
QoS in GNU/Linux: its application on free Internet infrastructure
Javier Charne, Diego De La Riva, Hugo Ramón, Adrián Jaszczyszyn

{javier,delariva,hugoramon,adrianjasz}@unnoba.edu.ar
Instituto de Investigación y Transferencia en Tecnología – IITT

Escuela de Tecnología
 UNNOBA

Calle Jorge Newbery y Sarmiento – (6000) Junin, Bs As., Argentina

ABSTRACT

With the advent of VoIP transport and
videoconferencing/telepresence equipment at
relative low costs, companies started to use a
single provider for data, telephony and video, thus
causing three types of transport –with different
characteristics and requirements- to converge in a
single hard link. The current converging networks
carry packages related to three different kinds of
services (data, voice and video) and one of the
usual classification criteria draws a distinction
between traffic with strict time requirements and
all other services. As bandwidth is always
limited, it is necessary to identify and give priority
treatment to this kind of traffic over others sharing
the same medium. This paper discusses the
assessment and application of different QoS tools
on the free internet infrastructure for public spaces
in the city of Junín, Buenos Aires, Argentina.

Keywords: VoIP, Videoconferencing, Quality of
Service, Real Time, Links, Free Internet, Linux

1 Introduction

Before the term “converging networks” first
appeared in authoritative literature and that they
started to be offered by different providers,
companies used different media to carry each kind
of traffic. Telephony was transferred through
PSTN (Public Switched Telephone Network) and
another separate service, typically Frame-Relay
was hired to transport data.

The video service required a high-cost satellite
service. With the advent of the VoIP transport and
videoconferencing/telepresence equipment at low
costs, companies started to use a single provider
for data, telephone and video, thus causing three
types of transport –with different characteristics
and requirements- to converge in a single hard
link.

Under [1], traffic is classified into two main
categories: elastic and non-elastic traffic

Elastic traffic can be adjusted to the changes in
delays and performance of a given network,
without failing to meet its application needs. This
is the type of traffic supported by TCP/IP
(Transmission Control Protocol/Internet Protocol)
networks, the traffic in individual connections gets
adapted so that data speed delivery to the network
is reduced.

Internet applications, such as file transfer, e-mails,
remote connections, network management and
web access are elastic traffic applications even
though there are some differences in their
requirements.

With elastic traffic, having a network service that
distinguishes these two kinds of flows (with QoS)
is advantageous. Without it, routers manage IP
packages blindly, regardless of the kind of
application causing or expecting it, or whether the
package is part of a small or big transfer. If there
is a congestion, it is unlikely that resources will be
allocated in a manner that would meet the needs
of all the applications. The more non-elastic
traffic you add, the less satisfactory the
experience.

Non-elastic traffic does not adapt itself to changes
in delays and performance of the interconnected
networks. Real-time traffic, such as voice and
video, is the main example of this situation. The
requirements of non-elastic traffic are as follows:
minimum performance value. Many non-elastic
applications require minimum consistent
performance. Packages should not be accelerated
or delayed. Real-time applications differ in the
number of lost packages they admit.

These are difficult to meet in a congested network,
with varying delays in the queue and package loss.
Elastic transfer introduces two requirements in the
network interconnection architecture. In the first
place, some mechanism is needed to give the most
demanding applications a preferential treatment,
either in advance, with some kind of service
request function or on-the-fly, using the header
fields in IP packages and allowing the network to
anticipate the demand and reject new requests if

JCS&T Vol. 12 No. 2 August 2012

78

the requested resources are not available and a
when a congestion is possible. This approach
involves the use of some kind of protocol to
reserve resources.

Another requirement to support non-elastic traffic
on an Internet architecture is that elastic traffic
should take into account non-elastic traffic.
Whenever there is a congestion, TCP controls
flow, UDP does not. It does not reduce its demand
and it does not even detect the situation. A
protocol should be implemented to reserve
resources and control the situation, thus rejecting
any new transmission request when there is no
bandwidth available for elastic traffic.

2 QoS mechanisms

Different QoS mechanisms together make it
possible to implement it inside the IP network and
should be carried out in a certain order as if it
were an industrial production chain: Classification
and marking, policing and shaping, and
congestion management.

All pieces of communication equipment have
buffers in order to save all the data that enters
through an interface in a frame format. These
buffers are usually independent memories, one for
each interface. And as the processing time of the
incoming frames can be longer than the entry rate,
they are stored in such memory to be processed
later.

Outgoing frames use these buffers in a different
way. Those frames that are “ready to go” through
the network will be located in the buffers. They
will once again be physically independent
memories but they will not be allocated to each
interface on a one-to-one basis, but rather each
physical interface can have several memories, also
known as queues.

Classifying traffic will simply mean identifying
certain types of flows. Most IOS (Internetwork
Operating Systems) [2] which implement QoS
mechanisms allow for classifications to be made
using the marks in the CoS (class of service) and
ToS (type of service) fields. Then any action that
does not affect traffic is a mark that can be done in
any structure of the operating system or in the
CoS or ToS fields.

To manage bandwidth, after having a package
marked, the decision is whether such package
should be sent, delayed or discarded. Policing
does not take into account traffic behavior
whereas shaping does [3].

Congestion Management: Once the packages are
classified and marked and a decision as to what to
do with them is made, they need to be reprocessed
and - in the case of outgoing traffic - be
dispatched through the chosen interface, paying
special attention at this time not to cause a
congestion on the link. An overrun link is one that
has reached its physical limit of transmission or of
the memory allocated to such interface.

Dispatched packages are taken from the outgoing
queues. The selection criterion is known as qdisc
(queueing disciplines). It is important to carry out
the QoS process on the device where the real
queue is located.

3 Junin I/L

At first, the Junín-IL (Free Internte) Project
appeared as a simple request: “Internet is required
in the city squares”. When the working team met
for the first time, the following questions were
raised:

• Which squares?
• What area should we cover?
• Should we undertake this project ourselves or

should we outsource a turn-key solution?
• How do we make the network reach the

squares?
• Should we wire through the lightning posts and

then set an AP in each square?
• Should we place a wifi router in a nearby

building and then wire up from the NOC to the
building?

• Which solution is the most scalable one?
• What quality of service do we want the client to

experience?
• What will the total outgoing bandwidth be?
• How many recurring clients are we expecting

to have?
• Will navigation be free or will we restrict some

sites?

The public areas involved in the project were: the
main city square, the bus terminal and its adjacent
squares and the railway station square (See Fig.
1). Navigation was to be free but the speed at
which each user could download data was to be
limited, giving priority to web navigation over any
other service.

JCS&T Vol. 12 No. 2 August 2012

79

Several solutions, such as UNLP [16] and San
Luis [17] were studied while in production.

We asked for quotations and specifications for the
WLC solutions for wireless outdoor Aironet from
Cisco [18] [19] [20] and also Wavion [21].
Finally, we decided to set up the installation with
Planet Mesh Network MAP-2000 and MAP-
2000R [22] both for the wireless network trunk as
well as for the Internet distribution for clients. In
addition, the optic fiber was laid from the NOC to
the main equipment on the mesh and a server was
set up to carry out the routing tasks between the
LAN and the WAN link, firewall, proxy, DNS,
QoS and monitoring.

The wireless equipment communicate through the
5.8 Mhz frequency redistributing the signal at
local level at 2.4 Ghz. They were placed
considering the area they were supposed to serve.
These pieces of equipment were installed in
towers of at least 25 meters on each location.

3.1 Implementation Details

Fig. 2 shows the topology. Since the default
configuration for the client equipment has a preset
range of 10.0.0.0 in its 802.11a interface, such a
range was chosen for the links against the central
equipment in order to make installation and the
initial management of future enhancements easier.

Each client equipment (City Hall, Bus Terminal
and UNNOBA University) routes traffic from the
clients to the central equipment and a DHCP
server is set to distribute to a sub-network of
172.20.0.0/16 among its clients. The NAT options
were disabled on every client, so that the IP of the
final user would reach the server, where the QoS
policies are specified.

The server was set up with the GNU/Linux
Debian 6.0 "Squeeze" operating system, where the
following packages were set up to provide the
required services:

• Domain name system, DNS bind9, version
1:9.7.2.dfsg.P3-1.1

• Secure Shell, SSH: openssh-server, version
1:5.5p1-6

• Proxy web: squid3, version 3.1.6-1.2
• Web server: apache2, version 2.2.16-6
• Time server: ntp, version 1:4.2.6.p2+dfsg-1+b1
• SNMP service: snmpd, version 5.4.3~dfsg-2
• Servidor VPN: openvpn, version 2.1.3-2

In addition, we had: munin, to monitor server
status and sarg, to generate proxy use report.
Most of the current GNU/Linux distributions have
a wide range of network traffic management,
control, and monitoring tools in their repositories
[4]. This study is based on the GNU/Linux Debian
[5] distribution, and we will also discuss in further
detail some of the tools that, when used jointly,
enable the system to manage traffic efficiently and
provide quality services at the Junin/IL project.
The tools used are iptables [6], iproute [7], squid
[8] and those to monitor heavy traffic such as
snmpd, mrtg [9], RRDTool [10], wireshark [11],
iptraf [12], somokeping [13], flowscan [14],
icinga [15].

3.2 Configurations

To provide the required service quality and restrict
bandwidth use per user to 256KBPS, we used
Squid proxy delay pools. This allows queues to be
set per client (identified by its IP) or per sub-

Fig. 1

Fig. 2

JCS&T Vol. 12 No. 2 August 2012

80

network. Then the queue is set to allow a
maximum bandwidth. When a client reaches this
limit, packages are delayed to adjust traffic to the
specified rate.

Web traffic coming from the wifi network is
redirected so that it can go through the proxy:

iptables -t nat -A PREROUTING -i

${LAN_WIFI} -p tcp --dport 80 -j

REDIRECT --to-port 3128

There are two important values: The first one sets
the rate to which traffic should adapt; the second
one sets the initial rate per client. Since web
navigation is usually in blasts, it is good for the
client to be able to download more data (1MB)
initially and then limit to the indicated rate. Limits
are specified in bytes, therefore, we specified
32000B for 256Kbps.

There are two queues: an unlimited one (for
clients connected through VPN to carry out
management tasks) and another one with the
required limits. Details concerning the types of
delay pools in Squid, preset performance and
configuration fall beyond the scope of this study.
The proxy configuration is in file
/etc/squid3/squid.conf, and part of the delay pools
are listed below:

acl lan_wifi src 172.20.0.0/16

acl vpn src 192.168.138.0/24

…

delay_pools 2

delay_initial_bucket_level 50

delay_class 1 1

delay_parameters 1 -1/-1

delay_class 2 3

delay_parameters 2 -1/-1 -1/-1 32000/128000

delay_access 1 allow vpn

delay_access 1 deny all

delay_access 2 allow lan_wifi

delay_access 2 deny all

Any traffic that does not go through the proxy
creates queues (qdisc[24]). In the following script,
INT_IF is the internal interface and EXT_IF is the
interface connected with the WAN link.

An htb queue is set (a hierarchy of classes that
can make up traffic at the specified rates) in the
internal interface and an sfq queue (Stochastic
Fairness Queueing) which reorders traffic on the
queue so that each session can send a package in
turn) for the interface connected to the Internet.
Due to performance reasons [27], traffic in the
wireless network travelling at more than 20mbit is
not desirable.

#!/bin/bash

INT_IF=<interfaz con la LAN>

EXT_IF=<interfaz con Internet>

local TCQ="tc qdisc add dev ${INT_IF} "

local TCC="tc class add dev ${INT_IF} "

local TCF="tc filter add dev ${INT_IF} "

local AB="20mbit"

tc qdisc add root dev ${EXT_IF} sfq \

perturb 10

${TCQ} root handle 1: htb default 30 r2q 20

${TCC} parent 1: classid 1:1 htb rate ${AB}\

ceil ${AB} burst 2k

${TCC} parent 1:1 classid 1:10 htb rate 7mbit\

ceil 10mbit burst 2k

${TCC} parent 1:1 classid 1:20 htb rate 1mbit\

ceil 2mbit burst 2k

${TCC} parent 1:1 classid 1:30 htb rate \

512kbit ceil 1mbit burst 2k

${TCQ} parent 1:10 handle 10: sfq perturb 10

${TCQ} parent 1:20 handle 20: sfq perturb 10

${TCQ} parent 1:30 handle 30: sfq perturb 10

${TCF} protocol ip parent 1:0 prio 1 handle 1\

fw flowid 1:10

${TCF} protocol ip parent 1:0 prio 1 handle 2\

fw flowid 1:20

To label traffic:

iptables -A OUTPUT -t mangle -o ${INT_IF} \

-p tcp --match multiport --sports \

3128, 443, 53,123 -j MARK --set-mark 0x1

iptables -A OUTPUT -t mangle -o ${INT_IF} -p \

tcp --match multiport --sports \

110,143,993,995 -j MARK --set-mark 0x2

According to these commands, traffic coming
from the Proxy, or belonging to the https, dns or
ntp protocols, is labeled with a “1” and sent to the
qdisc 1:10, which has 7mbits and a level above
10mbits. Most of this kind of traffic will come
from the Proxy.

The ideal thing would be to estimate accurately
how much of the web traffic used comes out
through the proxy (hit) and how much was not in
the proxy and had to be required (miss) based on
the monitoring. If the queue is set with the
“exact” bandwidth of the wan link, it is
guaranteed that there will be no congestion
problems on the outgoing interface but the
additional bandwidth provided by the proxy when
it hit is lost. It such figure is overestimated, the
QoS configuration is no longer useful because the
packages are in a bottleneck situation and they
would not go into the queue of our QoS server but

JCS&T Vol. 12 No. 2 August 2012

81

Fig. 3

they will go into the Internet link that is behind
the server outgoing interface.

With the second rule of iptables, if traffic comes
from pop3 services, imap, pop3s or imap, it is
marked with a “2” and placed in the 1:20 queue
with a reserved 1mbit.

The remaining traffic goes to the 1:30 queue with
512K and it can climb to 1 mega, when link is
idle.

All this aims at preventing clients connected to the
wifi network to abuse the service by means of p2p
applications since they will only be able to
download 1mbit only if no-one else across the
whole network is using a similar protocol.

4 Reports

The mrtg demon collects periodic statistics of the
use of links via SNMP (Fig. 3) and builds graphs
indicating the total incoming and outgoing traffic,
without segregating it by protocol type. Graphs
are generated dynamically through a cgi on the
web server. These graphs show where the service
is being used, the bandwidth consumed and the
use peaks, as well as how the traffic on each
terminal is added on the mesh central equipment.

The set of
flowscan

application
s (netflow)

collect
informatio

n on the
central
server

concerning
the number
of flows

routed,
recording

its type and size (Fig. 4 and 5).

When there is a congestion, or there are problems
on the links, latency goes up. To monitor this
variable, we use smokeping, which sends ICMP
packages periodically, recording the reply times.
The sarg tool prepares daily, weekly and monthly
reports of the proxy use, recording users (IP),
destinations, times and flow sizes. The icinga
(Nagios fork) shows the current state of the links
and server and it can send e-mails and sms if it
detects that a node is down. The munin tool
delivers information concerning the server's
status, such as the following: memory use and

server CPU load, number of processes and
accesses to the web server, I/O on disc, latency, %
of use, temperature, number of connections
through the firewall, errors on the interfaces,
traffic rate on the network interfaces, connections
managed, proxy cache status, number of clients
and traffic managed.

5 Conclusions

Our aim was to analyze the problem of the
increasing traffic on data networks, the increasing
requirements on bandwidth and the congestion
and loss of service quality issues; tools to deal

with these
problems

were
introduce

d through
the

implemen
tation of

traffic
shaping

and traffic
policing

on
GNU/Lin

ux in a
real

scenario where free Internet access was provided
at public areas in the city of Junín, including the
main square, the squares near the bus terminal and
the square in front of the railway station using free
software tools available to implement QoS
management.

During this implementation we were able to:

Analyze the issue of increasing traffic in data
networks and the need to identify and give priority
to a certain kind of traffic.

Study the existing solutions to achieve traffic
control and quality of service.

Analyze the
implementation
of queues in
depth in order
to achieve QoS
and compare
the different

classes
andvarieties

developed.

Fig. 4

Fig. 5

JCS&T Vol. 12 No. 2 August 2012

82

Analyze the tools provided by GNU/Linux to
manage traffic queues.

Study the performance of HTB queues on
laboratory and real scenarios.

The tools provided by GNU/Linux are mature,
documented and have been widely proved in the
past few years.

The initial implementation of this kind of
solutions is relatively simple. The real job is to
adjust them to meet the objectives for which it
was developed. If the outgoing bandwidth is 5
megabytes and the proxy's success/failure rate is
around 50%, it is necessary to adjust the
preestimated values regarding what the total
traffic bandwidth to be consumed by the wireless
network should be. Supposing that 50% of the
network’s request are solved by the proxy, then
the QoS queues are set at 10 Mbps. If the success
rate falls, this means that out of the 10 Mbps that
reach the proxy, more than 5 Mbps of data need to
be searched from the Internet. If the link is 5
Mbps, there is a bottleneck and all the queuing
infrastructure (placed before the bottleneck)
becomes inoperative. Then the bandwidth of the
WAN link is extended or the highest limit of
traffic is reduced. This is why it is necessary to
monitor and adjust configurations on a regular
basis in these implementations.

The proxy configuration manages bandwidth per
client efficiently and the HTB queues do the same
with the rest of the traffic. For a medium level of
traffic, the solution discussed above is effective,
economical and has been working properly since
December 2010.

6 Bibliography

1. Stallings, William. “Redes e Internet de Alta
Velocidad. Rendimiento y Calidad de
Servicio”, (High-speed Networks and Internet.
Performace and Quality of Service) pág 16.
 ISBN: 978-84-205-3921-8, Prentice Hall.

2. Internetwork Operating System, Cisco
Systems.

3. “Architecture for Differenciated Services
http://tools.ietf.org/rfc/rfc2475.txt

4. Busybox (http://www.busybox.net/about.html),
5. http://www.debian.org
6. http://www.netfilter.org/
7. http://www.linux-

foundation.org/en/Net:Iproute2
8. http://www.squid-cache.org/
9. http://oss.oetiker.ch/mrtg/
10. http://oss.oetiker.ch/rrdtool/
11. http://www.wireshark.org/
12. http://iptraf.seul.org/
13. http://oss.oetiker.ch/smokeping/
14. http://www.caida.org/tools/utilities/flows

can/
15. http://www.icinga.org
16. http://riutec.riu.edu.ar/lib/exe/fetch.php?

media=wlc-slides.pdf
17. http://www.aui.edu.ar/
18. http://www.cisco.com/en/US/prod/collate

ral/wireless/ps5679/ps8368/data_sheet_c78-
532987.html

19. http://www.cisco.com/en/US/products/ps
7221/index.html, con software de control
WCS:

20. http://www.cisco.com/en/US/products/ps
6305/index.html

21. http://www.wavionnetworks.com/
22. http://www.planet.com.tw/en/product/pro

duct_ov.php?id=5774
23. http://wiki.squid-

cache.org/Features/DelayPools
24. See tc manual for qdisc at

http://linux.die.net/man/8/tc

http://es.wikipedia.org/wiki/IEEE_802.11#802.11
a

JCS&T Vol. 12 No. 2 August 2012

83

