the lubricant that is in a solid or semi-solid state and contains thickener, 

and some various special additives. 

4.3.3 Gearboxes 

Marine crane gearboxes are expected to perform under conditions of high heat and heavy 

loads. In environments often contaminated with dirt, process debris, and water, without 

adequate protection, gears will wear prematurely and replacement of parts would need to 

be done more frequently. Oil change would also need to be done more often, and worst of 

all, would experience equipment downtime. To combat these difficult conditions, well-

formulated lubricants have to be used in marine gearbox applications (Lubrication 

Engineers, n.d). 

Gear oil is made up of two critical components: base oil and additives. Additives impart 

desirable properties and suppress undesirable ones. The additive package is the backbone 

of the lubricant’s performance, and a strong backbone will provide the performance and 

protection needed for the gearbox. When selecting gear oil, there are three essential 

attributes to consider: 
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1. The gear oil must remain thermally stable and not oxidize at high temperatures, thus 

avoiding the creation of sludge or varnish. Keeping the oil from oxidizing will 

lengthen drain and replacement intervals. As a general rule of thumb, for every 18 

degrees F (10 degrees C) increase in fluid temperature above 140°F (60°C), 

oxidation will reduce the service life of a lubricant by half. 

2. The gear oil must have extreme pressure properties. Gear oil with an extreme 

pressure (EP) additive will protect the gear surfaces against extreme pressures. 

3. Gear oil must fight contamination that enters the system, especially water. The oil 

must be able to demulsify, which allows for easy removal of the water from the 

gearbox. 

 

 

Figure 4.5: Crane Gearbox 

4.3.4 Clutches 

Figure 4.6 shows hydraulically actuated marine crane clutches and brakes which work 

exclusively with “wet-running” oil-cooled plates with the friction pairing steel/sintered lining. 

The advantages of actuation with pressure oil at 80 bar, the multi-plate construction type 

and the oil-cooled friction pairing steel/high-performance sinter result in an exceptionally 

compact design with high performance. It features high torques, low mass moments of 

inertia, high switch times and little maintenance. Since they run in a sealed housing, no dirt 

is released into the environment. 

Proper lubrication with only qualified lubricants is the prerequisite for achievement of highest 

efficiency and long life of high quality clutches. Only with use of oil or grease lubricants 

specified by the manufacturer. The amount of grease should cover approximately 60% of 

the free volume in the clutch. Care should be taken for homogene dispersion of the grease 

all over the clutch. 
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Figure 4.6: Crane Clutch 

4.3.5 Hydraulic Pump 

In all this wide variety of machinery, hydraulics plays a very vital role. The hydraulic 

technology is so precise and accurate that they are used in the main engine control and 

manoeuvring systems, deck cranes, winches, etc. The purpose of the ship crane is to stay 

stable whilst lifting heavy weights. The hydraulic pump is therefore, use in generating the 

necessary pressure that allow the crane to remain stabled during operations. The 

application of hydraulic oil pressure and operation of respective valves control the flow of 

hydraulic oil and enable the crane to perform the required operation. Figure 4.7 shows a 

crane hydraulic pump having a flow rate of 40 Lpm to 250 Lpm15.8. 

 

Figure 4.7: Crane Hydraulic Pump 
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4.3.6 Identification of Risk Criteria (Step one) 

When a group of similar components contributes to a common goal or function, grouping of 

such components facilitates their analysis. Hence, the introduction of a hierarchical model 

into the machinery system allows for an effective way to deal with the complexity associated 

with its operation in order to reveal its uncertainties. The hierarchical structure highlights the 

interaction among the components and determines how they perform together as a whole 

to contribute to the goal of the entire piece of machinery. 

Considering the generic model for monitoring the condition of the machinery (Figure 4.2) 

and the above information, a specific model (Figure 4.8) for monitoring the condition of a 

ship crane can be constructed. Analysis grades are assigned to all the criteria in the 

hierarchical structure and the qualitative and quantitative criteria are grouped. Four main 

criteria (bearing, clutch, gearbox, and hydraulic pump) and five sub-criteria (trend analysis, 

family analysis, environmental analysis, human reliability analysis, and design analysis) are 

identified for the ship crane.  

4.3.7 Application of Analytic Hierarchy Process Results (Step two) 

Questionnaires were sent to four experts (listed in Table 4.2) in the industry carefully 

selected to participate in the analysis with the aim of comparing the nine criteria (four main 

criteria and five sub-criteria) that are perceived in the condition monitoring of marine and 

offshore cranes. These nine criteria are set up in order of importance, by employing an 

analytic hierarchy process to determine their priority ranking for decision making. The nine 

criteria are used in four crane components: bearing, clutch, gearbox, and hydraulic pump. 

The decision maker determines the rating for each decision alternative for each criterion. 

The ratings for expert 1’s judgements are used as an example to show how the weights 

(priority vector) are determined. Then afterward, the ratings for the four experts’ judgement 

will be aggregated using the AHP software and the results will be shown. There will be one 

pair-wise comparison matrix for each criterion. Then, within each matrix, the pair-wise 

comparisons will rate each sub-criterion relative to every other sub-criterion. 

4.3.7.1  Selected experts and their assigned weights 

The experts’ background in the industry and their assigned weights are as shown in Table 

4.2. 
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Table 4.2: Weighting of Expert Judgments 

Number of 
Decision Makers 

Industrial 
Position 

Service 
Period 

Academic 
Qualification 

Experts’ 
Weights 

DM1 Senior Manager > 30 years Master 0.25 

DM2 Senior Manager > 30 years HND 0.25 

DM3 Senior Manager > 30 years Bachelor 0.25 

 

DM4 

 

Senior Manager 

 

> 30 years 

Class 1 

Certificate of 

Competency 

 

0.25 

 Total = 1 

 

4.3.7.2 Development of the ratings for each decision alternative for each criterion 

Based on the five sub-criteria identified, five separate matrices have been developed 

accordingly: one matrix for the trend analysis, one matrix for the family analysis, one matrix 

for the environmental analysis, one matrix for the human reliability analysis, and one matrix 

for the design analysis. Within each of the aforementioned five matrices, there will be pair-

wise comparisons for each component against every other component relative to that 

criterion. Since there are five sub-criteria under evaluation, each matrix will be of size 5 x 5. 

Table 1-4A in Appendix 4A indicates the Expert 1 judgement in comparing the five criteria 

for crane bearing, while Table 4.3 shows the pair-wise comparison matrix for the five criteria 

from Expert 1. 

From Table 1-4A (Appendix 4A), the Expert 1 determines that for the crane bearing: 

1. Trend analysis is strongly important over family analysis (number 5). 

2. Trend analysis is strongly to very strongly important over environmental analysis 

(number 6). 

3. Trend analysis is very strongly important over human reliability analysis (number 7). 

4. Trend analysis is strongly to very strongly important over design analysis (number 

6). 

5. Family analysis is equally to weakly important over environmental analysis (2). 

6. Family analysis is strongly important over Human reliability analysis (5). 

7. Family analysis is equally important over design analysis (1). 

8. Environmental analysis is weakly important over human reliability analysis (3). 

9. Design analysis is strongly important over environment analysis (5). 

10. Design analysis is strongly important over human reliability analysis (5). 
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Figure  4 . 8:  Specific  Model for Condition Monitoring of a Ship Crane 
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With the aforementioned pair-wise comparison values, a pair-wise comparison matrix can 

be constructed. Then the weights for trend analysis, family analysis, environmental analysis, 

human reliability analysis, and design analysis are computed. The 5 x 5 matrix in Table 4.3 

contains all of the pair-wise comparisons for the criteria. The "equally important" values 

shown along the upper left to lower right diagonal are comparing each criterion to itself and 

so, by definition, must be equal to one. 

The remaining values shown in the matrix represent the reciprocal pair-wise comparison of 

relationships previously mentioned. 

From Table 4.3, the values in each row are multiplied together and the fifth root of the sub-

criteria is calculated as follows: 

TA: (1 x 5 x 6 x 7 x 6) (1/5)  = 4.169 

FA: (0.2 x 1 x 2 x 5 x 1) (1/5) = 1.149 

EA: (0.167 x 0.5 x 1 x 3 x 0.2) (1/5) = 0.549 

HRA: (0.143 x 0.2 x 0.333 x 1 x 0.2) (1/5) = 0.286 

DA: (0.167 x 1 x 5 x 5 x 1) (1/5) = 1.331 

Table 4.3: Expert 1 Pair-wise Comparison Matrix for the Five Criteria 

Crane Bearing TA FA EA HRA DA 

TA 1 5 6 7 6 

FA 0.2 1 2 5 1 

EA 0.167 0.5 1 3 0.2 

HRA 0.143 0.2 0.333 1 0.2 

DA 0.167 1 5 5 1 
Source: Test case data 

 
The fifth root of the sub-criteria values (and total) from the previous steps is normalized to 

obtain the appropriate weights (priority vector) for each criterion. The weights for each 

criterion are calculated as follow: 

TA: (4.169 / 7.484) = 0.557 

FA: (1.149 / 7.484) = 0.154 

EA: (0.549 / 7.484) = 0.073 

HRA: (0.286 / 7.484) = 0.038 

DA: (1.331 / 7.484) = 0.178 
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The priority vector (PV) values are the criteria weights. The weights for each criterion must 

sum to one (i.e. the total priority vector), as shown in Table 4.4. 

Table 4.4: Developing Expert 1 Rating for each Decision Alternative for the Crane Bearing 

 
Crane Bearing 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

 
PV 

TA 1 5 6 7 6 4.169 0.557 

FA 0.2 1 2 5 1 1.149 0.154 

EA 0.167 0.5 1 3 0.2 0.549 0.073 

HRA 0.143 0.2 0.333 1 0.2 0.286 0.038 

DA 0.167 1 5 5 1 1.331 0.178 

SUM 1.677 7.7 14.333 21 8.4 7.484 1.000 

SUM * PV 0.934 1.186 1.046 0.798 1.495 5.459  

Lambda-max = 5.459 

CI = 0.115 

CR = 0.103 
Source: Test case data 

The pair-wise comparison values in each column are added together (as the “sum” values) 

and each sum is then multiplied by the respective weight (from the priority vector column) 

for those criteria, as follows: 

TA: (1 + 0.2 + 0.167 + 0.143 + 0.167) x 0.557 = 0.934 

FA: (5 + 1 + 0.5 + 0.2 + 1) x 0.154 = 1.1858 

EA: (6 + 2 + 1 + 0.333 + 5) x 0.073 = 1.046 

HRA: (7 + 5 + 3 + 1 + 5) x 0.038 = 0.798 

DA: (6 + 1 + 0.2 + 0.2 + 1) x 0.178 = 1.495 

In the row labelled “Sum*PV” shown in Table 4.4, each value shows the result of multiplying 

the respective sum (shown in the row immediately above) by the respective weight for that 

criterion (shown in the column labelled “priority vector”). 

The aforementioned values (shown in the row labelled “Sum*PV”) are added together to 

yield a total of 5.459 (i.e., 0.934 + 1.186 + 1.046 + 0.798 + 1.495 = 5.459). This value is 

called Lambda-max. Note that unlike the weights for the criteria, which must sum to one, 

Lambda-max will not necessarily be equal to one. 

Using Equation (2.11), the consistency index (CI) is calculated as: 

CI = (Lambda-max – n) / (n-1); where n = 5 

CI = (5.459 – 5) / (5-1) = 0.459 / 4 = 0.115 
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The CR is calculated by dividing the consistency index (CI) by a random index (RI), which 

is determined from a lookup table in Table 2.1. The RI is a direct function of the number of 

criteria or components being considered. Using Equation (2.10), CR is calculated as: 

CR = CI / RI 

The number of sub-criteria being considered in this test case is 5, thus, from Table 2.1, RI 

for 5 is given as 1.12. 

CR = 0.115 / 1.12 = 0.103 

If the CR ≤ 0.10, the decision maker's pair-wise comparisons are relatively consistent. In 

this case, the CR is 0.10, which indicates that the pair-wise comparisons are consistent and 

no correction action is necessary. 

Note that the CR for the matrix in Table 4.4 depicting the ratings for each decision alternative 

for each criterion is less than or equal to 0.10, meaning that the pair-wise comparisons are 

relatively consistent. Therefore, no further actions are necessary. 

The ratings for Expert 2, 3 and 4 for crane bearing are as shown in Appendix 4A; Tables 2-

4A, 4-4A, and 6-4A, and their corresponding pair-wise comparisons are shown in Tables 3-

4A, 5-4A, and 7-4A respectively. 

Their corresponding CR are found to be less than or equal to 0.10, thus depicting that their 

pair-wise comparisons are also consistent. Similarly, the ratings and the pair-wise 

comparisons of the individual four experts for the remaining three components (clutch, 

gearbox, and hydraulic pump) and their corresponding CR are obtained and shown in 

Tables 8-4A to 31-4A in Appendix 4A. 

4.3.7.3 Combining the four experts’ judgement to determine the pair-wise comparison 

matrix for each decision alternative for each criterion 

Considering the ratings from the four experts for the crane bearing, as shown in Appendix 

4A, Tables 1-4A, 2-4A, 4-4A and 6-4A, by applying Equation (2.8) and similar techniques 

used in Section 4.3.7.2, their value ratings can be combined to determine their pair-wise 

comparison values for the crane bearing, as shown in Table 4.5.  

Let 𝑒1, 𝑒2, 𝑒3, and 𝑒4 represent Experts 1, 2, 3, and 4 respectively. 

TA: FA = (𝑒1 x 𝑒2 x 𝑒3 x 𝑒4)1/4 = (5 x 3 x 5 x 5)1/4 = 4.4    

TA: EA = (6 x 1 x 5 x 4)1/4 = 3.31 

TA: HRA = (7 x 6 x 5 x 2)1/4 = 4.527 
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TA: DA = (6 x 4 x 5 x 0.5)1/4 = 2.783 

FA: TA = (0.2 x 0.33 x 0.2 x 0.2)1/4 = 0.226 

FA: EA = (2 x 0.5 x 0.33 x 0.33)1/4 = 0.574 

FA: HRA = (5 x 6 x 3 x 2)1/4 = 3.663 

FA: DA = (1 x 6 x 1 x 0.33)1/4 = 1.186 

EA: TA = (0.167 x 1 x 0.2 x 0.25)1/4 = 0.302 

EA: FA = (0.5 x 2 x 3 x 3)1/4 = 1.732 

EA: HRA = (3 x 6 x 3 x 1)1/4 = 2.711 

EA: DA = (0.2 x 2 x 1 x 0.33)1/4 = 0.603 

HRA: TA = (0.143 x 0.166 x 0.2 x 0.5)1/4 = 0.220 

HRA: FA = (0.2 x 0.166 x 0.33 x 0.5)1/4 = 0.272 

HRA: EA = (0.333 x 0.166 x 0.333 x 1)1/4 = 0.368 

HRA: DA = (0.2 x 0.25 x 0.333 x 0.25)1/4 = 0.254 

DA: TA = (0.167 x 0.25 x 0.2 x 2)1/4 = 0.359 

DA: FA = (1 x 0.167 x 1 x 3)1/4 = 0.841 

DA: EA = (5 x 0.5 x 1 x 3)1/4 = 1.655 

DA: HRA = (5 x 4 x 3 x 4)1/4 = 3.936 

Table 4.5: Combined Pair-Wise Comparison Matrix for Crane Bearing 

Crane Bearing TA FA EA HRA DA 5th Root  PV 

TA 1 4.4 3.31 4.527 2.783 2.836 0.484 

FA 0.226 1 0.574 3.663 1.186 0.562 0.096 

EA 0.302 1.732 1 2.711 0.603 0.969 0.165 

HRA 0.220 0.272 0.368 1 0.254 0.354 0.060 

DA 0.359 0.841 1.655 3.936 1 1.144 0.195 

SUM 2.107 8.245 6.907 15.837 5.826 5.865 1.000 

SUM * PV 1.019 0.791 1.139 0.950 1.136 5.035  

Lambda-max = 5.035 

CI = 0.087 

CR = 0.077 

Source: Test case data 
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Similarly, considering the experts’ ratings in Tables 8-4A, 10-4A, 12-4A, 14-4A, 16-4A, 18-

4A, 20-4A, 22-4A, 24-4A, 26-4A, 28-4A, and 30-4A, the four experts’ combined pair-wise 

comparison values for the crane clutch, gearbox, and hydraulic pump are obtained as 

shown in Tables 4.6, 4.7, and 4.8 respectively. 

Table 4.6: Combined Pair-Wise Comparison Matrix for Crane Clutch 

Crane Clutch TA FA EA HRA DA 5th Root PV  

TA 1 3.344 4.606 5.144 4.949 3.301 0.503 

FA 0.299 1 1.778 3.499 0.841 1.094 0.167 

EA 0.217 0.562 1 1.861 0.379 0.612 0.093 

HRA 0.193 0.286 0.537 1 0.293 0.387 0.059 

DA 0.203 1.189 2.632 3.409 1 1.167 0.178 

SUM 1.912 6.381 10.553 14.913 7.462 6.561 1.000 

SUM * PV 0.962 1.066 0.981 0.879 1.328 5.216  

Lambda-max = 5.216 

CI = 0.054 

CR = 0.05 

Source: Test case data 

Table 4.7: Combined Pair-Wise Comparison Matrix for Crane Gearbox 

Crane Gearbox TA FA EA HRA DA 5th Root PV 

TA 1 4.729 4.729 6.117 4.162 3.557 0.524 

FA 0.212 1 1.861 4.401 1 1.117 0.165 

EA 0.212 0.537 1 2.059 0.595 0.674 0.099 

HRA 0.163 0.228 0.485 1 0.255 0.341 0.050 

DA 0.239 1 1.682 3.936 1 1.096 0.162 

SUM 1.826 7.494 9.757 17.513 7.012 6.785 1.000 

SUM * PV 0.957 1.237 0.966 0.876 1.136 5.172  

Lambda-max = 5.172 

CI = 0.043 

CR = 0.04 

Source: Test case data 

Table 4.8: Combined Pair-Wise Comparison Matrix for Crane Hydraulic Pump 

Crane 
Hydraulic 
Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

 
5th Root 

 
PV 

TA 1 4.472    4.229 3.873 3.761 3.076 0.485 

FA 0.224 1 1.732 4.162 1.189 1.139 0.181 

EA 0.236 0.577 1 2.449 0.904 0.787 0.124 

HRA 0.258 0.239 0.408 1 0.302 0.377 0.059 

DA 0.265 0.841 1.107 3.309 1 0.960 0.151 

SUM 1.983 7.129 8.476 14.793 7.156 6.339 1.000 

SUM * PV 0.962 1.290 1.051 0.873 1.081 5.257  

Lambda-max  = 5.257 

CI = 0.064 

CR = 0.057 

Source: Test case data 
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4.3.7.4 Weight assignment 

In order to show the relative important of each sub-criterion for its associated main criterion, 

it is necessary to assign a weight to each sub-criterion (TA, FA, EA, HRA and DA). Four 

experienced experts with equal weights have judged and evaluated the relative importance 

of specific sub-criterion for their associated main criterion (i.e. crane bearing, clutch, 

gearbox, and hydraulic pump).  

Table 4.9. Weights of the Sub-Criteria 

 
Sub-Criteria 

Crane 
Bearing 

Crane 
Clutch 

Crane 
Gearbox 

Crane 
Hydraulic Pump 

Trend Analysis 0.484 0.503 0.524 0.485 

Family Analysis 0.096 0.167 0.165 0.181 

Environmental Analysis 0.165 0.093 0.099 0.124 

Human Reliability Analysis 0.060 0.059 0.050 0.059 

Design Analysis 0.195 0.178 0.162 0.151 

Source: Test case data 

Considering the four experts’ pair-wise comparison matrix of the five attributes (sub-criteria) 

for the main criteria, as shown in Tables 4.5 to 4.8, and based on Equations (2.9) to (2.12), 

the CR is calculated as 0.1 and the weight of the five attributes are assessed as shown in 

Table 4.9. 

4.3.8  Evaluation of Trend Analysis (Step three) 

Evaluation of trend analysis for the four main criteria (bearing, clutch, gearbox and hydraulic 

pump) is carried out by transforming the grease sample element test results from the crane 

bearing and the oil sample element test results from the clutch, gearbox, and hydraulic 

pump to a linguistic variable with the associated belief degree using triangular membership 

functions of continuous fuzzy sets. This is illustrated in subsequent sections. Individual test 

elements are described utilizing five linguistic terms: Very Low, Low, Average, High and 

Very High. The explanation of the linguistic terms describing individual scenario is given in 

Table 4.10. 

Table 4.10: Description for Test Elements and General Interpretation 

Linguistic Term for 
Test Elements 

 
General Interpretation 

 
Very Low 

Wear particles present in small quantities. Acceptable amount of normal wear 
particles. 

 
Low 

Wear particles present in small quantities. Acceptable amount of normal wear 
particles. 

 
Average 

Wear particles present in medium quantities. Acceptable amount of normal wear 
particles. 

 
High 

Wear particles present in high quantities. Unacceptable amount of normal wear 
particles. 

 
Very High 

The wear metals content is higher than normal. The crane should be stopped for 
investigation. 

Source: Test case data 
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4.3.8.1 Evaluation of trend analysis for the crane bearing 

Table 4.11 shows the laboratory test results obtained for grease samples taken from the 

port crane slewing bearing of a FPSO, while Table 4.12 shows the absolute limits for a 

crane bearing used grease sample obtained from a reputable oil company. In order to 

evaluate the trend analysis for this port crane bearing, each of the grease element test 

results listed in Table 4.11, with their corresponding limit in Table 4.12, is transformed to 

linguistic variable with associated belief degrees. For example: 

Iron (Fe) element in bearing grease samples: 

Based on experts’ opinions, the upper limit is found and the rules are written for iron (Fe) 

element with equal distributions, demonstrated as follows: 

1. If a crane bearing grease sample laboratory test has a result of 100ppm iron (Fe) or 

lower, then it can be categorised as 100% Very Low.  

2. If a crane bearing grease sample laboratory test has a result of 200ppm iron (Fe), 

then it can be categorised as 100% Low. 

3. If a crane bearing grease sample laboratory test has a result of 300ppm iron (Fe), 

then it can be categorised as 100% Average. 

4. If a crane bearing grease sample laboratory test has a result of 400ppm iron (Fe), 

then it can be categorised as 100% High. 

5. If a crane bearing grease sample laboratory test has a result of 500ppm iron (Fe) 

and above, then it can be categorised as 100% Very High. 

Based on the above rules, the membership functions of the iron (Fe) can be constructed as 

shown in Figure 4.10. 

Table 4.11: Grease Sample Report for Ship Port Crane Bearing 

Elements Sample 3 Sample 2 Sample 1 

Iron (Fe) mg/kg 43 20 27 

Chromium (Cr) mg 0 0 5 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 15 0 0 

Lead (pb) mg/kg 45 5 14 

Copper (Cu) mg/k 122 0 14 

Sodium (Na) mg/k 84 59 0 

Magnesium (Mn) m 0 24 0 

Nickel (Ni) mg/k 5 1 72 

Aluminium (Al) m 13 22 174 

Silicon (Si) mg/k 8 51 30 
Source: Hypothetical data from a reputable oil test laboratory 
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Table 4.12: Absolute Limits for Crane Bearing Used Grease Sample 

Test Upper Attention Upper Action 

Iron (Fe) 500 750 

Chromium (Cr) 8 11 

Molybdenum (Mo) 40 50 

Tin (Sn) 40 60 

Lead (Pb) 15 20 

Copper (Cu) 15 20 

Sodium (Na) 150 200 

Magnesium (Mg) 90 100 

Nickel (Ni) 5 8 

Aluminium (Al) 90 150 

Silicon (Si) 150 250 
Source: Hypothetical data from a reputable lubricants manufacturer 

 

 

 

 

 

 

 

 

 

 

Based on the stated rules and by viewing the iron (Fe) contents for the crane bearing grease 

test results as an independent criterion, the iron (Fe) contents of 20ppm to 43ppm indicate 

that the crane bearing is still in good condition. Thus, 20ppm to 43ppm iron (Fe) contents in 

a grease crane bearing can be categorised as 100% Very Low.  

Based on the information in Table 4.11, the laboratory test result for grease sample 1 

indicates iron (Fe) contents of 27ppm. Based on Figure 4.9 and Equation (2.6), the belief 

degrees are calculated as follows: 

𝐻𝑛+1 is the Very Low grade;  ℎ𝑛+1,𝑖 = 100 

ℎ𝑖 = 27,      27 < 100  

Very Low Low Average High Very High 

     
100      200 300 400 500 

1 

Limits 

Iron  ( Fe ) 

Figure 4.9: Membership Function of the Iron (Fe) Element – Trend Analysis  

Degree  
of belief 
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Thus, based on rule 1, the iron (Fe) contents in grease sample 1 test result set are assessed 

as: 

𝑭𝒆�̃� = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

In the similar way, the iron (Fe) contents in grease samples 2 and 3 test result sets are 

assessed as: 

𝑭𝒆�̃� = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

𝑭𝒆�̃� = {(1, Very Low), (0, Low), (0, Average), (0, High), (0, Very High)} 

Using a similar technique, based on expert opinions, the upper limit is found and the rules 

for other elements are demonstrated. Based on the given rules, membership functions for 

the elements are constructed as shown in Figures 1-4B1 to 11-4B1, Appendix 4B1. Based 

on the information in Table 4.11, the laboratory test results set for samples 1, 2, and 3 are 

assessed and their corresponding belief degrees are calculated and recorded as shown in 

Table 4.13. Thus, with the help of the ER algorithm, the trend analysis for the fuzzy set of 

crane bearing grease samples 1, 2 and 3 are conducted and the results shown in Table 

4.13. 

4.3.8.2 Evaluation of trend analysis for the crane clutch 

Table 4.14 shows the laboratory test results obtained for the oil samples taken from the port 

crane clutch, while Table 4.15 shows the absolute limits for the crane clutch used oil sample. 

Applying the same techniques described in Section 4.3.8.1, and based on the information 

in Tables 4.14 and 4.15, the membership functions of the elements in the crane clutch oil 

samples 1, 2 and 3 are constructed and shown in Figures 1-4B2 to 9-4B2, Appendix 4B2. 

Trend analysis for the fuzzy set of crane clutch oil samples 1, 2 and 3 is conducted and the 

results are shown in Table 4.16. 

4.3.8.3 Evaluation of trend analysis for the crane gearbox 

Table 4.17 shows the laboratory test results obtained for the oil samples taken from the port 

crane gearbox, while Table 4.18 shows the absolute limits for the crane used gearbox oil 

sample.  

In a similar way, and based on the information in Tables 4.17 and 4.18, the membership 

functions of the elements in the crane gearbox oil samples are constructed as shown in 

Figures 1-4B3 to 12-4B3, Appendix 4B3. Trend analysis for the fuzzy set of crane gearbox 

oil samples 1, 2 and 3 is conducted and the results are shown in Table 4.19. 
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Table 4.13: Fuzzy Sets for Crane Bearing Grease Samples – Trend Analysis 

Test 
Elements 

 
Fuzzy Sets for Sample 1 

 
Fuzzy Sets for Sample 

2 

 
Fuzzy Sets for Sample 

3 

Iron (Fe) {(1, Very low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

Chromium 
(Cr) 

{(0, Very Low), (0, Low), 
(0.875, Average), (0.125, 
High), (0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

Tin (Sn) {(1, Very Low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

{(0.125, Very Low), 
(0.875, Low), (0, 
Average), (0, High), (0, 
Very High)} 

Molybdenum 
(Mo) 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)},  

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)},  

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)},  

Lead (Pb) {(0, Very Low), (0, Low), 
(0, Average), (0.33, High), 
(0.67, Very High)} 

{(0.33, Very Low), (0.67, 
Low), (0, Average), (0, 
High), (0, Very High)} 

{(0, Very Low), (0, Low), 
(0, Average), (0, High), 
(1, Very High)} 

Copper (Cu) {(0, Very Low), (0, Low), 
(0, Average), (0.33, High), 
(0.67, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

{(0, Very Low), (0, Low), 
(0, Average), (0, High), 
(1, Very High)} 

Sodium (Na) {(1, Very Low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)} 

{(0.03, Very Low), (0.97, 
Low), (0, Average), (0, 
High), (0, Very High)} 

{(0, Very Low), (0.2, 
Low), (0.8, Average), (0, 
High), (0, Very High)} 

Magnesium 
(Mg) 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)} 

{(0.66, Very Low), (0.34, 
Low), (0, Average), (0, 
High), (0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

Nickel (Ni) {(0, Very Low), (0, Low), 
(0, Average), (0, High), (1, 
Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

{(0, Very Low), (0, Low), 
(0, Average), (0, High), 
(1, Very High)} 

Aluminium 
(Al) 

{(0, Very Low), (0, Low), 
(0, Average), (0, High), (1, 
Very High)} 

{(0.77, Very Low), (0.23, 
Low), (0, Average), (0, 
High), (0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

Silicon (Si) {(1, Very Low), (0, Low), 
(0, Average), (0, High), (0, 
Very High)} 

{(0.3, Very Low), (0.7, 
Low), (0, Average), (0, 
High), (0, Very High)} 

{(1, Very Low), (0, Low), 
(0, Average), (0, High), 
(0, Very High)} 

 
Aggregation 
Result 

{(0.5858, Very Low), (0, 
Low), (0.0664, Average), 
(0.0611, High), (0.2867, 
Very High)} 

{(0.7828, Very Low), 
(0.2172, Low), (0, 
Average), (0, High), (0, 
Very High)} 

{(0.6041, Very Low), 
(0.0831, Low), (0.0609, 
Average), (0, High), 
(0.2519, Very High)} 

Source: Test case data 

Table 4.14: Grease Sample Report for Ship Port Crane Clutch 

Elements Sample 3 Sample 2 Sample 1 

Iron (Fe) mg/kg 6 8 8 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 1 0 1 

Lead (Pb) mg/kg 1 1 2 

Copper (Cu) mg/k 5 6 5 

Aluminium (Al) m 1 0 0 

Silicon (Si) mg/k 4 5 4 

Vanadium (V) mg/k 9 10 8 

Source: Hypothetical data from a reputable oil test laboratory 
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Table 4.15: Absolute Limits for Crane Clutch Oil Tests 

Test Upper Attention Upper Action 

Iron (Fe) 45 68 

Chromium (Cr) 5 8 

Molybdenum (Mo) 6 8 

Tin (Sn) 10 15 

Lead (Pb) 5 11 

Copper (Cu) 22 32 

Aluminium (Al) 10 15 

Silicon (Si) 35 55 

Vanadium (V) 40 53 

Source: Hypothetical data from a reputable lubricants manufacturer 

Table 4.16: Fuzzy Sets for Crane Clutch Oil Samples – Trend Analysis 

Test 
Elements 

 
Fuzzy Sets for Sample 1 

 
Fuzzy Sets for Sample 2 

 
Fuzzy Sets for Sample 3 

Iron (Fe) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Tin (Sn) {(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Lead (Pb) {(0, Very Low), (1, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Copper (Cu) {(0.86, Very Low), (0.14, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.64, Very Low), (0.36, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0.86, Very Low), (0.14, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Aluminium 
(Al) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Silicon (Si) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.75, Very Low), (0.25, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(0.875, Very Low), (0.125, 
Low), (0, Average), (0, High), 
(0, Very High)} 

 
Aggregation 
Result 

{(0.9134, Very Low), (0.0866, 
Low), (0, Average), (0, High), (0, 
Very High)} 

{(0.9562, Very Low), (0.0438, 
Low), (0, Average), (0, High), 
(0, Very High)} 

{(0.9818, Very Low), (0.0182, 
Low), (0, Average), (0, High), 
(0, Very High)} 

Source: Test case data 

Table 4.17: Oil Sample Report for Ship Port Crane Gearbox 

Test Elements Sample 3 Sample 2 Sample 1 

Water Content %v 0.1 0 0 

Total Acid Number (TAN) 0.31 0.42 0.37 

Iron (Fe) mg/kg 13 11 15 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 187 259 513 

Tin (Sn) mg/kg 3 0 22 

Lead (Pb) mg/kg 0 0 0 

Copper (Cu) mg/k 31 29 36 

Sodium (Na) mg/k 0 3 0 

Aluminium (Al) m 4 3 6 

Silicon (Si) mg/ 4 4 9 

Vanadium (V) mg/ 0 0 0 

Source: Hypothetical data from a reputable oil test laboratory 

 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

92 
 

Table 4.18: Absolute Limits for Crane Gearbox Oil Tests 

Test Upper Attention Upper Action 

Water Content 0.1 0.21 

Total Acid No. (TAN) 1.5 2.5 

Iron (Fe) 60 98 

Chromium (Cr) 4 6 

Molybdenum (Mo) 6 9 

Tin (Sn) 7 9 

Lead (Pb) 28 47 

Copper (Cu) 36 60 

Aluminium (Al) 7 10 

Silicon (Si) 30 40 

Sodium (Na) 30 40 

Vanadium (V) 5 10 

Source: Hypothetical data from a reputable lubricants manufacturer 

Table 4.19: Fuzzy Sets for Crane Gearbox Oil Samples – Trend Analysis 

Test 
Elements 

 
Fuzzy Sets for Sample 1 

 
Fuzzy Sets for Sample 2 

 
Fuzzy Sets for Sample 3 

Water 
Content 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

TAN {(0.76, Very Low), (0.24, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.6, Very Low), (0.4, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.96, Very Low), (0.04, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Iron (Fe) {(0.75, Very Low), (0.25, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.92, Very Low), (0.08, Low), 
(0, Average), (0, High), (0, Very 
High)} 

Chromium 
(Cr) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Molybdenum 
(Mo) 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

Tin (Sn) {(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0, Very Low), (0.85, Low), 
(0.15, Average), (0, High), (0, 
Very High)} 

Lead (Pb) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Copper (Cu) {(0, Very Low), (0, Low), (0, 
Average), (0, High), (1, Very 
High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0.97, High), (0.03, 
Very High)} 

{(0, Very Low), (0, Low), (0, 
Average), (0.69, High), (0.31, 
Very High)} 

Aluminium 
(Al) 

{(0, Very Low), (0, Low), (0, 
Average), (0.71, High), (0.29, 
Very High)} 

{(0, Very Low), (0.85, Low), 
(0.15, Average), (0, High), (0, 
Very High)} 

{(0, Very Low), (0.14, Low), 
(0.86, Average), (0, High), (0, 
Very High)} 

Silicon (Si) {(0.5, Very Low), (0.5, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Sodium (Na) {(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Aggregation 
Result 

{(0.6331, Very Low), (0.0694, 
Low), (0, Average), (0.0484, 
High), (0.2491, Very High)} 

{(0.7812, Very Low), (0.0816, 
Low), (0.0096, Average), 
(0.0618, High), (0.0658, Very 
High)} 

{(0.6298, Very Low), (0.079, 
Low), (0.0713, Average), 
(0.0482, High), (0.1717, Very 
High)} 

Source: Test case data 

4.3.8.4 Evaluation of trend analysis for the crane hydraulic pump 

Table 4.20 shows the laboratory test results obtained for the oil samples taken from the port 

crane hydraulic pump, while Table 4.21 shows the absolute limits for the crane used 

hydraulic pump oil sample. 
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Table 4.20. Oil Sample Report for Ship Port Crane Hydraulic Pump 

 
 
 
 
 
 
Source: Hypothetical data from 

a reputable oil test laboratory 

 

Table 4.21. Absolute Limits for Crane Hydraulic Pump Oil Tests 

Test Upper Attention Upper Action 

Water Content 0.2 0.5 

Iron (Fe) 23 36 

Chromium (Cr) 6 10 

Molybdenum (Mo) 6 10 

Tin (Sn) 6 10 

Lead (Pb) 8 13 

Copper (Cu) 36 55 

Sodium (Na) 30 40 

Aluminium (Al) 6 10 

Silicon (Si) 30 35 

Vanadium (V) 5 10 

Source: Hypothetical data from a reputable lubricants manufacturer 

Table 4.22: Fuzzy Sets for Crane Hydraulic Pump Oil Samples – Trend Analysis 

Test 
Elements 

 
Fuzzy Sets for Sample 1 

 
Fuzzy Sets for Sample 2 

 
Fuzzy Sets for Sample 3 

 
Water 
Content 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Iron (Fe) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Chromium 
(Cr) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Molybdenum 
(Mo) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Tin (Sn) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Lead (Pb) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Copper (Cu) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.75, Very Low), (0.25, Low), 
(0, Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Aluminium 
(Al) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Silicon (Si) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Sodium (Na) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.5, Very Low), (0.5, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Vanadium 
(V) 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

 
Aggregation 
Result 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

{(0.9561, Very Low), (0.0439, 
Low), (0, Average), (0, High), 
(0, Very High)} 

{(1, Very Low), (0, Low), (0, 
Average), (0, High), (0, Very 
High)} 

Source: Test case data 

Test Elements Sample 3 Sample 2 Sample 1 

Water Content %v 0 0 0 

Iron (Fe) mg/kg 0 0 1 

Chromium (Cr) mg 0 0 0 

Molybdenum (Mo) 0 0 0 

Tin (Sn) mg/kg 0 0 0 

Lead (Pb) mg/kg 0 0 0 

Copper (Cu) mg/k 0 9 7 

Sodium (Na) mg/k 0 9 0 

Aluminium (Al) m 0 0 0 

Silicon (Si) mg/ 0 0 0 

Vanadium (V) mg/ 0 0 0 
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In a similar way, and based on the information in Tables 4.20 and 4.21, the membership 

functions of the elements in the crane hydraulic pump oil samples are constructed as shown 

in Figures 1-4B4 to 11-4B4, Appendix 4B4. Trend analysis for the fuzzy set of crane 

hydraulic oil samples 1, 2 and 3 is conducted and the results shown in Table 4.22. 

4.3.9  Evaluation of Family Analysis (Step four) 

Evaluation of family analysis for the four main criteria (bearing, clutch, gearbox and 

hydraulic pump) is carried out first, by determining the standard deviations of the laboratory 

test results for each of the elements in the grease/oil samples from both port and starboard 

cranes. Secondly, by transforming the grease sample element test results from the two 

cranes’ bearings and the oil sample element test results from the two cranes’ clutches, 

gearboxes and hydraulic pumps to a linguistic variables with the associated belief degrees, 

using triangular membership functions of continuous fuzzy sets. This is illustrated in 

subsequent sections. 

4.3.9.1 Evaluation of family analysis for crane bearing 

Table 4.23 shows the standard deviation of both the port and starboard ship deck crane 

obtained from their bearing grease samples laboratory test results taken for each element. 

To evaluate family analysis for each of the crane’s bearing, each standard deviation of the 

element in the crane’s bearing grease is transformed into linguistic variables with their 

associated belief degrees. 

Based on expert opinions and by equal distribution of standard deviation, the following rules 

are demonstrated for all the test elements in Table 4.23:  

1. If both cranes bearing grease sample laboratory test results have a standard 

deviation of 5 or lower, then it can be categorised as 100% Very Good.  

2. If both cranes bearing grease sample laboratory test results have a standard 

deviation of 10 to 15, then it can be categorised as 100% Good. 

3. If both cranes bearing grease sample laboratory test results have a standard 

deviation of 20 to 25, then it can be categorised as 100% Average. 

4. If both cranes bearing grease sample laboratory test results has a standard 

deviation of 30 to 35, then it can be categorised as 100% Bad. 

5. If both cranes bearing grease sample laboratory test results has a standard 

deviation of 40 and above, then it can be categorised as 100% Very Bad. 
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Table 4.23. Standard Deviation for Port and Starboard Cranes Bearing Grease Test Results 

PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 

Value 
Standard 
Deviation 

Iron (Fe) mg/kg 43 20 27 69 46 20 37.5 19.07 

Chromium (Cr) 
mg 

0 0 5 0 0 5 
1.667 2.582 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) mg/kg 15 0 0 7 10 1 5.5 6.221 

Lead (Pb) mg/kg 45 5 14 39 14 23 23.33 15.65 

Copper (Cu) mg/k 122 0 14 181 0 20 56.17 76.57 

Sodium (Na) mg/k 84 59 0 108 56 0 51.17 43.88 

Magnesium (Mg) 
m 

0 24 0 0 32 0 
9.333 14.68 

Nickel (Ni) mg/k 5 1 72 8 3 3 15.33 27.86 

Aluminium (Al) m 13 22 174 20 26 15 45 63.37 

Silicon (Si) mg 8 51 30 4 66 30 31.5 24.01 

Source: Hypothetical data from a reputable oil test laboratory 

Iron (Fe) element in bearing grease samples: 

Based on the stated rules, the membership functions of iron (Fe) element in crane bearing 

grease samples can be constructed as shown in Figure 4.11. Then, by viewing the standard 

deviation in iron (Fe) element as an independent criterion, the 19.07 deviations in the grease 

samples laboratory test results for the two cranes bearings indicate medium iron (Fe) 

contents in the grease samples. Thus, 19.07 deviation in iron (Fe) contents can be 

categorised as partially Average and partially Good. 

Based on the information in Table 4.23, the standard deviation for iron (Fe) in the two cranes 

bearing grease samples test results is 19.07. Based on Figure 4.11 and Equation (2.6), the 

belief degrees are calculated as follows: 

𝐻𝑛+1 is the Average grade;  ℎ𝑛+1,𝑖 = 20 

𝐻𝑛 is the Good grade;  ℎ𝑛,𝑖 = 15 

ℎ𝑖 = 19,    15 < 19 < 20 

𝛽𝑛,𝑖 = 
20−19

20−15
= 

1

5
=  0.2 = 20% with the Good grade. 

𝛽𝑛+1,𝑖 = 1 − 0.2 = 0.8 =  80% with the Average grade. 

Therefore, the standard deviation in iron (Fe) for the bearing grease samples set are 

assessed as:  

𝑭�̃� = {(0, Very Good), (0.2, Good), (0.8, Average), (0, Bad), (0, Very Bad)} 
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Figure 4.10: Membership Function of the Iron (Fe) Element – Family Analysis
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Similarly, the membership functions for other elements in Table 4.23 for the crane bearing 

grease samples are constructed as shown in Figures 1-4C1 to 11-4C1, Appendix 4C1. The 

standard deviations for the oil samples set are assessed and their corresponding belief 

degrees are calculated and recorded in Table 4.24. With the help of the ER algorithm, the 

family analysis results for the crane bearing grease samples are recorded in Table 4.24. 

Table 4.24: Fuzzy Sets for Crane Bearing Oil Samples – Family Analysis 

Test Elements                                             Estimates 

Iron (Fe) {(0, Very Good), (0.2, Good), (0.8, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(0.76, Very Good), (0.24, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(0, Very Good), (0.86, Good), (0.14, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Sodium (Na) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Magnesium (Mg) {(0, Very Good), (1, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Nickel (Ni) {(0, Very Good), (0, good), (0.4, Average), (0.6, Bad), (0, Very Bad)} 

Aluminium (Al) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Silicon (Si) {(0, Very Good), (0, Good), (1, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane 
Bearings 

{(0.253, Very Good), (0.2076, Good), (0.2118, Average), (0.0503, Bad), (0.2773, 
Very Bad)} 

Source: Test case data 

4.3.9.2  Evaluation of family analysis for crane clutch 

Table 4.25 shows the standard deviation of both the port and starboard ship deck crane 

obtained from the clutch oil samples laboratory test results taken for each element. By 

applying the same techniques described in Section 4.3.9.1, and based on the information 

in Table 4.25, the membership functions of the elements in the crane clutch oil samples are 

constructed as shown in Figures 1-4C2 to 10-4C2, Appendix 4C2. With the help of the ER 
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algorithm, family analysis for the fuzzy set of crane clutch oil samples are conducted and 

the results recorded in Table 4.26. 

Table 4.25: Standard Deviation for Port and Starboard Cranes Clutch Oil Test Results 

                                                   PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 Sample 1 
Average 
Value 

Standard 
Deviation 

Iron (Fe) 6 8 8 11 11 10 9 2 

Chromium (Cr) 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) 1 0 1 4 4 3 2.167 1.722 

Lead (Pb) 1 1 2 1 1 0 1 0.632 

Copper (Cu) 5 6 5 10 10 9 7.5 2.429 

Magnesium (Mg) 13 13 10 19 20 17 15.33 3.933 

Aluminium (Al) 1 0 0 2 2 0 0.833 0.983 

Silicon (Si) 4 5 4 5 5 6 4.833 0.753 

Vanadium (V) 9 10 8 15 17 14 12.17 3.656 

Source: Hypothetical data from a reputable oil test laboratory 

Table 4.26: Fuzzy Sets for Crane Clutch Oil Samples – Family Analysis 

Test Elements                                          Estimates 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃  for Crane Clutches {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Source: Test case data 

4.3.9.3  Evaluation of family analysis for crane gearbox 

Table 4.27 shows the standard deviation of both the port and starboard ship deck crane 

obtained from their gearbox oil samples laboratory test results taken for each element. 

Applying the same techniques described Section 4.3.9.1, and based on the information in 

Tables 4.27, the membership functions of the elements in the crane gearbox oil samples 

are constructed as shown in Figures 1-4C3 to 14-4C3, Appendix 4C3. Family analysis for 

the fuzzy set of crane gearbox oil samples are conducted and the results recorded in Table 

4.28. 

4.3.9.4  Evaluation of family analysis for crane hydraulic pump 

Table 4.29 shows the standard deviation of both the port and starboard ship deck crane 

obtained from their hydraulic oil samples laboratory test results taken for each element. 

Applying the same techniques described in Section 4.3.9.1, and based on the information 

in Tables 4.29, the membership functions of the elements in the crane hydraulic pump oil 

samples are constructed as shown in Figures 1-4C4 to 14-4C4, Appendix 4C4. The family 
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analysis for the fuzzy set of crane hydraulic pump oil samples are conducted and the results 

recorded in Table 4.30. 

Table 4.27: Standard Deviation for Port and Starboard Cranes Gearbox Oil Test Results 

                                               PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 
Sample 

2 
Sample 

1 
Average 
Value 

Standard 
Deviation 

Water Content %v 0.1 0 0 0 0 0 0.017 0.041 

Total Acid No. (TAN) 0.31 0.42 0.37 0.36 0.43 0.67 0.427 0.127 

Iron (Fe) mg/kg 13 11 15 13 16 20 14.67 3.141 

Chromium (Cr) mg 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 187 259 513 253 488 598 383 170.2 

Tin (Sn) mg/kg 3 0 22 1 0 0 4.333 8.733 

Lead (Pb) mg/kg 0 0 0 0 0 4 0.667 1.633 

Copper (Cu) mg/k 31 29 36 24 32 38 31.67 5.007 

Sodium (Na) mg/k 0 3 0 0 3 4 1.667 1.862 

Magnesium (Mg) m 1 0 1 1 0 1 0.667 0.516 

Boron (B) mg/kg 3 0 0 0 0 0 0.5 1.225 

Aluminium (Al) m 4 3 6 6 7 12 6.333 3.141 

Silicon (Si) mg/ 4 4 9 9 11 15 8.667 4.227 

Vanadium (V) mg/ 0 0 0 0 0 0 0 0 

Source: Hypothetical data from a reputable oil test laboratory 

Table 4.28: Fuzzy Sets for Crane Gearbox Oil Samples – Family Analysis 

Test Elements Estimates 

Water Contents %v {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Total Acid Number (TAN) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(0, Very Good), (0, Good), (0, Average), (0, Bad), (1, Very Bad)} 

Tin (Sn) {(0.26, Very Good), (0.74, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Sodium (Na) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Boron (B) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane Gearboxes {(0.9172, Very Good), (0.0352, Good), (0, Average), (0, Bad), (0.0476, Very Bad)} 

Source: Test case data 

Table 4.29: Standard Deviation for Port and Starboard Cranes Hydraulic Pump Test  

         Results 

                              PORT CRANE STARBOARD CRANE 

Test Elements 
Sample 

3 
Sample 

2 
Sample 

1 
Sample 

3 Sample 2 
Sample 

1 
Average 
Value 

Standard 
Deviation 

Water Content %v 0 0 0 0 0 0 0 0 

Total Acid No. (TAN) 0.55 0.5 0.5 0.48 0.34 0.42 0.465 0.074 

Iron (Fe) 0 0 1 0 0 0 0.167 0.408 

Chromium (Cr) 0 0 0 0 0 0 0 0 

Molybdenum (Mo) 0 0 0 0 0 0 0 0 

Tin (Sn) 0 0 0 0 0 0 0 0 

Lead (Pb) 0 0 0 0 0 0 0 0 

Copper (Cu) 0 9 7 0 6 3 4.167 3.764 

Sodium (Na) 0 9 0 0 6 0 2.5 3.987 

Magnesium (Mg)  0 0 0 0 0 0 0 0 

Boron (B) 0 1 0 0 1 0 0.333 0.516 

Aluminium (Al) 0 0 0 0 0 0 0 0 

Silicon (Si) 0 0 0 0 0 0 0 0 

Vanadium (V) 0 0 0 0 0 0 0 0 

Source: Hypothetical data from a reputable oil test laboratory 
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Table 4.30: Estimates for Crane Hydraulic Pump Oil Samples – Family Analysis 

Test Elements Estimates 

Water Contents %v {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Total Acid Number (TAN) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Iron (Fe) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Chromium (Cr) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Molybdenum (Mo) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Tin (Sn) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Lead (Pb) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Copper (Cu) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Sodium (Na) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Magnesium (Mg) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Boron (B) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Aluminium (Al) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Silicon (Si) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Vanadium (V) {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

𝑭𝑨 ̃ for Crane Hydraulic Pump {(1, Very Good), (0, Good), (0, Average), (0, Bad), (0, Very Bad)} 

Source: Test case data 

4.3.10  Evaluation of Environmental Analysis (Step five) 

The ship crane operating environmental information is not readily available making it difficult 

to know the exact environmental conditions during crane operations. With this lack of 

environmental data, the environmental conditions for the crane is assessed in different 

conditions of operation, with weights distributed evenly, when the environment is 100% very 

good, 100% good, 100% average, 100% bad, and 100% very bad. 

A ship crane operating in a 100% very good environment is assessed as: 

𝐸1̃ = {(0, Very Bad), (0, Bad), (0, Average), (0, Good), (1, Very Good)} 

A ship crane operating in a 100% good environment is assessed as: 

𝐸2̃ = {(0, Very Bad), (0, Bad), (0, Average), (1, Good), (0, Very Good)} 

A ship crane operating in a 100% average environment is assessed as: 

𝐸3̃ = {(0, Very Bad), (0, Bad), (1, Average), (0, Good), (0, Very Good)} 

A ship crane operating in a 100% bad environment is assessed as: 

𝐸4̃ = {(0, Very Bad), (1, Bad), (0, Average), (0, Good), (0, Very Good)} 

A ship crane operating in a 100% very bad environment is assessed as: 

𝐸5̃ = {(1, Very Bad), (0, Bad), (0, Average), (0, Good), (0, Very Good)} 

4.3.11  Evaluation of Human Reliability Analysis (Step six) 

Based on the research carried out by Riahi et al. (2012), the human reliability belief degrees 

for the crane bearing, clutch, gearbox and the hydraulic pump are assessed as: 
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𝑯𝑹�̃� = {(0.1649, High), (0.1958, Fairly High), (0.4355, Medium), (0.2038, Fairly Low), (0, 

Low)} 

4.3.12  Evaluation of Design Analysis (Step seven) 

In the test case, the machine components specified by the manufacturers as Good are given 

an attribute of 1, while the machine components specified as Bad are given an attributed of 

0. Considering the four components (main criteria) of the crane, according to the crane 

manufacturer, these components are said to be in good condition. Thus, based on the 

manufacturer’s recommendation, the design analysis belief degrees for each crane bearing, 

clutch, gearbox, and the hydraulic pump, can be assessed as: 

𝐷�̃� = {(0, Very Bad), (0, Bad), (0, Average), (1, Good), (0, Very Good)} 

4.3.13  Aggregation Operations on Criteria Results using ER (Step eight) 

Aggregation operations on the sub-criteria and the main criteria are carried out using the 

ER algorithm (Equations (2.13) to (2.22)), and the weights (Table 4.9) obtained with the 

help of AHP, as follows: 

4.3.13.1  Aggregation of sub-criteria  

The sub-criteria (TA, FA, EA, HRA and DA) for the three oil samples (1, 2 and 3) are 

aggregated, as shown in Tables 1-4D to 12-4D (Appendix 4D), and the results are 

presented in Tables 4.31, 4.32 and 4.33. 

Table 4.31: Aggregation Results of Sub-Criteria for Sample 1 

Bearing (B1) {(0.2251, Very Bad), (0.0658, Bad), (0.0978, Average), (0.1996, Good), 
(0.4117, Very Good)} 

Clutch (C1) {(0.0121, Very Bad), (0.0129, Bad), (0.0191, Average), (0.1552, Good), 
(0.8006, Very Good)} 

Gearbox (G1) {(0.1602, Very Bad), (0.0403, Bad), (0.0205, Average), (0.1615, Good), 
(0.6175, Very Good)} 

Hydraulic Pump 
(H1) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), 
(0.9432, Very Good)} 

Source: Test case data 

Table 4.32: Aggregation Results of Sub-Criteria for Sample 2 

Bearing (B2) {(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, Good), 
(0.7380, Very Good)} 

Clutch (C2) {(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), (0.0254, Good), 
(0.9404, Very Good)} 

Gearbox (G2) {(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), (0.0478, Good), 
(0.8545, Very Good)} 

Hydraulic Pump 
(H2) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), (0.0283, Good), 
(0.9269, Very Good)} 

Source: Test case data 
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Table 4.33: Aggregation Results of Sub-Criteria for Sample 3 

Bearing (B3) {(0.1754, Very Bad), (0.0296, Bad), (0.0820, Average), (0.0835, Good), 
(0.6294, Very Good)} 

Clutch (C3) {(0.0092, Very Bad), (0.0098, Bad), (0.0146, Average), (0.0162, Good), 
(0.9501, Very Good)} 

Gearbox (G3) {(0.0962, Very Bad), (0.0341, Bad), (0.0502, Average), (0.0515, Good), 
(0.7680, Very Good)} 

Hydraulic Pump 
(H3) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), (0.0132, Good), 
(0.9432, Very Good)} 

Source: Test case data 

4.3.13.2 Aggregation of the main criteria 

Based on the expert judgements, the main criteria are equally important. Therefore, the 

weights for the main criteria are evenly distributed among them. Samples 1, 2 and 3 fuzzy 

output sets – (B1, C1, G1, H1), (B2, C2, G2, H2) and (B3, C3, G3, H3) respectively – are 

aggregated with the help of the ER algorithm and the results are presented in Tables 4.34, 

4.35 and 4.36. 

Table 4.34: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 1 

 
Main Criteria 

 
Fuzzy Set 

Utility 
Value 

 
Bearing (B1) 

{(0.2251, Very Bad), (0.0658, Bad), (0.0978, Average), 
(0.1996, Good), (0.4117, Very Good)} 

 
0.6268 

 
Clutch (C1) 

{(0.0121, Very Bad), (0.0129, Bad), (0.0191, Average), 
(0.1552, Good), (0.8006, Very Good)} 

 
0.9299 

 
Gearbox (G1) 

{(0.1602, Very Bad), (0.0403, Bad), (0.0205, Average), 
(0.1615, Good), (0.6175, Very Good)} 

 
0.7590 

 
Hyd. Pump (H1) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), 
(0.0132, Good), (0.9432, Very Good)} 

 
0.9655 

 
Aggregation result  
(S1) 

{(0.0829, Very Bad), (0.0261, Bad), (0.0308, Average), 
(0.1095, Good), (0.7507, Very Good)} 

 
0.8548 

Source: Test case data 

Table 4.35: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 2 

 
Main Criteria 

 
Fuzzy Set 

Utility 
Value 

 
Bearing (B2) 

{(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), 
(0.1395, Good), (0.7380, Very Good)} 

 
0.8740 

 
Clutch (C2) 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), 
(0.0254, Good), (0.9404, Very Good)} 

 
0.9694 

 
Gearbox (G2) 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), 
(0.0478, Good), (0.8545, Very Good)} 

 
0.9095 

 
Hyd. Pump (H2) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), 
(0.0283, Good), (0.9269, Very Good)} 

 
0.9609 

 
Aggregation result  
(S2) 

{(0.0190, Very Bad), (0.0152, Bad), (0.0178, Average), 
(0.0425, Good), (0.9054, Very Good)} 

 
0.9500 

Source: Test case data 
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Table 4.36: Aggregation of Main Criteria from Fuzzy Sets Output of Sample 3 

 
Main Criteria 

 
Fuzzy Set 

Utility 
Value 

 
Bearing (B3) 

{(0.1754, Very Bad), (0.0296, Bad), (0.0820, Average), 
(0.0835, Good), (0.6294, Very Good)} 

 
0.7405 

 
Clutch (C3) 

{(0.0092, Very Bad), (0.0098, Bad), (0.0146, Average), 
(0.0162, Good), (0.9501, Very Good)} 

 
0.9721 

 
Gearbox (G3) 

{(0.0962, Very Bad), (0.0341, Bad), (0.0502, Average), 
(0.0515, Good), (0.7680, Very Good)} 

 
0.8403 

 
Hyd. Pump (H3) 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), 
(0.0132, Good), (0.9432, Very Good)} 

 
0.9655 

 
Aggregation result  
(S3) 

{(0.0536, Very Bad), (0.0156, Bad), (0.0299, Average), 
(0.0298, Good), (0.8711, Very Good)} 

 
0.9123 

Source: Test case data 

4.3.14  Obtaining a Crisp Number for the Goal (Step Nine) 

Based on Tables 4.34, 4.35, and 4.36, the sample 1 (S1), sample 2 (S2), and sample 3 (S3) 

fuzzy output sets for the crane’s condition (i.e. Goal) are obtained as: 

𝑆1̃ = {(0.0829, Very Bad), (0.0261, Bad), (0.0308, Average), (0.1095, Good), (0.7507, Very Good)} 

𝑆2̃ = {(0.0190, Very Bad), (0.0152, Bad), (0.0178, Average), (0.0425, Good), (0.9054, Very Good)} 

𝑆3̃ = {(0.0536, Very Bad), (0.0156, Bad), (0.0299, Average), (0.0298, Good), (0.8711, Very Good) 

To obtain a single crisp value for each of the three samples, the utility value associated with 

each linguistic term is calculated using Equations (4.2) to (4.4), as shown in Table 4.37. 

Considering the fact that the fuzzy output sets for the crane (Goal) are characterised by five 

linguistic terms, the highest preference is given to the Very Good linguistic term, while the 

lowest preference is given to the Very Bad linguistic term. Therefore, the ranking value is 

apportioned from five (i.e. highest preference) to one (i.e. lowest preference). The crane’s 

assessments, as shown in Table 4.37, are complete. The utility values of the crane based 

on sample 1 (S1), sample 2 (S2), and sample 3 (S3), as shown in Table 4.37, are calculated 

to be:  

S1 = 0.8548,                        S2 = 0.9500,                          S3 = 0.9123 

From the utility values obtained, it can be noted that sample 2 (S2) scores the highest utility 

value of 0.950. From these results it can be deduced that the crane’s condition was not very 

good when oil sample 1 was being taken from the components and sent for testing, then 

the condition was improved when oil sample 2 was taken, but started deteriorating when oil 

sample 3 was taken. However, it can be argued that either the oil topping or sampling 

intervals can influence the results. 
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Table 4.37: Utility Value 

Source: Test case data 

Similarly, to assess the condition of the main criteria, the utility values for each main criterion 

in samples 1, 2, and 3 are calculated and the results shown in Tables 4.34, 4.35, and 4.36 

respectively. 

4.3.15 Sensitivity Analysis (Final step) 

To test the certainty of the delivery of the analysis results, the three axioms mentioned in 

Section 4.2.10 are used in the sample 2 input data in Tables 5-4D to 8-4D (Appendix 4D). 

The degrees of belief associated with the highest preference linguistic values of all the 

𝐻𝑛 Very Good Good Average Bad Very Bad 

𝑉𝑛 5 4 3 2 1 

𝑈(𝐻𝑛) 5 − 1

5 − 1
= 1 

4 − 1

5 − 1
= 0.75 

3 − 1

5 − 1
= 0.5 

2 − 1

5 − 1
= 0.25 

1 − 1

5 − 1
= 0 

 

𝛽𝑛(𝑆1) 0.7507 0.1095 0.0308 0.0261 0.0829 

∑ 𝛽𝑛

5

𝑛=1

 

 
0.7507 + 0.1095 + 0.0308 + 0.0261 + 0.0829 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.7507 0.082125 0.0154 0.006525 0 

S1 Condition values of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.85475  ≈   0.8548 

𝛽𝑛(𝑆2) 0.9054 0.0425 0.0178 0.0152 0.0190 

∑ 𝛽𝑛

5

𝑛=1

 

 
0.9054 + 0.0425 + 0.0178 + 0.0152 + 0.0190 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.9054 0.031875 0.0089 0.0038 0 

S2 Condition values of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.949975  ≈   0.9500 

𝛽𝑛(𝑆3) 0.8711 0.0298 0.0299 0.0156 0.0536 

∑ 𝛽𝑛

5

𝑛=1

 

 
0.8711 + 0.0298 + 0.0299 + 0.0156 + 0.0536 = 1 (complete) 

𝛽𝑛𝑈(𝐻𝑛) 0.8711 0.02235 0.01495 0.0039 0 

S3 Condition values of the crane = 

∑ 𝛽𝑛

5

𝑛=1

𝑈(𝐻𝑛) = 0.9123  



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

104 
 

combined sub-criteria are decreased by 0.2, while simultaneously increasing the degrees 

of belief associated with the lowest preference linguistic values of each of the combined 

sub-criteria, as shown in Appendix 4E (Tables 1-4E to 4-4E). The aggregation results 

obtained are shown in Table 4.38. All the results obtained remain in harmony with axioms 

1 and 2. Also, by using a similar technique to that described in Section 4.3.14, the crane’s 

utility value from a 0.2 decrement of sample 2 input data is evaluated to be 0.7774, as 

shown in Table 4.38. 

To examine the alignment of the model with axiom 3, each original fuzzy set results for 

sample 2 in Table 4.32 and the 0.2 decrement fuzzy set results for sample 2 in Table 4.38 

are varied and aggregated using the ER algorithm, as shown in Tables 1-4F to 4-4F of 

Appendix 4F. The results obtained are shown in Table 4.39. The comparative utility values 

(ship crane reliability) for the crane bearing (B2), clutch (C2), gearbox (G2), and hydraulic 

pump (H2) obtained are also listed in Table 4.39 and shown in Figure 4.12. The lowest utility 

value of the ship crane is evaluated as 0.909. In view of the fact that 0.7774 (value of 

aggregation result in Table 4.38) is smaller than 0.909, this means the result is aligned with 

Axiom 3. 

From Figure 4.12, it is obvious that the ship crane is more sensitive to the crane bearing 

(B2) and gearbox (G2) than to the other main-criteria. Therefore, the ranking orders in Figure 

4.12 are consistent with those given by Lloyd’s Register (2011), Aldridge (2012) and 

Konecranes (2012). 

Table 4.38: Aggregation Results for Sample 2 Due to Decrement by 0.2 

 
Main Criteria 

 
Fuzzy Set 

Utility 
Value 

 
Bearing (B2) 

{(0.2483, Very Bad), (0.0301, Bad), (0.0536, Average), (0.1525, 
Good), (0.5155, Very Good)} 

 
0.6642 

 
Clutch (C2) 

{(0.1797, Very Bad), (0.0115, Bad), (0.0170, Average), (0.0291, 
Good), (0.7627, Very Good)} 

 
0.7959 

 
Gearbox (G2) 

{(0.2330, Very Bad), (0.0410, Bad), (0.0221, Average), (0.0535, 
Good), (0.6503, Very Good)} 

 
0.7118 

Hydraulic 
Pump (H2) 

{(0.1863, Very Bad), (0.0153, Bad), (0.0213, Average), (0.0324, 
Good), (0.7447, Very Good)} 

 
0.7835 

Aggregation 
Result  

{(0.1835, Very Bad), (0.0193, Bad), (0.0225, Average), (0.0536, 
Good), (0.7211, Very Good)} 

 
0.7774 

Source: Test case data 
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Table 4.39: Aggregation Results for the Variation of each 0.2 Decrement Values with the  

        Original Fuzzy Sets in the Main Criteria 

Main 
Criteria 

 
Sample 2 Fuzzy Set 

Utility 
Value 

Bearing 
(B2) 

{(0.0572, Very Bad), (0.0164, Bad), (0.0195, Average), (0.0470, Good), 
(0.8599, Very Good)} 

 
0.909 

 
Clutch (C2) 

{(0.0510, Very Bad), (0.0160, Bad), (0.0188, Average), (0.0446, Good), 
(0.8695, Very Good)} 

 
0.916 

Gearbox 
(G2) 

{(0.0550, Very Bad), (0.0166, Bad), (0.0190, Average), (0.0453, Good), 
(0.8641, Very Good)} 

 
0.912 

Hydraulic 
Pump (H2) 

{(0.0517, Very Bad), (0.0161, Bad), (0.0189, Average), (0.0448, Good), 
(0.8686, Very Good)} 

 
0.916 

Source: Test case data 

 

 

Figure 4.11: Sensitivity of the Model Output to the Variation of the Alteration with Original 

          in each Main Criterion 

 

4.4  Discussions 

This chapter outlines a novel methodology for evaluating a ship’s crane performance by 

means of its conditional reliability. The methodology for evaluating a ship’s crane reliability 

and the procedure for applying it in a real life scenario has been illustrated in the case study 

in Section 4.3. This model is one of the first to concede that a ship’s crane reliability value 

is not fixed and it may change due to certain factors, such as the trend analysis (i.e. pattern 

of behaviour developed over a period of time), family analysis (i.e. typical identical pattern 

of behaviour), environmental analysis (i.e. changes in the sea state), human reliability 

analysis (i.e. operator’s well-being), as well as design analysis (i.e. crane’s physical 

behaviour as stated by the manufacturer).  

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918

B2 C2 G2 H2

Condition Value
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For example, if the grade of design analysis in a ship’s crane bearing is very bad, and the 

grade of the environment (sea condition) is very rough, then owing to the roughness of the 

sea and instability of the ship, the engineer on-board would not be able to carry out the 

scheduled maintenance work on the crane’s bearing. Thus, the crane grade will decrease 

from a good grade to an average grade. As a result, the reliability of the crane will alter. The 

oil sample 2 reliability value for the ship’s crane bearing when the environmental condition 

was good (E2 value in Table 5-4C, Appendix 4C) is 4.6% lower than that of the same crane’s 

bearing with a very good grade of design when operating in a very good environmental 

condition (E1 value in Table 5-4C, Appendix 4C). Therefore, during the conceptual stage of 

the ship’s crane bearing design, the manufacturer should take into consideration uncertain 

environmental conditions throughout the life cycle of the crane bearing. 

The gearbox is another component that can significantly influence a ship’s crane reliability. 

Based on the analysis, it can be deduced that if the grade in a ship’s crane gearbox is very 

high (0.9095 in Table 4.35), then the crane’s reliability value is about 11% more than that 

of the same crane with a very low grade (0.7590 in Table 4.34). Furthermore, according to 

Figure 4.12, B2, and G2, are recorded low condition values for crane bearing and gearbox 

alterations respectively when compared to other crane components.  

A survey conducted by Lloyd’s Register (2011) indicates that several slew bearings failures 

have occurred in cranes in recent years, with catastrophic results. Moreover, based on an 

incident report by Aldridge (2012) and case study by Konecranes (2012), gearbox 

malfunction is very common in ship cranes, while the crane reliability survey (CRS) shows 

that gearbox failures can result in catastrophic crane failure. Thus, the results of these 

analyses confirmed their findings, and gives emphasis to the importance of design, 

inspections, and condition monitoring in ship’s crane components. 

The evaluation of a ship’s crane performance can be used to develop a preventive measure 

against incidents. This can be achieved by correctly measuring the crane’s performance 

and regularly taking oil samples from the crane’s components and analysing it as 

scheduled. The grade of a ship’s crane performance is significant in identifying and taking 

preventive measures against incidents at sea, as well as in ports, and for ensuring the 

appropriate performance of operations on-board.  

A ship’s crane design is highly dependent on the crane’s manufacturer and the ship owner’s 

requirements, whereas, the ship’s crane trend analysis, family analysis, and human 

reliability analysis are highly dependent on the ship owner’s strategies. Unfortunately, not 

much can be done with regards to the environmental analysis, as this is a natural 

phenomenon that is not dependent on either the ship owner or the ship crane manufacturer. 
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However, with proper ship crane design and the implementation of correct condition 

monitoring strategies, the environmental impacts can be significantly reduced and well 

managed, therefore leading to a reduction in the frequency of ship crane incidents. 

Furthermore, a well-structured maintenance regime, in accordance with the manufacturer’s 

recommendations, can reduce the chances of unexpected defects occurring and can 

ultimately improve the reliability and operational life of the crane. 

4.5  Conclusion 

This chapter has proposed a FER-SAM to monitor the ship’s crane risk of failure in a 

systematic fashion. The usefulness of the FER-SAM is demonstrated for condition-based 

decision-making. The approach outlined how a subjective condition-based decision making 

process can be achieved during situations of high uncertainties in ship’s crane operations. 

The subjective condition monitoring of the investigated system parameters was first carried 

out using an AHP approach, then assessment grades were mapped into a common utility 

space before synthesizing for robust decision-making. This generic approach has 

highlighted a unique feature associated with the performance and unification of input and 

output data.  

The ER approach employed provides a procedure for aggregation which can preserve the 

original features of multiple attributes under high and imprecise situations. The inclusion of 

trend analysis, family analysis, environmental analysis, human reliability, and design 

analysis to the ship's crane condition monitoring approach (CMA) will help to ensure that 

findings are incorporated within the maintenance management process for future reference. 

If each of the analyses is applied to each wear metal for each crane component tested in a 

programme, the data evaluation process will become too clumsy. Therefore, realistically, 

the ideal analysis programme would be a combination of the five analysis techniques 

discussed in this research work. 

This approach also provides a rational, reliable and transparent method for decision-making 

analysis with a group of experts under situations of high uncertainties. It can therefore be 

reasonably expected that the application of this approach will facilitate the development of 

a robust and enhanced marine and offshore environment for machinery systems operations. 

As revealed in the final result, the developed FER-SAM does provide some levels of 

confidence in monitoring the condition of ship’s crane components; however, it cannot deal 

with the dependencies of the criteria. It is therefore essential to develop an integrated risk 

assessment using Fuzzy Rule Base Method that will account for this shortfall in a systematic 

manner, and this is provided in the next chapter. 
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Chapter 5 

An Integrated Risk Assessment for Maintenance Prediction of Oil 

Wetted Gearbox and Bearing in Marine and Offshore Industries 

Using a Fuzzy Rule Base Method 

Summary 

This chapter presents an integrated risk assessment methodology for maintenance 

prediction of oil wetted gearbox and bearing in marine and offshore machinery with 

emphasis on ship cranes. Predictive maintenance uses important parameters measured in 

the equipment to “feel” when breakdown is eminent. This type of maintenance intends to 

make interventions on machinery before harmful events may occur (Bastos et al., 2012). 

In Chapter 4, the analysis result indicated that both bearing and gearbox are the most 

sensitive components of the ship crane. The aim of this chapter is to assess the risk levels 

of these components (bearing and gearbox) using fuzzy rule based judgement for common 

elements and their sources, which will provide the ship crane operators with a means to 

predict possible impending failure without having to dismantle the crane. Furthermore, to 

monitor the rate of wear in gearbox and bearing of a ship crane, the ship crane reliability 

(SCR), and a trend to provide an operational baseline of data that will help the engineers to 

detect abnormal wear rates as they develop, are established. 

Within the scope of this research, a risk assessment model will be developed that will be 

capable of determining the risk levels of a crane’s components and recommending solutions 

using all the diagnostic capability obtainable for effective condition monitoring of the 

gearbox and bearing in ship cranes.  

5.1 Introduction 

In today’s revolutionary computer and information age, oil sampling analysis has developed 

into a mandatory tool. It has not only proven to be an effective condition monitoring tool for 

equipment failure, but is also a crucial element in a marine crane’s condition monitoring. As 

a predictive maintenance tool, oil analysis can be used to uncover, isolate, and offer 

solutions for abnormal lubricant and machine conditions. If these abnormalities are left 

unchecked, they could have detrimental consequences, including health and safety risks.  
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Oil analysis is performed during routine preventive maintenance to provide meaningful and 

accurate information on lubricant and machine condition. By tracking oil analysis sample 

results over the life of a particular machine, trends can be established that could help 

eliminate costly repairs. 

In addition to monitoring oil contamination and wear metals, modern usage of oil analysis 

includes the analysis of the additives in oils to determine if an extended drain interval may 

be used. Maintenance costs can be reduced using oil analysis to determine the remaining 

useful life of additives in the oil. By comparing the oil analysis results of fresh and used oil, 

a tribologist can determine when an oil must be replaced. Careful analysis might even allow 

the oil to be "sweetened" to its original additive levels by either adding fresh oil or 

replenishing additives that were depleted. 

The information contained in this research is particularly useful for the effective condition 

monitoring of ship crane gearbox and bearing. This risk assessment tool can also be used 

as an information technology application to monitor the performance of lubricant products, 

as well as a tool that specifies what the problem/remedy is in the event of failure of a piece 

of equipment/component. 

5.2. Used Oil Sampling Analysis of Marine Crane Bearing and Gearbox  

Oil sampling analysis is known to be an effective condition-monitoring tool for marine crane 

bearing and gearbox diagnosis. This involves a representative sample being taken, which 

ensures that there is as much information per millimetre of oil as possible. This information 

relates to such criteria as cleanliness and dryness of the oil, depletion of additives, and the 

presence of wear particles being generated by the crane. The second goal is to minimize 

data disturbance. The sample should be extracted so that the concentration of information 

is uniform, consistent, and representative. The lubricant sample is then assessed by a 

suitable analytical method to identify signs of increased wear and evidence of unwanted 

contaminants or lubricant degradation. It is important to make sure that the sample does 

not become contaminated during the sampling process. This can distort and disturb the 

data, making it difficult to distinguish what was originally in the oil, from what came into the 

oil during the sampling process (Fitch, 2004).  

5.3 Methodology 

Investing in maintenance prediction in the operations of marine machinery system requires 

networks of robust decision making tailored towards improving the capability of the system 

to exhibit required performance. A major modelling assumption in this chapter is that, some 

overlaps in the description of all risk attributes can be observed, however, the main issue 
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or content are largely independent which allows the use of rule based judgement for their 

aggregation and synthesis in a systematic method. This study employs a fuzzy set theory 

(FST) and a fuzzy rule based sensitivity analysis method (FRB-SAM), to model the risks 

impacting the smooth operation of the ship cranes’ components. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Diagnostic Flow Chart 
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membership functions for the test elements of each crane’s component that passes the pre-

screening process follows this. The fourth step is to develop a FRB diagnosis for risk 

prediction of the crane’s bearing and the gearbox. Lastly, a set of fuzzy conclusions is 

achieved using the “min-max” method.  

Since the study incorporates FST into a FRB method, a set of linguistic priority terms along 

with the membership functions describing the relationship between elements in each 

hierarchy of the RB is adopted. Thus, the minimum value comparisons between the 

elements in each hierarchy using FST are established. 

The proposed model in a stepwise regression is presented in the following sections and the 

framework of this methodology for evaluating the diagnostic process of the used oil sample 

test results for the crane bearing and gearbox is shown in Figure 5.1. 

5.3.1 Identification of Grease/Oil Sample Test Results (Step one) 

Under this process, critical elements in the used grease/oil laboratory analysis reports given 

in Chapter 4 are identified for both port and starboard deck crane slewing bearing/gearbox 

for the pre-screening process. 

5.3.2 Pre-Screening of the Test Results (Step two) 

The pre-screening process is used to identify inconsistency in the test results, out of range 

test results, or mistyping during test result entry as a result of human error. The process 

considers only numeric test results. At pre-screening, the sample test results are initially 

screened against a specific range (min – max values). The min and max values for an 

individual test can differ based on the laboratories and lubricant manufacturers. If the test 

element(s) in a sample fail pre-screening, the sample is sent back for retest. Pre-screening 

on a sample will then happen again when the re-tested results are entered (i.e. if sample is 

sent for retesting, it is considered again for the pre-screening until it passes the pre-

screening process). 

The following steps are part of the pre-screening process: 

1. The pre-screening process fetches all the tests conducted for a sample, the test 

results, and their min/max values.  

2. The sample test results are compared against the predefined min/max values.  

3. A test fails pre-screening if the results are outside the min and max values. Failed 

test samples are sent for retest. During retest, the out of range values are normally 

corrected. 

4. Retested samples are then sent through the pre-screening process. 
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Rules for pre-screening process: 

IF (Test Result ≥ Lower Action) & (Test Result ≤ Upper Action)  

THEN, Pre-Screening Passed 

ELSE, Pre-screening Failed    

Explanation of the Rule: 

Each test result is checked to see whether it is within the min and max limits (i.e. Lower 

Action and Upper Action) set for that test; if it falls within that range, the test result passes 

pre-screening; otherwise, the sample fails pre-screening.  

5.3.3 Development of Fuzzy Membership Function (Step three) 

According to Wang (1997), fuzzy membership functions can be used to define the fuzzy 

input subset from an input variable. The membership functions considered in this study are 

based on the criteria for oil sample elements and are generated using triangular shapes to 

reduce computational times, unlike trapezoidal shapes which takes a longer time. A fuzzy 

membership function is developed for each of the identified critical elements based on their 

corresponding limits provided. These limits are obtained from a reputable oil company. The 

membership function for each linguistic priority term is evaluated within its limits on an 

arbitrary scale from 0 to 1. The fuzzy membership function has already been discussed 

extensively in Chapters 2 and 4 of this thesis. 

5.3.4 Development of Fuzzy Rule-Based Diagnosis for Risk Prediction (Step four) 

In this section, a fuzzy rule-based diagnosis is produced for predicting the condition of crane 

bearing and gearbox, utilising the laboratory oil sample test results as the input data. The 

linguistic terms used in developing the membership functions described in Section 5.3.3 are 

utilized to reflect the priority level of alertness.  

5.3.5 Determining the Risk Levels of each Component (Step five) 

The priority level (PL) of a specific scenario will be decided based on the fuzzy rule base 

developed in Section 5.3.4. Using a ‘min-max’ approach, the set of fuzzy conclusions of the 

scenario will be obtained in terms of membership function values associated with linguistic 

priority terms. In order to activate the developed rule base, firing rules will be used to obtain 

the output grade (i.e. normal, caution, attention, or critical) based on the results obtained 

from the min-max method. When applying the ‘min-max’ approach, the following steps are 

taken: 
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 Identify the possible combinations of the test elements in which the membership 

values associated with the corresponding linguistic priority terms are not zero. The 

outputs of such combinations can be obtained from the fuzzy rule base developed. 

Obtaining the output of the test elements combinations from the fuzzy rule base is 

also known as firing rules. 

 Determine the minimum value of each combination by comparing the values 

obtained from each element and the value of the belief degree established in the 

priority level (PL). 

 Determine the highest minimum values obtained from step 2 with respect to each 

linguistic priority term. 

From the above, each maximum value and its associated linguistic priority term is a fuzzy 

conclusion. Each set of fuzzy conclusions of each scenario will be defuzzified using the 

method proposed in Section 5.3.6. If there is only one rule that can be applied to the 

scenario in question, then the minimum value of the membership function and the linguistic 

priority term associated will be the set of fuzzy conclusions. 

5.3.6 Defuzzification Process (Step six) 

The defuzzification process is used to create a single crisp ranking from the fuzzy 

conclusion set (i.e. the priority level of scenarios to express the machinery condition). 

According to Runkler and Glesner (1993), several defuzzification algorithms have been 

developed and used in creating a single crisp ranking. The one selected for use in this 

chapter is the weighted arithmetic mean (WAM) of non-empty set of data. This algorithm 

averages the points of maximum possibility of each priority level of scenarios, weighted by 

their degree of truth at which the membership functions reach their maximum values 

(Andrew and Moss, 2002), (Pillay and Wang, 2002). The formula used for WAM is as 

follows: 

𝑊𝐴𝑀 = 
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

                                                                                            (5.1) 

For normalized weights, the weighted mean is simply:  

𝑊𝐴𝑀 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                (5.2) 

where, 𝑤𝑖 is the degree of truth of the maximum value of the 𝑖𝑡ℎ linguistic priority term, and 

𝑥𝑖 is the risk rank of the maximum value of the 𝑖𝑡ℎ linguistic priority term. A lower WAM value 

will indicate that the machinery condition is less risky, while a higher WAM value indicates 

that the condition of the machinery is at risk, and as such immediate action should be taken. 
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5.3.7 Perform Sensitivity Analysis (Final step) 

This subsection employs the sensitivity analysis approach to test how sensitive the model 

output is to a minor change in the input data. The relative change may be the variation of 

the parameters of the model or changes in the degrees of belief assigned to the linguistic 

variables used to describe the parameters of the model. If the methodology is sound and 

its inference reasoning is logical and robust, then the sensitivity analysis must at least reflect 

any of the following three axioms stated in Chapter 4, Section 4.2.10 of this thesis. 

5.4 Test Case 

In Chapter 4, the ship crane reliability (SCR) values clearly showed that both the bearing 

and gearbox are the two major crane components susceptible to failure risk over a period 

of operations. Therefore, based on the given absolute limits and the sample test results, the 

operating condition of both port and starboard ship crane bearing and gearbox can be 

evaluated and monitored. 

5.4.1 Identification of Grease/Oil Sample Test Results (Step one) 

The grease sample test results for the crane bearing and the oil sample test results for the 

crane gearbox provided are evaluated as follows: 

5.4.1.1 Crane bearing grease sample 

Tables 5.1 and 5.2 indicate the laboratory test results of a grease sample obtained for port 

and starboard crane bearing, respectively. Table 5.3 indicates the absolute limits for used 

grease bearing obtained from a reputable lubricant manufacturer. For the purpose of 

demonstration in this model, four critical elements (Iron, Tin, Nickel, and Sodium) in the 

crane bearing grease sample are used. 

Table 5.1: Critical Wear Elements Test Results for Port Crane Bearing Grease Sample 

Test Element Used Grease Sample Test Result 

Iron (Fe) mg/kg 43 

Tin (Sn) mg/kg 15 

Nickel (Ni) mg/k 5 

Sodium (Na) mg/k 84 

Source: Hypothetical data from a reputable oil test laboratory 

Table 5.2: Critical Wear Elements Test Results for Starboard Crane Bearing Grease 

        Sample 

Test Element Used Grease Sample Test Result 

Iron (Fe) mg/kg 69 

Tin (Sn) mg/kg 7 

Nickel (Ni) mg/k 8 

Sodium (Na) mg/k 108 

Source: Hypothetical data from a reputable oil test laboratory 
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Table 5.3: Absolute Limits for Crane Bearing Used Grease 

Test Lower Action Lower Attention Upper Attention Upper Action 

Iron (Fe) 140 375 500 750 

Tin (Sn) 10 29 40 60 

Nickel (Ni) 1 3 5 8 

Sodium (Na) 35 80 150 200 

Source: Hypothetical data from a reputable oil company 

5.4.1.2 Crane gearbox oil sample 

Tables 5.4 and 5.5 indicate the laboratory test results of an oil sample obtained for the port 

and starboard crane gearbox, respectively. Table 5.6 indicates the absolute limits for used 

oil analysis obtained from a reputable lubricant manufacturer. Only four critical elements 

(Iron, Tin, Aluminium, and Silicon) in the crane gearbox oil sample are used. 

Table 5.4: Critical Wear Elements Test Results for Port Crane Gearbox Oil Sample 

Test Element Used Oil Sample Test Result 

Iron (Fe) mg/kg 13 

Tin (Sn) mg/kg 3 

Aluminium (Al) m 4 

Silicon (Si) mg/ 4 

Source: Hypothetical data from a reputable oil test laboratory 

Table 5.5: Critical Wear Elements Test Results for Starboard Crane Gearbox Oil Sample 

Test Element Used Oil Sample Test Result 

Iron (Fe) mg/kg 13 

Tin (Sn) mg/kg 1 

Aluminium (Al) m 6 

Silicon (Si) mg/kg 9 

Source: Hypothetical data from a reputable oil test laboratory 

Table 5.6: Absolute Limits for Crane Gearbox Used Oil 

Test Lower Action Lower Attention Upper Attention Upper Action 

Iron (Fe) 24 49 60 98 

Tin (Sn) 1.5 5 7 9 

Aluminium (Al) 2.5 4.5 7 10 

Silicon (Si) 7 15 30 40 

Source: Hypothetical data from a reputable oil company 

5.4.2 Test Results Pre-Screening (Step two) 

In order to pre-screen the test results obtained for the samples from both port and starboard 

cranes, a set of rules is generated based on the absolute limits provided in Tables 5.3 and 

5.6. 
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5.4.2.1 Pre-screening of port crane bearing grease sample test results 

Iron (Fe) wear element test result: 

From Table 5.3, the Lower Action (LA) is set at 140; and Upper Action (UA) is set at 750 for 

iron (Fe) test element. Also from Table 5.1, the test result value for iron (Fe) is 43. This test 

result value is not within the LA and UA limits, thus, based on the pre-screening rule in 

Section 5.3.2, the iron (Fe) test result will fail the pre-screening stage, and then will be 

returned for re-testing. 

In a similar way, the pre-screening of other test elements in the port crane bearing grease 

sample are assessed and results recorded in Table 5.7. 

Table 5.7: Port Crane Bearing 

Test 
Element 

Grease Sample Test Result 
Value 

LA Value UA Value Pre-screening 
Status 

Iron 43 140 750 Fail 

Tin 15 10 60 Pass 

Nickel 5 1 8 Pass 

Sodium 84 35 200 Pass 

Source: Test case data 

5.4.2.2 Pre-screening of starboard crane bearing grease sample test results 

Iron (Fe) wear element test result: 

From Table 5.3, the Lower Action (LA) is set at 140; and Upper Action (UA) is set at 750 for 

iron (Fe) test element. Also, from Table 5.2, the test result value for iron (Fe) is 69. This test 

result value is not within the LA and UA limits, thus, based on the pre-screening rule, the 

iron (Fe) test result will fail the pre-screening stage, and then will be returned for re-testing. 

In a similar way, the pre-screening of other test elements in the starboard crane bearing 

grease sample are assessed and results recorded in Table 5.8. 

Table 5.8: Starboard Crane Bearing 

Test 
Element 

Grease Sample Test Result 
Value 

LA Value UA Value Pre-screening 
Status 

Iron 69 140 750 Fail 

Tin 7 10 60 Fail 

Nickel 8 1 8 Pass 

Sodium 108 35 200 Pass 

Source: Test case data 
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5.4.2.3 Pre-screening of port crane gearbox oil sample test results 

Iron (Fe) wear element test result: 

From Table 5.6, the LA is set at 24; and UA is set at 98 for iron (Fe) test element. Also, from 

Table 5.4, the test result value for iron (Fe) is 13. This test result value is not within the LA 

and UA limits, thus, based on the pre-screening rule, the iron (Fe) test result will fail the pre-

screening stage, and then will be returned for re-testing. 

In a similar way, the pre-screening of other test elements in the port crane gearbox oil 

sample are assessed and results recorded in Table 5.9. 

Table 5.9: Port Crane Gearbox 

Test 
Element 

Oil Sample Test Result Value LA Value UA Value Pre-screening 
Status 

Iron 13 24 98 Fail 

Tin 3 1.5 9 Pass 

Aluminium 4 2.5 10 Pass 

Silicon 4 7 40 Fail 

Source: Test case data 

5.4.2.4 Pre-screening of starboard crane gearbox oil sample test results 

Iron (Fe) wear element test result: 

From Table 5.6, the LA is set at 24; and UA is set at 98 for iron (Fe) test element. Also, from 

Table 5.5, the test result value for iron (Fe) is 13. This test result value is not within the LA 

and UA limits, thus, based on the pre-screening rule, the iron (Fe) test result will fail the pre-

screening stage, and then will be returned for re-testing. 

In a similar way, the pre-screening of other test elements in the starboard crane gearbox oil 

sample are assessed and results recorded in Table 5.10. 

Table 5.10: Starboard Crane Gearbox 

Test 
Element 

Oil Sample Test Result Value LA Value UA Value Pre-screening 
Status 

Iron 13 24 98 Fail 

Tin 1 1.5 9 Fail 

Aluminium 6 2.5 10 Pass 

Silicon 9 7 40 Pass 

Source: Test case data 

The sample elements test results in Tables 5.7 to 5.10 have either passed or failed the pre-

screening process. All the test elements with a failed pre-screening status are returned to 

the laboratory for a re-test, as indicated in Figure 5.1, while all of the test elements with a 

passed pre-screening status are used for determining the risk level of the ship crane’s 

components. 
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5.4.3 Development of Fuzzy Membership Function (Step three) 

Each of the test elements is described using the following linguistic terms: Very Low, Low, 

Moderate, High and Very High. The interpretation of the linguistic terms describing each 

scenario has been defined in Table 5.11. 

The fuzzy membership functions for the model in this study consist of triangular shapes 

generated using the linguistic categories identified in the knowledge acquisition stage and 

applied using the fuzzy Delphi method (Bojadziev & Bojadziev, 1995). The membership 

function for each linguistic terms can be obtained using the sample test results shown in 

Tables 5.1 and 5.2 for port and starboard crane bearing grease samples; Tables 5.4 and 

5.5 for port and starboard crane gearbox oil samples; and by applying the same rules used 

in Chapter 4. These are graphically illustrated in the Figures given in Appendix 5A. Their 

corresponding belief degrees are shown in Tables 5.12 to 5.15.  

Table 5.11: Description for Test Elements and General Interpretation 

Linguistic Term 
for Test Elements 

 
General Interpretation 

 
Very Low 

Wear particles present in small quantities. Acceptable amount of normal 
wear particles. 

 
Low 

Wear particles present in small quantities. Acceptable amount of normal 
wear particles. 

 
Moderate 

Wear particles present in medium quantities. Acceptable amount of 
normal wear particles. 

 
High 

Wear particles present in high quantities. Unacceptable amount of normal 
wear particles. 

 
Very High 

The wear metals content is higher than normal. The crane should be 
stopped for investigation. 

Source: Test case data 

Table 5.12: Fuzzy Set for Port Crane Bearing Grease Sample Test Elements 

Test Element Belief Degrees Associated with the Linguistic Terms 

Tin (Sn)  {(0.75, Very Low), (0.25, Low), (0, Moderate), (0, High), (0, Very High)} 

Nickel (Ni) {(0, Very Low), (0, Low), (0.875, Moderate), (0.125, High), (0, Very High)} 

Sodium (Na) {(0, Very Low), (0.9, Low), (0.1, Moderate), (0, High), (0, Very High)} 

Source: Test case data 

Table 5.13: Fuzzy Set for Starboard Crane Bearing Grease Sample Test Elements 

Test Element Belief Degrees Associated with the Linguistic Terms 

Nickel (Ni) {(0, Very Low), (0, Low), (0, Moderate), (0, High), (1, Very High)} 

Sodium (Na)  {(0, Very Low), (0.3, Low), (0.7, Moderate), (0, High), (0, Very High)} 

Source: Test case data 

Table 5.14: Fuzzy Set for Port Crane Gearbox Oil Sample Test Elements 

Test Element Belief Degrees Associated with the Linguistic Terms 

Tin (Sn) {(0.333, Very Low), (0.667, Low), (0, Average), (0, High), (0, Very High)} 

Aluminium (Al) {(0, Very Low), (1, Low), (0, Moderate), (0, High), (0, Very High)} 

Source: Test case data 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

119 
 

Table 5.15: Fuzzy Set for Starboard Crane Gearbox Oil Sample Test Elements 

Test Element Belief Degrees Associated with the Linguistic Terms 

Aluminium (Al) {(0, Very Low), (0, Low), (1, Moderate), (0, High), (0, Very High)} 

Silicon (Si) {(0.875, Very Low), (0.125, Low), (0, Moderate), (0, High), (0, Very High)} 

Source: Test case data 

5.4.4 Development of Fuzzy Rule Base (Step four) 

To develop the fuzzy rule base, the five linguistic terms (Very Low, Low, Moderate, High 

and Very High) are first graded (shown in Table 5.16) using the four output sample grades 

(i.e. Normal, Caution, Attention, and Critical). These output grades are identified as priority 

levels of alert for each of the linguistic terms associated with the sample elements. The 

highest degree of the individual linguistic terms of the sample elements is assigned with the 

corresponding grade (Table 5.16) as the priority level of alert.  

Consider the following examples in Appendix 5B, Table 1-5B: 

Rule number 1 - the linguistic terms for sample elements are ‘Very Low’, ‘Very Low’, and 

‘Very Low’. The highest degree of individual linguistic term is ‘Very Low’ and, from Table 

5.16, the grade assigned to ‘Very Low’ is Normal. Thus, the priority level of attention is 

shown as Normal. 

Rule number 2 - the linguistic terms for sample elements are ‘Very Low’, ‘Very Low’, and 

‘Low’. The highest degree of individual linguistic term is ‘Low’ and, from Table 5.16, the 

grade assigned to ‘Low’ is Normal. Thus, the priority level of attention is shown as Normal. 

Rule number 3 - the linguistic terms for sample elements are ‘Very Low’, ‘Very Low’, and 

‘Moderate’. The highest degree of individual linguistic term is ‘Moderate’ and, from Table 

5.16, the grade assigned to ‘Moderate’ is Caution. Thus, the priority level of attention is 

shown as Caution. 

Rule number 4 - the linguistic terms for sample elements are ‘Very Low’, ‘Very Low’, and 

‘High’. The highest degree of individual linguistic term is ‘High’ and, from Table 5.16, the 

grade assigned to ‘High’ is Attention. Thus, the priority level of attention is shown as 

Attention. 

Rule number 5 - the linguistic terms for sample elements are ‘Very Low’, ‘Very Low’, and 

‘Very High’. The highest degree of individual linguistic term is ‘Very High’ and, from Table 

5.16, the grade assigned to ‘Very High’ is Critical. Thus, the priority level of attention is 

shown as Critical. 
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In view of the fact that there are three elements (A, B, and C) associated with the five 

linguistic terms, a total of 125 (5 x 5 x 5) rules were developed, as shown in Table 1-5B in 

Appendix 5B. 

Also, consider the following examples in Appendix 5B, Table 2-5B: 

Rule number 1 - the linguistic terms for sample elements are ‘Very Low’ and ‘Very Low’. 

The highest degree of individual linguistic term is ‘Very Low’ and, from Table 5.16, the grade 

assigned to ‘Very Low’ is Normal. Thus, the priority level of attention is shown as Normal. 

Rule number 2 - the linguistic terms for sample elements are ‘Very Low’, and ‘Low’. The 

highest degree of individual linguistic term is ‘Low’ and, from Table 5.16, the grade assigned 

to ‘Low’ is Normal. Thus, the priority level of attention is shown as Normal. 

Rule number 3 - the linguistic terms for sample elements are ‘Very Low’, and ‘Moderate’. 

The highest degree of individual linguistic term is ‘Moderate’ and, from Table 5.16, the grade 

assigned to ‘Moderate’ is Caution. Thus, the priority level of attention is shown as Caution. 

Rule number 4 - the linguistic terms for sample elements are ‘Very Low’, and ‘High’. The 

highest degree of individual linguistic term is ‘High’ and, from Table 5.16, the grade assigned 

to ‘High’ is Attention. Thus, the priority level of attention is shown as Attention. 

Rule number 5 - the linguistic terms for sample elements are ‘Very Low’, and ‘Very High’. 

The highest degree of individual linguistic term is ‘Very High’ and, from Table 5.16, the 

grade assigned to ‘Very High’ is Critical. Thus, the priority level of attention is shown as 

Critical. 

In view of the fact that there are two elements (A, and B) associated with the five linguistic 

terms, a total of 25 (5 x 5) rules were developed, as shown in Table 2-5B in Appendix 5B. 

It is worth mentioning that though three test sample elements were used in developing the 

125 (5 x 5 x 5) rules, and two test sample elements used in developing the 25 (5 x 5) rules 

in the test case using the fuzzy rule based technique, by using the same technique, a model 

with fewer or more than three test sample elements can be designed to meet the industrial 

need. 

Table 5.16: Linguistic Term Grades & Risk Ranking 

Linguistic Term Grade Risk Ranking 

Very Low Normal 1 

Low Normal 1 

Moderate Caution 2 

High Attention 3 

Very High Critical 4 

Source: Test case data 
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5.4.5 Determination of Risk Levels for the Sample Test Elements of each Crane 

Component and the Acquirement of its Fuzzy Conclusion (Step five) 

In order to obtain a risk ranking, two steps are required. Firstly, the linguistic priority terms 

and the membership values reflecting the risk levels for the sample test element of each 

crane component should be carefully decided. Secondly, the fuzzy set conclusion of each 

crane component will be obtained based on the fuzzy rule base using the ‘min-max’ 

approach. Since this research only considers three sample test elements for each crane 

component (bearing and gearbox), for both port and starboard of the ship, the fuzzy set 

obtained in Tables 5.12, 5.13, 5.14, and 5.15 will be used to determine its fuzzy conclusion. 

5.4.5.1 Risk level for port crane bearing grease sample test elements 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the port crane bearing 

grease sample test element in Table 5.12 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.75, Ni = Moderate 0.875, and Na = Low 0.9, then based 

on rule 12 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(2) If Sn = Very Low 0.75, Ni = Moderate 0.875, and Na = Moderate 0.1, then 

based on rule 13 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(3) If Sn = Very Low 0.75, Ni = High 0.125, and Na = Low 0.9, then based on 

rule 17 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(4) If Sn = Very Low 0.75, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 18 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(5) If Sn = Low 0.25, Ni = Moderate 0.875, and Na = Low 0.9, then based on 

rule 37 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is CAUTION. 

(6) If Sn = Low 0.25, Ni = Moderate 0.875, and Na = Moderate 0.1, then based 

on rule 38 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(7) If Sn = Low 0.25, Ni = High 0.125, and Na = Low 0.9, then based on rule 42 

in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority level 

is ATTENTION. 
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(8) If Sn = Low 0.25, Ni = High 0.125, and Na = Moderate 0.1, then based on 

rule 43 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.75, Ni = Moderate 0.875, and Na = Low 0.9. 

Therefore, the minimum value of Sn, Ni, and Na is 0.75, which is associated with the 

linguistic priority term CAUTION, according to the fuzzy rule developed. The minimum 

values of the other seven combinations can be determined in a similar way, as shown in 

Table 5.17. 

Table 5.17: The Minimum Value of each Combination for Port Crane Bearing 

1 Caution 0.75 2 Caution 0.1 3 Attention 0.125 4 Attention 0.1 

5 Caution 0.25 6 Caution 0.1 7 Attention 0.125 8 Attention 0.1 
Source: Test case data 

iii. Determine the maximum value of the minimum values obtained from step 2 that has 

the same category of linguistic priority term. 

In the first scenario, there are eight combinations and two different categories of linguistic 

priority terms, CAUTION and ATTENTION. The membership values in the CAUTION 

category are 0.75, 0.1, 0.25, and 0.1, respectively. Therefore, the maximum membership 

value is 0.75, as shown in Table 5.18. Likewise, the values in the ATTENTION category in 

the 3rd, 4th, 7th and 8th combinations are 0.125. Thus, the maximum membership value in 

the ATTENTION category is 0.125, also shown in Table 5.18. 

Table 5.18: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Bearing. 

Category of linguistic priority terms Maximum values 

Caution 0.75 

Attention 0.125 
Source: Test case data 

5.4.5.2 Risk level for starboard crane bearing grease sample test elements 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the starboard crane 

bearing grease sample test element in Table 5.13 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Ni = Very High 1, and Na = Low 0.3, then based on rule 22 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 
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(2) If Ni = Very High 1, and Na = Moderate 0.7, then based on rule 23 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Ni = Very High 1 and Na = Low 0.3. Therefore, the minimum 

value of Ni and Na is 0.3, which is associated with the linguistic priority term CRITICAL, 

according to the fuzzy rule developed. The minimum values of the other combination can 

be determined in a similar way, as shown in Table 5.19. 

Table 5.19: The Minimum Value of each Combination for Starboard Crane Bearing 

1 Critical 0.3 2 Critical 0.7 

Source: Test case data 

iii. Determine the maximum value of the minimum values obtained from step 2 that has 

the same category of linguistic priority terms. 

In the first scenario, there are two combinations and one category of linguistic priority terms, 

CRITICAL. The membership values in the CRITICAL category are 0.3 and 0.7. Therefore, 

the maximum membership value is 0.7. 

5.4.5.3 Risk level for port crane gearbox oil sample test elements 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of port crane gearbox oil 

sample test element in Table 5.14 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.333, and Al = Low 1, then based on rule 2 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Sn = Low 0.667, and Al = Low 1, then based on rule 7 on the fuzzy rule 

based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.333, and Al = Low 1. Therefore, the minimum 

value of Sn and Al is 0.333, which is associated with the linguistic priority term NORMAL, 

according to the fuzzy rule developed. The minimum values of the other combination can 

be determined in a similar way, as shown in Table 5.20. 

Table 5.20: The Minimum Value of each Combination for Port Crane Gearbox 

1 Normal 0.333 2 Normal 0.667 

Source: Test case data 
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iii. Determine the maximum value of the minimum values obtained from step 2 that has 

the same category of linguistic priority term. 

In the first scenario, there are two combinations and one category of linguistic priority terms, 

NORMAL. The membership values in the NORMAL category are 0.333 and 0.667. 

Therefore, the maximum membership value is 0.667. 

5.4.5.4 Risk level for starboard crane gearbox oil sample test elements 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of starboard crane 

gearbox oil sample test element in Table 5.15 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Al = Moderate 1, and Si = Very Low 0.875, then based on rule 11 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(2) If Al = Moderate 1, and Si = Low 0.125, then based on rule 12 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CAUTION. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Al = Moderate 1, and Si = Very Low 0.875. Therefore, the 

minimum value of Al and Si is 0.875, which is associated with the linguistic priority term 

CAUTION, according to the fuzzy rule developed. The minimum values of the other 

combination can be determined in a similar way, as shown in Table 5.21. 

Table 5.21: The Minimum Value of each Combination for Starboard Crane Gearbox 

1 Caution 0.875 2 Caution 0.125 
Source: Test case data 

iii. Determine the maximum value of the minimum values obtained from step 2 that has 

the same category of linguistic priority term. 

In the first scenario, there are two combinations and one category of linguistic priority terms, 

CAUTION. The membership values in the CAUTION category are 0.875 and 0.125. 

Therefore, the maximum membership value is 0.875. 

Table 5.22: The Set of Fuzzy Conclusions of the Ship’s Crane 

Ship Crane Components Set of Fuzzy Conclusions 

Port crane bearing Caution 0.75, Attention 0.125 

Starboard crane bearing Critical 0.7 

Port crane gearbox Normal 0.667 

Starboard crane gearbox Caution 0.875 

Source: Test case data 
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5.4.6 The Defuzzification Process (Step six) 

By applying Equation (5.2) in the defuzzification process and the risk ranking for the 

linguistic term grades given in Table 5.16, the risk values (RV) for the set of fuzzy 

conclusions in Table 5.22 can be obtained. The components with higher risk values are 

considered to be critical.  

For example, the risk value for the port crane bearing can be determined as follows: 

RV = (2 x 0.75) + (3 x 0.125) = 1.875  

In a similar way, the RV for the starboard crane bearing, port and starboard crane gearboxes 

are obtained as shown in Table 5.23. 

From Table 5.23, it can be noted that the risk value for the starboard crane bearing is 2.8 

(higher risk value). Therefore, the ship starboard crane bearing is considered as being 

critical. With this information, the maintenance engineer on board the ship can stop the 

starboard crane (if it is under operation) for investigation, thus preventing any major damage 

to the crane. 

Table 5.23: The Ship Crane Components Risk Values 

Ship Crane Components Risk Value 

Port crane bearing 1.875 

Starboard crane bearing 2.8 

Port crane gearbox 0.667 

Starboard crane gearbox 1.75 

Source: Test case data 

5.4.7 Sensitivity Analysis (Final step) 

Sensitivity analysis is performed to assess the robustness and logicality of the delivery of 

the analysis results obtained in Section 5.4.6. This is achieved by utilising the three axioms 

introduced in Section 4.2.10. The implementation of the axioms will help to identify the most 

important priority level that should be given attention in order to improve the ship’s crane 

bearing and gearbox operational uncertainties.  

To perform the analysis, the input data in Tables 5.12 to 5.15 associated with the highest 

preference linguistic values of all the lower level criteria are decreased by a factor of 10%, 

20%, and 30% respectively, whilst simultaneously increasing the input data of the lowest 

preference linguistic values of each of the criteria at the lower level. In light of the above, 

decreasing the input data of the highest preference linguistic value (𝛽𝐻) of a given criterion 

by a factor of (𝑥) means the input data of the lowest preference linguistic value will be 

increased by the same factor.  
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If (𝛽𝐻) is less than (𝑥), then the remaining belief degree (i.e. 𝑥 − 𝛽𝐻) can be taken from the 

next linguistic value, until (𝑥) is consumed completely in a structured and systematic 

process. Accordingly, the decrement values are as shown in Tables 5.24 - 5.35. 

5.4.7.1 Decrement by 0.1 

Table 5.24: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.1  

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.1 

Tin (Sn) {(0.65, Very Low), (0.25, Low), (0, Moderate), (0, High), (0.1, Very High)} 

Nickel (Ni) {(0, Very Low), (0, Low), (0.775, Moderate), (0.125, High), (0.1, Very High)} 

Sodium (Na) {(0, Very Low), (0.8, Low), (0.1, Moderate), (0, High), (0.1, Very High)} 

Source: Test case data 

Table 5.25: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.1  

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.1 

Nickel (Ni) {(0.1, Very Low), (0, Low), (0, Moderate), (0, High), (0.9, Very High)} 

Sodium (Na) {(0, Very Low), (0.2, Low), (0.7, Moderate), (0, High), (0.1, Very High)} 

Source: Test case data 

Table 5.26: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.1 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.1 

Tin (Sn) {(0.233, Very Low), (0.667, Low), (0, Moderate), (0, High), (0.1, Very High)} 

Aluminium (Al) {(0, Very Low), (0.9, Low), (0, Moderate), (0, High), (0.1, Very High)} 

Source: Test case data 

Table 5.27: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.1 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.1 

Aluminium (Al) {(0, Very Low), (0, Low), (0.9, Moderate), (0, High), (0.1, Very High)} 

Silicon (Si) {(0.775, Very Low), (0.125, Low), (0, Moderate), (0, High), (0.1, Very High)} 

Source: Test case data 
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5.4.7.2 Decrement by 0.2 

Table 5.28: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.2  

 

Test Elements 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.2 

Tin (Sn) {(0.55, Very Low), (0.25, Low), (0, Moderate), (0, High), (0.2, Very High)} 

Nickel (Ni) {(0, Very Low), (0, Low), (0.675, Moderate), (0.125, High), (0.2, Very High)} 

Sodium (Na) {(0, Very Low), (0.7, Low), (0.1, Moderate), (0, High), (0.2, Very High)} 

Source: Test case data 

Table 5.29: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.2  

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.2 

Nickel (Ni) {(0.2, Very Low), (0, Low), (0, Moderate), (0, High), (0.8, Very High)} 

Sodium (Na) {(0, Very Low), (0.1, Low), (0.7, Moderate), (0, High), (0.2, Very High)} 

Source: Test case data 

Table 5.30: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.2 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.2 

Tin (Sn) {(0.133, Very Low), (0.667, Low), (0, Moderate), (0, High), (0.2, Very High)} 

Aluminium (Al) {(0, Very Low), (0.8, Low), (0, Moderate), (0, High), (0.2, Very High)} 

Source: Test case data 

Table 5.31: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.2 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.2 

Aluminium (Al) {(0, Very Low), (0, Low), (0.8, Moderate), (0, High), (0.2, Very High)} 

Silicon (Si) {(0.675, Very Low), (0.125, Low), (0, Moderate), (0, High), (0.2, Very High)} 

Source: Test case data 

5.4.7.3 Decrement by 0.3 

Table 5.32: Decrement of Port Crane Bearing Grease Sample Test Elements by 0.3  

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.3 

Tin (Sn) {(0.45, Very Low), (0.25, Low), (0, Moderate), (0, High), (0.3, Very High)} 

Nickel (Ni) {(0, Very Low), (0, Low), (0.575, Moderate), (0.125, High), (0.3, Very High)} 

Sodium (Na) {(0, Very Low), (0.6, Low), (0.1, Moderate), (0, High), (0.3, Very High)} 

Source: Test case data 
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Table 5.33: Decrement of Starboard Crane Bearing Grease Sample Test Elements by 0.3  

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.3 

Nickel (Ni) {(0.3, Very Low), (0, Low), (0, Moderate), (0, High), (0.7, Very High)} 

Sodium (Na) {(0, Very Low), (0, Low), (0.7, Moderate), (0, High), (0.3, Very High)} 

Source: Test case data 

Table 5.34: Decrement of Port Crane Gearbox Oil Sample Test Elements by 0.3 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.3 

Tin (Sn) {(0.033, Very Low), (0.667, Low), (0, Moderate), (0, High), (0.3, Very High)} 

Aluminium (Al) {(0, Very Low), (0.7, Low), (0, Moderate), (0, High), (0.3, Very High)} 

Source: Test case data 

Table 5.35: Decrement of Starboard Crane Gearbox Oil Sample Test Elements by 0.3 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.3 

Aluminium (Al) {(0, Very Low), (0, Low), (0.7, Moderate), (0, High), (0.3, Very High)} 

Silicon (Si) {(0.575, Very Low), (0.125, Low), (0, Moderate), (0, High), (0.3, Very High)} 

Source: Test case data 

5.4.7.4 Determination of risk level and fuzzy conclusions from the decrement of 0.1, 0.2 

and 0.3 

By applying the ‘min-max’ approach described in Section 5.4.5, membership function values 

are listed according to the rules developed for the decrement values obtained in Tables 

5.24 to 5.35. The corresponding minimum values of the combinations for each of the 

scenario are also obtained as described in Appendices 5C, 5D, and 5E. The maximum 

values associated with the same category of linguistic priority terms for each of the 

scenarios are determined as shown in Tables 5.36 to 5.39, while Table 5.40 shows the set 

of fuzzy conclusions of the ship’s crane derived as the result of the decrement. It is worth 

mentioning that all the results obtained remain in harmony with both Axioms 1 and 2.  
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Table 5.36: The Maximum Value Associated with the Same Category of Linguistic Priority 

Terms for Decrement of Port Crane Bearing Grease Sample Elements 

Category of 
linguistic priority 
terms 

Maximum values by 
decrement of 0.1 

Maximum values by 
decrement of 0.2 

Maximum values by 
decrement of 0.3 

Caution 0.65 0.55 0.45 

Attention 0.125 0.125 0.125 

Critical 0.1 0.2 0.3 

Source: Test case data 

Table 5.37: The Maximum Value Associated with the Same Category of Linguistic Priority 

Terms for Decrement of Starboard Crane Bearing Grease Sample Elements 

Category of 
linguistic priority 
terms 

Maximum values by 
decrement of 0.1 

Maximum values by 
decrement of 0.2 

Maximum values by 
decrement of 0.3 

Normal 0.1 0.1 N/A 

Caution 0.1 0.2 0.3 

Critical 0.7 0.7 0.7 

Source: Test case data 

Table 5.38: The Maximum Value Associated with the Same Category of Linguistic Priority 

              Terms for Decrement of Port Crane Gearbox Oil Sample Elements 

Category of 
linguistic priority 
terms 

Maximum values by 
decrement of 0.1 

Maximum values by 
decrement of 0.2 

Maximum values by 
decrement of 0.3 

Normal 0.667 0.667 0.667 

Critical 0.1 0.2 0.3 

Source: Test case data 

Table 5.39: The Maximum Value Associated with the Same Category of Linguistic Priority 

                 Terms for Decrement of Starboard Crane Gearbox Oil Sample Elements 

Category of 
linguistic priority 
terms 

Maximum values by 
decrement of 0.1 

Maximum values by 
decrement of 0.2 

Maximum values by 
decrement of 0.3 

Caution 0.775 0.675 0.575 

Critical 0.1 0.2 0.3 

Source: Test case data 

Table 5.40: The Set of Fuzzy Conclusions of the Ship’s Crane from Decrement values 

 
Ship Crane 

Set of Fuzzy Conclusions 

Decrement by 0.1 Decrement by 0.2 Decrement by 0.3 

Port crane bearing Caution 0.65, 
Attention 0.125, 
Critical 0.1, 

Caution 0.55, Attention 
0.125, Critical 0.2, 

Caution 0.45, 
Attention 0.125, 
Critical 0.3, 

Starboard crane bearing Normal 0.1, Caution 
0.1, Critical 0.7, 

Normal 0.1, Caution 0.2, 
Critical 0.7, 

Caution 0.3, Critical 
0.7, 

Port crane gearbox Normal 0.667,  
Critical 0.1 

Normal 0.667,  
Critical 0.2 

Normal 0.667, 
Critical 0.3 

Starboard crane 
gearbox 

Caution 0.775, 
Critical 0.1 

Caution 0.675,  
Critical 0.2 

Caution 0.575, 
Critical 0.3 

Source: Test case data 
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5.4.7.5  Risk values from the decremented set of fuzzy conclusions (0.1, 0.2, and 0.3) 

The risk values for the decremented set of fuzzy conclusions are determined using the 

defuzzification process described in Section 5.4.6. For example, the risk value from the port 

crane bearing set of fuzzy conclusions is obtained as follows: 

10% decrement 

 𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.65

0.65+0.125+0.1
, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

0.125

0.65+0.125+0.1
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.1

0.65+0.125+0.1
 

𝑅𝑉 = 2 × 
0.65

0.65+0.125+0.1
+ 3 ×  

0.125

0.65+0.125+0.1
+ 4 × 

0.1

0.65+0.125+0.1
  = 2.366 

Similarly, the RV for other set of fuzzy conclusions in Table 5.40 is obtained as shown in 

Table 5.41. See Appendix 5F for detail calculations. 

Table 5.41: Risk Values from the Decremented Set of Fuzzy Conclusions  

 

Ship Crane Component 

Risk Values 

Decrement by 

0.1 

Decrement by 

0.2 

Decrement by 

0.3 

Port crane bearing 2.366 2.594 2.822 

Starboard crane bearing 3.441 3.3 3.4 

Port crane gearbox 1.389 1.689 1.929 

Starboard crane gearbox 2.226 2.454 2.682 

Source: Test case data 

From Table 5.41, it can be noted that the starboard crane bearing has the highest risk 

values, indicating a similar outcome obtained when the risk value was determined in Section 

5.4.6. 

Axiom 3 in Section 4.2.10 can be examined by comparing the preference degrees of the 

risk attributes for analysis in a transparent manner. In order to determine if the model aligned 

with axiom 3, two elements (i.e. Tin and Sodium) out of the three test elements of the 

analysis from the port crane bearing oil sample (Table 5.12) are selected and their input 

data decreased by 30%, as shown in Table 5.42. 

Table 5.42: Using Two Test Elements for Decrement of Port Crane Bearing by 0.3 

 

Test Elements 

 

The degree of belief associated with the highest preference linguistic 

variable is decreased and simultaneously the degree of belief associated 

with the lowest preference linguistic variable is increased by 0.3 

Tin (Sn) {(0.45, Very Low), (0.25, Low), (0, Moderate), (0, High), (0.3, Very High)} 

Sodium (Na) {(0, Very Low), (0.6, Low), (0.1, Moderate), (0, High), (0.3, Very High)} 

 
By applying the ‘min-max’ approach, the set of fuzzy conclusions of the two test elements 

for decreasing port crane bearing grease sample in Table 5.42 is obtained as follows: 
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i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.45, and Na = Low 0.6, then based on rule 2 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Sn = Very Low 0.45, and Na = Moderate 0.1, then based on rule 3 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(3) If Sn = Very Low 0.45, and Na = Very High 0.3, then based on rule 5 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(4) If Sn = Low 0.25, and Na = Low 0.6, then based on rule 7 in the fuzzy rule 

based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(5) If Sn = Low 0.25, and Na = Moderate 0.1, then based on rule 8 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CAUTION. 

(6) If Sn = Low 0.25, and Na = Very High 0.3, then based on rule 10 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(7) If Sn = Very High 0.3, and Na = Low 0.6, then based on rule 22 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(8) If Sn = Very High 0.3, and Na = Moderate 0.1, then based on rule 23 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(9) If Sn = Very High 0.3, and Na = Very High 0.3, then based on rule 25 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.45, and Na = Low 0.6. Therefore, the minimum 

value of Sn and Na is 0.45, which is associated with the linguistic priority term NORMAL, 

according to the fuzzy rule developed. The minimum values of the other eight combinations 

can be determined in a similar way, as shown in Table 5.43. 

Table 5.43: The Minimum Value of each Combination for Port Crane Bearing 

1 Normal 0.45 2 Caution 0.1 3 Critical 0.3 

4 Normal 0.25 5 Caution 0.1 6 Critical 0.25 

7 Critical 0.3 8 Critical 0.1 9 Critical 0.3 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that has 

the same category of linguistic priority term. 
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In the first scenario, there are nine combinations and three different categories of linguistic 

priority terms, NORMAL, CAUTION, and CRITICAL. The membership values in the 

NORMAL category are 0.45 and 0.25, respectively. Therefore, the maximum membership 

value is 0.45, as shown in Table 5.44. Likewise, the maximum membership values in the 

CAUTION and CRITICAL categories are determined, as shown in Table 5.44. 

Table 5.44: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Bearing. 

Category of linguistic priority terms Maximum values 

Normal 0.45 

Caution 0.1 

Critical 0.3 
Source: Test case data 

5.4.7.6 Risk values from the decremented set of fuzzy conclusions of the Port Bearing 

The risk values for the decremented set of fuzzy conclusions from the two elements of the 

port crane bearing is obtained as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙 
0.45

0.45+0.1+0.3
, 𝐶𝑎𝑢𝑡𝑖𝑜𝑛  

0.1

0.45+0.1+0.3
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.3

0.45+0.1+0.3
  

 

𝑅𝑉 = 1 × 
0.45

0.45+0.1+0.3
+ 2 ×  

0.1

0.45+0.1+0.3
+ 4 × 

0.3

0.45+0.1+0.3
  = 2.171 

 
Notice that when the input data associated with the highest preference linguistic values of 

the ship port crane bearing fuzzy sets of the three test elements was decreased by 30%, 

the risk value of the crane component (i.e. failure risk) was evaluated as 2.822, as indicated 

in Table 5.41. However, by selecting two elements (i.e. Tin and Sodium) out of the three 

test elements of the analysis from the port crane bearing oil sample (Table 5.12) and 

decreasing the input data by the same amount of 30%, the risk value obtained is 2.171. 

Given that 2.171 is less than 2.822, it can be claimed that the investigation of the model is 

validated to be sound and aligned with Axiom 3. 

5.5 Discussions 

This research has demonstrated how to start with a simple dynamic model and generate a 

rule-based diagnostic model. Grease / oil analysis has proven to be a useful tool to evaluate 

grease and bearing, as well as oil and gearbox condition, respectively. Different situations 

and influencing factors for wear, contamination, and grease condition have shown complex 

lucidities between the grease analysis results and their practical meaning. This leads to the 

deduction that observing and interpreting these factors with expert knowledge can allow 

proactive maintenance strategies to be applied in a reasonable approach for grease-

lubricated components. Understanding the oil sample data and realizing how to properly 
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apply alarm limits can significantly reduce the downtime of marine crane bearing and 

gearbox failure.  

The approach utilised in this research is non-traditional and, according to Ramezani and 

Memariani (2011), non-traditional modelling approaches may have the following benefits: 

1. Rule-based knowledge representation, together with the extraction of rule, offers a 

means of integrating data-driven modelling with physics-based modelling. 

2. A rule-based model is complementary with human investigative reasoning as well 

as human errors, thereby allowing industrial experts to contribute directly to the 

model building. 

3. A rule-base is transparent to the user. The way the decision is made can be plainly 

elucidated so that users can quickly gain trust in the system. This is vital in safety-

critical machinery like ship cranes where human lives are at risk. 

 
The approach here involves first identifying through literature review the key system 

variables that affect ship cranes, and then developing a set of decision rules relating to 

these key variables. This provides a powerful tool for knowledge specification and effective 

condition monitoring of ship cranes.  

From the diagnostic risk assessment tool, a NORMAL sample status indicates that the 

physical properties of the lubricant are within acceptable limits and no signs of excessive 

contamination/wear are present. ATTENTION indicates that results are outside acceptable 

ranges but not critical, although caution, re-sampling, and increased monitoring is advised. 

The CRITICAL status requires immediate corrective action to prevent significant major 

damage/failure in service. 

Failure to detect potential lube oil/equipment failure and wear may lead to poor performance 

and even cause expensive damage and, in some cases, loss of business. On the other 

hand, inaccurate diagnosis of equipment failure may cause unnecessary interruption to an 

entire business. Either case can result in significant monetary loss. Oil analysis is an 

increasingly popular condition-monitoring tool, meaning this developed diagnostic risk 

assessment tool is needed and, if adopted, will improve operating efficiency and reduce 

failures of ship cranes. 

5.6 Conclusion 

The main aim of this chapter is to develop an expert system that will diagnose early signs 

of problems in ship cranes by utilising oil-sampling analysis. This has been achieved by the 

design concept of a logic rule-based system that provides risk levels diagnosis to enable 
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grease/oil samples test results to be processed for the diagnosis of the ship cranes, using 

grease/oil-sampling analysis. A fuzzy modelling approach utilizing IF-THEN rules and its 

usefulness in condition monitoring of applications was illustrated in this chapter. The model 

showed how to build a bridge between the qualitative reliability analysis of the design phase 

and the diagnosis in the usage phase. The goal of producing a diagnosis model for a ship 

crane was satisfied. The outcome of this methodology is a rule-based model, which is a 

diagnosis tool that helps the maintenance crew prevent a ship crane failure with a reduced 

number of investigations. The tool allows the maintenance crew to make decisions that are 

more efficient when trying to diagnose fault in a crane, thus augmenting their competences. 

The generated alert risk levels in the tool helps in addressing some of the concerns raised 

in the introduction. It provides the maintenance crew with a map that allows recognition of 

the failing components, and informs them of which ones’ need replacing. 

This methodology shows how, with several systematic steps, a rule based diagnostic tool 

can be generated. This leads to the conclusion that this process can be automated and 

undeniably, that is the goal of this research. The diagnostic tool accuracy can be improved 

if a comprehensive data is available for a specific crane, as well as all the properties of the 

lubricant being used by the specified crane, in addition to monitoring trends. Such data can 

then be incorporated into this rule-based tool. A broader accurate diagnosis can be 

achieved if a wider range of data is available. These can be achieved if original equipment 

manufacturers and oil sampling laboratories are willing to supply this information, which is 

often very difficult to obtain. 
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Chapter 6 

Application of a Multiple Attribute Group Decision Making 

(MAGDM) Model for Selection of the best Maintenance Strategy 

for Marine and Offshore Machinery based on Fuzzy Technique for 

Order Preference by Similarity to Ideal Situation (FTOPSIS) 

Summary 

This chapter proposes a strategic fuzzy multi-attribute decision making methodology for the 

concise and straightforward selection of an appropriate maintenance strategy. The decision 

support structure allows the use of multiple decision makers to incorporate and aggregate 

their subjective opinions transparently. In the analysis, a Fuzzy Technique for Order 

Preference by Similarity to Ideal Situation is employed to rank the maintenance strategies 

with respect to costs and benefits for their subsequent implementation. 

6.1 Introduction 

In 1979, the Massachusetts Institute of Technology (MIT) carried out an extraordinary 

milestone study in which it estimated that over $200 billion was spent annually on 

maintenance in North America. Moreover, approximately one third of this expenditure was 

determined to be unnecessary. Maintenance, and in particular the effect of mal-lubrication, 

is still one of the few remaining areas of a company’s expenditure that can be significantly 

improved upon. Many modern engines contain a number of complex systems and thus 

require a variety of maintenance procedures for reliable, cost effective operation. The 

increasing cost, complexity of maintenance, other uncertainties, and their effect on 

production has initiated a need for adequate and proper planning, management, and 

omission of the maintenance process (Toms and Toms, 2008). Almost all modern 

maintenance programs include a variation of one or more of the following general 

maintenance procedures: Run-to-Failure Maintenance, Preventive Maintenance, Condition-

Based Maintenance, and Reliability Centred Maintenance. 

Therefore, the assessment of the cost of the planned maintenance (PM) strategies may 

require an advanced cost benefit analysis and a powerful tool for risk management 

methodology to aid in decision making. Decision making can be characterised as a process 

of selecting a highly sufficient alternative from a set of alternatives to attain a goal. Many 
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decisions involve uncertainty. In order to overcome the uncertainty and risk that threatens 

the maintenance, it is important to design a robust expert system that will cater for all the 

above maintenance procedures, which is one of the strategies developed in Chapter 4 and 

Chapter 5. 

In this chapter, decision makers’ opinions will be expressed through a process of fuzzy 

multi-attribute group decision making and aggregated to obtain the performance rating with 

respect to all of the attributes for each maintenance procedure alternative. Decision makers’ 

fuzzy decision matrixes are used and converted into an aggregated decision matrix to 

determine the most preferable choice among all possible alternatives. Fuzzy multi-attribute 

decision making is a tool that is suitable for group decision making under a fuzzy 

environment (Li, 2007). As a result, the purpose of using FMADM in this chapter is to 

aggregate and synthesise opinions of experts, thus, guiding them in decision making when 

they are planning to implement a cost effective maintenance investment.  

There are a number of Multiple Criteria Decision Making methods in literature, such as 

Fuzzy Technique for Order Preference by Similarity to Ideal Situation (Chen, 2000). A novel 

method for the MAGDM will be proposed in this chapter. In this method, the linguistic terms 

will be used during the evaluation process, and then FTOPSIS is used to rank the 

alternatives. This novel MAGDM technique can efficiently resolve the fuzzy information by 

decreasing its uncertainty level, is capable of reducing the computation time, and can 

provide reasonable and robust ranking results.  

6.2 Methodology 

The proposed methodology and hierarchical structure describing the decision making 

process of selecting an ideal maintenance strategy for marine and offshore machinery is 

graphically illustrated in Figure 6.1. The first stage is the identification of decision making 

alternatives for marine equipment maintenance. The decision alternatives and evaluation 

criteria are literature-based and have been derived from various literature reviews. The 

evaluation process is conducted by decision analysts based on their subjective knowledge 

and judgment on marine equipment maintenance practice.  

The second stage in the methodology is the identification of the evaluation criteria for the 

identified proto-type maintenance strategies. In the third stage, the AHP methodology is 

applied to obtain the importance weights of the evaluation criteria. In the fourth stage, 

FTOPSIS is applied to obtain performance ratings of the various decision alternatives. The 

importance weights obtained through the AHP are incorporated into the FTOPSIS analysis 

to obtain performance ratings of the decision alternatives.  
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A spreadsheet is used to compute the performance ratings of these alternatives. Results of 

the decision analysis are ranked in their order of preference by the analysts for a final 

selection and adaptation by the decision-makers (e.g. Maintenance Engineer on-board) or 

end-users within the marine and offshore industry.  

6.2.1  Identification of Decision-Making Alternatives (Step one) 

The four decision making alternatives (Run-to-failure, preventive maintenance, condition-

based maintenance, and reliability centred maintenance) described below have been 

identified and applied in this model. The maintenance strategies have been selected from 

the operations and maintenance best practices, as well as the machinery oil analysis, 

(1)   Identification of Decision-Making Alternatives for 

Crane Bearing/Gearbox Maintenance 

Run-to-Failure 
Maintenance 

Preventive 
Maintenance 

Condition Based 
Maintenance 

Reliability-Centred 
Maintenance 

(2)   Identification of Evaluation Criteria 

Reliability         Cost     Safety Availability Downtime 

(3)   Rating Phase - Determination of Importance Weights of 

Evaluation Criteria 

(4)   Selection Phase - Application of FTOPSIS Approach to 

obtain Performance Rating of Decision Alternatives 

(5)   Perform Sensitivity Analysis 

Figure 6.1 Hierarchical Model of Decision Making Analysis for Equipment 

Maintenance 
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methods, automation, and benefits recommended by Sullivan et al. (2010) and Toms and 

Toms (2008), respectively. 

6.2.2 Identification of Evaluation Criteria (Step two) 

ABB (2016) and Toms and Toms (2008) identify reliability, cost effectiveness, operational 

safety, availability, and equipment downtime as the main attributes critical to enhancing the 

selection of an ideal maintenance strategy in an uncertain environment. These five 

attributes, described below, have been applied in this model as evaluation criteria to reduce 

the elicitation process and to serve as a check for completeness and transparency. 

6.2.2.1 Reliability 

The study of component and process reliability is the basis of many efficiency evaluations 

in operation management (Carlo, 2015). Reliability has long been considered to be one of 

the three related attributes that must be taken into consideration when making, buying, or 

using a piece of equipment or component. It describes the ability of a system or component 

to function under stated conditions for a specified period of time. However, Toms and Toms 

(2008) identify reliability as the probability that an equipment system will operate at a 

specified performance level for a specific period. ABS (2016) also perceives reliability as 

the probability that an item will perform its intended function for a specified interval under 

stated conditions.  

In a broader way, Carlo (2015) identifies reliability as science to predict, analyze, prevent 

and mitigate failures over time. It is a science, with its theoretical basis and principles. It 

also has sub-disciplines, all related in some way to the study and knowledge of faults. 

Reliability also has to do with psychology and psychiatry (Carlo (2015) given that the human 

element is almost always part of the systems. 

6.2.2.2 Cost 

This cost includes equipment capital cost, cost due to unplanned downtime of equipment, 

labour cost, and cost involved with repair or replacement of equipment. An independent 

study conducted by Forrester Consulting on behalf of ABB Turbocharging reveals that 

organisations are under pressure to reduce cost, and that the three quarterly reports always 

consider the cost implications of parts and services (ABB, 2016). History, however, reveals 

that not all equipment operators utilize maintenance strategy in the most cost effective 

manner (Taylor, 1995). Decreasing unplanned downtime, and costs of maintenance, 

availability, and reliability are therefore significant considerations for investing in capital-

intensive machinery.  
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6.2.2.3 Safety 

There are numerous definitions of safety among professionals and researchers in the safety 

and risk fields. For example, Leveson (1995, 2004) cited in Aven (2013) defines safety as 

“the absence of accidents, where an accident is defined as an event involving an unplanned 

and unacceptable loss”. Safety is also linked to risk and uncertainty as Moller et al. (2006) 

views safety as the opposite of risk, while, Aven (2013) considers epistemological 

uncertainty of great importance when discussing safety and safety matters, but argues that 

this uncertainty aspect is not reflected in many perceptions of risk.  

Safety can also refer to the control of recognized hazards in order to achieve an acceptable 

level of risk. Safe operation of marine and offshore equipment is very important, thus, the 

general safety guidance for equipment is to be adhered to at all times. Potential hazards of 

operating machines and equipment are numerous, and thus, machine and equipment 

operators are encouraged to become familiar with the standards for safe machine and 

equipment operations relevant to their work (Toms and Toms, 2008). With this, it is 

envisaged that risks associated with the machines / equipment can be reduced to a feasible 

and acceptable level.  

6.2.2.4 Equipment availability 

Availability, according to Carlo (2015) may be defined as the percentage of time that a 

repairable system is in an operating condition. Toms and Toms (2008) view equipment 

availability as the degree to which the machine / equipment in context is in a specified 

operable and committable state at the start of operation, when the operation is called for at 

an unknown (i.e. a random) time. This basically means that the machine / equipment is 

suitable and ready for use when needed. However, in literature, equipment availability 

depends on the reliability and maintainability of that equipment, and availability itself 

therefore, depends on the time between two consecutive failures, and how long it will takes 

to restore the system. The ability to measure and control costs of equipment deterioration 

has an obvious direct impact on equipment availability and operational costs (Toms and 

Toms, 2008). 

6.2.2.5 Equipment downtime 

A period during which an equipment or machine is not functional or cannot work is referred 

to as downtime. Downtime can occur due to technical failure, machine adjustment, 

maintenance, or non-availability of inputs such as materials, labour, and power (ABB, 2016), 

(Toms and Toms, 2008). An independent study for ABB Turbocharging found that 87 

percent of organizations work only or mostly with Original Equipment Manufacturers 
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(OEMs) for maintenance support and spare parts procurement (ABB, 2016). Key benefits 

cited were reduced downtime and better parts availability according to the Forrester 

Consulting Technology Adoption Profile.  

6.2.3 Rating Phase - Determination of Importance Weights (Step three) 

As indicated in the model hierarchy for decision making, the rating phase deals with the 

determination of importance weights (which includes experts’ weights, the criteria’s weights 

with respect to the alternatives), defuzzifying the weights and normalising the decision 

matrix with respect to the goal. In the next step, the experts allocate linguistic variables to 

the criteria and the alternatives, respectively. The linguistic terms are calibrated into fuzzy 

triangular numbers for their fuzzy numbers. Then, FTOPSIS is adopted to aggregate the 

criteria and the alternative ratings to generate an overall score of the alternatives for ranking. 

In fuzzy set theory, conversion scales are applied to transform the linguistic terms into fuzzy 

numbers for system modelling and analysis. In this study, a conversion scale proposed by 

Chen and Hwang (1992), is being adopted to rate the evaluation criteria with respect to the 

decision alternatives. As presented in Figure 6.2, both the performance score (𝑥) and the 

membership degree (𝜇𝑥) are in the range of 0 and 1. 

 

 

 

 

 

 

 

 

 

 

The triangular fuzzy numbers in Figure 6.2 are converted to trapezoidal fuzzy numbers for 

easy computational analysis in this section, so that information can be represented in a 

concise and precise manner, as shown in Table 6.1. 
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1 

0 

Figure  6 . 2 :  Membership Degree for Linguistic Ratings  [Chen and Hwang (1992)] 
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At this stage, a series of calculations are conducted on weights of the alternatives and 

experts used during the collaborative modelling process. To establish a decision matrix for 

the evaluation process, as shown in Figure 6.2, expert opinions on the decision alternative 

with respect to each criterion can be made using linguistic variables. Linguistic variables 

are often used when describing situations that are too complex and fuzzy to be analysed 

quantitatively (Vahdat et al., 2014a). Human judgements, including preferences, are often 

vague and their preferences cannot be indicated by an exact numerical value (Vahdat et 

al., 2014b), therefore, a more realistic approach may be to use linguistic assessments such 

as “very good”, “medium good” and “good” instead of numerical values. 

Table 6.1: Fuzzy Linguistic Scale for Alternative Rating 

Linguistic Variables Corresponding Trapezoidal Fuzzy Numbers 

Very Low (0, 0, 0.1, 0.2) 

Low (0.1, 0.25, 0.25, 0.4) 

Medium (0.3, 0.5, 0.5, 0.7) 

High (0.6, 0.75, 0.75, 0.9) 

Very High (0.8, 0.9, 1, 1) 

Source: Hypothetical data [Chen and Hwang (1992)] 

6.2.3.1 Estimating weights of experts 

The weight of the expert can be determined in a simplified manner using established 

methods such as simple rating methods or more elaborate methods based on the weighting 

scores and factors. For this study, the weights of the experienced experts used are 

considered to be equal. Table 6.2 shows the composition and classification of these experts. 

Table 6.2: Classification of Experts 

Composition Classification 

 
Industry Position 

 Senior Maintenance Engineer 

 Ship Chief Engineer 

 Senior Port Maintenance Engineer 

Service Time   >25 years 

 
Academic Qualification 

 PhD 

 Class 1 Certificate of Competency 

 Master 
Source: Test case data 

6.2.3.2 Estimating weights of criteria  

The weights of criteria have played a vital role in measuring the overall preference values 

of the alternatives in many MCDM models. Based on the different assumptions on 𝑈(𝑍(𝑥)) 

or 𝑈(𝑅(𝑥)), MCDM models have different aggregation rules that allow the use of the criteria 
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weights in different ways. Moreover, distinct methods for assessing criteria weights are 

designed for different aggregation rules (Choo et al., 1999). In this study, the weights of the 

five criteria proposed are considered to be equal. 

6.2.3.3 Aggregation of experts’ opinions  

Based on the literature review presented in Chapter 2, when carrying out collaborative 

modelling of large and sophisticated engineering machinery, experts may have different 

opinions; thus, it is essential to aggregate these opinions in a logical, systematic, and 

simplified manner. In line with the modelling approach presented in Hsu and Chen (1994), 

consider that each expert 𝐸𝑢 (𝑢 = 1, 2, 3,…𝑀) expresses their opinions on a particular 

criterion based on their expertise by a set of linguistic variables that are described by fuzzy 

numbers. The aggregation of the experts’ judgement can be obtained as follows: 

1. Calculate the degree of agreement (degree of similarity) 𝑆𝑢𝑣(�̌�𝑢�̌�𝑣) of the opinions 

𝛿𝑈 and 𝛿𝑣 of a pair of experts 𝐸𝑢 and 𝐸𝑣 where 𝑆𝑢𝑣(�̌�𝑢�̌�𝑣) ∈ (0, 1). Based on this 

approach, �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are trapezoidal fuzzy numbers. 

The degree of similarity between these two fuzzy numbers can be evaluated by the 

similarity function S defined as follows (Hsu and Chen, 1994): 

 

𝑆(�̌�, �̌�) = 1 − 
1

4
 ∑ |𝑎𝑖 − 𝑏𝑖|

4
𝑖=1               (6.1) 

 

where 𝑆(𝑋,̌ �̌�) ∈ (0, 1). It is important to mention that the larger the value of 𝑆(�̌�, �̌�), the 

greater the similarity between two fuzzy numbers of �̌� and �̌� respectively. 

2. Calculate the degree of average agreement (AA) of expert 𝐸𝑢; this can be obtained 

using Equation (6.2). 

𝐴𝐴(𝐸𝑢) =  
1

𝑁−1
∑ 𝑆(𝛿𝑢, 𝛿𝑣)

𝑁
𝑢≠𝑣
𝑣=1

             (6.2)

  

3. Calculate the relative agreement (RA) degree 𝑅𝐴(𝐸𝑢) of  experts 𝐸𝑢; this can be 

obtained as follows: 

𝑅𝐴(𝐸𝑢) =  
𝐴𝐴(𝐸𝑢)

∑ 𝐴𝐴(𝐸𝑢)𝑁
𝑢=1

              (6.3) 

 
4. Calculate the consensus coefficient degree 𝐶𝐶 of experts 𝐸𝑢 (𝑢 = 1, 2, …𝑀); this can 

be analysed as follows: 

𝐶𝐶(𝐸𝑢) =  𝛽. 𝑤(𝐸𝑢) + (1 −  𝛽). 𝑅𝐴(𝐸𝑢)            (6.4) 
 

where 𝛽(0 ≤  𝛽 ≤ 1) is a relaxation factor of the proposed approach. It highlights the 

important of 𝑤(𝐸𝑢) over 𝑅𝐴(𝐸𝑢). It is important to note that when 𝛽 = 0, no importance has 

been given to the weight of experts and, thus, a homogeneous group of experts is used. 

When 𝛽 = 1, then the consensus degree of an expert is the same as its importance weight. 
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The consensus coefficient degree of each expert is a good measure for evaluating the 

relative worthiness of judgement of all experts participating in the decision making process. 

John et al., (2014) believe that it is the responsibility of the decision maker to assign an 

appropriate value of 𝛽, and considered  𝛽 to be 0.75. 

5. The expert aggregation judgement �̌�𝐴𝐺 can be obtained as follows: 

 

�̌�𝐴𝐺 = 𝐶𝐶(𝐸1)  × �̃�1 + 𝐶𝐶(𝐸2)  ×  �̃�2 + ⋯+ ⋯𝐶𝐶(𝐸𝑚)  × �̃�𝑛                     (6.5) 

where �̃�𝑖(𝑖 = 1, 2, …𝑛) is the subjective rating of a given criterion with respect to alternative 

by expert 𝐸𝑢(𝑢 = 1, 2, …𝑚). 

6.2.3.4 Defuzzification of the aggregated fuzzy results 

In order to rank the alternatives of the decision problem, all aggregated fuzzy numbers must 

be defuzzified. Each element of matrix �̃�𝑖 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) can be converted to a crisp value 

using Equation 6.3 proposed by Sugeno (1999) using the centre of area defuzzification 

technique. Equation 6.3 is adapted within this study because of the ease in the computation 

process compared to other techniques in the literature, such as Chen (2000). 

𝑋∗ = 
∫

𝑥−𝑎

𝑎2−𝑎1
𝑥𝑑𝑥+∫ 𝑥𝑑𝑥+∫

𝑎4−𝑥

𝑎4−𝑎3
𝑥𝑑𝑥

𝑎4
𝑎3

𝑎3
𝑎2

𝑎2
𝑎1

∫
𝑥−𝑎

𝑎2−𝑎1
𝑑𝑥+∫ 𝑑𝑥+∫

𝑎4−𝑥

𝑎4−𝑎3

𝑎4
𝑎3

𝑑𝑥
𝑎3
𝑎2

𝑎2
𝑎1

= 
1

3

(𝑎4+𝑎3)2−𝑎4𝑎3−(𝑎1+𝑎2)2+𝑎1𝑎2

𝑎4+𝑎3−𝑎1−𝑎2
         (6.6) 

6.2.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance Rating 

of Decision Alternatives (Step four) 

Selection of best maintenance strategies often requires analysts to provide both quantitative 

and qualitative assessments for determining the performance of each alternative with 

respect to each criterion. A modelling approach that will handle uncertain, imprecise, 

indefinite, and subjective data that often result from such assessments in a flexible manner 

is required. As a consequence of that, this study utilises a FTOPSIS algorithm (Yang et al., 

2009), (Jahanshahloo et al., 2006), and (Chen, 2000) due to the fact that fuzzy sets might 

provide the needed flexibility to represent the vague information resulting from the lack of 

data or knowledge. TOPSIS can reasonably deal with the multiplicity of the criteria in order 

to rank the alternatives based on the aggregated decision matrix and weight vector analysis. 

To carry out the assessment, consider 𝑥 possible alternatives 𝐴1, 𝐴2, 𝐴3 … 𝐴𝑥 from which 𝐸𝑢 

decision-makers 𝐸𝑢 = (1, 2, 3,…𝑚) have to make a credible decision on an appropriate 

maintenance strategy on the basis of 𝑛 sets of criteria 𝐶1, 𝐶2, 𝐶3, … 𝐶𝑛. The decision support 

procedure is achieved through the following steps: 
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6.2.4.1 Fuzzy decision matrix construction 

This step involves choosing appropriate linguistic variables for the alternatives with respect 

to criteria. Suppose the aggregation rate of alternative 𝐴1(𝑖 = 1, 2, …𝑥) for criteria 𝐶1(𝑗 =

1, 2, …𝑛) is (𝑡𝑖𝑗). Therefore, TOPSIS can be expressed in a matrix format as follows: 

                                     𝐶1        𝐶2       ⋯    𝐶𝑛 

𝑍 = (𝑡𝑖𝑗)𝑦×𝑛 = 

𝐴1

𝐴2

⋮
𝐴𝑛

[

𝑡11 𝑡12 ⋯ 𝑡1𝑛

𝑡21 𝑡22 ⋯ 𝑡2𝑛

⋮
𝑡𝑥1

⋮
𝑡𝑥2

⋮
⋯

⋮
𝑡𝑥𝑛

 ]   𝑖 = 1, 2, … . , 𝑥;   𝑗 = 1, 2, … . , 𝑛                   (6.7) 

where, matrix 𝑍 is composed of 𝑥 alternatives and 𝑛 criteria. 

In the proposed model, the process for the estimation of the values for the best maintenance 

strategy for marine and offshore machinery will depend on expert knowledge and judgement 

of the decision analysts.  

6.2.4.2 Fuzzy decision matrix normalisation 

After producing the decision matrix for the alternatives, the fuzzy data obtained in the matrix 

are normalised in order to eliminate the units of criteria scores, so that numerical 

comparisons often associated with MCDM problems can be brought to the same perception. 

The process involves dividing the score within each criterion by the root-sum-of-squares for 

all the decision-making criteria. Normalisation has two main aims: 

1. For the comparison of heterogeneous criteria.  

2. To ensure that all triangular fuzzy numbers are ranged within the interval, 0 and 1 

(Wang and Chang, 2007).  

Since 𝑛 criteria may be measured in different ways, the decision matrix 𝑍 needs to be 

normalised. This step transforms various criteria dimensions into non-dimensional units, 

which allows for comparisons across the criteria. The normalised decision matrix can be 

obtained by using the matrix given in 6.8. 

                                       𝐶1        𝐶2     ⋯    𝐶𝑛 

𝑅 = (𝑟𝑖𝑗)𝑦×𝑛 = 

𝐴1

𝐴2

⋮
𝐴𝑛

[

𝑟11 𝑟12 ⋯ 𝑟1𝑛

𝑟21 𝑟22 ⋯ 𝑟2𝑛

⋮
𝑟𝑥1

⋮
𝑟𝑥2

⋮
⋯

⋮
𝑟𝑥𝑛

 ]             (6.8) 

6.2.4.3 Construction of weighted normalisation fuzzy decision matrix 

The weighting factors are a set of percentages that add up to 100%, with the most important 

alternative receiving the highest weighting factor. The process involves multiplying the 
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importance weights of the alternative by the values in the normalised fuzzy decision matrix. 

Considering the different importance of each criterion, the weighted normalized fuzzy-

decision matrix �̃� can be constructed using Equations 6.9 and 6.10. 

�̃� =  ⌊�̃�𝑖𝑗⌋𝑚𝑥𝑛
,    𝑖 = 1, 2,… ,𝑚;    𝑗 = 1, 2, … , 𝑛                       (6.9) 

�̃�𝑖𝑗 = �̃�𝑖𝑗  𝑥 �̃�𝑗                         (6.10) 

where, �̃�𝑗 denotes the importance weight of criterion 𝐶𝑗 . 

6.2.4.4 Determination of the fuzzy positive ideal reference point (FPIRP) and fuzzy 

negative ideal reference point (FNIRP) 

The FPIRP is obtained by identifying the best score in a criterion. Similarly, the worst score 

of a criterion is identified and recorded as the FNIRP. The FPIRP (𝐴+) [the benefit criterion] 

and FNIRP (𝐴−) [the cost criterion) are defined as follows: 

𝐴+ = (𝑣1
+, 𝑣2

+ , … , 𝑣𝑛
+),                        (6.11) 

𝐴− = (𝑣1
−, 𝑣2

− , … , 𝑣𝑛
−),                        (6.12) 

where, 

�̃�𝑗
+ = {𝑀𝑎𝑥 𝑣𝑖𝑗 , 𝑖 ∈  𝑗1;𝑀𝑖𝑛 𝑣𝑖𝑗, 𝑖 ∈ 𝑗2}           (6.13) 

�̃�𝑗
− = {𝑀𝑎𝑥 𝑣𝑖𝑗 , 𝑖 ∈  𝑗1;𝑀𝑖𝑛 𝑣𝑖𝑗 , 𝑖 ∈ 𝑗2}                      (6.14) 

where 𝑗1 and 𝑗2 are associated with the sets of benefit and cost criteria respectively. 

The distance of each alternative (maintenance strategy) from the FPIRP (𝐷𝑖
+) and FNIRP 

(𝐷𝑖
−) with respect to each criterion can be obtained by utilising Equations 6.15 and 6.16 

respectively. 

𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑖

+)2,𝑥
𝑖=1       𝑗 − 1, 2, … , 𝑛                                (6.15)     

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑖

−)2,𝑥
𝑖=1       𝑗 − 1, 2, … , 𝑛                                                                              (6.16) 

The obtained 𝐷𝑖
+ and 𝐷𝑖

− values can then be used in obtaining the Closeness Coefficient 

(𝐶𝐶𝑖) of each alternative for ranking purposes. 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 

 

146 
 

6.2.4.5 Obtaining the closeness coefficient of each alternative  

The ranking of the alternative can be determined after the obtaining 𝐶𝐶𝑖. This allows the 

decision making experts to choose the most rational and appropriate alternative. To 

calculate the 𝐶𝐶𝑖 Equation 6.17 is used. 

𝐶𝐶𝑖 = 
𝐷𝑖

−

𝐷𝑖
++ 𝐷𝑖

−   𝑖 = 1, 2, … ,𝑚                       (6.17) 

6.2.4.6 Ranking the alternatives 

The different alternatives are ranked according to the closeness coefficient 𝐶𝐶𝑖 in 

decreasing order. It is important to note that the best alternative is closest to the FPIRP and 

farthest from the FNIRP. This means that the larger the 𝐶𝐶𝑖, the better the associated 

alternative. 

6.2.5 Perform Sensitivity Analysis (Final) 

Conducting a sensitivity analysis (SA) is an important aspect of the novel hybrid 

methodology presented in Section 6.2, as it is meant to provide a reasonable amount of 

confidence in the overall result of the study. Given that the final output result is dependent 

on the subjective judgements of the decision makers, it is essential to perform SA based on 

a set of scenarios that reflect different views on the relative importance of the attributes, in 

order to observe the stability and ranking order of the model’s output. Then, managerial 

attention is focused during implementation of the maintenance strategies for the decision 

making process. 

6.3 Application of Methodology to a Test Scenario 

The proposed model will be demonstrated in a decision making analysis of the selection of 

an on-board machinery (crane) maintenance strategy for ships operating under an uncertain 

environment, as presented in Section 6.2. The hierarchical model of this decision-making 

analysis process is as illustrated in Figure 6.3, with the goal of the decision problem in level 

0, decision alternatives in level 1, and evaluation criteria in level 2. It is important to note 

that the proposed model is applied for decision making in the selection of appropriate 

maintenance strategies for marine and offshore machinery.  

This representation is made to simplify the computational complexity associated with the 

analysis and to provide managerial insight to decision makers in a reasonable manner prior 

to their subjective evaluation of criteria with respect to alternatives. The analysis will be 

conducted through a robust literature review and brainstorming session with the experts. 

The positions of the experts and their degree of competency in the industry are as shown 

in Table 6.7. The primary objective of the decision-making analysis is to identify the best, 
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most appropriate and acceptable maintenance strategy to be adopted by the engineer on-

board ships and offshore installations. 

 

Figure 6.3: Hierarchical Structure of Maintenance Strategy Selection 

Note: RTFM, PM, CBM, and RCM stand for Run-to-Failure Maintenance, Preventive Maintenance, Condition 

Based Maintenance, and Reliability Centred Maintenance, respectively. 

6.3.1 Identification of Decision Making Alternatives (Step one) 

This involves the identification of the decision making alternatives through a literature review 

of the machinery maintenance strategies on-board ships. As presented in section 6.2.1, four 

(4) alternatives were established for this analysis. 

6.3.2 Identification of Evaluation of Criteria (Step two) 

Based on the expert opinions, the criteria or attributes that are critical to enhancing the 

selection of the best maintenance strategy in uncertain situations are stated in section 6.2.2. 

It is evident that the criteria used for the selection procedure consist of two main categories: 

cost (C) (the lower the value, the more effective the alternative) and benefit (B) (the higher 

the value, the more robust or effective the alternative). As a consequence, the cost type 

criteria include the cost (equipment capital cost, labour cost, repair/replacement cost), 

downtime, and availability, while the benefit type criteria consist of safety (operational 

safety, environmental safety) and reliability. The assigned criteria are described in Table 

6.3. Based on this, it is worth mentioning that maintenance strategy selection can be carried 

out with respect to three cost and two benefit criteria. 

 

 

 

 

 

Maintenance 

Strategy Selection

RTFM

PM

CBM

RCM

Reliability

Cost

Safety

Availability

Downtime

Level 0: Objective Level 1: Decision Alternatives Level 2: Evaluation Criteria
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Table 6.3: Criteria for Maintenance Strategy Selection 

Criteria Criteria Description Assessment Type Category 

C1 Reliability Linguistic Assessment  B 

C2 Cost Linguistic Assessment  C 

C3 Safety Linguistic Assessment  B 

C4 Availability Linguistic Assessment  C 

C5 Downtime Linguistic Assessment  C 

Source: Test case data 

6.3.3 Rating Phase - Determination of Importance Weight (Step three) 

In order to show the relative important of each criterion, it is necessary to assign a weight 

to each (Reliability, Cost Effectiveness, Safety, Availability, and Downtime). There are two 

types of criteria for a selection problem involving complex networks of decision making. If 

an assessment of the criteria is made with respect to alternatives from field data or a 

literature review, the criteria are called ‘objective’; when such information is obtained using 

expert judgement in the form of fuzzy linguistic estimates, then the criteria are called 

‘subjective’. The assessment type used for all the criteria in this model is fuzzy linguistic 

estimates, thus, the criteria are subjective. Based on this, each subjective criterion is 

assessed with respect to each alternative by a group of three experts or decision makers 

(DMs), and their assessments are presented in Tables 6.4, 6.5, and 6.6, respectively. The 

experts’ backgrounds are presented as follows: 

1. A senior maintenance engineer with a PhD who has been involved with marine and 

offshore machinery maintenance and services for over 25 years. 

2. A ship chief engineer officer with a class 1 marine certificate of competency (COC) 

who has been involved with machinery maintenance and operations on-board ship 

for over 25 years. 

3. A senior port maintenance engineer with a master’s degree who has been involved 

with the port equipment’s safety and operational services for over 30 years. 

Table 6.4: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 1 

 EXPERT 1 

RTFM PM CBM RCM 

Reliability H H VH VH 

Cost L VH M VL 

Safety L VH M VL 

Availability M VH VH VH 

Downtime H L VL VL 
Source: Test case data 
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Table 6.5: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 2 

 EXPERT 2 

RTFM PM CBM RCM 

Reliability H H VH VH 

Cost VL H L VL 

Safety L VH M VL 

Availability M H VH VH 

Downtime H VL VL VL 
Source: Test case data 

Table 6.6: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 3 

 EXPERT 3 

RTFM PM CBM RCM 

Reliability M H VH VH 

Cost L H M L 

Safety L H M VL 

Availability M M VH H 

Downtime M VL VL L 
Source: Test case data 

Note: VL, L, M, H and VH stand for Very Low, Low, Medium, High, and Very High, respectively. 

6.3.3.1 Estimating weights of experts 

The weights of the experts are determined based on the available information in Section 

6.2.3.1. The industrial positions, service times, and academic qualifications of the experts 

or decision-makers are extracted from Table 6.2 and utilised. As shown in Table 6.7, the 

weights of these three experts are considered to be equal and this is indicated as degree 

of competency (0.333). 

Table 6.7: Selected Experts and their Assigned Degree of Competency 

Decision 
Makers 

 
Industrial Position 

Service 
Period 

Academic 
Qualification 

Degree of 
Competency 

DM1 Senior Maintenance 
Engineer 

>25 years PhD 0.333 

 
DM2 

 
Ship Chief Engineer 

 
>25 years 

Class 1 
Certificate of 
Competency 

 
0.333 

 
DM3 

Senior Port Maintenance 
Engineer 

 
>25 years 

 
Master 

 
0.333 

Source: Test case data 

6.3.3.2 Estimating weights of criteria 

For this model, equal weight values are assigned to the five identified evaluation criteria, as 

shown in Table 6.8. These weight values will then be applied in the assessment process to 

establish the fuzzy performance ratings of the model’s evaluation alternatives. 
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Table 6.8: Weights of Criteria 

Criteria Assigned Weights 

Reliability 0.2 

Cost 0.2 

Safety 0.2 

Availability 0.2 

Downtime 0.2 

Source: Test case data 

6.3.3.3 Aggregation of experts’ opinions 

This stage of the analysis involves a series of aggregation calculations of criteria ratings 

with respect to alternatives. Since decision making on maintenance strategies involves 

complex networks of group decision making in a fuzzy environment, it is important to 

emphasise that three experts are employed for this strategic evaluation; for this study, their 

weights are considered to be equal. When conducting the Fuzzy-TOPSIS process as 

applied in this model, the knowledge and judgement of analysts involved are to be 

considered. The four decision alternatives and five evaluation criteria shown in Table 6.9 

will be used to develop the fuzzy TOPSIS decision matrix. 

Tables 6.10, 6.11, and 6.12 show the corresponding fuzzy numbers of the alternatives with 

respect to the criteria by the three experts. The figures obtained are based on the 

membership functions of the linguistic variables developed in Figure 6.2 and the scale for 

the measurement of the evaluation criteria, as shown in Table 6.1. 

Aggregation calculations are conducted using Equations 6.1, 6.2, 6.3, 6.4, and 6.5 for the 

experts’ judgement on reliability with respect to run-to-failure maintenance, as seen in Table 

6.13. Similar, calculations were conducted on the other attributes and their fuzzy estimates 

are presented in Tables 6.14a and 6.14b. 

Table 6.9: Decision Alternatives and Evaluation Criteria 

 Decision Alternatives  Evaluation Criteria 

A1 Run-to-Failure Maintenance C1 Reliability 

A2 Preventive Maintenance C2 Cost 

A3 Condition Based Maintenance C3 Safety 

A4 Reliability-Centred Maintenance C4 Availability 

  C5 Downtime 

Source: Test case data 
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Table 6.10: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 1 

 Expert 1 

A1 A2 A3 A4 

C1 0.6, 0.75, 0.75, 0.9 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C3 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C5 0.6, 0.75, 0.75, 0.9 0.1, 0.25, 0.25, 0.4 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 

Source: Test case data 

Table 6.11: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 2 

 Expert 2 

A1 A2 A3 A4 

C1 0.6, 0.75, 0.75, 0.9 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0, 0, 0.1, 0.2 0.6, 0.75, 0.75, 0.9 0.1, 0.25, 0.25, 0.4 0, 0, 0.1, 0.2 

C3 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C5 0.6, 0.75, 0.75, 0.9 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 

Source: Test case data 

Table 6.12: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 3 

 Expert 3 

A1 A2 A3 A4 

C1 0.3, 0.5, 0.5, 0.7 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0.1, 0.25, 0.25, 0.4 0.6, 0.75, 0.75, 0.9 0.3, 0.5, 0.5, 0.7 0.1, 0.25, 0.25, 0.4 

C3 0.1, 0.25, 0.25, 0.4 0.6, 0.75, 0.75, 0.9 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.3, 0.5, 0.5, 0.7 0.8, 0.9, 1, 1 0.6, 0.75, 0.75, 0.9 

C5 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 0.1, 0.25, 0.25, 0.4 

Source: Test case data 

Table 6.13: Aggregation Calculation for Reliability with Respect to RTFM 

Expert 1 H 0.6, 0.75, 0.75, 0.9 

Expert 2 H 0.6, 0.75, 0.75, 0.9 

Expert 3 M 0.3, 0.5, 0.5, 0.7 

S(Expert 1 & 2) = 1 - 
(0.6−0.6)+(0.75−0.75)+(0.75−0.75)+(0.9−0.9)

4
= 1 

S(Expert 1 & 3) = 1 - 
(0.6−0.3)+(0.75−0.5)+(0.75−0.5)+(0.9−0.7)

4
= 0.75 

S(Expert 2 & 3) = 1 - 
(0.6−0.3)+(0.75−0.5)+(0.75−0.5)+(0.9−0.7)

4
= 0.75 

AA(Expert 1) = 
1+0.75

2
= 0.875 AA(Expert 2) = 

1+0.75

2
= 0.875 AA(Expert 3) = 

0.75+0.75

2
=

0.75 

RA(Expert1) = 

0.875

0.875+0.875+0.75
= 0.35 

RA(Expert2) = 

0.875

0.875+0.875+0.75
= 0.35 

RA(Expert3) =  

0.75

0.875+0.875+0.75
= 0.3 

Expert aggregation Result  

�̃�𝐴𝐺 

0.35(0.6, 0.75, 0.75, 0.9) + 0.35(0.6, 0.75, 0.75, 0.9) + 

0.3(0.3, 0.5, 0.5, 0.7) = (0.51, 0.675, 0.675, 0.84) 

Source: Test case data 
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Table 6.14a: Aggregation Results of Criteria Ratings with Respect to Alternatives 

  C1 C2 C3 

A1 0.51, 0.675, 0.675, 0.84 0.067, 0.167, 0.2, 0.333 0.1, 0.25, 0.25, 0.4 

A2 0.6, 0.75, 0.75, 0.9 0.662, 0.797, 0.828, 0.931 0.738, 0.853, 0.922, 0.969 

A3 0.8, 0.9, 1, 1 0.233, 0.417, 0.417, 0.6 0.3, 0.5, 0.5, 0.7 

A4 0.8, 0.9, 1, 1 0.035, 0.088, 0.153, 0.270 0, 0, 0.1, 0.2 
Source: Test case data 

Table 6.14b: Aggregation Results of Criteria Ratings with Respect to Alternatives 

  C4 C5 

A1 0.3, 0.5, 0.5, 0.7 0.51, 0.675, 0.675, 0.84 

A2 0.573, 0.722, 0.754, 0.871 0.031, 0.078, 0.147, 0.262 

A3 0.8, 0.9, 1, 1 0, 0, 0.1, 0.2 

A4 0.738, 0.853, 0.922, 0.969 0.035, 0.088, 0.153, 0.270 
Source: Test case data 

6.3.3.4 Defuzzification of the aggregated fuzzy results 

Based on the aggregation results presented in Tables 6.14a and 6.14b, the fuzzy numbers 

are converted into crisp values using Equation 6.6 and the results are presented in Table 

6.15. 

Table 6.15: Transformation of the Fuzzy Numbers into Crisp Values 

  C1 C2 C3 C4 C5 

A1 

(0.51+ 0.675 + 

0.675 + 0.84) / 

4 = 0.675 

(0.067 + 0.167 + 

0.2 + 0.333) / 4 = 

0.192 

(0.1 + 0.25 + 0.25 

+ 0.4) / 4 = 0.25 

(0.3 + 0.5 + 0.5 

+ 0.7) / 4 = 0.5 

(0.51+ 0.675 + 

0.675 + 0.84) / 

4 = 0.675 

A2 

(0.6 + 0.75 + 

0.75 + 0.9) / 4 = 

0.75 

(0.662 + 0.797 + 

0.828 + 0.931) / 4 

= 0.805 

(0.738 + 0.853 + 

0.922 + 0.969) / 4 

= 0.871 

(0.573 + 0.722 + 

0.754 + 0.871) / 

4 = 0.730 

(0.031 + 0.078 

+ 0.147 + 

0.262) / 4 = 

0.130 

A3 
(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0.233 + 0.417 + 

0.417 + 0.6) / 4 = 

0.417 

(0.3 + 0.5 + 0.5 + 

0.7) / 4 = 0.5 

(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0 + 0 + 0.1 + 

0.2) / 4 = 

0.075 

A4 
(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0.035 + 0.088 + 

0.153 + 0.270) / 4 

= 0.136 

(0 + 0 + 0.1 + 0.2) 

/ 4 = 0.075 

(0.738 + 0.853 + 

0.922 + 0.969) / 

4 = 0.871 

(0.035 + 0.088 

+ 0.153 + 

0.270) / 4 = 

0.136 

Source: Test case data 

6.3.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance Rating 

of Decision Alternatives (Step four) 

In order to obtain the performance rating for the decision alternatives, the FTOPSIS 

algorithm is applied in this section, as follows: 
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6.3.4.1 FTOPSIS decision matrix construction 

Based on crisp values obtained for the four decision-making alternatives (A1 – A4) and five 

evaluation criteria (C1 – C5) obtained in Table 6.15, a Fuzzy-TOPSIS decision matrix, 

shown in Tables 6.16, is constructed.  

Table 6.16: Fuzzy-TOPSIS Decision Matrix 

 C1 C2 C3 C4 C5 

A1 0.675 0.192 0.25 0.5 0.675 

A2 0.75 0.805 0.871 0.730 0.130 

A3 0.925 0.417 0.5 0.925 0.075 

A4 0.925 0.136 0.075 0.871 0.136 
Source: Test case data 

6.3.4.2 Fuzzy decision matrix normalisation 

Based on Equation 2.26, the fuzzy decision matrix presented in Table 6.16 is normalised. 

The results are presented in Table 6.17.  

As an example, the normalised reliability (C1) with respect run-to-failure maintenance (A1) 

is presented as follows: 

0.675

[(0.6752+0.752+0.9252+0.9252)]
1
2

 = 0.409 

 

Table 6.17: Normalised Decision Matrix 

 C1 C2 C3 C4 C5 

A1 0.409 0.205 0.241 0.323 0.958 

A2 0.454 0.859 0.839 0.471 0.184 

A3 0.560 0.445 0.482 0.597 0.106 

A4 0.560 0.145 0.072 0.563 0.193 
Source: Test case data 

6.3.4.3 Construction of weighted normalisation fuzzy decision matrix 

The weighted normalized decision matrix is achieved by applying Equation 6.9. The 

normalized fuzzy numbers obtained in Table 6.17 are multiplied by the important weight 

values of the evaluation criteria given in Table 6.8.  

For example, the weighted normalized fuzzy number for A1 of C1 is given as follows: 

𝑣1,1 = 0.409 x 0.2 = 0.082 

Similarly, the weighted normalized fuzzy numbers for other alternatives are calculated and 

presented in Table 6.18. 
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Table 6.18: Weighted Normalized Decision Matrix  

  C1 C2 C3 C4 C5 

A1 0.082 0.041 0.048 0.065 0.192 

A2 0.091 0.172 0.168 0.094 0.037 

A3 0.112 0.089 0.096 0.119 0.021 

A4 0.112 0.029 0.014 0.113 0.039 

Source: Test case data 

6.3.4.4 Determination of the fuzzy positive ideal reference point (FPIRP) and fuzzy 

negative ideal reference point (FNIRP)   

Determination of the FPIRP can be made by taking the largest element of each benefit 

criterion and the smallest element of each cost criterion. Ultimately, FNIRP is the reverse 

of the FPIRP in relation to this representation, as presented in Table 6.19. The distances of 

each maintenance strategy from FPIRP and FNIRP values with respect to each criterion 

are calculated using Equations 6.13 and 6.14.  

As an example, the distance of alternative A1 to 𝐴+ is calculated as follows: 

𝐷+ = [(0.112 − 0.082)2 + (0.029 − 0.041)2 + (0.168 − 0.048)2 + (0.065 − 0.065)2 +

(0.021 − 0.192)2]
1

2⁄ = 0.211  

 
𝐷− = [(0.082 − 0.082)2 + (0.172 − 0.041)2 + (0.014 − 0.048)2 + (0.119 − 0.065)2 +

(0.192 − 0.192)2]
1

2⁄ = 0.146  

Similarly, and by applying Equations 6.13 and 6.14, the distances of other decision 

alternatives to FPIRP and FNIRP were determined and the results are presented in Table 

6.20. 

Table 6.19: Representation of FPIRP and FNIRP Values 

 Positive Ideal Solution Negative Ideal Solution 

Reliability (C1) 0.112 0.082 

Cost (C2) 0.029 0.172 

Safety (C3) 0.168 0.014 

Availability (C4) 0.065 0.119 

Downtime (C5) 0.021 0.192 
Source: Test case data 

Table 6.20: Distance of each Alternative to the FPIRP and FNIRP 

 A1 A2 A3 A4 

D+ 0.211 0.148 0.108 0.162 

D- 0.146 0.220 0.209 0.212 
Source: Test case data 
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6.3.4.5 Obtaining the closeness coefficient and ranking of alternatives   

Based on the results obtained in Section 6.3.4.4, the closeness coefficient of each 

alternative can be calculated using Equation 6.17. The calculation of the CC value for 

alternative A1 is described as follows: 

𝐷1
+ = 0.211, and 𝐷1

− = 0.146 

𝐶𝐶1 =
0.146

0.211+0.146
= 0.408 

Similarly, the CC values for alternatives A2 to A4 can be calculated and the results are 

presented in Table 6.21. 

Table 6.21: CC Results and Ranking Order of the Maintenance Strategies 

 A1 A2 A3 A4 

CC 0.408 0.597 0.659 0.566 

Ranking 4 2 1 3 
Source: Test case data 

It can be observed in Table 6.21 that each instance of the hybrid approach produces 

different values for each maintenance strategy that correspond to the strategic decisions of 

experts. Obviously, the result of the calculations revealed that A3 and A2 scored the highest 

CC values compared to the remaining alternatives or strategies. The detailed results of the 

fuzzy TOPSIS analysis are presented in Table 6.22.  

Table 6.22: Results of Fuzzy TOPSIS Analysis 

 Decision-Making Attributes 𝑫+ 𝑫− CC Values Ranking 

A1 Run-to-Failure Maintenance 0.211 0.146 0.408 4 

A2 Preventive Maintenance 0.148 0.220 0.597 2 

A3 Condition Based Maintenance 0.108 0.209 0.659 1 

A4 Reliability-Centred Maintenance 0.162 0.212 0.566 3 
Source: Test case data 

6.3.4.6 Ranking the alternatives 

Based on the evaluation of closeness coefficient above, by comparing the values of the four 

alternatives, as shown in Table 6.22, the ranking order of the maintenance strategies is 

given as A3 > A2 > A4 > A1. Additionally, Figure 6.4 is obtained based on the analysis result 

presented in Table 6.22. The graph depicts the sensitivity of the analytical result as being 

non-linear. It is noteworthy that the procedure outlined in the proposed framework revealed 

that A3 and A2 seem reasonable and appropriate choices for investment in the ship crane 

under investigation, in order to improve the performance of the crane’s operations. These 

maintenance strategies have closeness coefficient values of 0.659 and 0.597 respectively. 
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6.3.5 Perform Sensitivity Analysis (Final) 

In order to validate and test the robustness of this model, a sensitivity analysis is conducted. 

The analysis is necessary in order to test the suitability and sensitivity of the model for 

decision analysis of the maintenance strategies (as decision alternatives), and for the 

interpretation and communication of results based on a sensitivity study so that managerial 

insight can correctly provide guidance for investment in maintenance strategies. Based on 

the input data presented in Section 6.3.4.1 (Table 6.16), the crisp values of each attribute 

are slightly varied while the resulting change and the final ranking of the alternatives are 

observed. This process of analysis is useful in situations of high uncertainties concerned 

with many factors that need to be modelled when investing in machinery maintenance 

strategies. Apparently, due to the vagueness surrounding the strategic decision making 

process, it is usually very challenging to predict and analyse the delivery of the analytical 

result in a fuzzy environment.  

The analysis is conducted under five conditions, as tabulated in Table 6.23. The first step 

in the sensitivity analysis process involves an increment of the cost values (i.e. C2, C4 and 

C5) of each decision alternative by 10% and decreasing the benefit values (i.e. C1 and C3) 

by the same 10%. The next step is to determine the distance of each alternative to FPIRP 

and FNIRP, then obtain the CC values and observe the results of the final ranking, as 

described in Sections 6.3.4.4 and 6.3.4.5. 

 

Figure 6.4: Ranking Order of the Maintenance Strategies 

Based on Table 6.16 in Section 6.3.4.1, the values for 10% increment on the cost and 10% 

decrement on the benefit criteria are shown in Table 6.24, and their normalised and 

weighted normalised values are shown in Tables 6.25 and 6.26, respectively. 
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Table 6.23: Conditions for Changing Input Values by Percentages 

Condition Percentage 

1 Decrease C1 by 10% 

2 Increase C2 by 10% 

3 Decrease C3 by 10% 

4 Increase C4 by 10% 

5 Increase C5 by 10% 
Source: Test case data 

Table 6.24: Fuzzy-TOPSIS Decision Matrix when Criteria are changed by 10% 

  
10% 

Decrement 
10% 

Increment 
10% 

Decrement 
10% 

Increment 
10% 

Increment 

  C1 C2 C3 C4 C5 

A1 0.575 0.292 0.15 0.6 0.775 

A2 0.65 0.905 0.771 0.83 0.23 

A3 0.825 0.517 0.4 1.025 0.175 

A4 0.825 0.236 -0.025 0.971 0.236 

Source: Test case data 

From Table 6.26, the distances of each alternative to the FPIRP (i.e. 𝐷+) and FNIRP (i.e. 

𝐷−), and their corresponding CC values are obtained. The results of the sensitivity analysis 

(i.e. when the input values of the criteria are changed by 10%) are presented in Table 6.27. 

Table 6.25: Normalised Decision Matrix when Criteria Values are changed 

  C1 C2 C3 C4 C5 

A1 0.395 0.264 0.17 0.344 0.901 

A2 0.447 0.817 0.874 0.476 0.267 

A3 0.567 0.467 0.454 0.588 0.203 

A4 0.567 0.213 -0.028 0.557 0.274 

Source: Test case data 

Table 6.26: Weighted Normalised Decision Matrix when Criteria Values are changed 

  C1 C2 C3 C4 C5 

A1 0.079 0.053 0.034 0.069 0.180 

A2 0.089 0.163 0.175 0.095 0.053 

A3 0.113 0.093 0.091 0.118 0.041 

A4 0.113 0.043 -0.006 0.111 0.055 

Source: Test case data 

Table 6.27: Sensitivity Analysis Results 

 Decision-Making Attributes 𝑫+ 𝑫− CC Values Ranking 

A1 Run-to-Failure Maintenance 0.212 0.131 0.383 4 

A2 Preventive Maintenance 0.143 0.214 0.599 2 

A3 Condition Based Maintenance 0.115 0.189 0.622 1 

A4 Reliability-Centred Maintenance 0.183 0.192 0.512 3 

Source: Test case data 
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6.4 Discussion of Results 

In this study, sensitivity analysis is implemented to see the effect in the output data given a 

slight change in the input data. From the results of the sensitivity analysis (Table 6.25), it 

can be observed that the ranking order of the four decision alternatives maintained a 

consistency when the cost category of the criteria (C2, C4, C5) was increased by 10%, and 

the benefit category (C1, C3) decreased by the same 10%. The analysis reveals that almost 

all the changes in the criteria input data do not change the final ranking of the maintenance 

strategies. For this model to be validated, this pattern in the results is to be expected. It can 

therefore be deduced that the model is reasonable and capable of being applied to the 

analysis of machinery maintenance strategy decision-making alternatives.  

Based on the result obtained from this analysis, the marine machinery (crane) under 

investigation can be enhanced by implementing A3 (i.e. condition based maintenance) 

strategy. However, implementing A2 (i.e. preventive maintenance), especially during follow-

up analysis (when improving maintenance process), can promote continuous improvement 

and enhance the crane’s performance under high uncertainty. Experience has shown that 

investing in maintenance selection strategies seems to be an important strategy to mitigate 

cost issues under a fuzzy environment. Therefore, the result of the analysis would help 

improve the decision-making process, thus allowing for a flexible response to operational 

uncertainties through a systematic approach.  

The analysis result reflecting on A3 (condition based maintenance) as the recommended 

strategy certainly shows that expert judgement was based on increase in machinery 

operational life/availability, increase in machinery reliability, increase in cost for parts and 

labour, and decrease in machinery downtime. Minimizing maintenance costs seems to be 

an effective way to build up efficient maintenance, especially when one is required to work 

within a limited budget. When investments in maintenance have to be made to reduce the 

overall costs (i.e., operations costs), it seems logical to consider the minimization of total 

cost of ownership or the life-cycle costs instead. However, Goossens (2015) ascertained 

that the ultimate goal of maintenance cannot be cost reduction only and must be maintaining 

functionality (at the lowest cost). Nevertheless, how costs can best be interpreted in relation 

to the selection process of the best maintenance strategy remains to be further explored. 

The role of safety within the maintenance strategy selection can also be misinterpreted 

since, according to Goossens (2015), by definition, absolute safety is impossible. As such, 

safety is considered to act as a pre-condition for maintenance strategy selection. 

Nevertheless, a balance between safety and availability or reliability can be desirable (or 

even possible). The exact role that safety currently has within machinery maintenance 
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strategy selection, as well as the role it should have, is worth further investigation. The 

model developed in this study is by no means conclusive. It is subject to further modification, 

given the acquisition of new data or before its utilization by end-users in the industry. A 

sensitivity analysis was conducted to partially validate the developed model and establish 

its ability to respond to changes in input variables. 

6.5 Conclusion 

This chapter presented a collaborative modelling and strategic FMADM method that can be 

adopted for the selection of appropriate machinery maintenance strategies in a concise, 

logical, and transparent manner against multiple scenarios where the data available is 

subjective and imprecise. The strength of this strategic decision making approach is in the 

fact that both heterogeneous and homogeneous groups of experts can be utilised and their 

subjective opinions can be aggregated simply, with partial or incomplete information 

available.  

In the evaluation process, a fuzzy TOPSIS algorithm is implemented to rank the machinery 

maintenance strategies or alternatives in a way that is flexible and straightforward. To 

support a strategic decision on machinery maintenance strategy selection, fuzzy AHP and 

fuzzy TOPSIS need to be utilised to handle multiple organisational objectives, complex 

decision making, and long term condition of machinery in an uncertain environment. The 

proposed approach can be applied to situations where both qualitative and quantitative data 

has to be integrated and synthesized for evaluation processes during complex and multiple 

decision making involving marine and offshore machinery operations. Since the result of 

the calculations is sensitive to criteria and the number of experts engaged, these should be 

carefully chosen by maritime maintenance and safety analysts to avoid misrepresentation 

and information loss during the interpretation process. 

During this study, five factors – reliability, cost, safety, availability, and downtime – have 

converged to create a succinct and effective meaning. However, in practice, the 

interpretation and relations of these factors differ depending on which experts are involved. 

The research described in this chapter can serve as a basis to further explore the roles of 

these factors for selection of an appropriate maintenance strategy. The relation between 

availability and reliability needs elaboration. Although clear definitions for both are 

presented in the literature, practitioners seem to have varying interpretations and views of 

what these two terms mean to their specific situation, and how they are related. To gain a 

better understanding of the interpretation differences and origin, and how these influence 

maintenance strategy selection, a structured experimental investigation needs to be 

considered. 
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Chapter 7 

Conclusions and Recommendations 

Summary  

This chapter summarises the conceptual frameworks that serve as the basis for the 

identification of new research needs within the marine and offshore industry, in line with the 

vision for efficient planned maintenance system for machinery operations. It also highlights 

the limitations and avenues for future research into areas where traditional maintenance 

tools cannot be used with confidence, which may require further work to improve the 

frameworks and methodologies that are systematically developed in this study. 

The detailed literature review of machinery operations and maintenance concepts carried 

out in Chapter 2 provides a deep understanding of the current problematical situation that 

exists in the marine and offshore industry. The review revealed that although there are a 

multitude of different machinery planned maintenance programmes employed throughout 

the industry, there is an equally diverse variety of maintenance strategies utilised in order 

to ensure successful performance and reliability of the machinery. This thesis draws 

attention to the problems relating to establishing an optimal planned maintenance 

framework in the marine and offshore industry, and in doing so, demonstrates a plausible 

and feasible solution that utilises a risk and decision-based maintenance methodology. 

7.1 Main Conclusions 

An important aspect of this research study is the revelation that a lack of or poor investment 

in machinery planned maintenance programmes leads to a failing strategy that contributes 

to the machinery’s vulnerabilities and, ultimately, breakdowns. Given the dynamic nature of 

marine and offshore operations, one feasible way to analyse machinery application in such 

operations is to use different decision-making tools, which include fuzzy set theory (FST), 

rule-base (RB), and evidential reasoning (ER), in order to optimize the operational efficiency 

of the machinery. This research has produced an efficient planned maintenance 

methodology that leads to the establishment of a platform for improvement of marine and 

offshore machinery systems that operate under high uncertainties.  

This thesis has developed a number of analytical approaches that use qualitative data to 

measure the multi-dimensional machinery performance. The modelling solutions developed 
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in this study are capable of dealing with both operational and managerial problems. Thus, 

it can serve as a platform for sustained and enhanced decision-making in a socio-technical 

system. The use of decision-making analysis to establish efficient maintenance regimes 

through the evaluation of downtime and costs enables managers to make informed 

decisions based either on reducing downtime, on reducing costs, or both.  

The introduction of trend analysis, family analysis, environmental analysis, human reliability 

analysis, and design analysis, has highlighted another facet to consider when developing a 

planned maintenance strategy. The models can not only be applied to the marine and 

offshore industry, but also to other industries, such as nuclear, aviation, manufacturing, etc. 

The utilisation of multiple tools and approaches in this thesis, to deal with uncertainties in 

the marine and offshore machinery operations, enables cross validation of the results and 

increases the confidence in the performed analysis, as ascertained by Patelli et al. (2015). 

7.2  Advantages and Disadvantages of the Models 

7.2.1 Advantages 

 The model accommodates multiple analysis (e.g. trend analysis, family analysis, 

design analysis, environmental analysis, and human reliability analysis) which can 

provides each marine and offshore operator with correct information relating to 

equipment inspections, maintenance and repair activities for their maintenance 

management programme. 

 Using calculated baseline in this research is useful for determining of each oil 

element for all types of machinery. 

 The decision-making procedure will be faster and more robust, thus, helps experts 

to find a suitable solution. 

 It is possible to diagnose and predict the final machinery situation for any related 

database, thus, reduces maintenance-running hours. 

 It will be practical to create a database for fault situations and wear behaviours. 

 Modelled specifically to address the most relevant deterioration and failure 

mechanisms, which significantly reduce the number of accident caused by 

machinery failure in the marine and offshore industry. 

7.2.2 Disadvantages 

 Requires implementation of a sophisticated monitoring system to continuously 

assess condition and reliability factors 
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7.3 Research Contribution to Knowledge 

Machinery systems are increasingly susceptible to malfunctioning caused by unforeseen 

events that range from new design to man-made errors. As revealed in the literature review 

(Chapter 2), most sources show that these malfunctions may severely impact on the 

machinery and result in disruption of their operations with long term consequences. 

Therefore, through asking the right questions and doing thorough data analysis using 

existing theories but in a different approach, this research can significantly contribute to 

knowledge in the following ways: 

• The research provides a framework and methodology for machinery condition 

monitoring that can be applied to marine and offshore as well as other industries 

(Railway (Fumeo et al., 2015), Nuclear, etc.). 

• Applies ER methodology for decision-based making to enrich the insufficient 

literature of uncertainty treatment within the domain of risk assessment of marine 

and offshore machinery systems. 

• Demonstrates the use of RB theory as a viable risk assessment tool with application 

to maintenance prediction of machinery operating under highly uncertain 

environment. 

• The generated RB can be applied to a series of real world scenarios to demonstrate 

the models validity.  

• Applies a decision-making algorithm to determine the most suitable maintenance 

strategy for use within marine and offshore industry. 

• The results provided by these algorithms in this study will be beneficial to the marine 

and offshore industries as an indicator to monitor and diagnose faults in machinery, 

thus, helping in making a better decision in  maintenance management process.  

Finally, this research has been justified as well as adding to existing knowledge by way of 

contributing solutions to the current machinery oil condition monitoring difficulties in the 

marine and offshore industry from the findings of the study as well as good 

recommendations for future research listed in Section 7.7. 

7.4 Research Findings 

 Bearings and gearboxes are found to be the most critical components in ship cranes. 
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 The reliability of the ship crane will alter if the crane grade decreases from a good 

grade to an average grade due to inability of the crew on board to carry out 

maintenance work during bad weather condition. 

 Condition based maintenance strategy is the preferred maintenance option for the 

developed models. 

7.5 Research Novelty 

 This research outlines a novel framework shown in Figure 3.1 for evaluating a ship’s 

crane performance by means of its conditional reliability and the procedure of 

applying it in a real life scenario. 

 The flow diagram (Figure 4.1), the hierarchical structures (Figures 4.2 and 4.9) for 

evaluating the conditions of the ship cranes; the diagnostic flow chart (Figure 5.1) 

for evaluating the diagnostic process of the used oil sample test results; and the 

hierarchical structures (Figures 6.1 and 6.2) for maintenance strategy selection, are 

all unique and only applicable to this research work. 

7.6 Research Limitations 

The research conducted attempts to highlight a comprehensive and practical analysis of 

marine and offshore machinery planned maintenance system in relation to risk assessment 

and improvement of the machinery operations. Due to time constraints, the current study 

does not investigate a large number of problems and incident scenarios in all the vital 

components that can lead to machinery breakdown, even though experience has shown 

that such analysis gives insights into how machinery breakdown can be managed or 

avoided.  

The experience and knowledge proficiencies of experts are vital when the generic 

frameworks are applied to real industrial case studies, as described in this research, and 

thus, careful selection of these experts is necessary in order to achieve good outcomes. In 

other words, if experts who do not have the requisite knowledge or experience are selected 

and used for the analysis, the frameworks may produce poor outcomes, which may defeat 

the purpose of improvement and management in the machinery planned maintenance 

system and render the methodology ineffective.  

7.7 Recommendation for Future Research 

Although this research has provided a structure that links risk assessment and efficient 

maintenance of offshore marine machinery operating under highly uncertain environments, 

it has also formulated conceptual frameworks for their efficient planned maintenance 
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systems. The following avenues to further enhance the implementation of the models that 

can be applied in a different context have been identified: 

 Application of the frameworks and models developed to other high reliability 

industries: it is believed that, if applied to other complex and high reliability industries 

(e.g. nuclear, aviation, health care, etc.) this could give rise to interesting results that 

may further enrich the deficient literature of planned maintenance modelling for 

critical machinery. 

 Due to the complexity of the analytical results obtained under the conditions of big 

data, application of computer related software is recommended to facilitate the 

process of data compilation and processing. 

 Within this thesis, four experts were employed to conduct the assessment. However, 

it is recommended that the number of experts be increased for a collaborative 

modelling of the system, from a range of different marine and offshore industries, to 

include chief engineers, 2nd engineers, ship captains, chief officers, maintenance 

engineers, researchers, marine superintendents, and machinery operators. This will 

further enhance the collaborative design and effectiveness of the result obtained for 

use in its wider perspective. 

 Combination of diverse but powerful intelligent tools and algorithms from other fields 

and concepts will open promising new pathways for developing and optimising 

planned maintenance systems for machinery operations under uncertainty. 

 Application of the real-time analysis tool to evaluate the condition of the machinery 

using the developed models and methodology: such an analysis would enhance the 

performance and reliability of marine and offshore machinery through early detection 

of unforeseen events. 

This study provides a conceptual platform on which further research on planned 

maintenance of complex interdependent machinery systems can be modelled and by which 

the risk of breakdown can be assessed and managed. The traditional ways of looking at 

such risks are not always suitable for use in assessing the maintenance of complex 

machinery systems, but a shift towards uncertainty treatment of probability of risk for 

improvement of the machinery systems can ultimately optimize their operations. Moreover, 

the methodology demonstrated in this research has been successfully applied to a ship 

crane operating in the marine and offshore industry. In order to gain greater confidence and 

insight into the uses and limitations of this methodology, application to other machinery in 

several industries from differing sectors will need to be attempted.
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Chapter 4 Appendices 

Appendix 4A - Experts Ratings 

 

Table 1-4A: Expert 1 Rating for Cranes Bearing 
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Table 2-4A: Expert 2 Ratings for Crane Bearing 
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Table 3-4A: Expert 2 Pair-wise Comparison Matrix and Developing the Rating for each  

           Decision Alternative for the Crane Bearing 

Crane 
Bearing 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 2 1 6 4 2.1689 0.3328 

FA 0.5 1 2 6 6 2.0477 0.3142 

EA 1 0.5 1 6 2 1.431 0.2196 

HRA 0.1666 0.1666 0.1666 1 0.25 0.2605 0.03998 

DA 0.25 0.1666 0.5 4 1 0.6083 0.0933 

SUM 2.9166 3.8332 4.6666 23 13.25 6.5164 1.0000 

SUM * PV 0.9706 1.2044 1.0248 0.9195 1.2362 5.3555  

Lambda-max = 5.3555 

CI = 0.0889 

CR =  0.08 
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Table 4-4A: Expert 3 Ratings for Crane Bearing 

 

Table 5-4A: Expert 3 Pair-wise Comparison Matrix and Developing the Rating for each  

          Decision Alternative for the Crane Bearing 

Crane 
Bearing 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 5 5 5 5 3.6239 0.5368 

FA 0.2 1 0.3333 3 1 0.7247 0.1073 

EA 0.2 3 1 3 1 1.1247 0.1666 

HRA 0.2 0.3333 0.3333 1 0.3333 0.3748 0.0555 

DA 0.2 1 1 3 1 0.9029 0.1337 

SUM 1.8 10.3333 7.6666 15 8.3333 6.751 1.000 

SUM * PV 0.9662 1.1088 1.2773 0.8325 1.1142 5.299  

Lambda-
max = 

5.299 

CI = 0.0748 

CR =  0.07 
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Table 6-4A: Expert 4 Ratings for Crane Bearing 

 
 

Table 7-4A: Expert 4 Pair-wise Comparison Matrix and Developing the Rating for each  

          Decision Alternative for the Crane Bearing 

Crane 
Bearing 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 5 4 2 0.5 1.8206 0.3014 

FA 0.2 1 0.3333 2 0.3333 0.5364 0.0888 

EA 0.25 3 1 1 0.3333 0.7579 0.1255 

HRA 0.5 0.5 1 1 0.25 0.5743 0.0951 

DA 2 3 3 4 1 2.3522 0.3893 

SUM 3.95 12.5 9.3333 10 2.4166 6.0414 1.000 

SUM * PV 1.1905 1.11 1.1713 0.951 0.9408 5.3636  

Lambda-
max = 

5.3636 

CI = 0.0909 

CR =  0.08 
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Table 8-4A: Expert 1 Ratings for Crane Clutch 

 
 

Table 9-4A: Expert 1 Pair-wise Comparison Matrix and Developing the Rating for each  

          Decision Alternative for the Crane Clutch 

Crane 
Clutch 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 5 6 7 5 4.0201 0.5457 

FA 0.2 1 2 5 1 1.1487 0.1559 

EA 0.1666 0.5 1 4 0.25 0.6083 0.0826 

HRA 0.1429 0.2 0.25 1 0.2 0.2698 0.0366 

DA 0.2 1 4 5 1 1.3195 0.1791 

SUM 1.7095 7.7 13.25 22 7.45 7.3664 1.000 

SUM * PV 0.9329 1.2004 1.0945 0.8052 1.3343 5.3673  

Lambda-
max = 

5.3673 

CI = 0.0918 

CR =  0.08 
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Table 10-4A: Expert 2 Ratings for Crane Clutch 
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Table 11-4A: Expert 2 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Clutch 

 
Crane 
Clutch 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 1 5 5 6 2.7241 0.415 

FA 1 1 5 5 1 1.9037 0.2900 

EA 0.2 0.2 1 0.5 0.3333 0.3675 0.056 

HRA 0.2 0.2 2 1 0.3333 0.4845 0.0738 

DA 0.1666 1 3 3 1 1.0844 0.1652 

SUM 2.5666 3.4 16 14.5 8.6666 6.5642 1.000 

SUM * PV 1.0651 0.986 0.896 1.0701 1.4317 5.4489  

Lambda-
max = 

5.4489 

CI = 0.1122 

CR =  0.1 
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Table 12-4A: Expert 3 Ratings for Crane Clutch 

 Scale of relative importance  
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Table 13-4A: Expert 3 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Clutch 

 
Crane 
Clutch 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 5 5 5 5 3.6239 0.5403 

FA 0.2 1 1 3 1 0.9029 0.1346 

EA 0.2 1 1 3 1 0.9029 0.1346 

HRA 0.2 0.3333 0.3333 1 0.3333 0.3748 0.0559 

DA 0.2 1 1 3 1 0.9029 0.1346 

SUM 1.8 8.3333 8.3333 15 8.3333 6.7074 1.000 

SUM * PV 0.9725 1.1217 1.1217 0.8385 1.1217 5.1761  

Lambda-
max = 

5.1761 

CI = 0.044 

CR =  0.04 
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Table 14-4A: Expert 4 Ratings for Crane Clutch 

 Scale of relative importance  
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Table 15-4A: Expert 4 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Clutch 

Crane 
Clutch 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 5 3 4 4 2.9926 0.4744 

FA 0.2 1 1 2 0.5 0.7248 0.1149 

EA 0.3333 1 1 2 0.25 0.6989 0.1108 

HRA 0.25 0.5 0.5 1 0.3333 0.4609 0.0731 

DA 0.25 2 4 3 1 1.431 0.2268 

SUM 2.0333 9.5 9.5 12 6.0833 6.3082 1.000 

SUM * PV 0.9646 1.0916 1.0526 0.8772 1.3797 5.3657  

Lambda-
max = 

5.3657 

CI = 0.0914 

CR =  0.08 
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Table 16-4A: Expert 1 Ratings for Crane Gearbox 

 Scale of relative importance  
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Table 17-4A: Expert 1 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Gearbox 

Crane 
Gearbox 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 5 5 8 5 3.9811 0.5493 

FA 0.2 1 3 5 1 1.2457 0.1719 

EA 0.2 0.3333 1 3 0.5 0.6308 0.087 

HRA 0.125 0.2 0.3333 1 0.25 0.2914 0.0402 

DA 0.2 1 2 4 1 1.0986 0.1516 

SUM 1.725 7.5333 11.3333 21 7.75 7.2476 1.000 

SUM * PV 0.9475 1.295 0.986 0.8442 1.1749 5.2476  

Lambda-
max = 

5.2476 

CI = 0.0619 

CR =  0.05 
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Table 18-4A: Expert 2 Ratings for Crane Gearbox 

 Scale of relative importance  
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Table 19-4A: Expert 2 Pair-wise Comparison Matrix and Developing the Rating for each  

           Decision Alternative for the Crane Gearbox 

Crane 
Gearbox 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 5 4 7 4 3.5452 0.5288 

FA 0.2 1 1 5 1 1 0.1492 

EA 0.25 1 1 2 1 0.8706 0.1299 

HRA 0.1429 0.2 0.5 1 0.3333 0.3438 0.0513 

DA 0.25 1 1 3 1 0.9441 0.1408 

SUM 1.8429 8.2 7.5 18 7.3333 6.7037 1.000 

SUM * PV 0.9745 1.2234 0.9743 0.923 1.0325 5.1277  

Lambda-
max = 

5.1277 

CI = 0.0319 

CR =  0.03 
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Table 20-4A: Expert 3 Ratings for Crane Gearbox 

 Scale of relative importance  
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Table 21-4A: Expert 3 Pair-wise Comparison Matrix and Developing the Rating for each  

           Decision Alternative for the Crane Gearbox 

Crane 
Gearbox 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 5 5 5 5 3.6239 0.5376 

FA 0.2 1 1 3 1 0.9029 0.1339 

EA 0.2 1 1 3 1 0.9029 0.1339 

HRA 0.2 0.3333 0.3333 1 0.25 0.3545 0.0526 

DA 0.2 1 1 4 1 0.9564 0.1419 

SUM 1.8 8.3333 8.3333 16 8.25 6.7406 1.000 

SUM * PV 0.9677 1.1158 1.1158 0.8416 1.1707 5.2116  

Lambda-
max = 

5.2116 

CI = 0.0529 

CR =  0.05 
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Table 22-4A: Expert 4 Ratings for Crane Gearbox 

 Scale of relative importance  
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Table 23-4A: Expert 4 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Gearbox 

Crane 
Gearbox 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 4 5 5 3 3.1291 0.4624 

FA 0.25 1 4 5 1 1.3797 0.2039 

EA 0.2 0.25 1 1 0.25 0.4163 0.0615 

HRA 0.2 0.2 1 1 0.2 0.3807 0.0563 

DA 0.3333 1 4 5 1 1.4614 0.2160 

SUM 1.9833 6.45 15 17 5.45 6.7672 1.000 

SUM * PV 0.9171 1.3152 0.9225 0.9571 1.1772 5.2891  

Lambda-
max = 

5.2891 

CI = 0.0723 

CR =  0.06 
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Table 24-4A: Expert 1 Ratings for Crane Hydraulic Pump 

 Scale of relative importance  
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Environmental 

Analysis 
       

X 

          Human Reliability 

Analysis 

Environmental 

Analysis 
        

X 

         Design Analysis 

Human Reliability 

Analysis 
            

 

 

X 

    Design Analysis 

 
 

Table 25-4A: Expert 1 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Hydraulic Pump 

Crane 
Hydraulic 

Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 4 4 5 5 3.3145 0.4973 

FA 0.25 1 3 5 1 1.3026 0.1954 

EA 0.25 0.3333 1 3 2 0.8706 0.1306 

HRA 0.2 0.2 0.3333 1 0.2 0.3064 0.046 

DA 0.2 1 0.5 5 1 0.8706 0.1306 

SUM 1.9 6.5333 8.8333 19 9.2 6.6647 1.000 

SUM * PV 0.9449 1.2766 1.1536 0.874 1.2015 5.4506  

Lambda-max 
= 

5.4506 

CI = 0.1127 

CR =  0.1 
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TABLE 26-4A: Expert 2 Ratings for Crane Hydraulic Pump 

 Scale of relative importance  
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Criterion 

Trend Analysis     
X 

            Family Analysis 

Trend Analysis      

 

 

X 

 

 

          Environmental 

Analysis 

Trend Analysis       

 

 

X 

     

 

     Human Reliability 

Analysis 

Trend Analysis      X            Design Analysis 

Family Analysis          

X 

    

 

    Environmental 

Analysis 

Family Analysis      

X 

   

 

 

 

        Human Reliability 

Analysis 

Family Analysis         
X 

        Design Analysis 

Environmental 

Analysis 
      

X 

           Human Reliability 
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Environmental 

Analysis 
         

X 

        Design Analysis 

Human Reliability 

Analysis 
            

X 

     Design Analysis 

 
 

Table 27-4A: Expert 2 Pair-wise Comparison Matrix and Developing the Rating for each  

           Decision Alternative for the Crane Hydraulic Pump 

Crane 
Hydraulic 

Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 5 4 3 4 2.9926 0.473 

FA 0.2 1 1 5 1 1 0.1580 

EA 0.25 1 1 4 1 1 0.1580 

HRA 0.3333 0.2 0.25 1 0.25 0.3347 0.0529 

DA 0.25 1 1 4 1 1 0.1580 

SUM 2.0333 8.2 7.25 17 7.25 6.3273 1.000 

SUM * PV 0.9618 1.2956 1.1455 0.8993 1.1455 5.4477  

Lambda-max = 5.4477 

CI = 0.1119 

CR =  0.1 
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Table 28-4A: Expert 3 Ratings for Crane Hydraulic Pump 

 Scale of relative importance  
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Analysis 
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            Design Analysis 
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X 
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X 

        Design Analysis 

Human Reliability 
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X 
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Table 29-4A: Expert 3 Pair-wise Comparison Matrix and Developing the Rating for each  

           Decision Alternative for the Crane Hydraulic Pump 

Crane 
Hydraulic 

Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 

(PV) 

TA 1 5 5 5 5 3.6239 0.5403 

FA 0.2 1 1 3 1 0.9029 0.1346 

EA 0.2 1 1 3 1 0.9029 0.1346 

HRA 0.2 0.3333 0.3333 1 0.3333 0.3748 0.0559 

DA 0.2 1 1 3 1 0.9029 0.1346 

SUM 1.8 8.3333 8.3333 15 8.3333 6.7074 1.000 

SUM * PV 0.9725 1.1217 1.1217 0.8385 1.1217 5.1761  

Lambda-max 
= 

5.1751 

CI = 0.044 

CR =  0.04 
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Table 30-4A: Expert 4 Ratings for Crane Hydraulic Pump 

 Scale of relative importance  
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Criterion 
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           Family Analysis 
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X 
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X 
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X 
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Table 31-4A: Expert 4 Pair-wise Comparison Matrix and Developing the Rating for each  

            Decision Alternative for the Crane Hydraulic Pump 

Crane 
Hydraulic 

Pump 

 
TA 

 
FA 

 
EA 

 
HRA 

 
DA 

5th Root of 
Component 

Priority 
Vector 
(PV) 

TA 1 4 4 3 2 2.4915 0.4135 

FA 0.25 1 3 4 2 1.431 0.2375 

EA 0.25 0.3333 1 1 0.3333 0.4884 0.0811 

HRA 0.3333 0.25 1 1 0.5 0.5297 0.0879 

DA 0.5 0.5 3 2 1 1.0845 0.180 

SUM 2.3333 6.0833 12 11 5.8333 6.0251 1.000 

SUM * PV 0.9648 1.4448 0.9732 0.9669 1.05 5.3997  

Lambda-max 
= 

5.3997 

CI = 0.0999 

CR =  0.09 
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Appendix 4B - Evaluation of Trend Analysis 

4B1 – Membership Functions for Crane Bearing Grease Sample Elements 
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4B2 – Membership Functions for Crane Clutch Oil Sample Elements 
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4B3 – Membership Functions for Crane Gearbox Oil Sample Elements 
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4B4 – Membership Functions for Crane Hydraulic Pump Oil Sample Elements 
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Appendix 4C - Evaluation of Family Analysis 

4C1 – Membership Functions for Crane Bearing Grease Sample Elements 
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4C2 – Membership Functions for Crane Clutch Oil Sample Elements 
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4C3 – Membership Functions for Crane Gearbox Oil Sample Elements 
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4C4 – Membership Functions for Crane Hydraulic Pump Oil Sample Elements 
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Appendix 4D - Aggregation of Sub-Criteria 

Table 1 – 4D: Aggregation of Sub-Criteria for Crane Bearing Sample 1 

Sub-Criteria Fuzzy Set 

E1 , TA1, FAB, HR, DA {(0.1914, Very Bad), (0.0449, Bad), (0.0761, Average), 
(0.1693, Good), (0.5183, Very Good)} 

E2 , TA1, FAB, HR, DA {(0.1977, Very Bad), (0.0463, Bad), (0.0787, Average), 
(0.3266, Good), (0.3507, Very Good)} 

E3 , TA1, FAB, HR, DA {(0.2014, Very Bad), (0.0472, Bad), (0.2162, Average), 
(0.1781, Good), (0.3572, Very Good)} 

E4 , TA1, FAB, HR, DA {(0.2026, Very Bad), (0.1782, Bad), (0.0806, Average), 
(0.1792, Good), (0.3594, Very Good)} 

E5 , TA1, FAB, HR, DA {(0.3522, Very Bad), (0.0461, Bad), (0.0783, Average), 
(0.1742, Good), (0.3492, Very Good)} 

Aggregation result (main 
criteria) B1 

{(0.2251, Very Bad), (0.0658, Bad), (0.0978, Average), 
(0.1996, Good), (0.4117, Very Good)} 

 
 

Table 2 – 4D: Aggregation of Sub-Criteria for Crane Clutch Sample 1 

Sub-Criteria Fuzzy Set 

E1 , TA1, FAC, HR, DA {(0.0053, Very Bad), (0.0063, Bad), (0.0140, Average), 
(0.1685, Good), (0.8060, Very Good)} 

E2 , TA1, FAC, HR, DA {(0.0056, Very Bad), (0.0066, Bad), (0.0147, Average), 
(0.2476, Good), (0.7255, Very Good)} 

E3 , TA1, FAC, HR, DA {(0.0057, Very Bad), (0.0067, Bad), (0.0697, Average), 
(0.1805, Good), (0.7373, Very Good)} 

E4 , TA1, FAC, HR, DA {(0.0057, Very Bad), (0.0607, Bad), (0.0150, Average), 
(0.1806, Good), (0.7379, Very Good)} 

E5 , TA1, FAC, HR, DA {(0.0596, Very Bad), (0.0067, Bad), (0.0150, Average), 
(0.1807, Good), (0.7380, Very Good)} 

Aggregation result (main 
criteria)  C1 

{(0.0121, Very Bad), (0.0129, Bad), (0.0191, Average), 
(0.1552, Good), (0.8006, Very Good)} 

 

 

Table 3 – 4D: Aggregation of Sub-Criteria for Crane Gearbox Sample 1 

Sub-Criteria Fuzzy Set 

E1 , TA1, FAG, HR, DA {(0.1569, Very Bad), (0.0338, Bad), (0.0118, Average), 
(0.1582, Good), (0.6392, Very Good)} 

E2 , TA1, FAG, HR, DA {(0.1636, Very Bad), (0.0352, Bad), (0.0123, Average), 
(0.2430, Good), (0.5458, Very Good)} 

E3 , TA1, FAG, HR, DA {(0.1664, Very Bad), (0.0359, Bad), (0.0748, Average), 
(0.1677, Good), (0.5552, Very Good)} 

E4 , TA1, FAG, HR, DA {(0.1660, Very Bad), (0.1005, Bad), (0.0125, Average), 
(0.1673, Good), (0.5538, Very Good)} 

E5 , TA1, FAG, HR, DA {(0.2416, Very Bad), (0.0353, Bad), (0.0123, Average), 
(0.1649, Good), (0.5459, Very Good)} 

Aggregation result (main 
criteria) G1 

{(0.1602, Very Bad), (0.0403, Bad), (0.0205, Average), 
(0.1615, Good), (0.6175, Very Good)} 

 

 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

 

218 
 

Table 4 – 4D: Aggregation of Sub-Criteria for Crane Hydraulic Pump Sample 1 

Sub-Criteria Fuzzy Set 

E1 , TA1, FAH, HR, DA {(0.0047, Very Bad), (0.0055, Bad), (0.0123, Average), 
(0.0058, Good), (0.9718, Very Good)} 

E2 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0138, Average), 
(0.0750, Good), (0.8998, Very Good)} 

E3 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0833, Average), 
(0.0064, Good), (0.8989, Very Good)} 

E4 , TA1, FAH, HR, DA {(0.0052, Very Bad), (0.0747, Bad), (0.0138, Average), 
(0.0065, Good), (0.8998, Very Good)} 

E5 , TA1, FAH, HR, DA {(0.0736, Very Bad), (0.0062, Bad), (0.0138, Average), 
(0.0065, Good), (0.8999, Very Good)} 

Aggregation result (main 
criteria) H1 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), 
(0.0132, Good), (0.9432, Very Good)} 

 

Table 5 – 4D: Aggregation of Sub-Criteria for Crane Bearing Sample 2 

Sub-Criteria Fuzzy Set Utility 
Value 

E1 , TA2, FAB, HR, 
DA 

{(0.0315, Very Bad), (0.0113, Bad), (0.0347, 
Average), (0.1275, Good), (0.7950, Very Good)} 

0.9108 

E2 , TA2, FAB, HR, 
DA 

{(0.0344, Very Bad), (0.0123, Bad), (0.0380, 
Average), (0.2751, Good), (0.6402, Very Good)} 

0.8686 

E3 , TA2, FAB, HR, 
DA 

{(0.0351, Very Bad), (0.0126, Bad), (0.1575, 
Average), (0.1422, Good), (0.6526, Very Good)} 

0.8411 

E4 , TA2, FAB, HR, 
DA 

{(0.0353, Very Bad), (0.1270, Bad), (0.0389, 
Average), (0.1429, Good), (0.6559, Very Good)} 

0.8143 

E5 , TA2, FAB, HR, 
DA 

{(0.1532, Very Bad), (0.0126, Bad), (0.0388, 
Average), (0.1423, Good), (0.6531, Very Good)} 

0.7824 

Aggregation result 
(main criteria) B2 

 
{(0.0460, Very Bad), (0.0275, Bad), (0.0490, 
Average), (0.1395, Good), (0.7380, Very Good)} 

 

 
 

Table 6 – 4D: Aggregation of Sub-Criteria for Crane Clutch Sample 2 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAC, HR, DA {(0.0045, Very Bad), (0.0054, Bad), (0.0120, Average), 
(0.0263, Good), (0.9518, Very Good)} 

E2 , TA2, FAC, HR, DA {(0.0049, Very Bad), (0.0058, Bad), (0.0130, Average), 
(0.0777, Good), (0.8985, Very Good)} 

E3 , TA2, FAC, HR, DA {(0.0049, Very Bad), (0.0059, Bad), (0.0607, Average), 
(0.0286, Good), (0.8999, Very Good)} 

E4 , TA2, FAC, HR, DA {(0.0049, Very Bad), (0.0528, Bad), (0.0130, Average), 
(0.0286, Good), (0.9006, Very Good)} 

E5 , TA2, FAC, HR, DA {(0.0518, Very Bad), (0.0059, Bad), (0.0130, Average), 
(0.0286, Good), (0.9006, Very Good)} 

Aggregation result (main 
criteria)  C2 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), 
(0.0254, Good), (0.9404, Very Good)} 
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Table 7 – 4D: Aggregation of Sub-Criteria for Crane Gearbox Sample 2 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAG, HR, DA {(0.0416, Very Bad), (0.0360, Bad), (0.0152, Average), 
(0.0496, Good), (0.8576, Very Good)} 

E2 , TA2, FAG, HR, DA {(0.0450, Very Bad), (0.0389, Bad), (0.0164, Average), 
(0.1132, Good), (0.7865, Very Good)} 

E3 , TA2, FAG, HR, DA {(0.0452, Very Bad), (0.0391, Bad), (0.0721, Average), 
(0.0538, Good), (0.7897, Very Good)} 

E4 , TA2, FAG, HR, DA {(0.0451, Very Bad), (0.0970, Bad), (0.0164, Average), 
(0.0537, Good), (0.7878, Very Good)} 

E5 , TA2, FAG, HR, DA {(0.1037, Very Bad), (0.0390, Bad), (0.0164, Average), 
(0.0537, Good), (0.7872, Very Good)} 

Aggregation result (main 
criteria) G2 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), 
(0.0478, Good), (0.8545, Very Good)} 

 
 

Table 8 – 4D: Aggregation of Sub-Criteria for Crane Hydraulic Pump Sample 2 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAH, HR, DA {(0.0047, Very Bad), (0.0056, Bad), (0.0124, Average), 
(0.0249, Good), (0.9523, Very Good)} 

E2 , TA2, FAH, HR, DA {(0.0053, Very Bad), (0.0062, Bad), (0.0139, Average), 
(0.0997, Good), (0.8749, Very Good)} 

E3 , TA2, FAH, HR, DA {(0.0053, Very Bad), (0.0063, Bad), (0.0840, Average), 
(0.0279, Good), (0.8766, Very Good)} 

E4 , TA2, FAH, HR, DA {(0.0053, Very Bad), (0.0754, Bad), (0.0139, Average), 
(0.0279, Good), (0.8775, Very Good)} 

E5 , TA2, FAH, HR, DA {(0.0743, Very Bad), (0.0063, Bad), (0.0139, Average), 
(0.0279, Good), (0.8776, Very Good)} 

Aggregation result (main 
criteria) H2 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), 
(0.0283, Good), (0.9269, Very Good)} 

 

Table 9 – 4D: Aggregation of Sub-Criteria for Crane Bearing Sample 3 

Sub-Criteria Fuzzy Set 

E1 , TA3, FAB, HR, DA {(0.1553, Very Bad), (0.0117, Bad), (0.0658, Average), 
(0.0674, Good), (0.6998, Very Good)} 

E2 , TA3, FAB, HR, DA {(0.1692, Very Bad), (0.0127, Bad), (0.0717, Average), 
(0.1999, Good), (0.5465, Very Good)} 

E3 , TA3, FAB, HR, DA {(0.1692, Very Bad), (0.0127, Bad), (0.1980, Average), 
(0.0734, Good), (0.5467, Very Good)} 

E4 , TA3, FAB, HR, DA {(0.1711, Very Bad), (0.1293, Bad), (0.0725, Average), 
(0.0742, Good), (0.5528, Very Good)} 

E5 , TA3, FAB, HR, DA {(0.3082, Very Bad), (0.0125, Bad), (0.0704, Average), 
(0.0721, Good), (0.5368, Very Good)} 

Aggregation result (main 
criteria) B3 

{(0.1754, Very Bad), (0.0296, Bad), (0.0820, Average), 
(0.0835, Good), (0.6294, Very Good)} 

 
 
 

 

 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

 

220 
 

Table 10 – 4D: Aggregation of Sub-Criteria for Crane Clutch Sample 3 

Sub-Criteria Fuzzy Set 

E1 , TA3, FAC, HR, DA {(0.0045, Very Bad), (0.0053, Bad), (0.0119, Average), 
(0.0141, Good), (0.9641, Very Good)} 

E2 , TA3, FAC, HR, DA {(0.0049, Very Bad), (0.0058, Bad), (0.0130, Average), 
(0.0630, Good), (0.9133, Very Good)} 

E3 , TA3, FAC, HR, DA {(0.0049, Very Bad), (0.0058, Bad), (0.0603, Average), 
(0.0154, Good), (0.9136, Very Good)} 

E4 , TA3, FAC, HR, DA {(0.0049, Very Bad), (0.0525, Bad), (0.0130, Average), 
(0.0154, Good), (0.9142, Very Good)} 

E5 , TA3, FAC, HR, DA {(0.0515, Very Bad), (0.0058, Bad), (0.0130, Average), 
(0.0154, Good), (0.9143, Very Good)} 

Aggregation result (main 
criteria) C3 

{(0.0092, Very Bad), (0.0098, Bad), (0.0146, Average), 
(0.0162, Good), (0.9501, Very Good)} 

 
 
Table 11 – 4D: Aggregation of Sub-Criteria for Crane Gearbox Sample 3 

Sub-Criteria Fuzzy Set 

E1 , TA3, FAG, HR, DA {(0.0999, Very Bad), (0.0303, Bad), (0.0489, Average), 
(0.0503, Good), (0.7706, Very Good)} 

E2 , TA3, FAG, HR, DA {(0.1070, Very Bad), (0.0325, Bad), (0.0524, Average), 
(0.1152, Good), (0.6930, Very Good)} 

E3 , TA3, FAG, HR, DA {(0.1070, Very Bad), (0.0325, Bad), (0.1135, Average), 
(0.0539, Good), (0.6931, Very Good)} 

E4 , TA3, FAG, HR, DA {(0.1073, Very Bad), (0.0916, Bad), (0.0525, Average), 
(0.0540, Good), (0.6946, Very Good)} 

E5 , TA3, FAG, HR, DA {(0.1732, Very Bad), (0.0323, Bad), (0.0521, Average), 
(0.0535, Good), (0.6889, Very Good)} 

Aggregation result (main 
criteria) G3 

{(0.0962, Very Bad), (0.0341, Bad), (0.0502, Average), 
(0.0515, Good), (0.7680, Very Good)} 

 
 

Table 12 – 4D: Aggregation of Sub-Criteria for Crane Hydraulic Pump Sample 3 

Sub-Criteria Fuzzy Set 

E1 , TA3, FAH, HR, DA {(0.0047, Very Bad), (0.0055, Bad), (0.0123, Average), 
(0.0058, Good), (0.9718, Very Good)} 

E2 , TA3, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0138, Average), 
(0.0750, Good), (0.8998, Very Good)} 

E3 , TA3, FAH, HR, DA {(0.0052, Very Bad), (0.0062, Bad), (0.0833, Average), 
(0.0064, Good), (0.8989, Very Good)} 

E4 , TA3, FAH, HR, DA {(0.0052, Very Bad), (0.0747, Bad), (0.0138, Average), 
(0.0065, Good), (0.8998, Very Good)} 

E5 , TA3, FAH, HR, DA {(0.0736, Very Bad), (0.0062, Bad), (0.0138, Average), 
(0.0065, Good), (0.8999, Very Good)} 

Aggregation result (main 
criteria) H3 

{(0.0124, Very Bad), (0.0130, Bad), (0.0182, Average), 
(0.0132, Good), (0.9432, Very Good)} 
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Appendix 4E - Alteration of Sample 2 Oil Condition Values due to Variation in 

each Sub-Criterion by 0.2 

 

Table 1-4E: Aggregation of Sub-Criteria for Crane Bearing 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAB, HR, DA {(0.2315, Very Bad), (0.0113, Bad), (0.0347, Average), 
(0.1275, Good), (0.5950, Very Good)} 

E2 , TA2, FAB, HR, DA {(0.2344, Very Bad), (0.0123, Bad), (0.0380, Average), 
(0.2751, Good), (0.4402, Very Good)} 

E3 , TA2, FAB, HR, DA {(0.2351, Very Bad), (0.0126, Bad), (0.1575, Average), 
(0.1422, Good), (0.4526, Very Good)} 

E4 , TA2, FAB, HR, DA {(0.2353, Very Bad), (0.1270, Bad), (0.0389, Average), 
(0.1429, Good), (0.4559, Very Good)} 

E5 , TA2, FAB, HR, DA {(0.3532, Very Bad), (0.0126, Bad), (0.0388, Average), 
(0.1423, Good), (0.4531, Very Good)} 

Aggregation result 
(main criteria) B2 

{(0.2483, Very Bad), (0.0301, Bad), (0.0536, Average), 
(0.1525, Good), (0.5155, Very Good)} 

 

Table 2-4E: Aggregation of Sub-Criteria for Crane Clutch 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAC, HR, DA {(0.2045, Very Bad), (0.0054, Bad), (0.0120, Average), 
(0.0263, Good), (0.7518, Very Good)} 

E2 , TA2, FAC, HR, DA {(0.2049, Very Bad), (0.0058, Bad), (0.0130, Average), 
(0.0777, Good), (0.6985, Very Good)} 

E3 , TA2, FAC, HR, DA {(0.2049, Very Bad), (0.0059, Bad), (0.0607, Average), 
(0.0286, Good), (0.6999, Very Good)} 

E4 , TA2, FAC, HR, DA {(0.2049, Very Bad), (0.0528, Bad), (0.0130, Average), 
(0.0286, Good), (0.7006, Very Good)} 

E5 , TA2, FAC, HR, DA {(0.2518, Very Bad), (0.0059, Bad), (0.0130, Average), 
(0.0286, Good), (0.7006, Very Good)} 

Aggregation result 
(main criteria)  C2 

{(0.1797, Very Bad), (0.0115, Bad), (0.0170, Average), 
(0.0291, Good), (0.7627, Very Good)} 

 

Table 3-4E: Aggregation of Sub-Criteria for Crane Gearbox 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAG, HR, DA {(0.2416, Very Bad), (0.0360, Bad), (0.0152, Average), 
(0.0496, Good), (0.6576, Very Good)} 

E2 , TA2, FAG, HR, DA {(0.2450, Very Bad), (0.0389, Bad), (0.0164, Average), 
(0.1132, Good), (0.5865, Very Good)} 

E3 , TA2, FAG, HR, DA {(0.2452, Very Bad), (0.0391, Bad), (0.0721, Average), 
(0.0538, Good), (0.5897, Very Good)} 

E4 , TA2, FAG, HR, DA {(0.2451, Very Bad), (0.0970, Bad), (0.0164, Average), 
(0.0537, Good), (0.5878, Very Good)} 

E5 , TA2, FAG, HR, DA {(0.3037, Very Bad), (0.0390, Bad), (0.0164, Average), 
(0.0537, Good), (0.5872, Very Good)} 

Aggregation result 
(main criteria) G2 

{(0.2330, Very Bad), (0.0410, Bad), (0.0221, Average), 
(0.0535, Good), (0.6503, Very Good)} 
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Table 4-4E: Aggregation of Sub-Criteria for Crane Hydraulic Pump 

Sub-Criteria Fuzzy Set 

E1 , TA2, FAH, HR, DA {(0.2047, Very Bad), (0.0056, Bad), (0.0124, Average), 
(0.0249, Good), (0.7523, Very Good)} 

E2 , TA2, FAH, HR, DA {(0.2053, Very Bad), (0.0062, Bad), (0.0139, Average), 
(0.0997, Good), (0.6749, Very Good)} 

E3 , TA2, FAH, HR, DA {(0.2053, Very Bad), (0.0063, Bad), (0.0840, Average), 
(0.0279, Good), (0.6766, Very Good)} 

E4 , TA2, FAH, HR, DA {(0.2053, Very Bad), (0.0754, Bad), (0.0139, Average), 
(0.0279, Good), (0.6775, Very Good)} 

E5 , TA2, FAH, HR, DA {(0.2743, Very Bad), (0.0063, Bad), (0.0139, Average), 
(0.0279, Good), (0.6776, Very Good)} 

Aggregation result 
(main criteria) H2 

{(0.1863, Very Bad), (0.0153, Bad), (0.0213, Average), 
(0.0324, Good), (0.7447, Very Good)} 
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Appendix 4F - Aggregation of the Original Values with the Alteration Values 

of the Main Criteria for Sample 2 

 

Table 1-4F: Aggregation of B2 Decrement Value with Original Values of C2, G2 and H2 

Main Criteria Fuzzy Set 

B2 (Alteration 
Value) 

{(0.2483, Very Bad), (0.0301, Bad), (0.0536, Average), 
(0.1525, Good), (0.5155, Very Good)} 

C2 (Original 
Value) 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), 
(0.0254, Good), (0.9404, Very Good)} 

G2 (Original 
Value) 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), 
(0.0478, Good), (0.8545, Very Good)} 

H2 (Original 
Value) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), 
(0.0283, Good), (0.9269, Very Good)} 

Aggregation 
Result (B2) 

{(0.0572, Very Bad), (0.0164, Bad), (0.0195, Average), 
(0.0470, Good), (0.8599, Very Good)} 

 

Table 2-4F: Aggregation of C2 Decrement Value with Original Values of B2, G2 and H2 

Main Criteria Fuzzy Set 

B2 (Original 
Value) 

{(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, 
Good), (0.7380, Very Good)} 

C2 (Alteration 
Value) 

{(0.1797, Very Bad), (0.0115, Bad), (0.0170, Average), (0.0291, 
Good), (0.7627, Very Good)} 

G2 (Original 
Value) 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), (0.0478, 
Good), (0.8545, Very Good)} 

H2 (Original 
Value) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), (0.0283, 
Good), (0.9269, Very Good)} 

Aggregation 
Result (C2) 

{(0.0510, Very Bad), (0.0160, Bad), (0.0188, Average), (0.0446, 
Good), (0.8695, Very Good)} 

 
 

Table 3-4F: Aggregation of G2 Decrement Value with Original Values of B2, C2 and H2 

Main Criteria Fuzzy Set 

B2 (Original 
Value) 

{(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, 
Good), (0.7380, Very Good)} 

C2 (Original 
Value) 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), (0.0254, 
Good), (0.9404, Very Good)} 

G2 (Alteration 
Value) 

{(0.2330, Very Bad), (0.0410, Bad), (0.0221, Average), (0.0535, 
Good), (0.6503, Very Good)} 

H2 (Original 
Value) 

{(0.0127, Very Bad), (0.0134, Bad), (0.0186, Average), (0.0283, 
Good), (0.9269, Very Good)} 

Aggregation 
Result (G2) 

{(0.0550, Very Bad), (0.0166, Bad), (0.0190, Average), (0.0453, 
Good), (0.8641, Very Good)} 
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Table 4-4F: Aggregation of H2 Decrement Value with Original Values of B2, C2 and G2 

Main Criteria Fuzzy Set 

B2 (Original 
Value) 

{(0.0460, Very Bad), (0.0275, Bad), (0.0490, Average), (0.1395, 
Good), (0.7380, Very Good)} 

C2 (Original 
Value) 

{(0.0094, Very Bad), (0.0100, Bad), (0.0148, Average), (0.0254, 
Good), (0.9404, Very Good)} 

G2 (Original 
Value) 

{(0.0412, Very Bad), (0.0366, Bad), (0.0198, Average), (0.0478, 
Good), (0.8545, Very Good)} 

H2 (Alteration 
Value) 

{(0.1863, Very Bad), (0.0153, Bad), (0.0213, Average), (0.0324, 
Good), (0.7447, Very Good)} 

Aggregation 
result (H2) 

{(0.0517, Very Bad), (0.0161, Bad), (0.0189, Average), (0.0448, 
Good), (0.8686, Very Good)} 
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Chapter 5 Appendices 

Appendix 5A – Development of Fuzzy Membership Functions 

5A1 Grease Sample Elements in Port Crane bearing 

Based on expert opinions, the upper limit is found and the rules are written for tin (Sn) with 

equal distributions, demonstrated as follows: 

1. If a crane bearing grease sample laboratory test has a result of 12ppm tin (Sn) or 

lower, then it can be categorised as 100% very low.  

2. If a crane bearing grease sample laboratory test has a result of 24ppm tin (Sn), then 

it can be categorised as 100% low. 

3. If a crane bearing grease sample laboratory test has a result of 36ppm tin (Sn), then 

it can be categorised as 100% average. 

4. If a crane bearing grease sample laboratory test has a result of 48ppm tin (Sn), then 

it can be categorised as 100% high. 

5. If a crane bearing grease sample laboratory test has a result of 60ppm tin (Sn) and 

above, then it can be categorised as 100% very high. 

Based on the stated rules, the membership functions of the tin (Sn) can be constructed as 

shown in Figure 1-5A1. 

In a similar way, the membership functions for Nickel (Ni) and Sodium (Na) elements are 

constructed as shown in Figures 2-5A1 and 3-5A1. 
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5A2 Grease Sample Elements in Starboard Crane bearing 

Based on the same rules given in 5A1, the membership functions of the Nickel (Ni) and 

Sodium (Na) in the grease sample for starboard crane bearing can be constructed as shown 

in Figures 2-5A1 and 3-5A1. 

5A3 Oil Sample Elements in Port Crane Gearbox 

Based on expert opinions, the upper limit is found and the rules are written for tin (Sn) with 

equal distributions, and demonstrated as follows: 

1. If a crane gearbox oil sample has a laboratory test result of 1.8ppm tin (Sn) or lower, 

then it can be categorised as 100% Very Low.  

2. If a crane gearbox oil sample has a laboratory test result of 3.6ppm tin (Sn), then it 

can be categorised as 100% Low. 

3. If a crane gearbox oil sample has a laboratory test result of 5.4ppm tin (Sn), then it 

can be categorised as 100% Average. 

4. If a crane gearbox oil sample has a laboratory test result of 7.2ppm tin (Sn), then it 

can be categorised as 100% High. 

5. If a crane gearbox oil sample has a laboratory test result of 9ppm tin (Sn) and above, 

then it can be categorised as 100% Very High. 

Based on the stated rules, the membership functions of the tin (Sn) can be constructed as 

shown in Figure 1-5A3. 

Based on expert opinions, the upper limit is found and the rules are written for aluminium 

(Al) with equal distributions, demonstrated as follows: 

1. If a crane gearbox oil sample has a laboratory test result of 2ppm aluminium (Al) or 

lower, then it can be categorised as 100% Very Low.  

2. If a crane gearbox oil sample has a laboratory test result of 4ppm aluminium (Al), 

then it can be categorised as 100% Low. 
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3. If a crane gearbox oil sample has a laboratory test result of 6ppm aluminium (Al), 

then it can be categorised as 100% Moderate. 

4. If a crane gearbox oil sample has a laboratory test result of 8ppm aluminium (Al), 

then it can be categorised as 100% High. 

5. If a crane gearbox oil sample has a laboratory test result of 10ppm aluminium (Al) 

and above, then it can be categorised as 100% Very High. 

Based on the stated rules, the membership functions of the aluminium (Al) can be 

constructed as shown in Figure 2-5A3. 

 

5A4 Oil Sample Elements in Starboard Crane Gearbox 

Based on the similar rules given for aluminium (Al) in 5A3, the membership functions of 

the aluminium (Al) for the oil sample in starboard crane gearbox can also be constructed 

as shown in Figure 2-5A3. 

Based on expert opinions, the upper limit is found and the rules are written for silicon (Si) 

with equal distributions, demonstrated as follows: 

1. If a crane gearbox oil sample has a laboratory test result of 8ppm silicon (Si) or 

lower, then it can be categorised as 100% Very Low.  

2. If a crane gearbox oil sample has a laboratory test result of 16ppm silicon (Si), then 

it can be categorised as 100% Low. 

3. If a crane gearbox oil sample has a laboratory test result of 24ppm silicon (Si), then 

it can be categorised as 100% Average. 

4. If a crane gearbox oil sample has a laboratory test result of 32ppm silicon (Si), then 

it can be categorised as 100% High. 

5. If a crane gearbox oil sample has a laboratory test result of 40ppm silicon (Si) and 

above, then it can be categorised as 100% Very High. 
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Based on the stated rules, the membership functions of the silicon (Si) can be constructed 

as shown in Figure 1-5A4. 
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Appendix 5B - Fuzzy Rule-Based Table for Risk Screening of Crane 

Bearing/Gearbox 

 

Table 1-5AB 

Rule 
No.  

Element A 
Sample Test 
Result 

Element B 
Sample Test 
Result 

Element C 
Sample Test 
Result 

Priority Level 
of Attention 

1 Very Low Very Low Very Low NORMAL 

2 Very Low Very Low Low NORMAL 

3 Very Low Very Low Moderate CAUTION 

4 Very Low Very Low High ATTENTION 

5 Very Low Very Low Very High CRITICAL 

6 Very Low Low Very Low NORMAL 

7 Very Low Low Low NORMAL 

8 Very Low Low Moderate CAUTION 

9 Very Low Low High ATTENTION 

10 Very Low Low Very High CRITICAL 

11 Very Low Moderate Very Low CAUTION 

12 Very Low Moderate Low CAUTION 

13 Very Low Moderate Moderate CAUTION 

14 Very Low Moderate High ATTENTION 

15 Very Low Moderate Very High CRITICAL 

16 Very Low High Very Low ATTENTION 

17 Very Low High Low ATTENTION 

18 Very Low High Moderate ATTENTION 

19 Very Low High High ATTENTION 

20 Very Low High Very High CRITICAL 

21 Very Low Very High Very Low CRITICAL 

22 Very Low Very High Low CRITICAL 

23 Very Low Very High Moderate CRITICAL 

24 Very Low Very High High CRITICAL 

25 Very Low Very High Very High CRITICAL 

26 Low Very Low Very Low NORMAL 

27 Low Very Low Low NORMAL 

28 Low Very Low Moderate CAUTION 

29 Low Very Low High ATTENTION 

30 Low Very Low Very High CRITICAL 

31 Low Low Very Low NORMAL 

32 Low Low  Low NORMAL 

33 Low Low  Moderate CAUTION 

34 Low Low  High ATTENTION 

35 Low Low Very High CRITICAL 

36 Low Moderate Very Low CAUTION 

37 Low Moderate Low  CAUTION 

38 Low Moderate Moderate CAUTION 

39 Low Moderate High  ATTENTION 

40 Low Moderate Very High CRITICAL 

41 Low High Very Low ATTENTION 
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42 Low High Low ATTENTION 

43  Low High Moderate ATTENTION 

44 Low High High  ATTENTION 

45 Low High Very High CRITICAL 

46 Low Very High Very Low CRITICAL 

47 Low Very High Low CRITICAL 

48 Low Very High Moderate CRITICAL 

49 Low Very High High CRITICAL 

50 Low Very High Very High CRITICAL 

51 Moderate  Very Low Very Low CAUTION 

52 Moderate  Very Low Low CAUTION 

53 Moderate  Very Low Moderate CAUTION 

54 Moderate  Very Low High ATTENTION 

55 Moderate  Very Low Very High CRITICAL 

56 Moderate  Low Very Low ATTENTION 

57 Moderate  Low Low ATTENTION 

58 Moderate  Low Moderate ATTENTION 

59 Moderate  Low High CAUTION 

60 Moderate  Low Very High CRITICAL 

61 Moderate  Moderate Very Low CAUTION 

62 Moderate  Moderate Low CAUTION 

63 Moderate  Moderate Moderate CAUTION 

64 Moderate  Moderate High ATTENTION 

65 Moderate  Moderate Very High CRITICAL 

66 Moderate  High Very Low ATTENTION 

67 Moderate  High Low ATTENTION 

68 Moderate  High Moderate ATTENTION 

69 Moderate  High High ATTENTION 

70 Moderate  High Very High CRITICAL 

71 Moderate  Very High Very Low CRITICAL 

72 Moderate  Very High Low CRITICAL 

73 Moderate  Very High Moderate CRITICAL 

74 Moderate  Very High High CRITICAL 

75 Moderate  Very High Very High CRITICAL 

76 High Very Low Very Low ATTENTION 

77 High Very Low Low ATTENTION 

78 High Very Low Moderate ATTENTION 

79 High Very Low High ATTENTION 

80 High Very Low Very High CRITICAL 

81 High Low Very Low ATTENTION 

82 High Low  Low ATTENTION 

83 High Low  Moderate ATTENTION 

84 High Low  High ATTENTION 

85 High Low  Very High CRITICAL 

86 High Moderate Very Low ATTENTION 

87  High Moderate Low ATTENTION 

88 High Moderate Moderate ATTENTION 

89 High Moderate High ATTENTION 

90 High Moderate Very High CRITICAL 

91 High High Very Low ATTENTION 

92 High High Low ATTENTION 

93 High High Moderate ATTENTION 

94 High High High ATTENTION 
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95 High High Very High CRITICAL 

96 High Very High Very Low CRITICAL 

97 High Very High Low CRITICAL 

98 High Very High Moderate CRITICAL 

99 High Very High High CRITICAL 

100 High Very High Very High CRITICAL 

101 Very High Very Low Very Low CRITICAL 

102 Very High Very Low Low CRITICAL 

103 Very High Very Low Moderate CRITICAL 

104 Very High Very Low High CRITICAL 

105 Very High Very Low Very High CRITICAL 

106 Very High Low Very Low CRITICAL 

107 Very High Low Low CRITICAL 

108 Very High Low Moderate CRITICAL 

109 Very High Low High CRITICAL 

110 Very High Low Very High CRITICAL 

111 Very High Moderate Very Low CRITICAL 

112 Very High Moderate Low CRITICAL 

113 Very High Moderate Moderate CRITICAL 

114 Very High Moderate High CRITICAL 

115 Very High Moderate Very High CRITICAL 

116 Very High High Very Low CRITICAL 

117 Very High High Low CRITICAL 

118 Very High High Moderate CRITICAL 

119 Very High High High CRITICAL 

120 Very High High Very High CRITICAL 

121 Very High Very High Very Low CRITICAL 

122 Very High Very High Low CRITICAL 

123 Very High Very High Moderate CRITICAL 

124 Very High Very High High CRITICAL 

125 Very High Very High Very High CRITICAL 
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Table 2-5B 

Rule 
No.  

Element A Sample 
Test Result 

Element B Sample 
Test Result 

Priority Level of 
Attention 

1 Very Low Very Low NORMAL 

2 Very Low Low NORMAL 

3 Very Low Moderate CAUTION 

4 Very Low High ATTENTION 

5 Very Low Very High CRITICAL 

6 Low Very Low NORMAL 

7 Low Low NORMAL 

8 Low Moderate CAUTION 

9 Low High ATTENTION 

10 Low Very High CRITICAL 

11 Moderate  Very Low CAUTION 

12 Moderate  Low CAUTION 

13 Moderate  Moderate CAUTION 

14 Moderate  High ATTENTION 

15 Moderate  Very High CRITICAL 

16 High Very Low ATTENTION 

17 High Low ATTENTION 

18 High Moderate ATTENTION 

19 High High ATTENTION 

20 High Very High CRITICAL 

21 Very High Very Low CRITICAL 

22 Very High Low CRITICAL 

23 Very High Moderate CRITICAL 

24 Very High High CRITICAL 

25 Very High Very High CRITICAL 
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Appendix 5C - Risk Level Determination for Decrement by 0.1 

 

5C1 Risk level for port crane bearing grease sample test elements (Decrement of 0.1) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the port crane bearing 

grease sample test element in Table 5.24 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.65, Ni = Moderate 0.775, and Na = Low 0.8, then based 

on rule 12 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(2) If Sn = Very Low 0.65, Ni = Moderate 0.775, and Na = Moderate 0.1, then 

based on rule 13 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(3) If Sn = Very Low 0.65, Ni = Moderate 0.775, and Na = Very High 0.1, then 

based on rule 15 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(4) If Sn = Very Low 0.65, Ni = High 0.125, and Na = Low 0.8, then based on 

rule 17 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(5) If Sn = Very Low 0.65, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 18 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(6) If Sn = Very Low 0.65, Ni = High 0.125, and Na = Very High 0.1, then based 

on rule 20 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(7) If Sn = Very Low 0.65, Ni = Very High 0.1, and Na = Low 0.8, then based on 

rule 22 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is CRITICAL. 

(8) If Sn = Very Low 0.65, Ni = Very High 0.1, and Na = Moderate 0.1, then 

based on rule 23 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(9) If Sn = Very Low 0.65, Ni = Very High 0.1, and Na = Very High 0.1, then 

based on rule 25 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 
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(10) If Sn = Low 0.25, Ni = Moderate 0.775, and Na = Low 0.8, then based 

on rule 37 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(11) If Sn = Low 0.25, Ni = Moderate 0.775, and Na = Moderate 0.1, then 

based on rule 38 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(12) If Sn = Low 0.25, Ni = Moderate 0.775, and Na = Very High 0.1, then 

based on rule 40 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(13) If Sn = Low 0.25, Ni = High 0.125, and Na = Low 0.8, then based on 

rule 42 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(14) If Sn = Low 0.25, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 43 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(15) If Sn = Low 0.25, Ni = High 0.125, and Na = Very High 0.1, then 

based on rule 45 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(16) If Sn = Low 0.25, Ni = Very High 0.1, and Na = Low 0.8, then based 

on rule 47 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(17) If Sn = Low 0.25, Ni = Very High 0.1, and Na = Moderate 0.1, then 

based on rule 48 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(18) If Sn = Low 0.25, Ni = Very High 0.1, and Na = Very High 0.1, then 

based on rule 50 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(19) If Sn = Very High 0.1, Ni = Moderate 0.775, and Na = Low 0.8, then 

based on rule 112 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(20) If Sn = Very High 0.1, Ni = Moderate 0.775, and Na = Moderate 0.1, 

then based on rule 113 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(21) If Sn = Very High 0.1, Ni = Moderate 0.775, and Na = Very High 0.1, 

then based on rule 115 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 
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(22) If Sn = Very High 0.1, Ni = High 0.125, and Na = Low 0.8, then based 

on rule 117 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(23) If Sn = Very High 0.1, Ni = High 0.125, and Na = Moderate 0.1, then 

based on rule 118 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(24) If Sn = Very High 0.1, Ni = High 0.125, and Na = Very High 0.1, then 

based on rule 120 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(25) If Sn = Very High 0.1, Ni = Very High 0.1, and Na = Low 0.8, then 

based on rule 122 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(26) If Sn = Very High 0.1, Ni = Very High 0.1, and Na = Moderate 0.1, 

then based on rule 123 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(27) If Sn = Very High 0.1, Ni = Very High 0.1, and Na = Very High 0.1, 

then based on rule 125 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.65, Ni = Moderate 0.775, and Na = Low 0.8. 

Therefore, the minimum value of Sn, Ni and Na is 0.65, which is associated with the 

linguistic priority term CAUTION according to the fuzzy rule developed. The minimum 

values of the other twenty-six combinations can be determined in a similar way as shown 

in Table 1-5C. 

Table 1-5C: The Minimum Value of each Combination for Port Crane Bearing 

1 Caution 0.65 2 Caution 0.1 3 Critical 0.1 4 Attention 0.125 

5 Attention 0.1 6 Critical 0.1 7 Critical 0.1 8 Critical 0.1 

9 Critical 0.1 10 Caution 0.25 11 Caution 0.1 12 Critical 0.1 

13 Attention 0.125 14 Attention 0.1 15 Critical 0.1 16 Critical 0.1 

17 Critical 0.1 18 Critical 0.1 19 Critical 0.1 20 Critical 0.1 

21 Critical 0.1 22 Critical 0.1 23 Critical 0.1 24 Critical 0.1 

25 Critical 0.1 26 Critical 0.1 27 Critical 0.1   

 

iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are twenty-seven combinations and three different categories of 

linguistic priority terms, CAUTION, ATTENTION and CRITICAL. The membership values in 



Development of an Efficient Planned Maintenance Framework for Marine and Offshore Machinery 
 

 

236 
 

the CAUTION category are 0.65, 0.1, 0.25 and 0.1, respectively. Therefore, the maximum 

membership value is 0.65 as shown in Table 2-5C. Likewise, the maximum membership 

values in the ATTENTION and CRITICAL categories are determined as shown in Table 2-

5C. 

Table 2-5C: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Bearing. 

Category of linguistic priority terms Maximum values 

Caution 0.65 

Attention 0.125 

Critical 0.1 

 

5C2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the starboard crane 

bearing grease sample test element in Table 5.25 of Chapter 5 is obtained as follows: 

iii. List the membership function values according to the rules developed. 

(3) If Ni = Very Low 0.1, and Na = Low 0.2, then based on rule 2 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(4) If Ni = Very Low 0.1, and Na = Moderate 0.7, then based on rule 3 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(5) If Ni = Very Low 0.1, and Na = Very High 0.1, then based on rule 5 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(6) If Ni = Very High 0.9, and Na = Low 0.2, then based on rule 22 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(7) If Ni = Very High 0.9, and Na = Moderate 0.7, then based on rule 23 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(8) If Ni = Very High 0.9, and Na = Very High 0.1, then based on rule 25 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

iv. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Ni = Very Low 0.1 and Na = Low 0.2. Therefore, the minimum 

value of Ni and Na is 0.1, which is associated with the linguistic priority term NORMAL 
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according to the fuzzy rule developed. The minimum values of the other five combinations 

can be determined in a similar way as shown in Table 3-5C. 

Table 3-5C: The Minimum Value of each Combination for Starboard Crane Bearing 

1 Normal 0.1 2 Caution 0.1 3 Critical 0.1 

4 Critical 0.2 5 Critical 0.7 6 Critical 0.1 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority terms. 

In the first scenario, there are six combinations and three categories of linguistic priority 

terms, NORMAL, CAUTION and CRITICAL.  The membership values in the NORMAL 

category is 0.1. Therefore, the maximum membership value is 0.1 as shown in Table 4-5C. 

Likewise, the maximum membership values in the CAUTION and CRITICAL categories are 

determined as shown in Table 4-5C. 

Table 4-5C: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Bearing. 

Category of linguistic priority terms Maximum values 

Normal 0.1 

Caution 0.1 

Critical 0.7 

 

5C3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (Decrement of 0.1) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of port crane gearbox oil 

sample test element in Table 5.26 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.233, and Al = Low 0.9, then based on rule 2 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Sn = Very Low 0.233, and Al = Very High 0.1, then based on rule 5 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(3) If Sn = Low 0.667, and Al = Low 0.9, then based on rule 7 on the fuzzy rule 

based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(4) If Sn = Low 0.667, and Al = Very High 0.1, then based on rule 10 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Sn = Very High 0.1, and Al = Low 0.9, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 
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(6) If Sn = Very High 0.1, and Al = Very High 0.1, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.233, and Al = Low 0.9. Therefore, the 

minimum value of Sn and Al is 0.233, which is associated with the linguistic priority term 

NORMAL according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 5-5C. 

Table 5-5C: The Minimum Value of each Combination for Port Crane Gearbox 

1 Normal 0.233 2 Critical 0.1 3 Normal 0.667 

4 Critical 0.1 5 Critical 0.1 6 Critical 0.1 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

NORMAL and CRITICAL.  The membership values in the NORMAL category are 0.233 and 

0.667. Therefore, the maximum membership value is 0.667. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 6-5C. 

Table 6-5C: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Normal 0.667 

Critical 0.1 

 

5C4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (Decrement of 0.1) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of starboard crane 

gearbox oil sample test element in Table 5.27 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Al = Moderate 0.9, and Si = Very Low 0.775, then based on rule 11 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(2) If Al = Moderate 0.9, and Si = Low 0.125, then based on rule 12 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CAUTION. 

(3) If Al = Moderate 0.9, and Si = Very High 0.1, then based on rule 15 on the 

fuzzy rule based table (Table 2-4A in Appendix 4A), the priority level is 

CRITICAL. 
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(4) If Al = Very High 0.1, and Si = Very Low 0.775, then based on rule 21 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Al = Very High 0.1, and Si = Low 0.125, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(6) If Al = Very High 0.1, and Si = Very High 0.1, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Al = Moderate 0.9, and Si = Very Low 0.775. Therefore, the 

minimum value of Al and Si is 0.775, which is associated with the linguistic priority term 

CAUTION according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 7-5C. 

Table 7-5C: The Minimum Value of each Combination for Starboard Crane Gearbox 

1 Caution 0.775 2 Caution 0.125 3 Critical 0.1 

4 Critical 0.1 5 Critical 0.1 6 Critical 0.1 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

CAUTION and CRITICAL. The membership values in the CAUTION category are 0.775 and 

0.125. Therefore, the maximum membership value is 0.775. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 8-5C. 

Table 8-5C: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Caution 0.775 

Critical 0.1 
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Appendix 5D - Risk Level Determination for Decrement by 0.2 

 

5D1 Risk level for port crane bearing grease sample test elements (0.2 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the port crane bearing 

grease sample test element in Table 5.28 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.55, Ni = Moderate 0.675, and Na = Low 0.7, then based 

on rule 12 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(2) If Sn = Very Low 0.55, Ni = Moderate 0.675, and Na = Moderate 0.1, then 

based on rule 13 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(3) If Sn = Very Low 0.55, Ni = Moderate 0.675, and Na = Very High 0.2, then 

based on rule 15 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(4) If Sn = Very Low 0.55, Ni = High 0.125, and Na = Low 0.7, then based on 

rule 17 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(5) If Sn = Very Low 0.55, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 18 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(6) If Sn = Very Low 0.55, Ni = High 0.125, and Na = Very High 0.2, then based 

on rule 20 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(7) If Sn = Very Low 0.55, Ni = Very High 0.2, and Na = Low 0.7, then based on 

rule 22 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is CRITICAL. 

(8) If Sn = Very Low 0.55, Ni = Very High 0.2, and Na = Moderate 0.1, then 

based on rule 23 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(9) If Sn = Very Low 0.55, Ni = Very High 0.2, and Na = Very High 0.2, then 

based on rule 25 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 
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(10) If Sn = Low 0.25, Ni = Moderate 0.675, and Na = Low 0.7, then based 

on rule 37 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(11) If Sn = Low 0.25, Ni = Moderate 0.675, and Na = Moderate 0.1, then 

based on rule 38 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(12) If Sn = Low 0.25, Ni = Moderate 0.675, and Na = Very High 0.2, then 

based on rule 40 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(13) If Sn = Low 0.25, Ni = High 0.125, and Na = Low 0.7, then based on 

rule 42 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(14) If Sn = Low 0.25, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 43 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(15) If Sn = Low 0.25, Ni = High 0.125, and Na = Very High 0.2, then 

based on rule 45 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(16) If Sn = Low 0.25, Ni = Very High 0.2, and Na = Low 0.7, then based 

on rule 47 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(17) If Sn = Low 0.25, Ni = Very High 0.2, and Na = Moderate 0.1, then 

based on rule 48 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(18) If Sn = Low 0.25, Ni = Very High 0.2, and Na = Very High 0.2, then 

based on rule 50 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(19) If Sn = Very High 0.2, Ni = Moderate 0.675, and Na = Low 0.7, then 

based on rule 112 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(20) If Sn = Very High 0.2, Ni = Moderate 0.675, and Na = Moderate 0.1, 

then based on rule 113 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(21) If Sn = Very High 0.2, Ni = Moderate 0.675, and Na = Very High 0.2, 

then based on rule 115 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 
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(22) If Sn = Very High 0.2, Ni = High 0.125, and Na = Low 0.7, then based 

on rule 117 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(23) If Sn = Very High 0.2, Ni = High 0.125, and Na = Moderate 0.1, then 

based on rule 118 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(24) If Sn = Very High 0.2, Ni = High 0.125, and Na = Very High 0.2, then 

based on rule 120 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(25) If Sn = Very High 0.2, Ni = Very High 0.2, and Na = Low 0.7, then 

based on rule 122 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(26) If Sn = Very High 0.2, Ni = Very High 0.2, and Na = Moderate 0.1, 

then based on rule 123 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(27) If Sn = Very High 0.2, Ni = Very High 0.2, and Na = Very High 0.2, 

then based on rule 125 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.55, Ni = Moderate 0.675, and Na = Low 0.7. 

Therefore, the minimum value of Sn, Ni and Na is 0.55, which is associated with the 

linguistic priority term CAUTION according to the fuzzy rule developed. The minimum 

values of the other twenty-six combinations can be determined in a similar way as shown 

in Table 1-5D. 

Table 1-5D: The Minimum Value of each Combination for Port Crane Bearing 

1 Caution 0.55 2 Caution 0.1 3 Critical 0.2 4 Attention 0.125 

5 Attention 0.1 6 Critical 0.125 7 Critical 0.2 8 Critical 0.1 

9 Critical 0.2 10 Caution 0.25 11 Caution 0.1 12 Critical 0.2 

13 Attention 0.125 14 Attention 0.1 15 Critical 0.125 16 Critical 0.2 

17 Critical 0.1 18 Critical 0.2 19 Critical 0.2 20 Critical 0.1 

21 Critical 0.2 22 Critical 0.125 23 Critical 0.1 24 Critical 0.125 

25 Critical 0.2 26 Critical 0.1 27 Critical 0.2   

 

iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are twenty-seven combinations and three different categories of 

linguistic priority terms, CAUTION, ATTENTION and CRITICAL. The membership values in 
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the CAUTION category are 0.55, 0.1, 0.25 and 0.1, respectively. Therefore, the maximum 

membership value is 0.55 as shown in Table 2-5D. Likewise, the maximum membership 

values in the ATTENTION and CRITICAL categories are determined as shown in Table 2-

5D. 

Table 2-5D: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Bearing. 

Category of linguistic priority terms Maximum values 

Caution 0.55 

Attention 0.125 

Critical 0.2 

 

5D2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements (0.2 

decrement). 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the starboard crane 

bearing grease sample test element in Table 5.29 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Ni = Very Low 0.2, and Na = Low 0.1, then based on rule 2 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Ni = Very Low 0.2, and Na = Moderate 0.7, then based on rule 3 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(3) If Ni = Very Low 0.2, and Na = Very High 0.2, then based on rule 5 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(4) If Ni = Very High 0.8, and Na = Low 0.1, then based on rule 22 in the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(5) If Ni = Very High 0.8, and Na = Moderate 0.7, then based on rule 23 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(6) If Ni = Very High 0.8, and Na = Very High 0.2, then based on rule 25 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Ni = Very Low 0.2 and Na = Low 0.1. Therefore, the minimum 

value of Ni and Na is 0.1, which is associated with the linguistic priority term NORMAL 
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according to the fuzzy rule developed. The minimum values of the other five combinations 

can be determined in a similar way as shown in Table 3-5D. 

Table 3-5D: The Minimum Value of each Combination for Starboard Crane Bearing 

1 Normal 0.1 2 Caution 0.2 3 Critical 0.2 

4 Critical 0.1 5 Critical 0.7 6 Critical 0.2 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority terms. 

In the first scenario, there are six combinations and three categories of linguistic priority 

terms, NORMAL, CAUTION and CRITICAL. The membership values in the NORMAL 

category is 0.1. Therefore, the maximum membership value is 0.1 as shown in Table 4-5D. 

Likewise, the maximum membership values in the CAUTION and CRITICAL categories are 

determined as shown in Table 4-5D. 

Table 4-5D: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Bearing. 

Category of linguistic priority terms Maximum values 

Normal 0.1 

Caution 0.2 

Critical 0.7 

 

5D3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (0.2 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of port crane gearbox oil 

sample test element in Table 5.30 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.133, and Al = Low 0.8, then based on rule 2 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Sn = Very Low 0.133, and Al = Very High 0.2, then based on rule 5 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(3) If Sn = Low 0.667, and Al = Low 0.8, then based on rule 7 on the fuzzy rule 

based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(4) If Sn = Low 0.667, and Al = Very High 0.2, then based on rule 10 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Sn = Very High 0.2, and Al = Low 0.8, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 
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(6) If Sn = Very High 0.2, and Al = Very High 0.2, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.133, and Al = Low 0.8. Therefore, the 

minimum value of Sn and Al is 0.133, which is associated with the linguistic priority term 

NORMAL according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 5-5D. 

Table 5-5D: The Minimum Value of each Combination for Port Crane Gearbox 

1 Normal 0.133 2 Critical 0.133 3 Normal 0.667 

4 Critical 0.2 5 Critical 0.2 6 Critical 0.2 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

NORMAL and CRITICAL. The membership values in the NORMAL category are 0.133 and 

0.667. Therefore, the maximum membership value is 0.667. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 6-5D. 

Table 6-5D: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Normal 0.667 

Critical 0.2 

 

5D4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (0.2 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of starboard crane 

gearbox oil sample test element in Table 5.31 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Al = Moderate 0.8, and Si = Very Low 0.675, then based on rule 11 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(2) If Al = Moderate 0.8, and Si = Low 0.125, then based on rule 12 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CAUTION. 

(3) If Al = Moderate 0.8, and Si = Very High 0.2, then based on rule 15 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 
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(4) If Al = Very High 0.2, and Si = Very Low 0.675, then based on rule 21 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Al = Very High 0.2, and Si = Low 0.125, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(6) If Al = Very High 0.2, and Si = Very High 0.2, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Al = Moderate 0.8, and Si = Very Low 0.675. Therefore, the 

minimum value of Al and Si is 0.675, which is associated with the linguistic priority term 

CAUTION according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 7-5D. 

Table 7-5D: The Minimum Value of each Combination for Starboard Crane Gearbox 

1 Caution 0.675 2 Caution 0.125 3 Critical 0.2 

4 Critical 0.2 5 Critical 0.125 6 Critical 0.2 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

CAUTION and CRITICAL. The membership values in the CAUTION category are 0.675 and 

0.125. Therefore, the maximum membership value is 0.675. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 8-5D. 

Table 8-5D: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Caution 0.675 

Critical 0.2 
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Appendix 5E - Risk Level Determination for Decrement by 0.3 

 

5E1 Risk level for port crane bearing grease sample test elements (0.3 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the port crane bearing 

grease sample test element in Table 5.32 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.45, Ni = Moderate 0.575, and Na = Low 0.6, then based 

on rule 12 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(2) If Sn = Very Low 0.45, Ni = Moderate 0.575, and Na = Moderate 0.1, then 

based on rule 13 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(3) If Sn = Very Low 0.45, Ni = Moderate 0.575, and Na = Very High 0.3, then 

based on rule 15 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(4) If Sn = Very Low 0.45, Ni = High 0.125, and Na = Low 0.6, then based on 

rule 17 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(5) If Sn = Very Low 0.45, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 18 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(6) If Sn = Very Low 0.45, Ni = High 0.125, and Na = Very High 0.3, then based 

on rule 20 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(7) If Sn = Very Low 0.45, Ni = Very High 0.3, and Na = Low 0.6, then based on 

rule 22 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is CRITICAL. 

(8) If Sn = Very Low 0.45, Ni = Very High 0.3, and Na = Moderate 0.1, then 

based on rule 23 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(9) If Sn = Very Low 0.45, Ni = Very High 0.3, and Na = Very High 0.3, then 

based on rule 25 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 
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(10) If Sn = Low 0.25, Ni = Moderate 0.575, and Na = Low 0.6, then based 

on rule 37 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CAUTION. 

(11) If Sn = Low 0.25, Ni = Moderate 0.575, and Na = Moderate 0.1, then 

based on rule 38 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CAUTION. 

(12) If Sn = Low 0.25, Ni = Moderate 0.575, and Na = Very High 0.3, then 

based on rule 40 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(13) If Sn = Low 0.25, Ni = High 0.125, and Na = Low 0.6, then based on 

rule 42 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the priority 

level is ATTENTION. 

(14) If Sn = Low 0.25, Ni = High 0.125, and Na = Moderate 0.1, then based 

on rule 43 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is ATTENTION. 

(15) If Sn = Low 0.25, Ni = High 0.125, and Na = Very High 0.3, then 

based on rule 45 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(16) If Sn = Low 0.25, Ni = Very High 0.3, and Na = Low 0.6, then based 

on rule 47 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(17) If Sn = Low 0.25, Ni = Very High 0.3, and Na = Moderate 0.1, then 

based on rule 48 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(18) If Sn = Low 0.25, Ni = Very High 0.3, and Na = Very High 0.3, then 

based on rule 50 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(19) If Sn = Very High 0.3, Ni = Moderate 0.575, and Na = Low 0.6, then 

based on rule 112 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(20) If Sn = Very High 0.3, Ni = Moderate 0.575, and Na = Moderate 0.1, 

then based on rule 113 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(21) If Sn = Very High 0.3, Ni = Moderate 0.575, and Na = Very High 0.3, 

then based on rule 115 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 
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(22) If Sn = Very High 0.3, Ni = High 0.125, and Na = Low 0.6, then based 

on rule 117 in the fuzzy rule based table (Table 1-5B in Appendix 5B), the 

priority level is CRITICAL. 

(23) If Sn = Very High 0.3, Ni = High 0.125, and Na = Moderate 0.1, then 

based on rule 118 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(24) If Sn = Very High 0.3, Ni = High 0.125, and Na = Very High 0.3, then 

based on rule 120 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(25) If Sn = Very High 0.3, Ni = Very High 0.3, and Na = Low 0.6, then 

based on rule 122 in the fuzzy rule based table (Table 1-5B in Appendix 5B), 

the priority level is CRITICAL. 

(26) If Sn = Very High 0.3, Ni = Very High 0.3, and Na = Moderate 0.1, 

then based on rule 123 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

(27) If Sn = Very High 0.3, Ni = Very High 0.3, and Na = Very High 0.3, 

then based on rule 125 in the fuzzy rule based table (Table 1-5B in Appendix 

5B), the priority level is CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.45, Ni = Moderate 0.575, and Na = Low 0.6. 

Therefore, the minimum value of Sn, Ni and Na is 0.45, which is associated with the 

linguistic priority term CAUTION according to the fuzzy rule developed. The minimum 

values of the other twenty-six combinations can be determined in a similar way as shown 

in Table 1-5E. 

Table 1-5E: The Minimum Value of each Combination for Port Crane Bearing 

1 Caution 0.45 2 Caution 0.1 3 Critical 0.3 4 Attention 0.125 

5 Attention 0.1 6 Critical 0.125 7 Critical 0.3 8 Critical 0.1 

9 Critical 0.3 10 Caution 0.25 11 Caution 0.1 12 Critical 0.25 

13 Attention 0.125 14 Attention 0.1 15 Critical 0.125 16 Critical 0.25 

17 Critical 0.1 18 Critical 0.25 19 Critical 0.3 20 Critical 0.1 

21 Critical 0.3 22 Critical 0.125 23 Critical 0.1 24 Critical 0.125 

25 Critical 0.3 26 Critical 0.1 27 Critical 0.3   

 

iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are twenty-seven combinations and three different categories of 

linguistic priority terms, CAUTION, ATTENTION and CRITICAL. The membership values in 
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the CAUTION category are 0.45, 0.1, 0.25 and 0.1, respectively. Therefore, the maximum 

membership value is 0.45 as shown in Table 2-5E. Likewise, the maximum membership 

values in the ATTENTION and CRITICAL categories are determined as shown in Table 2-

4D. 

Table 2-5E: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Bearing. 

Category of linguistic priority terms Maximum values 

Caution 0.45 

Attention 0.125 

Critical 0.3 

 

5E2 Risk Level for Starboard Crane Bearing Grease Sample Test Elements (0.3 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of the starboard crane 

bearing grease sample test element in Table 5.33 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Ni = Very Low 0.3, and Na = Moderate 0.7, then based on rule 3 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(2) If Ni = Very Low 0.3, and Na = Very High 0.3, then based on rule 5 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(3) If Ni = Very High 0.7, and Na = Moderate 0.7, then based on rule 23 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(4) If Ni = Very High 0.7, and Na = Very High 0.3, then based on rule 25 in the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Ni = Very Low 0.3 and Na = Moderate 0.7. Therefore, the 

minimum value of Ni and Na is 0.3, which is associated with the linguistic priority term 

CAUTION according to the fuzzy rule developed. The minimum values of the other three 

combinations can be determined in a similar way as shown in Table 3-5E. 

Table 3-5E: The Minimum Value of each Combination for Starboard Crane Bearing 

1 Caution 0.3 2 Critical 0.3 3 Critical 0.7 4 Critical 0.3 
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iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority terms. 

In the first scenario, there are four combinations and two categories of linguistic priority 

terms, CAUTION and CRITICAL. The membership values in the CAUTION category is 0.3. 

Therefore, the maximum membership value is 0.3 as shown in Table 4-5E. Likewise, the 

maximum membership value in the CRITICAL category is determined as shown in Table 4-

5E. 

Table 4-5E: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Bearing. 

Category of linguistic priority terms Maximum values 

Caution 0.3 

Critical 0.7 

 

5E3 Risk Level for Port Crane Gearbox Oil Sample Test Elements (0.3 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of port crane gearbox oil 

sample test element in Table 5.34 of Chapter 5 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Sn = Very Low 0.033, and Al = Low 0.7, then based on rule 2 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(2) If Sn = Very Low 0.033, and Al = Very High 0.3, then based on rule 5 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(3) If Sn = Low 0.667, and Al = Low 0.7, then based on rule 7 on the fuzzy rule 

based table (Table 2-5B in Appendix 5B), the priority level is NORMAL. 

(4) If Sn = Low 0.667, and Al = Very High 0.3, then based on rule 10 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Sn = Very High 0.3, and Al = Low 0.7, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 

(6) If Sn = Very High 0.3, and Al = Very High 0.3, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Sn = Very Low 0.033, and Al = Low 0.7. Therefore, the 

minimum value of Sn and Al is 0.033, which is associated with the linguistic priority term 
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NORMAL according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 5-5E. 

Table 5-5E: The Minimum Value of each Combination for Port Crane Gearbox 

1 Normal 0.033 2 Critical 0.033 3 Normal 0.667 

4 Critical 0.3 5 Critical 0.3 6 Critical 0.3 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

NORMAL and CRITICAL. The membership values in the NORMAL category are 0.033 and 

0.667. Therefore, the maximum membership value is 0.667. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 6-5E. 

Table 6-5E: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Port Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Normal 0.667 

Critical 0.3 

 

5E4 Risk Level for Starboard Crane Gearbox Oil Sample Test Elements (0.3 decrement) 

By applying the ‘min-max’ approach, the set of fuzzy conclusions of starboard crane 

gearbox oil sample test element in Table 5.35 is obtained as follows: 

i. List the membership function values according to the rules developed. 

(1) If Al = Moderate 0.7, and Si = Very Low 0.575, then based on rule 11 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CAUTION. 

(2) If Al = Moderate 0.7, and Si = Low 0.125, then based on rule 12 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CAUTION. 

(3) If Al = Moderate 0.7, and Si = Very High 0.3, then based on rule 15 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(4) If Al = Very High 0.3, and Si = Very Low 0.575, then based on rule 21 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

(5) If Al = Very High 0.3, and Si = Low 0.125, then based on rule 22 on the fuzzy 

rule based table (Table 2-5B in Appendix 5B), the priority level is CRITICAL. 
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(6) If Al = Very High 0.3, and Si = Very High 0.3, then based on rule 25 on the 

fuzzy rule based table (Table 2-5B in Appendix 5B), the priority level is 

CRITICAL. 

ii. Determine the minimum value of each combination in terms of comparing the values 

obtained from each element and the value of weight established in the priority level. 

In the first combination in (i), Al = Moderate 0.7, and Si = Very Low 0.575. Therefore, the 

minimum value of Al and Si is 0.575, which is associated with the linguistic priority term 

CAUTION according to the fuzzy rule developed. The minimum values of the other five 

combinations can be determined in a similar way as shown in Table 7-5E. 

Table 7-5E: The Minimum Value of each Combination for Starboard Crane Gearbox 

1 Caution 0.575 2 Caution 0.125 3 Critical 0.3 

4 Critical 0.3 5 Critical 0.125 6 Critical 0.3 

 
iii. Determine the maximum value of the minimum values obtained from step 2 that 

have the same category of linguistic priority term. 

In the first scenario, there are six combinations and two categories of linguistic priority terms, 

CAUTION and CRITICAL. The membership values in the CAUTION category are 0.575 and 

0.125. Therefore, the maximum membership value is 0.575. Likewise, the maximum 

membership value in the CRITICAL category is determined as shown in Table 8-5E. 

Table 8-5E: The Maximum Value Associated with the Same Category of Linguistic Priority 

             Terms for Starboard Crane Gearbox. 

Category of linguistic priority terms Maximum values 

Caution 0.575 

Critical 0.3 
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Appendix 5F - Risk Values for Decremented Set of Fuzzy Conclusions 

 
Using the defuzzification process described in Section 5.46, and the decrement set of 

fuzzy conclusions shown in Table 5.40 in Chapter 5, the risk (utility) values can be 

calculated as follows: 

Port Crane Bearing 

10% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.65

0.65+0.125+0.1
, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

0.125

0.65+0.125+0.1
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.1

0.65+0.125+0.1
  

𝑅𝑉 = 2 × 
0.65

0.65+0.125+0.1
+ 3 ×  

0.125

0.65+0.125+0.1
+ 4 × 

0.1

0.65+0.125+0.1
  = 2.366 

20% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.55

0.55+0.125+0.2
, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

0.125

0.55+0.125+0.2
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.2

0.55+0.125+0.2
  

𝑅𝑉 = 2 × 
0.55

0.55+0.125+0.2
+ 3 ×  

0.125

0.55+0.125+0.2
+ 4 × 

0.2

0.55+0.125+0.2
  = 2.594 

30% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.45

0.45+0.125+0.3
, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  

0.125

0.45+0.125+0.3
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.3

0.45+0.125+0.3
  

𝑅𝑉 = 2 × 
0.45

0.45+0.125+0.3
+ 3 ×  

0.125

0.45+0.125+0.3
+ 4 × 

0.3

0.45+0.125+0.3
  = 2.822 

Starboard Crane Bearing 

10% decrement: 

𝑁𝑜𝑟𝑚𝑎𝑙 
0.1

0.1+0.1+0.7
, 𝐶𝑎𝑢𝑡𝑖𝑜𝑛  

0.1

0.1+0.1+0.7
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.7

0.1+0.1+0.7
  

𝑅𝑉 = 1 × 
0.1

0.1+0.1+0.7
+ 2 ×  

0.1

0.1+0.1+0.7
+ 4 × 

0.7

0.1+0.1+0.7
  = 3.441 

20% decrement: 

RV = (1 x 0.1) + (2 x 0.2) + (4 x 0.7) = 3.3 
 
30% decrement: 

RV = (2 x 0.3) + (4 x 0.7) = 3.4 
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Port Crane Gearbox 

10% decrement: 

𝑁𝑜𝑟𝑚𝑎𝑙 
0.667

0.667+0.1
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.1

0.667+0.1
  

𝑅𝑉 = 1 × 
0.667

0.667+0.1
+ 4 × 

0.1

0.667+0.1
  = 1.389 

20% decrement: 

𝑁𝑜𝑟𝑚𝑎𝑙 
0.667

0.667+0.2
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.2

0.667+0.2
  

𝑅𝑉 = 1 × 
0.667

0.667+0.2
+ 4 × 

0.2

0.667+0.2
  = 1.689 

30% decrement: 

𝑁𝑜𝑟𝑚𝑎𝑙 
0.667

0.667+0.3
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.3

0.667+0.3
  

𝑅𝑉 = 1 × 
0.667

0.667+0.3
+ 4 × 

0.3

0.667+0.3
  = 1.929 

Starboard Crane Gearbox 

10% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.775

0.775+0.1
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.1

0.775+0.1
  

𝑅𝑉 = 2 × 
0.775

0.775+0.1
+ 4 × 

0.1

0.775+0.1
  = 2.226 

20% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.675

0.675+0.2
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.2

0.675+0.2
  

𝑅𝑉 = 2 × 
0.675

0.675+0.2
+ 4 × 

0.2

0.675+0.2
  = 2.454 

30% decrement: 

𝐶𝑎𝑢𝑡𝑖𝑜𝑛 
0.575

0.575+0.3
, 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

0.3

0.575+0.3
  

𝑅𝑉 = 2 × 
0.575

0.575+0.3
+ 4 × 

0.3

0.575+0.3
  = 2.682 
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Appendix 6 - Research Questionnaires 

 

 

 

Dear Sir/Madam, 

A PhD research at Liverpool Logistics, Offshore and Marine (LOOM) Research Institute is currently 

being carried out on “Development of an efficient planned maintenance framework for marine and 

offshore machinery operating under highly uncertain environment”. Recently, this subject has 

become a hot topic in the marine and offshore community due to a sudden shift in perception and 

thinking about maintenance of machinery used in marine and offshore operations.  

The aim of the above research title is to generate a risk-based and decision-based methodology 

capable of delivering a maintenance framework for improvement and management of marine and 

offshore machinery systems’ operation under highly uncertainty. In light of the above, a specific 

model is developed in order to achieve the aforementioned aim. A requirement for this study is to 

employ experts’ judgement in determining the weights of each parameter of the model in order to 

prioritise them for an advanced computational analysis.  

Thus, this study set out to provide an organised method for collecting experts’ opinions in order to 

design a flexible yet robust planned maintenance system that can lead to the enhancement of safety 

and sustainability of the marine and offshore machinery and transportation systems.  

In order to improve the quality and relevance of the research, the researcher would greatly appreciate 

your views by completing the following questionnaire and return using the email address given below. 

Please note that the completion of this questionnaire is voluntary and it will takes about 10 to 15 

minutes of your time; however, your feedback will greatly enhance the research development and 

contribute to the industry wise opinion. Finally, the information provided and your identity will be 

treated with confidentiality. For further questions or enquiries about the study, please do not hesitate 

to contact the researcher.  

Thank you. 

Yours sincerely, 

Maurice Asuquo 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Tel: +44 (0) 79 5621 6920, +44 (0) 151 231 2028 

Email: M.P.Asuquo@2012.ljmu.ac.uk  

Room 121, James Parsons Building  

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 
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Questionnaire for Chapter 3 

Introduction 

The primary goal of this study is to select the most significant events that contribute to the 

disruption of machinery operations in marine and offshore. The criteria and sub-criteria 

listed in Table 1 are the parameters that need to be investigated and evaluated using “pair-

wise comparison” techniques. 

Table 1: List of Criteria and sub-criteria 

Criteria Sub-Criteria 

Crane bearing 
Crane clutch 
Crane gearbox 
Crane pump 
 

Trend Analysis 
Family Analysis 
Environmental Analysis 
Human Reliability Analysis 
Design Analysis 

 

Trend analysis is an aspect of technical analysis that tries to predict the future performance 

of machinery based on past data recorded. It is based on the idea that what has happened 

in the past gives an idea of what will happen in the future.  

Family Analysis compares the uncertainties levels of group of similar or identical machinery 

to identify what is a usual or typical pattern.  

Environmental Analysis evaluates the environmental conditions under which the machinery 

is currently operating.  

Human Reliability Analysis will assess the operator's performance and competency during 

the machinery operations practice.  

Design Analysis will assess the physical behaviour of the machinery or its component as 

specified by the manufacturer. It is used to predict the physical behaviour of just about any 

part or assembly under any loading conditions. 

To proceed with the “pair-wise comparison” technique, an expert needs to have a good 

knowledge of the qualitative descriptors or linguistic scales used for measurement in this 

study as represented in Tables 2(a) and (b). The tables describe the numerical assessment 

together with the linguistic meaning of each number. 2(a) explains the “Important” while the 

2 (b) describes “Unimportant”  
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Table 2(a): Ratio scale for pair-wise comparison - Important 

Numbers Strength of importance in 
Linguistic scales or qualitative 

descriptors 
 

1 
 

3 
 
5 
 
7 
 
9 
 

2,4,6,8 
 

Equally Important 
 

Weakly Important 
 

Strongly Important 
 

Very strongly important 
 

Absolutely Important 
 

Intermediate value of Important 

 

Table 2(a): Ratio scale for pair-wise comparison - Unimportant 

Numbers Strength of importance in Linguistic 
scales or qualitative descriptors 

 

1 
1

3⁄  

 
1

5⁄  

 
1

7⁄  

 
 

1
9⁄  

 
1

2⁄
1

4⁄
1

6⁄
1

8⁄  

Equally Unimportant 
 

Weakly Unimportant 
 

Strongly Unimportant 
 

Very strongly Unimportant 
 

Absolutely Unimportant 
 

Intermediate value of Unimportant 

 

with reference to Table 2, an expert is required to give a possible judgement to all question 

based on his/her experience and expertise in the machinery operations. The judgement 

process has to be focus on how to achieve the goal of each section. To do so, please you 

are required to tick ( ∕ ) as the rate of importance or priority of each criteria and sub-criteria 

in the given column. For instance: 
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Goal: To select the most important component of computer 

1. Monitor Screen Device 

  
Unimportant 

Equally 
Important 

 
Important 

 1

9
 

1

8
 

1

7
 

1

6
 

1

5
 

1

4
 

1

3
 

1

2
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

To 
achieve 
the above 
goal, how 
important 
is the 
monitor 
screen 
compares 
to the 
mouse? 

                
 
 
 
 
/ 

 

To 
achieve 
the above 
goal, how 
important 
is the 
monitor 
screen 
compares 
to the 
keyboard? 

            
 
 
 
 
/ 

     

To 
achieve 
the above 
goal, how 
important 
is the 
monitor 
screen 
compares 
to the 
CPU? 

   
 
 
 
 
 
/ 

              

 

Explanation: 

 The monitor screen is 8 times more “important” than the mouse. It is because we 

can still use our computer even without the mouse. If the mouse is broken, then we 

can use the short cut system to access any file or document in the computer, by 

using a keyboard for instance to print (Ctrl+P), to save document (Ctrl+S), etc. 

 The monitor screen is 4 times more “Important” than the keyboard. It is because we 

can still explore a computer even without the keyboard. For instance, to search a 
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document in a file, we can use our mouse. We can also read journals or article 

papers on the monitor screen even without the keyboard. The only thing we cannot 

do without the keyboard is typing. 

 The monitor screen is 1/7 times less “Important” than the CPU. The monitor is 

useless without the CPU. 

How to complete the questionnaire 

This questionnaire aims to compare nine criteria that are perceived in the condition 

monitoring of marine and offshore machinery in order of importance by employing Analytic 

Hierarchy Process (AHP) to determine their priority ranking for decision-making. 

The questionnaire is divided into two parts 1 and 2. Part 1 has the nine criteria which consist 

of group A (Ship crane’s components), and group B (Ship crane’s component/criteria). An 

example is given illustrating how the questionnaires should be filled. Part 2 consist of two 

questions; one on expert’s experiences and the second on academic qualifications. 

Example  

Part 1: Group A: If you think the first criterion Crane Bearing is strongly important in 

condition monitoring of the ship crane than the second criterion Crane Clutch, then please 

tick as follows: 

 Scale of relative importance 
 

 

 
 
Criterion 

A
b

so
lu

te
  (

9
) 

In
te

rm
ed

ia
te

  (
8

) 

V
er
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Alternatively, if the second criterion Crane clutch is strongly important in condition 

monitoring of the ship crane than the first criterion Crane bearing, then please tick as 

follows: 
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 Scale of relative importance 
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X 

    Crane 
clutch 

NB: Please remember to mark only one number on either the left or right side of the 

scale of importance or just the middle of the scale, which is equal importance. 

 

Questionnaire 

“I have read the information sheet provided and I am happy to participate. I 

understand that by completing and returning this questionnaire I am consenting to 

be part of this research study and for my data to be used as described in the 

information sheet provided” 

PART 1 

 

 

 

 

Group  A: Crane Components 

 Scale of relative importance 
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Group B: Crane Bearing 

 Scale of relative importance  
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Group B: Crane Clutch 

 Scale of relative importance  
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Group B: Crane Gearbox 

 Scale of relative importance  
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Group B: Crane Hydraulic Pump 

 Scale of relative importance  
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PART 2 

 

Question 1 

Choose from letter A-E, one that best describe your experience in the field of expertise 

(please tick the appropriate box). 

 

(A)    □   1-5 years  

(B)    □   6-10 years  

(C)    □   11-30 years 

(D)    □   Over 30 years   

(E)    □   None of the above 

 

Question 2 

Please give your industry position and highest academic qualification in the appropriate box. 

  

Industry position 

 

 

Highest academic qualification 
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Questionnaire for Chapter 5 

Introduction 

The primary goal of this study is to select the most appropriate maintenance strategy to 

optimise the operational efficiency of marine and offshore machinery under an uncertain 

environment. The decision alternatives and evaluation criteria listed in Table 1 are the 

parameters that need to be considered and evaluated using “fuzzy Linguistic variables 

scale” techniques. 

Table 1: List of Decision Alternatives and Evaluation Criteria 

Decision Alternatives Evaluation Criteria 

Run-to-failure maintenance 
Preventive maintenance 
Condition based maintenance 
Reliability centred maintenance 
 

Equipment reliability 
Equipment cost 
Equipment safety 
Equipment availability 
Equipment downtime 

 
Equipment reliability is perceived as the probability that an equipment system will operate 

at a specified performance level for a specific period.  

Equipment cost includes equipment capital cost, cost due to unplanned downtime of 

equipment, labour cost, and cost involved with repair or replacement of equipment  

Equipment safety is the condition of equipment being protected from or being unlikely to 

cause danger, risk, or injury during operation.  

Equipment availability can be defined as the degree to which the machine / equipment in 

context is in a specified operable and committable state at the start of operation, when the 

operation is called for at an unknown (i.e. a random) time. 

A period during which an equipment or machine is not functional or cannot work is referred 

to as the equipment downtime. 

To proceed with the “fuzzy Linguistic variables scale” technique, an expert needs to have a 

good knowledge of the linguistic variables and their corresponding trapezoidal fuzzy scales 

used for measurement in this study as represented in Tables 2. The tables describe the 

numerical assessment together with the linguistic meaning of each variable. 
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Table 2: Fuzzy Linguistic Variables and Corresponding Trapezoidal Scales 

Linguistic Variables Corresponding Scale 

Very Low (0, 0, 0.1, 0.2) 

Low (0.1, 0.25, 0.25, 0.4) 

Medium (0.3, 0.5, 0.5, 0.7) 

High (0.6, 0.75, 0.75, 0.9) 

Very High (0.8, 0.9, 1, 1) 

 

with reference to Table 2, an expert is required to give a possible judgement to all question 

based on his/her experience and expertise in the machinery maintenance. The judgement 

process has to be focus on how to achieve the goal of each decision alternative with respect 

to the evaluation criteria. To do so, please you are required to enter one out of the five 

linguistic variables against each of the decision alternatives with respect to the evaluation 

criteria in the given column. For instance, see Table 3. 

Table 3: Example 

 
EVALUATION 
CRITERIA 

DECISION ALTERNATIVES 

Run-To-Failure 
Maintenance 

Preventive 
Maintenance 

Condition 
Based 
Maintenance 

Reliability Centred 
Maintenance 

Reliability VH    

Cost VL    

Safety M    

Availability L    

Downtime H    

Explanation: 

 VH = Very High, VL = Very Low, M = Medium, L = Low, H = High. 

 From the second column, row 3; with run-to-failure maintenance, reliability of the 

equipment is considered to be Very High. 

 From the second column, row 4; with run-to-failure maintenance, cost associated 

with the equipment maintenance is considered to be Very Low. 

 From the second column, row 5; with run-to-failure maintenance, equipment safety 

is considered to be Medium. 

 From the second column, row 6; with run-to-failure maintenance, equipment 

availability is considered to be Low. 

 From the second column, row 7; with run-to-failure maintenance, equipment 

downtime is considered to be High. 
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Questionnaire 

“I have read the information sheet provided and I am happy to participate. I 

understand that by completing and returning this questionnaire I am consenting to 

be part of this research study and for my data to be used as described in the 

information sheet provided” 

How to complete the questionnaire 

This questionnaire is divided into two sections A and B. Section A is using the fuzzy 

linguistic variables to determine decision alternation based on the evaluation criteria. 

While Section B is about the expert’s experiences and academic qualifications. 

Now, please complete the two sections of the questionnaire as instructed. 

 

Section A 

Use the five linguistics variables VL, L, M, H, and VH to fill in the empty cells 

corresponding to each of the decision alternative and the evaluation criteria. 

 
EVALUATION 
CRITERIA 

DECISION ALTERNATIVES 

Run-To-Failure 
Maintenance 

Preventive 
Maintenance 

Condition 
Based 
Maintenance 

Reliability Centred 
Maintenance 

Reliability     

Cost     

Safety     

Availability     

Downtime     

 

 

Section B 

 

Question 1 

Choose from letter A-E, one that best describe your experience in the field of expertise 

(please tick the appropriate box). 

 

(F)    □   1-5 years  

(G)    □   6-10 years  

(H)    □   11-25 years 

(I)    □   Over 25 years   

(J)    □   None of the above 
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Question 2 

Please give your industry position and highest academic qualification in the appropriate box. 

  

Industry position 

 

 

Highest academic qualification 

 

 

 

 

 

 


