
An approach for Temporal Argumentation Using Labeled
Defeasible Logic Programming (`-DeLP)

Maximiliano C. Budán1,2,3 Mauro Gómez Lucero1,2

Guillermo R. Simari2

1 Argentine National Council of Scientific and Technical Research (CONICET), ARGENTINA
2 AI Research and Development Laboratory (LIDIA) – Universidad Nacional del Sur, ARGENTINA

3 Universidad Nacional de Santiago del Estero, ARGENTINA

E-mail: {mcdb,mjg,grs}@cs.uns.edu.ar

Abstract
In the last decade, several argument-based formalisms
have emerged, with application in many areas, such
as legal reasoning, autonomous agents and multi-agent
systems; many are based on Dung’s seminal work char-
acterizing Abstract Argumentation Frameworks (AF).
Recent research in the area has led to Temporal Argu-
mentation Frameworks (TAF), that extend AF by con-
sidering the temporal availability of arguments. On
the other hand, different more concrete argumentation
systems exists, such as Defeasible Logic Programming
(DeLP), specifying a knowledge representation lan-
guage, and how arguments are built.

In this work we combine time representation capabil-
ities of TAF with the representation language and argu-
ment structure of DeLP, defining a rule-based argumen-
tation framework that considers time at the object lan-
guage level. In order to do this, we use an extension of
DeLP, called Labeled DeLP (`-DeLP) to establish, for
each program clause, the set of time intervals in which
it is available, and to determine from this information
the temporal availability of arguments. Acceptability
semantics for TAF can then be applied to determine ar-
gument acceptability on time.
Keyword: Argumentation, Temporal Availability, De-
feasible Logic Programming, Labeled Defeasible Logic
Programming.

1 Introduction
Argumentation is the process of defending a given af-
firmation by giving reasons for its acceptance. Both the
original claim and its support are subject to considera-
tion, since reasons supporting conflicting claims can be
proposed.

An argument is a structure composed of a claim (or
conclusion) along with the reasons supporting it, called
premisses, and a description of the way in which such

premisses support the claim. The latter component is
commonly referred to as inference.

The process of argumentation can be understood as a
game between two players: the proponent which pro-
poses an initial argument and tries to defend it, and
then opponent whose role in the game is to interfere the
original argument. An argument offered to undermine
another argument is called counterargument. The pro-
ponent’s arguments are called arguments pro and the
opponent’s op. Thus, the process begins with the in-
troduction of a pro argument by the proponent, then the
opponent offers their arguments op. In this moment, the
proponent becomes opponent of his opponent and of-
fers counterarguments to their counterarguments. The
process continues in this way until all the relevant argu-
ments where considered. As a result of this argumen-
tation process, the initially proposed argument will be
considered as accepted if and only if, is successfully
defended from all its counterarguments in this process.

Initially proposed by Dung [7], the abstract model of
argumentation considers a set of arguments, as atomic
(structureless) units, and a binary relation defined on
the set of arguments representing attack, allowing to
concentrate on the acceptability analysis described be-
fore. Formally, an abstract argumentation framework
is a pair AF = 〈AR,Attacks〉, where AR is the set of
arguments considered and Attacks represents the rela-
tionship of attack on AR. Different argument accept-
ability semantics were proposed for this abstract frame-
work.

There exist many extensions that emerged from this
abstract formalism, among them is the Timed Abstract
Framework (TAF – [5, 6]), which allows to specify time
availability for arguments, and determine the time inter-
vals in which an argument is acceptable. TAF extends
the AF of Dung by adding a function Av that defines
the time intervals in which the arguments are available,
resulting in a 3-tuple 〈AR,Attacks,Av〉, and different
acceptability semantics considering time were defined

JCS&T Vol. 12 No. 2 August 2012

56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15776532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for TAF.
Besides abstract argumentation approaches, differ-

ent more concrete argumentation systems exists, spec-
ifying a knowledge representation language, and how
arguments are built. One of those systems is De-
feasible Logic Programming (DeLP - [8]), a formal-
ism that combines results of Logic Programming and
Defeasible Argumentation. DeLP allows representing
information in the form of weak rules in a declara-
tive way, from which arguments supporting conclu-
sions are constructed, and provides a defeasible argu-
mentation inference mechanism for determining war-
ranted conclusions. The defeasible argumentation ba-
sis of DeLP allows to build applications that deal with
incomplete and contradictory information in dynamic
domains. Thus, the resulting approach is suitable for
representing agent’s knowledge and for providing an ar-
gumentation based reasoning mechanism to agents.

The aim of this paper is to introduce a rule-based ar-
gumentation framework considering time at the object
language level. We used a extension of DeLP called
Labeled DeLP(`-DeLP– [9]) to establish, for each pro-
gram clause, the set of time intervals in which it is avail-
able, and to determine from this information the tempo-
ral availability of arguments. Finally acceptability se-
mantics for TAF can be applied to determine argument
acceptability on time.

2 Abstract Argumentation
Argumentation has evolved into a powerful paradigm
to formalize commonsense reasoning. Phan Minh
Dung [7] introduced the notion of Argumentation
Framework (AF) as an abstraction of a defeasible argu-
mentation system. In the AF an argument is considered
as an abstract entity with unspecified internal structure,
and whose role is determined only by its attack relations
with other arguments.

Definition 1 (Argumentation Framework [7])
An argumentation framework (AF) is a pair
〈AR,Attacks〉, where AR is a set of arguments,
and Attacks is a binary relation on AR i.e.,
Attacks ⊆ AR×AR.

Given an AF, an argument A is considered accept-
able if it can be defended of all its attackers (arguments)
with other arguments in AR. This intuition is formal-
ized in the following definitions, originally presented
in [7].

Definition 2 (Acceptability) Let AF =
〈AR,Attacks〉 be an argumentation framework.

- A set S ⊆ AR is called conflict-free if there are no
argumentsA,B ∈ S such that (A,B) ∈ Attacks.

- An argument A ∈ AR is acceptable with respect
to a set S ⊆ AR iff for each B ∈ AR, if B attacks
A then B is attacked by S.

- A conflict-free set S ⊆ AR is admissible iff each
argument in S is acceptable with respect to S.

- An admissible set E ⊆ AR is a complete exten-
sion of AF iff E contains each argument that is
acceptable with respect to E.

- A set E ⊆ AR is the grounded extension of AF
iff E is minimal with respect to set inclusion, such
that is admissible and complete.

Dung [7] also presented a fixed-point characteriza-
tion of the grounded semantics based on the character-
istic function F defined below.

Definition 3 Let 〈AR,Attacks〉 be an AF . The as-
sociated characteristic function is defined as follows:
F : 2AR → 2AR, F (S) =def {A ∈ AR | A is accept-
able w.r.t. S}.

The following proposition suggests how to compute
the grounded extension associated with a finitary AF
(i.e., such that each argument is attacked by at most a
finite number of arguments) by iteratively applying the
characteristic function starting from ∅.

Proposition 1 [7] Let 〈AR,Attacks〉 be a finitary
AF . Let i ∈ N∪{0} such that F i(∅) = F i+1(∅). Then
F i(∅) is the least fixed point of F , and corresponds to
the grounded extension associated with the AF.

Example 1 Consider the AF 〈AR,Attacks〉
(graphically represented in Fig. 1), where
AR = {A,B,C,D,E, F,G} and Attacks =

{(B,A), (C,B), (E,A), (G,E), (F,G), (G,D)}.

B C
A

G F

D

E

Figure 1: Argumentation Framework

The set S = {C,D,E, F} is admissible, since it defends all
the arguments it contains. S is also complete since it con-
tains all the arguments in AR defended by S. Finally, it can
be verified that S is the minimal set satisfying the previous
conditions, and therefore it corresponds to the grounded ex-
tension of AR. Next we show how to obtain the grounded
extension by applying the fixed point characterization from
Prop. 1.
F 0(∅) = ∅

JCS&T Vol. 12 No. 2 August 2012

57

F 1(∅) = F (∅) = {C,F}
F 2(∅) = F ({C,F}) = {C,F,D,E}
F 3(∅) = F ({C,F,D,E}) = F 2(∅)

3 Modeling Temporal Argumenta-
tion with TAF

Many formalizations are based on Dung´s proposed
framework, extending its representation capabilities.
Among them is the Timed Abstract Framework
(TAF) [5, 6], a novel argumentation formalism where
arguments are valid only during specific intervals of
time (called availability intervals). Attacks between ar-
guments are considered only when both the attacker and
the attacked arguments are available. Thus, when
identifying the set of acceptable arguments the outcome
associated with a TAF may vary in time.

In order to represent time we assume that a corre-
spondence was defined between the time line and the
positive reals set (the positive X-axis). A time interval,
representing a period of time without interruptions, will
be then represented as a real interval [a−b] (we use ‘−’
instead of ‘,’ as a separator for legibility reasons).

Definition 4 (Time Interval) A time interval, or just
interval, is a real interval.

As is usual for real intervals, to indicate that one of
the endpoints (extremes) of the interval is to be ex-
cluded, the corresponding square bracket will be re-
placed with a parenthesis (e.g., (a, b] to exclude the end-
point a).

Now, to model discontinuous periods of time we in-
troduce the notion of time intervals set. Although a time
intervals set suggests a representation as a set of sets
(set of intervals), we chose a flattened representation
as a set of reals (the set of all real numbers contained in
any of the individual time intervals). In this way, we can
directly apply traditional set operations and relations on
time intervals sets.

Definition 5 (Time Intervals Set) A time intervals set,
or just intervals set, is a subset S ⊆ <.

When convenient we will use the set of sets notation
for time intervals sets. Concretely, a time interval set
S (⊆ <) will be denoted as the set of all disjoint and
⊆-maximal individual intervals included in the set. For
instance, we will use {(1− 3], [4.5− 8)} to denote the
time interval set (1− 3] ∪ [4.5− 8)

Now we formally introduce the notion of Timed
Argumentation Framework, which extends the AF of
Dung by incorporating an additional component, the
availability function, which will be used to capture
those time intervals where arguments are available.

Definition 6 (Timed Argumentation Framework)
A timed argumentation framework (or simply TAF)
is a 3-tuple 〈AR,Attacks,Av〉 where AR is a set
of arguments, Attacks is a binary relation defined
over AR and Av is an availability function for timed
arguments, defined as Av : AR −→ ℘(<), such
that Av(A) is the set of availability intervals of an
argument A.

Example 2 Let Φ = 〈AR,Attacks,Av〉 be a TAF
where:
AR = {A,B,C,D,E, F,G}
Attacks = {(B,A), (C,B), (E,A), (G,E), (F,G),

(G,D)}
Av = {(A, {[10 − 50], [80 − 120]}); (B, {[55 − 100]});
(C, {[40 − 90]}); (D, {[10 − 30]}); (E, {[20 − 75]});
(F, {[5− 30]}); (G, {[10− 40]})} (See Fig. 2)

E

[20-75]

G

[10-40]

D

[10-30]

F

[5-30]

C

[40-90]

B

[55-100] A

[10-50]

[80-120]

Figure 2: TAF corresponding to example 2

The following definitions formalize argument ac-
ceptability in TAF, and are extensions of the accept-
ability notions presented in section 2 for AF. Firstly we
present the notion of t-profile, binding an argument to
a set of time intervals, which constitutes a fundamental
component for the formalization of time-based accept-
ability.

Definition 7 (T-Profile) Let Φ = 〈AR,Attacks,Av〉
be a TAF. A timed argument profile in Φ, or just t-
profile, is a pair ρ = (A, τ) where A ∈ AR and τ is a
set of time intervals. The t-profile (A,Av(A)) is called
the basic t-profile of A.

Since the availability of arguments varies in time,
the acceptability of a given argument A will also vary
in time. The following definitions reformulate Dung’s
original formalization for abstract argumentation by
considering t-profiles instead of arguments.

Definition 8 (Defense of A from B w.r.t. S)
Let S be a set of t-profiles. Let A and B
be arguments. The defense t-profile of A
from B w.r.t. S is ρA = (A, τBA), where:
τBA =def Av(A) − Av(B)

⋃
{(C,τC)∈S | C Attacks B}

(Av(A) ∩Av(B) ∩ τC)

JCS&T Vol. 12 No. 2 August 2012

58

Intuitively, A is defended from the attack of B when
B is not available (Av(A) − Av(B)), but also in those
intervals where, although the attacker B is available, it
is in turn attacked by an argument C in the base set S.
The following definition captures the defense profile of
A, but considering all its attacking arguments.

Definition 9 (Acceptable t-profile of A w.r.t. S)
Let S be a set of t-profiles. The acceptable t-
profile for A w.r.t. a set S is ρA = (A, τA), where
τA =def ∩{B Attacks A}τ

B
A and (A, τBA) is the defense

t-profile of A from B w.r.t. S.

Since an argument must be defended of all its attacks
to be considered acceptable, we have to intersect the set
of time intervals in which it is defended of each of its
attackers.

Definition 10 (Acceptability) Let AF =
〈AR,Attacks,Av〉 be a temporal argumentation
framework.

- A set S of t-profiles is called t-conflict-free if there
are no t-profiles (A, τA), (B, τB) ∈ S such that
(A,B) ∈ Attacks and τA ∩ τB 6= ∅.

- A t-conflict-free set S of t-profiles is a t-admissible
set iff ∀ (A, τA) ∈ S it holds that (A, τA) is the
acceptable t-profile of A w.r.t. S.

- A t-admissible set S is a t-complete extension of
TAF iff S contains all the t-profiles that are ac-
ceptable with respect to S.

- A set S is the t-grounded extension of TAF iff S
is minimal with respect to set inclusion such that
is t-admissible and t-complete.

In particular, the fixed point characterization for
grounded semantics proposed by Dung can be directly
applied to TAF by considering the following modified
version of the characteristic function.

Definition 11 Let 〈AR,Attacks,Av〉 be a TAF. Let
S be a set of t-profiles. The associated charac-
teristic function is defined as follows: F (S) =def

{(A, τ) | A ∈ AR and (A, τ) is the acceptable t-profile
of A w.r.t. S}.

Example 3 Suppose we want to establish the accept-
ability of A in the TAF Φ presented in example 2. As
shown in example 1 of AF, by considering only the
relation Attacks we could say that the argument A is
not acceptable. Let us obtain the t-grounded extension
of Φ by applying the fixed point characterization.

F 0(∅) = ∅
F 1(∅) = {(A, {[10− 20), (100− 120]}); (C, {[40− 90]});

(F, {[5− 30]}); (B, {(90− 100]}); (E, {(40− 75]}; }

(G, {(30− 40]})}
F 2(∅) = {(A, {[10− 40], [80− 90], (100− 120]});

(C, {[40− 90]}); (F, {[5− 30]}); (B, {(90− 100]});
(E, {[20− 30], (40− 75]}); (G, {(30− 40]})}

F 3(∅) = {(A, {[10−20), (30−40), [80−90), (100−120]});
(C, {[40− 90]}); (F, {[5− 30]}); (B, {(90− 100]});
(E, {[20− 30], (40− 75]}); (G, {(30− 40]})}

F 4(∅) = F 3(∅)
Consequently, F 3(∅) is the t-grounded extension of Φ.
Next we describe how the temporal availability of A
was obtained in F 3(∅) by applying the definitions 8
and 9 from F 2(∅). By applying definition 8:

τBA = (Av(A)−Av(B))
⋃

{(C,τC)}(Av(A)∩Av(B)∩τC)
= ({[10− 50], [80− 120]} − {[55− 100]}) ∪

({[10− 50], [80− 120]} ∩ {[55− 100]} ∩ {[40− 90]})

= {[10− 50], (100− 120]} ∪ [80− 90]
= {[10− 50], [80− 90], (100− 120]}

τEA = (Av(A)−Av(E))
⋃

{(G,τG)}(Av(A)∩Av(B)∩τG)
= {[10− 20), (30− 40], [80− 120]}

By applying definition 9:

τA = ∩{X Attacks A}τ
X
A = τBA ∩ τEA

= {[10− 50], [80− 90], (100− 120]} ∩
{[10− 20), (30− 40], [80− 120]}

= {[10− 20), (30− 40], [80− 90], (100− 120]}

4 Defeasible Logic Programming
Besides abstract argumentation approaches, like those
presented in sections 2 and 3, different more concrete
argumentation systems exists, specifying a knowledge
representation language, and how arguments are built.
One of those systems is Defeasible Logic Program-
ming (DeLP - [8]), a formalism that combines results
of Logic Programming and Defeasible Argumentation.
DeLP allows representing information in the form of
weak rules in a declarative way, from which arguments
supporting conclusions are constructed, and provides a
defeasible argumentation inference mechanism for de-
termining warranted conclusions. The defeasible ar-
gumentation basis of DeLP allows to build applications
that deal with incomplete and contradictory information
in dynamic domains. Thus, the resulting approach is
suitable for representing agent’s knowledge and for pro-
viding an argumentation based reasoning mechanism to
agents.

Below we present the definitions of program and ar-
gument in DeLP.

Definition 12 (DeLP Program) A DeLP programP is
a pair (Π,∆) where (1) ∆ is a set of defeasible rules

JCS&T Vol. 12 No. 2 August 2012

59

10 20 30 40 50 60 70 80 90 100 110 120

A A A A A A A

 B B

 C

E E E

G G

F

D

Time

Figure 3: Representation of the arguments associated with Ex. 3 in a time line

of the form L —< P1, . . . , Pn, with n > 0, where L and
each Pi are literals, and (2) Π is a set of strict rules of
the form L←− P1, . . . , Pn, with n ≥ 0, where L and
each Pi are literals. A literal L is a ground atom A or
a negated ground atom ∼A, where ‘∼’ represents the
strong negation.

Pragmatically, strict rules can be used to represent
strict (non defeasible) information, whereas defeasible
rules are used to represent tentative or weak informa-
tion. In particular, a strict rule L←− P1, . . . , Pn with
n = 0 is called fact, and will be denoted just as L. It
is important to remark that the set Π must be consistent
as it represents strict (undisputed) information. In con-
trast, the set ∆ will generally be inconsistent, since it
represents tentative information.

Definition 13 (Defeasible Derivation) Let P be a
DeLP program and L a ground literal. A defeasible
derivation of L from P consists of a finite sequence
L1, . . . , Ln = L of ground literals, such that for
each i, 1 ≤ i ≤ n, Li is a fact or there exists a rule
Ri in P (strict or defeasible) with head Li and body
B1, . . . , Bm, such that each literal on the body of the
rule is an element Lj of the sequence appearing before
Li (j ≤ i). We will use P |∼ L to denote that there
exists a defeasible derivation of L from P .

We say that a given set of DeLP clauses is contradic-
tory if and only if there exists a defeasible derivation for
a pair of complementary literals (w.r.t. strong negation)
from this set.

Definition 14 (Argument) Let L be a literal and
P = (Π,∆) be a DeLP program. An argument for L
is a pair 〈A,L〉, where A is a set of defeasible rules of
∆, such that:

1. there is a defeasible derivation for L from Π ∪ A.

2. Π ∪A is not contradictory, and

3. A is a minimal, i.e., there exist no proper subset
A′, A′ ⊂ A satisfying conditions (1) and (2).

We say that an argument 〈B,Q〉 is a sub-argument of
〈A,L〉 iff, B ⊆ A.

DeLP provides an argumentation based mechanism
to determine warranted conclusions. This procedure
involves constructing arguments from programs, identi-
fying conflicts or attacks among arguments, evaluating
pairs of arguments in conflict to determine if the attack
is successful, becoming a defeat, and finally analyzing
defeat interaction among all relevant arguments to de-
termine warrant.

Below we briefly present the formalization of the pre-
viously mentioned notions, as introduced in [8].

Definition 15 (Disagreement) Let P = (Π,∆) be a
DeLP program. Two literals L and L′ are in disagree-
ment if and only if the set Π∪ {L,L′} is contradictory.

The simplest example of literals in disagreement are
two complementary literals as “p” and “∼p”, since
Π ∪ {p,∼p} is a contradiction, whatever the set Π.
However, two non-complementary literals, like “p” and
“q”, can disagree e.g., if Π = {h← p,∼h← q}.

Definition 16 (Attack) Let P = (Π,∆) be a DeLP
program. Let 〈A1, L1〉 and 〈A2, L2〉 be two arguments
in P . We say that 〈A1, L1〉 counter-argues, rebuts, or
attacks 〈A2, L2〉 at the literal L if and only if there is
a sub-argument 〈A,L〉 of 〈A2, L2〉 such that h and L1

are in disagreement. The argument 〈A,L〉 is called dis-
agreement sub-argument, and the literal L will be the
counter-argument point.

In order to decide if a partial attack really succeeds,
constituting a defeat, a comparison criterion must be
used, establishing the relative strength of the arguments
involved in the attack. In this work we will use the cri-
terion adopted by default in DeLP, called specificity,
which favors arguments based on more information or
supporting their conclusions more directly. The formal
definition is presented below.

JCS&T Vol. 12 No. 2 August 2012

60

Definition 17 (Specificity) LetP = (Π,∆) be a DeLP
program, and let ΠG be the set of all strict rules from
Π (without including facts.) Let F be the set of all liter-
als that have a defeasible derivation from P (F will be
considered as a set of facts.) Let 〈A1, L1〉 and 〈A2, L2〉
be two arguments fromP . 〈A1, L1〉 is strictly more spe-
cific than 〈A2, L2〉 (denoted 〈A1, L1〉 � 〈A2, L2〉) if the
following conditions hold:

1. For allH ⊆ F : if ΠG∪H∪A1|∼L1 and ΠG∪H 0
L1, then ΠG ∪H ∪A2|∼L2 and

2. there exists H ′ ⊆ F such that ΠG ∪H ′ ∪A2|∼L2

and ΠG ∪H ′ 0 L2, and ΠG ∪H ′ 0 L1

Definition 18 (Defeat) Let P = (Π,∆) be a DeLP
program. Let 〈A1, L1〉 and 〈A2, L2〉 be two arguments
in P . We say that 〈A2, L2〉 defeats 〈A1, L1〉 if and only
if there exists a sub-argument 〈A,L〉 of 〈A1, L1〉 such
that 〈A2, L2〉 counter-argues 〈A1, L1〉 at literal h and
it holds that:

1. 〈A2, L2〉 is strictly more specific that 〈A,L〉
(proper defeater), or

2. 〈A2, L2〉 is unrelated to 〈A,L〉 (blocking defeater)

In DeLP a literal L will be warranted if there exists
a non-defeated argument structure 〈A,L〉; to establish
whether 〈A, h〉 is non-defeated, the set of defeaters for
A will be considered. Since each defeater D for A is
itself an argument structure, defeaters forD will in turn
be considered, and so on. This analysis suggests a tree
structure with nodes representing arguments and edges
representing defeats, called dialectical tree, in which
DeLP bases the analysis of warrant.

5 DeLP with time through Labels
In real application domains of argumentation requiring
the explicit treatment of time, temporal information is
not in general directly associated with arguments, but
instead it is attached to the basic pieces of knowledge
(in general logical rules) from which arguments are
built. Since we will use the DeLP language to instanti-
ate abstract arguments in TAF, we need a way to asso-
ciate temporal availability information to DeLP clauses.

In this direction we will use an extension of DeLP,
called `-DeLP (labelled DeLP – [9]) which incorpo-
rates the possibility to add meta-information (through
labels) to DeLP clauses for specific purposes. The
meta-information could be: probability, certainty, re-
liability of the source, and even time intervals.

The formalism `-DeLP considers the following ele-
ments:

1. A domain of labels Γ, used to represent the meta-
information.

2. An association of a label of the domain to each
program clause.

3. A function ALS (Argument Label Synthesis),
ALS : 2Γ −→ Γ, specifying how to obtain the
label associated with an argument from the labels
of the clauses composing it.

In order apply `-DeLP to capture the availability of
arguments we will use labels to represent time intervals
sets, and we will define ALS function as the intersection
of the labels associated with individual clauses. For-
mally:

1. The labels domain Γ is the set 2R.

2. An association of a time interval set (label) to each
program clause.

3. The function ALS is defined as follows:
ALS(τ1, τ2, ..., τn) =def τ1 ∩ τ2 ∩ ... ∩ τn.

Example 4 Next we present a `-DeLP program. This
program will give rise to the TAF of the example 2. (See
Figure 2).

P =

a —< s, k : {[10 − 60]; [80 − 150]} ∼n ←− m, t : {[40 − 65]}
s —< j, l : {[10 − 60]; [80 − 130]} ∼f ←− j, p : {[5 − 30]}
c ←− j, k : {[0 − 120]} r ←− p, t : {[10 − 30]}
k —< m, l : {[10 − 50]; [70 − 140]} j : {[0 − 150]}
∼k —< j, n : {[30 − 75]} l : {[0 − 150]}
n —< c, l : {[55 − 100]} m : {[0 − 150]}
∼s —< j, r : {[0 − 90]} t : {[0 − 150]}
r ←− l, p : {[20 − 130]} p : {[0 − 150]}
∼r ←− j, f : {[10 − 60]} c : {[0 − 150]}
f ←− p,m : {[0 − 40]}

Figure 4 depicts an argument with respect to pro-

gram P (corresponding to the argument A in exam-
ple 2), and describes how the argument label is com-
puted from the labels of its composing clauses through
ALS application.

{[10-130]}

{[10-50];[70-140]}

{[0-120]}

{[10-60];[80-150]}

s

a

c

j k j l

m l

{[10-50];[80-120]}

Figure 4: Argument A and associated label

Finally, in order to define the acceptability of argu-
ments in our `-DeLP instantiation, we will just con-
struct, from the labeled program, a TAF involving all
the constructible arguments with their availability cap-
tured through labels (see Figure 5).

In this case the TAF constructed corresponds to the
one in example 2, resulting in the same acceptability
analysis.

JCS&T Vol. 12 No. 2 August 2012

61

E

[20-75]

G

[10-40]

D

[10-30]

F

[5-30]

C

[40-90]

B

[55-100]
A

[10-50]

[80-120]

s

a

c

j k j l

m l

[10-130] [0-120]

[10-50]

[70-140]

{[10-60];[80-150]}

Figure 5: TAF obtained from a `-DeLP program P

6 Conclusions. Related and Fu-
ture Work

Argumentation has contributed with a human-like
mechanism to the formalization of commonsense rea-
soning. Among the main argumentation based ap-
proaches is the abstract framework (AF) of Dung,
which has proven to be fruitful for developing sev-
eral extensions with application in different contexts
(e.g. [3, 2, 4, 1], among many others).

On the one hand, our work focuses on one of those
extensions, called TAF, incorporating to AF the capa-
bility to represent temporal availability associated with
(abstract) arguments, and considering argument accept-
ability varying on time. On the other hand, to provide
structure to temporal arguments, we consider a con-
crete, fully specified (non-abstract) argumentation for-
malism called DeLP.

Then, in this work we combined TAF and DeLP, in-
troducing a rule-based argumentation framework con-
sidering time at the object language level. We used
an extension of DeLP, called `-DeLP, to represent, for
each program clause, the set of time intervals in which it
is available, and to determine from this information the
temporal availability of arguments. Finally we shown
how acceptability semantics for TAF can be applied to
determine argument acceptability on time.

As future work we will develop an implementation
of `-DeLP by using the existing DeLP system 1 as a
basis. The resulting implementation will be exercised in
different domains requiring to model availability of the
information varying over time. We are also interested in

1See http://lidia.cs.uns.edu.ar/delp

analyzing the salient features of our formalization in the
context of other argumentation frameworks, such as the
ASPIC+ framework [10], where rationality postulates
for argumentation are explicitly considered.

References
[1] Leila Amgoud and Caroline Devred. Argumen-

tation frameworks as constraint satisfaction prob-
lems. In Salem Benferhat and John Grant, editors,
SUM, volume 6929 of Lecture Notes in Computer
Science, pages 110–122. Springer, 2011.

[2] Gerhard Brewka, Paul E. Dunne, and Stefan
Woltran. Relating the semantics of abstract
dialectical frameworks and standard afs. In
Toby Walsh, editor, IJCAI, pages 780–785. IJ-
CAI/AAAI, 2011.

[3] Gerhard Brewka and Stefan Woltran. Abstract di-
alectical frameworks. In Fangzhen Lin, Ulrike
Sattler, and Miroslaw Truszczynski, editors, KR.
AAAI Press, 2010.

[4] Martin Caminada and Gabriella Pigozzi. On
judgment aggregation in abstract argumentation.
Autonomous Agents and Multi-Agent Systems,
22(1):64–102, 2011.

[5] Maria Laura Cobo, Diego C. Martı́nez, and
Guillermo R. Simari. On admissibility in timed
abstract argumentation frameworks. In Helder
Coelho, Rudi Studer, and Michael Wooldridge,
editors, ECAI, volume 215 of Frontiers in Arti-
ficial Intelligence and Applications, pages 1007–
1008. IOS Press, 2010.

[6] Maria Laura Cobo, Diego C. Martı́nez, and
Guillermo R. Simari. Acceptability in timed
frameworks with intermittent arguments. In
Lazaros S. Iliadis, Ilias Maglogiannis, and Har-
ris Papadopoulos, editors, EANN/AIAI (2), vol-
ume 364 of IFIP Publications, pages 202–211.
Springer, 2011.

[7] Phan M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reason-
ing and logic programming and n-person games.
Artificial Intelligence, 77:321–357, 1995.

[8] Alejandro J. Garcı́a and Guillermo R. Simari. De-
feasible logic programming: An argumentative
approach. Theory Practice of Logic Program-
ming, 4(1):95–138, 2004.

[9] M. Gómez Lucero, C. Chesñevar, G. Simari, and
A. Garcı́a. Extensión de la argumentación rebati-
ble para considerar etiquetas. VIII Workshop de

JCS&T Vol. 12 No. 2 August 2012

62

Investigadores en Ciencias de la Computación,
pages 189–193, 2006.

[10] H. Prakken. An abstract framework for argumen-
tation with structured arguments. Argument and
Computation, 1:93–124, 2010.

JCS&T Vol. 12 No. 2 August 2012

63

