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Abstract We introduce the path player game, a noncooperative network
game with a continuum of mutually dependent set of strategies. This game
models network flows from the point of view of competing network oper-
ators. The players are represented by paths in the network. They have to
decide how much flow shall be routed along their paths. The competitive na-
ture of the game is due to the following two aspects: First, a capacity bound
on the overall network flow links the decisions of the players. Second, edges
may be shared by several players which might have conflicting goals. In
this paper, we prove the existence of feasible and pure-strategy equilibria
in path player games, which is a non-trivial task due to non-continuity of
payoff functions and the infinite, mutually dependent strategy sets. We an-
alyze different instances of path player games in more detail and present
characterizations of equilibria for these cases.

Key words Network games – Equilibria – Path player games

1 Introduction

Various types of games on networks have been studied in recent years. For
instance in routing games [24,5] flow has to be transported from origin to
destination nodes. In load balancing games [20,6] load is to be assigned
to resources. In facility location games and service provider games [29,7],
facilities have to be located and assigned to the demand points. Network
design games [9,2] and coordination games [14,17,4] describe the generation
of networks. In [13,15], properties of social networks are studied.
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In this work we study a new type of routing game. Usually, in routing
games the problem of sending flow in a network is considered from the
point of view of the flow itself, assuming that the flow can choose a path
from origin to destination. An aspect, which has not been considered yet,
is the behavior of the path owners, when they are allowed to choose the
amount of flow that will be sent along their paths. This new approach
models systems where paths are owned by decision makers, like in public
transportation, energy or information networks. The decision makers offer
a certain bandwidth to be used by the flow, like a bandwidth of electricity,
or a certain daily frequency of trains. Equilibria in this model describe a
stable market situation among competing path owners.

A rough description of path player games is given as follows: Consider
a network G and a set of players P , one for each path P ∈ P where the

flow is defined as f : P → R
|P|
+ . Each player’s strategy is to choose a

nonnegative flow fP . An upper bound on the flow is given by the flow rate
r, which shall not be exceed by the overall flow in the network. The flow
rate is motivated by the limited capacity of the network resources and may
arise from society regulations like a limitation of traffic for ecological or
security reasons. Furthermore, each single player has a lower bound, the
security limit ωP . This aspect is important, e.g. in transport optimization.
The violation of both types of bounds is penalized.

More detailed, the benefit is given by three parts: First of all, a cost
functions ce(x) is assigned to each edge e. It is dependent on the flow x
sent along the edge. If the bounds r and ωP are satisfied, the income of a
player is given by the sum of costs over the edges that belong to his path. If
one of the bounds is violated, a constant (negative) benefit is payed. Hence,
the resulting benefit function is in general not continuous. Note that the
benefit needs also not be strictly increasing. So a player is not necessarily
interested in routing as much flow as possible. Handling too much flow could
mean increasing operating costs, for instance due to over-hours or additional
maintenance.

The competitive aspect of the game is given by the flow rate that has to
be satisfied by the overall network flow, and by the fact that the paths may
own edges shared with other paths. Hence, the flow on an edge depends
on the flow on all paths using the edge. The players sharing an edge may
have different objectives regarding that edge, which leads up to competitive
situations.

Violation of the flow rate r needs to be avoided in any case, since it leads
to infeasible solutions. This is done by introducing a high penalty. Another
way is to forbid infeasible solutions. This approach results in a game in
which the strategy sets of the players are mutually dependent. Such games
are called generalized Nash equilibrium (GNE) games, see [16,10]. An often
studied question in GNE games is the existence of equilibria. Path player
games are special instances of GNE games, see [22]. Their structure allows to
prove the existence of equilibria. Note that both approaches, the approach
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of this paper using fixed strategy sets with a penalty, and the GNE path
player game with dependent strategy sets are worthwhile to consider.

Application The following application of path player games is under con-
sideration in the framework of the European project ARRIVAL [1]: To cre-
ate a public transportation network, like a railway or bus network, lines
have to be installed. In particular, the lines are given by their stops, for
instance a railway line may go from Hamburg to Basel with intermediate
stops in between. Assigned to each line is its frequency, i.e. how often the
line travels within a given time horizon, for instance twice a day. The line
plan has to satisfy the customers’ demand and has to respect upper bounds
to limit the frequencies on the edges. These bounds are usually given for
security reasons, e.g. only one train is allowed to be on a block1 at any
time. Summarizing, the question of line planning is: Which lines and what
frequencies shall be installed such that demand and security constraints
are satisfied? This problem can be modeled as a type of path player game,
called line planning game, in which the potential lines are the players choos-
ing their frequencies as strategies. In contrast to cost- or customer-oriented
objectives, see [25], the goal of the line planning game is to minimize the
average delay of each line, and hence to obtain a line plan which is robust
against delays, see [26] for first results and numerical studies using data
from interregional trains in Germany.

Related games The following three types of network games are related to
path player games.

We have already mentioned routing games, where the network flow is
analyzed from the point of view of the flow. A routing game is played on
a congested network, and the flow is assumed to consist of a finite or in-
finite number of players, acting independently and selfishly. Each of them
chooses a path from the source to the destination that minimizes the cost
of traveling along that path. This model can be seen as a counterpart to the
path player game, as it represents the point of view of the travelers, while
in the path player game the situation is analyzed from the path owners’
point of view. The path player game is also related to bandwidth allocation
games, as described in [19,18]. In bandwidth allocation games capacitated
links are used by several players, sending bids to a central manager. The
manager answers with prices that are proportional to the bids and cares for
satisfying the capacity constraints. Each user has its own utility function
that determines his payoff depending on the price and the bid. Price taking
users just accept the price given by the manager, while price anticipating
users may adjust their bids. In the path player game, the bids correspond
to the strategies. Contrary to bandwidth games, they are not answered by a
manager, but directly accepted. However, in the path player game, all con-

1 Between two stations, a track is separated into smaller units, namely into
blocks.
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tinuous and nonnegative cost functions are allowed, while in bandwidth al-
location strictly increasing, continously differentiable and concave functions
(so called elastic traffic) are required. Note that in bandwidth allocation
the existence of equilibria can not be guaranteed, but in path player games
we are able to prove the existence for continuous cost functions.

Another model describing the behavior of path owners is that of path
auctions, see e.g. [8,3]. Here each edge is owned by a player, and a central
manager has the task to buy a shortest path from s to t from the edge
owners. The edge owners know the price of their edge, but they are allowed
to report a wrong price if they benefit from lying. The goal is to develop
a payment mechanism such that every edge owner is interested to tell the
truth. Such a mechanism is called truth telling. In a path player game in a
network consisting of parallel edges from s to t, the path owners are edge
owners as well, such that the path player game can be seen as a special case
of path auction games.

The paper is organized as follows. In Section 2 we introduce the game
model. In Section 3 we show that feasible equilibria in pure strategies exist.
Further properties of path player games are discussed in Section 4. These
are used in Section 5 to give necessary and sufficient conditions for equilibria
in the case of strictly increasing cost functions. The paper ends with some
suggestions for future work.

2 The Model

We consider a given network G = (V, E) with vertices v ∈ V and edges
e ∈ E. A path P in G is given by a sequence of edges e ∈ E: P = (e1, ...., ek).
By P we denote the set of all paths P in G from the single source s to the
single sink t, thus the set P is given by the structure of the network G.
Each of the paths P ∈ P represents a player2 in the path player game. Each
player proposes an amount of flow fP that he wants to be routed along his

path. The complete flow is represented by a function f : P → R
|P|
+ , while

the flow on path P is denoted by fP . For each edge e ∈ E, the flow fe along
the edge can hence be determined by the sum of the flows on paths that
contain e, i.e.

fe =
∑

P :e∈P

fP .

We assume that the demand is high enough to ensure that the players can
implement the flow they proposed. Note that this is a considerable difference
to bidding games, like bandwidth allocation or path auction games.

Each edge e is associated with a cost function ce(·), that depends on the
flow on e. The cost function represents the income of the edge owners and we

2 In the course of this paper we will denote both, the path and the corresponding
player with P , as both notations are handled equivalently.
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assume these functions to be continuous and nonnegative for nonnegative
flows, i.e. ce(x) ≥ 0 for x ≥ 0. If the edge belongs to more than one owner,
we assume that each player receives the same income. (It is possible to
generalize this model by allowing the owners to share the fee in an arbitrary
way.)

To calculate the cost of a path P , we sum up the costs of the edges
belonging to that path, i.e.,

cP (f) =
∑

e∈P

ce(fe).

These costs are, however, not directly the benefit of player P since there
are two more issues to handle:

– We require that the sum of flows in the network is bounded by a given
flow rate r. It can be interpreted as a network capacity. We call a flow
f feasible for a flow rate r if

∑

P∈P fP ≤ r holds. If the flow rate is
exceeded, the flow is called infeasible and all players receive a penalty of
M , with M being a large number.

– Furthermore, a security system for the players is implemented: If the
flow of a player P lies below the so called security limit ωP ≥ 0, he will
receive a fixed security payment κP > −M . In this case, the path P is
called underloaded, while we call P loaded, if fP > ωP . For positive κP ,
the security limit and payment serve as an insurance that guarantees a
fixed income for each player. On the other hand, if κP < 0, the security
payment is a penalty for underloaded paths. This penalty may represent
for instance additional costs for maintaining an unused resource.

Summarizing, we obtain the benefit function in the path player game:

Definition 1 The benefit function of player P ∈ P in a path player game
for f ≥ 0|P| is given as:

bP (f) =







cP (f) if
∑

P∈P fP ≤ r ∧ fP ≥ ωP

κP if
∑

P∈P fP ≤ r ∧ fP < ωP

−M if
∑

P∈P fP > r
,

where cP (f) =
∑

e∈P ce(fe).

Some remarks about path player games should be added.

– There is a continuum of strategies as a player is allowed to choose any
nonnegative real number. The benefit (or payoff) a player obtains after
fixing a strategy depends on the strategies of all players.

– The path player game is noncooperative and thus it is possible that the
flow created by the decisions of the players is not feasible. For instance
if the benefit is a nondecreasing function, each player will try to get
as much flow as possible such that the sum of all proposed flows may
exceed the flow rate. Unfortunately, it turns out that even equilibria
may be infeasible. Nevertheless, we will prove in Theorem 1 that feasible
equilibria do exist.
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3 Equilibria for General Benefit Functions

In this section we analyze equilibria in path player games for general benefit
functions while, later in Section 5, we derive additional results for strictly
increasing cost functions. The definition of equilibria in path player games
follows the definition of a Nash equilibrium (see e.g. [21]): A flow f∗ is an
equilibrium in a given path player game if and only if for all players P ∈ P
and for all fP ≥ 0 it holds that

bP (f∗
−P , f∗

P ) ≥ bP (f∗
−P , fP ) . (1)

We will call the equilibrium feasible if f∗ is a feasible flow, infeasible other-
wise. An equilibrium is a game situation where none of the players is able
to obtain a better outcome by changing his strategy unilaterally. Such a
situation characterizes a stable state of the system.

In order to find equilibria in the path player game we have to look at the
benefit of a single player who changes his own strategy, while the strategies

of the competitors remain fixed. We define f−P ∈ R
|P|−1
+ by deleting the

component belonging to path P , such that we can fix the strategies f−P of
the competitors and just consider the influence of fP . We obtain

cP (f−P , fP ) =
∑

e∈P

ce



fP +
∑

Pk∈P\{P}:e∈Pk

fPk



 ,

with a constant term
∑

Pk∈P\{P}:e∈Pk
fPk

. In the following, if we want to
stress the fact that f−P is fixed with respect to the cost or benefit function,
we will denote cP (f) = cP (f−P , fP ) or bP (f) = bP (f−P , fP ), respectively.
If ce(fe) are convex (concave) functions, then cP (f−P , fP ) is also a convex
(concave) function. Finally, we introduce the decision limit of player P as

dP (f−P ) = r −
∑

Pk∈P\{P}

fPk
.

The set [0, dP (f−P )] is called the decision interval of player P . It contains
all feasible strategies for P . From its definition we obtain the following
corollary: If there is one player sending as much flow as possible (without
violating the decision limit), then this is true for all players.

Corollary 1 Any flow f satisfies: If there is a player Pk with fPk
= dPk

(f−Pk
)

then all players P ∈ P satisfy fP = dP (f−P ).

Figure 1 shows an example of a benefit function bP (f−P , fP ) for fixed f−P .
The function depends only on the scalar fP and is characterized by three
parts: The two constant regions generated by the security payment κP , the
infeasibility penalty −M , and the middle part, created by the cost function
cP (f−P , fP ). As the players want to maximize their benefit, we define the
best reaction set for a player P with respect to a given flow f−P as

fmax
P (f−P ) = {fP ≥ 0 : fP maximizes bP (f−P , fP )} .
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bP (f
−P , fP )

fP

ωP dP
fmax

P

κP

−M

Fig. 1 Benefit function bP (f
−P , fP ) for fixed f

−P

In this paper, we assume to have continuous cost functions. As a result, we
obtain nonempty best reaction sets:

Lemma 1 Consider a path player game with cost functions ce(fe) being
continuous for all edges e ∈ E. Then, the sets fmax

P (f−P ) are nonempty for

all P ∈ P and for all f ∈ R
|P|
+ .

Lemma 1 can be proved by considering the three parts of bP (f−P , fP ) and
applying Weierstrass extreme value theorem.

Example 1 fmax
P (f−P ) can be empty in the case of non-continuous cost func-

tions, see Figure 2.

fP

dPωP

κP

−M

bP (f
−P , fP )

Fig. 2 Best reaction set fmax

P (f
−P ) is empty

Best reaction sets are useful for the following characterization of equilibria.
A flow is an equilibrium if each player is choosing a best reaction strategy
with respect to the strategies of his opponents:

Corollary 2 In a path player game a flow f∗ is an equilibrium if and only
if for all P ∈ P it is satisfied that f∗

P ∈ fmax
P (f∗

−P ).
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For infinite games with continuous benefits it is known that there exists
an equilibrium in mixed strategies if the strategy spaces are nonempty and
compact. Even more, if we assume continuous and quasi-concave benefit
functions, there exists a pure-strategy equilibrium (see e.g., [11] for both
results). In our game, we may have non-continuous benefit functions. If
we just consider feasible flows, we furthermore have to deal with dependent
strategy sets. Therefore, it is not evident that in path player games equilibria
always exist, and if yes, it is still not clear if there is a feasible equilibria
among them. We will in the following prove even more: the existence of
feasible equilibria in pure strategies.

Theorem 1 (Existence of feasible equilibria) In a path player game
with continuous cost functions ce(fe) for all edges e ∈ E, there is at least a

feasible equilibrium in pure strategies f̂ such that f̂P ∈ fmax
P (f̂−P ) ∀ P ∈ P.

Proof Consider the set of feasible flows

F =

{

f : fP ≥ 0 ∀ P ∈ P ∧
∑

P∈P

fP ≤ r

}

.

The set F is closed, bounded and convex. Furthermore consider the single-
value function, T : F → R

|P| defined as T (f) = f ′ whose components
f ′

P = t(fP ) are given by

f ′
P = fP +







min

{

fm
P − fP ,

fm
P −fP

P

Pk∈P:fPk
<fm

Pk

(fm
Pk

−fPk
) · d

}

if fP < fm
P

fm
P − fP if fP ≥ fm

P

,

(2)
where fm

P = min {fmax
P (f−P )} is chosen as the smallest flow that is benefit

maximizing3 and d = r −
∑

P∈P fP is the flow left that can be distributed
among the players maintaining feasibility. Note that by definition of dP it
holds for any feasible flow f ∈ F and all P ∈ P that

d = dP (f−P ) +
∑

Pk∈P\{P}

fPk
−
∑

P∈P

fP = dP (f−P ) − fP ≥ 0 .

Note furthermore, that by Lemma 1 fm
P exists and that by definition of

fmax
P (f−P ) it holds that

0 ≤ fm
P ≤ dP (f−P ) = r −

∑

Pk∈P\{P}

fPk
. (3)

An interpretation of the function T is given right after this proof. In the
following we prove that T is a continuous function of F into itself. Then, by
Brouwer’s fixed point theorem a fixed point f = T (f) exists in F . Finally,
we will show that each fixed point in F is representing an equilibrium in pure

3 Note that for the proof it is not important which fP ∈ fmax

P is chosen for fm

P

as long as it is well-defined.
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strategies, so that we will be able to guarantee the existence of a feasible
equilibrium in pure strategies.

Part a) (T : F → F )
First note that f ′

P ≥ 0 ∀ P ∈ P . Denote the sets P1 = {P ∈ P : fP < fm
P }

and P2 = {P ∈ P : fP ≥ fm
P }.

∑

P∈P

f ′
P =

∑

P∈P1

(

fP + min

{

fm
P − fP ,

fm
P − fP

∑

Pk∈P1
(fm

Pk
− fPk

)
· d

})

+
∑

P∈P2

(fP + fm
P − fP )

=
∑

P∈P

fP +
∑

P∈P1

min

{

fm
P − fP ,

fm
P − fP

∑

Pk∈P1
(fm

Pk
− fPk

)
· d

}

+

≤0
︷ ︸︸ ︷
∑

P∈P2

(fm
P − fP )

≤
∑

P∈P

fP +
∑

P∈P1

fm
P − fP

∑

Pk∈P1
(fm

Pk
− fPk

)
· d

=
∑

P∈P

fP + d =
∑

P∈P

fP + r −
∑

P∈P

fP

= r .

Therefore, f ′ ∈ F since f ′
P ≥ 0 ∀ P ∈ P and

∑

P∈P f ′
P ≤ r.

Part b) (T (f) is continuous)
We distinguish the following exhaustive cases:

i) fP > fm
P :

f ′
P = fm

P ∀ fP > fm
P , i.e. t(fP ) is continuous

ii) fP = fm
P + 0:

f ′
P = fm

P for fP = fm
P +0, i.e. t(fP ) is continuous to the right fP = fm

P +0
iii) fP < fm

P :

Consider g(f) = fm
P −fP and h(f) =

fm
P −fP

P

Pk∈P1
(fm

Pk
−fPk

) ·d. The functions

g(f) and h(f) are continuous and so the minimum of both functions is
continuous too. It follows that t(fP ) with f ′

P = fP + min {g(f); h(f)} is
continuous.

iv) fP = fm
P − 0:

Consider the following marginal value of the mapping that we take for
each flow f where fP → fm

P − 0:

lim
f :fP→fm

P
−0








→fm
P

︷︸︸︷

fP + min







→0
︷ ︸︸ ︷

fm
P − fP ,

≥0
︷ ︸︸ ︷

fm
P − fP

∑

Pk∈P1
(fm

Pk
− fPk

)
·

≥0
︷︸︸︷

d














= fm
P .
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Thus, t(fP ) is continuous to the left at fP = fm
P − 0.

Hence, T is continuous.

Part c) (f̂ = T (f̂) ⇒ f̂ is a pure strategy equilibrium)

Since T is a continuous mapping of F into itself, a fixed point f̂ = T (f̂)

exists by Brouwer’s fixed point theorem, and f̂ ∈ F .
Moreover, we can explicitly describe the form of such an fixed point. Indeed,
as f̂ = T (f̂) then f̂ ′

P = f̂P for each path P ∈ P which in turns implies that
the bracket in (2), that we will denote by KP , equals zero. Hence KP = 0
for all P ∈ P .
First note that f̂P < f̂m

P can not occur since from KP = 0 and f̂m
P − f̂P > 0

it follows that d = 0. Then, from (3) we get

0 = d = r −
∑

P∈P

f̂P ≥ f̂m
P − f̂P .

This implies that f̂P ≥ f̂m
P , which means by (2) and as KP = 0 that

f̂P = f̂m
P ∈ fmax

P (f̂−P ).

In conclusion, the fixed point satisfies f̂P ∈ fmax
P (f̂−P ) ∀ P ∈ P , and hence

is an equilibrium in pure strategies according to Corollary 2. ⊓⊔

The mapping T can be interpreted as a simple auction where the players bid
the flow they want to route along their paths. In particular, each player asks
to receive the flow fm

P . Then, each player receives a flow f ′
P which depends

on all bids and on the amount of flow that can be distributed without
exceeding the flow rate r. If the current flow of a player P is greater than
or equal to fm

P , then he is given exactly f ′
P = fm

P , as reducing flow will not
violate the flow rate. If fP < fm

P holds, i.e. P will ask for a larger flow, we
have to distinguish two cases: For the first case,

∑

Pk∈P1
(fm

Pk
− fPk

) > d
holds, that means the players want to increase their flow, but ask for more
flow than available. Then, the flow rate would be violated if each player
received his bid. Thus, each player receives a fraction of d proportional to
his bid and smaller than his bid. In the second case, the sum of the players’
bids is not exceeding r:

∑

Pk∈P1
(fm

Pk
− fPk

) ≤ d. Hence, each player will
receive exactly his bid. Note that in a path player game infeasible equilibria
may occur. They are fully characterized in the next lemma.

Lemma 2 In a path player game a flow f is an infeasible equilibrium if and
only if for all paths P in P the following is satisfied:

∑

P∈P

fP ≥ r + max
P∈P

fP .

Proof (
∑

P∈P fP ≥ r + maxP∈P fP ⇒ f infeasible equilibrium)
Consider a flow f such that

∑

P∈P fP ≥ r + maxP∈P fP holds. This flow
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is infeasible as maxP∈P fP > 0 holds. In addition for all paths P in P the
following is true:

dP (f−P ) = r−
∑

Pk∈P\{P}

fPk
= r−

(
∑

Pk∈P

fPk
− fP

)

≤ r−

≥r
︷ ︸︸ ︷
(
∑

Pk∈P

fPk
− max

P∈P
fP

)

≤ 0

⇒ bP (f−P , fP ) = −M ∀ fP ⇒ fmax
P (f−P ) = [0,∞) .

Therefore, we conclude that fP ∈ fmax
P (f−P ) ∀ P ∈ P and thus, as a result

of Corollary 2, f is an equilibrium.

(f infeasible equilibrium ⇒
∑

P∈P fP ≥ r + maxP∈P fP )
Consider a flow f such that

∑

P∈P fP > r and fP ∈ fmax
P (f−P ) ∀ P ∈ P ,

i.e. f is an infeasible equilibrium. Assume that the claim is not true, i.e.
∑

P∈P fP < r + maxP∈P fP . Let P̄ be such that maxP∈P fP = fP̄ . Then,

dP̄ (f−P̄ ) = r−
∑

P∈P\{P̄}

fP = r−

(
∑

P∈P

fP − fP̄

)

= r−

<r
︷ ︸︸ ︷
(
∑

P∈P

fP − max
P∈P

fP

)

⇒ dP̄ (f−P̄ ) > 0 ⇒ ∃ f ′
P̄

: bP̄ (f−P̄ , f ′
P̄
) > −M ⇒ fP̄ /∈ fmax

P̄
(f−P̄ ) ,

which contradicts the assumption and thus the claim follows. ⊓⊔

As a result, infinitely many infeasible equilibria exist in path player games.

4 Properties of Path Player Games

In this section we describe properties of path player games that will be
needed for the characterization of equilibria.

Path-disjoint Network A set of paths P̄ is called disjoint if for all pairs
P1, P2 ∈ P with P1 6= P2 it holds that P1 ∩P2 = ∅. We call a network path-
disjoint if the set P of all paths from s to t is disjoint. In a path disjoint
network, cP (f) only depends on fP and is independent from f−P . In the
literature, cost functions cP with cP (f) = cP ( · , fP ) are also known as
separable functions (e.g. see [12]).

Trivial Games We will call a game with flow rate r and security limits ωP

trivial, if
∑

P∈P ωP > r holds, and nontrivial otherwise. In trivial games,
it is possible that the entire flow rate r is used, even if all players route
fP < ωP for all P ∈ P , which cannot happen in nontrivial games.

Lemma 3 Let f be a feasible flow in a nontrivial path player game. Then
there exists at least a P ∈ P such that dP (f−P ) ≥ ωP .
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Proof Consider a nontrivial path player game, i.e.
∑

P∈P ωP ≤ r and a
feasible flow f . It holds for all P ∈ P that

∑

P∈P

dP (f−P ) = |P| · r − (|P| − 1) ·
∑

P∈P

fP

= r + (|P| − 1) ·

≥0
︷ ︸︸ ︷
(

r −
∑

P∈P

fP

)

.

⇒
∑

P∈P

dP (f−P ) ≥ r ≥
∑

P∈P

ωP ⇒ ∃ P ∈ P : dP (f−P ) ≥ ωP .

⊓⊔

Non-Compensative Security Property A path player game is called a game
with non-compensative security (NCS) property if for all paths P ∈ P and
for all flows f−P with dP (f−P ) ≥ ωP there exists a flow fP ≥ ωP such that

bP (f−P , fP ) > κP .

In games with NCS property, no player P will choose the security payment
κP when a flow fP ≥ ωP is possible. If a player has the possibility to earn
benefit by receiving income by his “productivity”, he has no reason to take
advantage of the security limit. The security payment shall only be used if
the player has no other choice due to the strategies of his competitors, i.e.
if dP (f−P ) < ωP . The NCS property is an interesting attribute of games as
it will enable the characterization of equilibria for strictly increasing costs
(see Section 5). Note that as we assume nonnegative costs, a game where
κP < 0 holds for all P in P has NCS property. In all other cases, it is not so
easy to recognize if a game has NCS property. However, in some cases, the
NCS property of a game follows from the following property of the benefit
function. A benefit function bP (f) with ωP < r has the non-compensative
security (NCS) property if

κP < cP (0, . . . , 0, ωP , 0, . . . , 0) =: cP (0−P , ωP ) (4)

holds. If κP is sufficiently small, a player on an underloaded path gets a
benefit which is lower than the income he would get if he were able to route
a flow of value ωP along that path, while no other player routes anything.
The idea is that no player should have an incentive to choose his path to
be underloaded if he is able to route a flow fP ≥ ωP .

To illustrate benefit functions with NCS property, consider a benefit
function bP (f), where all players apart from P are routing a zero-flow, i.e.
bP (f) = bP (0−P , fP ). A function bP (f) as shown in Figure 3 does not have
NCS property since player P will choose the security payment instead of the
income obtained by routing ωP . In general, that does not mean, that the
player always prefers the benefit κP . It may happen (like in this illustration)
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bP (0
−P , fP )

κP

fP

dPωP

−M

Fig. 3 No NCS property

bP (0
−P , fP )

fP

dPωP

κP

−M

Fig. 4 NCS property

that there is a flow fP > ωP with bP (0−P , fP ) > κP . However, for a benefit
function without NCS property, we can not guarantee that there will be a
flow fP , that provides a higher benefit than κP . On the contrary, a benefit
function as the one shown in Figure 4 allows the player to obtain a benefit
higher than κP when routing fP = ωP .

Let us now consider the relation between games with NCS property and
benefit functions with NCS property. Unfortunately, a game that possesses
benefit functions with NCS property is not necessarily a game with NCS
property. Consider a path P with dP (f−P ) ≥ ωP , whose benefit functions
possess NCS property. It does not necessarily hold that P is in any case
able to obtain a benefit greater than κP . In general networks, players may
share edges. It is possible that on an edge e with decreasing benefit some
of the players sharing e have incentive to raise the flow fe even if edge e
induces a loss (if they can compensate that loss by gains on other edges).
Consequently, bP (f−P , fP ) ≤ κP ∀ fP ≥ ωP could hold, i.e. the game would
possess no NCS property. We call this effect of influencing the benefit of the
competitors edge sharing effect.

P1

P2

fe = fP1
+ fP2

Fig. 5 Edge sharing effect
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For instance see Figure 5, where P1 would accept a decreasing income
from edge e, as this loss is compensated by the remaining edges. At the same
time, P2 does not want to increase fe too much, as at a certain point his
benefit bP (f) will decrease. Nevertheless, P2 can not avoid that P1 increases
the flow, i.e. he is forced into a situation where sending flow can create loss.
Note that in this situation the name “security payment” is justified for
player P2.

As the edge sharing effect may destroy the NCS property of games, we
investigate additional assumptions which prevent the edge sharing effect.
The following proposition describes two situations where benefit functions
with NCS property induce games with NCS property and one condition
that requires at least one exclusively used edge in each path, to obtain a
game with NCS property.

Proposition 1

a) A path player game with benefit functions bP (f) satisfying NCS property
for all P ∈ P is a game with NCS property if (i) or (ii) does hold:
(i) For all e ∈ E: ce(fe) are monotonically increasing ,
(ii) the network G is path-disjoint.

b) Furthermore, a path player game where each path P satisfies that

ĒP = {e : e ∈ P ∧ e /∈ Pk ∀ Pk 6= P} 6= ∅ ∀ P ∈ P ,

possesses the NCS property if
∑

e∈ĒP

ce(ωP ) > κP ∀ P ∈ P .

Proof Consider a path P ∈ P and a flow f−P with dP (f−P ) ≥ ωP .

a) To prove (i) and (ii), we need to show for both cases that there is a flow
fP ≥ ωP such that bP (f−P , fP ) > κP . It can be shown that for (i) all
fP ∈ [ωP , dP (f−P )] fulfill this condition, while for (ii) we have to set
fP = ωP .

b) Set fP = ωP , therefore the resulting flow is feasible. Then, we obtain

bP (f−P , fP ) = cP (f−P , ωP ) =

>κP
︷ ︸︸ ︷
∑

e∈ĒP

ce(ωP ) +
∑

e∈P\{ĒP }

≥0
︷ ︸︸ ︷

ce(fe) > κP ,

and thus the proposition follows. ⊓⊔

5 Equilibria for Strictly Increasing Cost Functions

In this section, we present characterizations of equilibria under the assump-
tion of strictly increasing cost functions. We will obtain a necessary condi-
tion for equilibria and a necessary and sufficient condition if the game has
NCS property or if we consider a game with no security limit. The next
proposition will be useful for the proofs in this section.
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Proposition 2 Consider a path player game with strictly increasing cost
functions ce(fe). Then, for all P ∈ P, for fixed f−P and for fP ∈ [ωP , dP (f−P )]
the benefit functions bP (f−P , fP ) are strictly increasing in fP .

The proof of Proposition 2 is based on the fact that the sum of strictly in-
creasing functions is a strictly increasing function. This can be easily verified
such that details are omitted here. Our first result is the following.

Theorem 2 Consider a game with strictly increasing cost functions ce(fe)
on all edges e ∈ E. Assume, that the game is nontrivial and it satisfies NCS
property. Then a flow f is a feasible equilibrium if and only if

∑

P∈P fP = r.

Proof (f feasible equilibrium ⇒
∑

P∈P fP = r)
Consider a feasible equilibrium f and assume that

∑

P∈P fP < r, i.e. fP <
dP (f−P ) for all P ∈ P . Due to non-triviality we can find a path P̄ such that
dP̄ (f−P̄ ) ≥ ωP̄ (see Lemma 3). We distinguish two cases:

Case 1: fP̄ ≥ ωP̄ ⇒ bP̄ (f−P̄ , dP̄ (f−P̄ )) > bP̄ (f−P̄ , fP̄ ) (due to Proposi-
tion 2), which contradicts f being a feasible equilibrium.

Case 2: fP̄ < ωP̄ ⇒ ∃ f̂P̄ ≥ ωP̄ such that bP̄ (f−P̄ , f̂P̄ ) > κP̄ = bP̄ (f−P̄ , fP̄ )
(due to NCS property), which contradicts f being a feasible equilibrium.

The above implies that
∑

P∈P fP = r.

(
∑

P∈P fP = r ⇒ f feasible equilibrium)
Consider a flow with

∑

P∈P fP = r, i.e. fP = dP (f−P ) for all P ∈ P . We
analyze the two cases:

Case 1: fP ≥ ωP : As there exists at least one f̂P ≥ ωP such that bP (f−P , f̂P ) >
κP (due to NCS property), and as bP (f−P , fP ) is strictly increasing
for fP ∈ [ωP , dP (f−P )] (see Prop.2), and in particular, bP (f−P , fP ) ≥

bP (f−P , f̂P ) > κP it holds that fmax
P (f−P ) = {dP (f−P )}.

Case 2: fP < ωP : As bP (f−P , fP ) is constant over [0, ωP ) and dP (f−P ) <
ωP , it holds that dP (f−P ) ∈ fmax

P (f−P ).

Using Corollary 2, we conclude that f is a feasible equilibrium as fP ∈
fmax

P (f−P ) ∀ P ∈ P . ⊓⊔

Consider a game with strictly increasing costs and no security limit, that
means ωP = 0 holds for all P ∈ P . Such a game is nontrivial as

∑

P∈P ωP =
0. Furthermore, as κP will be never obtained as benefit, we can choose for
instance κP = −1 ∀ P ∈ P and transform it into a game that satisfies NCS
property. Hence, we obtain the following Corollary from Theorem 2.

Corollary 3 In a path player game with strictly increasing cost functions
ce(fe) on all edges e ∈ E and security limit ωP = 0 for all P ∈ P, a flow f
is a feasible equilibrium if and only if

∑

P∈P fP = r .

Unfortunately, the converse of Theorem 2 does not hold: A game that sat-
isfies the property

“A flow f is a feasible equilibrium if and only if
∑

P∈P fP = r” (5)

needs not be nontrivial nor satisfy the NCS property. For an illustration we
present the following examples.
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Example 2 (5) ; NCS property.
Consider a game on a network with two paths, as illustrated in Figure 6.
A flow rate r = 1 has to be routed from s to t. On both paths the costs
are cP (x) = x, and we set ω1 = κ1 = 1 and ω2 = κ2 = 0. In this game, a
flow f with

∑

P∈P fP < r is not an equilibrium as fmax
2 (f−2) = {d2(f−2)}

for all f−2, i.e. player 2 would in any case use up the remaining flow rate.
On the other hand, each flow f with

∑

P∈P fP = r is an equilibrium flow.
If
∑

P∈P fP = r holds, player 2 can not find any better strategy as he will
always try to get as much flow as possible, while player 1 is also not able
to improve his payoff as his benefit function is anyway constant over [0, 1].
That means, this game fulfills condition (5). Nevertheless, the game has not
NCS property. There is no f1 ≥ ω1 with b1(f1, f2) > κ1 and so path 1 is
destroying the NCS property of the game.

s t

c2(x) = x; ω2 = 0; κ2 = 0

c1(x) = x; ω1 = 1, κ1 = 1

r = 1

Fig. 6 Game graph of Example 2

s t

ω2 = 0

ω1 = 2

r = 1

Fig. 7 Game graph of Example 3

Example 3 (5) ; non-triviality.
Consider the game illustrated in Figure 7. The graph consists of two paths,
and we choose ω1 = 2 and ω2 = 0. The remaining components of the game,
as cost functions and security payments may be chosen arbitrarily, but it
is important that the cost functions are strictly increasing. With a similar
argument as in Example 2, it is possible to show that this game fulfills (5).
Nevertheless, the game is trivial, as

∑

P∈P ωP > r.

If a game has strictly increasing cost functions and general security limit,
but we can not ensure NCS property or the non-triviality of the game (and
thus can not apply Theorem 2), we are still able to give a necessary condition
for a profile of flows to be an equilibrium.

Lemma 4 If a flow f in a path player game with strictly increasing cost
functions ce(fe) on all edges e ∈ E is a feasible equilibrium then at least
one of the following two cases holds:

(i)
∑

P∈P fP = r ,
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(ii) fP < ωP ∀ P ∈ P .

Proof Let f be a feasible equilibrium such that (i) and (ii) are both not
true. Since (i) does not hold,

∑

P∈P fP < r. Then fP < dP (f−P ) ∀ P ∈
P . Since (ii) is also not true, ∃ P̄ with fP̄ ≥ ωP̄ . Then bP̄ (f−P̄ , f ′

P̄
) >

bP̄ (f−P̄ , fP̄ ) ∀ f ′
P̄
∈ (fP̄ , dP̄ (f−P̄ )], as according to Proposition 2, bP (f−P , fP )

is strictly increasing over this domain. It follows that fP̄ /∈ fmax
P̄

(f−P̄ ). But
this is a contradiction to f being an equilibrium. ⊓⊔

The following lemma provides a statement about the converse of Lemma 4.

Lemma 5 Consider a path player game with strictly increasing cost func-
tions ce(fe). Let f be a flow with the following properties:

(i)
∑

P∈P fP = r ,
(ii) fP < ωP ∀ P ∈ P .

Then, f is a feasible equilibrium.

For the proof it suffices to show that for all players P , increasing or decreas-
ing fP will not lead to an improvement of the benefit bP . The following
examples demonstrate that only one of the two conditions (i) and (ii) is not
sufficient to guarantee a feasible equilibrium.

Example 4 ((i) ∧ ¬(ii) ; f is feasible equilibrium)
Consider a game consisting of two disjoint paths connecting s and t, i.e.
P = {1, 2}. Set r = 1, ω1 = ω2 = 0.25 and the security payment κ1 = κ2 =
2. With cost functions cP (x) = x for P = 1, 2, the flow f = (0.5, 0.5) fulfills
(i) but not (ii). This flow with b1(f) = b2(f) = 0.5 is not an equilibrium as
fmax
1 (0.5) = fmax

2 (0.5) = [0, 0.25).

Example 5 (¬(i) ∧ (ii) ; f is feasible equilibrium)
Consider a game consisting of two disjoint paths, P = {1, 2}. Set r = 1,
ω1 = ω2 = 0.5 and κ1 = κ2 = 0.1. With cost functions cP (x) = x for
P = 1, 2, a flow f = (0.45, 0.45) with b1(f) = b2(f) = 0.1 is no equilibrium
as fmax

1 (0.45) = fmax
2 (0.45) = 0.55.

We have seen that a feasible flow with property (ii) need not be an equilib-
rium. This does not change if we assume to have a trivial game or a game
without NCS property. The following example illustrates the assertion.

Example 6 Consider again a game consisting of two disjoint paths connect-
ing s and t, i.e. P = {1, 2}. Set r = 5 and ωP = 3 for P = 1, 2, i.e. the
game is trivial. Furthermore, choose κP = 1 for P = 1, 2 and c1(f1) = f1,
c2(f2) = f2/10. This game does not satisfy NCS property as for all f1 ≥ 0
there is no f2 ∈ [ω2, d2(f1)] such that b2(f1, f2) > κ2. Consider the fea-
sible flow f = (0, 0). The flow f fulfills (ii) and dP (f−P ) = r for all P .
Nevertheless, since b1(d1(0), 0) = 5 > b1(0, 0) = κ1 = 1 this flow is not an
equilibrium.
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We remark that in [28] further results for other types of cost functions
have been derived. This includes a necessary condition for differentiable
costs. It is also sufficient if the costs are differentiable and concave, and
if the game has no security limit. Finally, for convex costs a dominating
strategy set is determined.

6 Conclusion and Further Research

In this paper, we presented results for equilibria in a new network game,
the path player game. We proved the existence of feasible equilibria in pure
strategies. Furthermore, we presented a necessary condition for equilibria if
the cost functions are strictly increasing. If the game furthermore satisfies
the NCS property, we obtained even a necessary and sufficient condition.

Path player games have various aspects which are currently under re-
search. In [23] the concept of path player games is extended to games on
polyhedra allowing more general dependencies among strategy sets. Treating
path player games as GNE games (instead of penalizing infeasible solutions)
provides a simpler (continuous) payoff function. This is an advantage in the
analysis of a potential function (see [22]), which turns out to exist for the
path player game in both versions. Moreover, it turns out that path player
games may have multiple equilibria. This motivates the analysis of non-
dominated solutions in the sense of Pareto, see [27] for some first results on
the relation between equilibria and Pareto solutions.

An extension for future research is to consider not paths but complete
subgraphs as players. This reflects the fact that in real-world situations net-
work providers usually own a subnetwork. Furthermore, some applications
require integer solutions. Thus, the extension of the path player game to
an integer version is of interest; for the line planning game it has already
implemented in [28]. The results for the line planning game (see [26]) are
promising and motivate further research in this field.

Moreover, repeated or stochastic versions of the game could be consid-
ered to refine the set of equilibria. Finally, it is open work to analyze the
situation as an optimization problem, that means to look for minimal cost
flows in the network, and to compare them with the equilibria of the game.
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6. A. Czumaj, P. Krysta, and B. Vöcking. Selfish traffic allocation for server
farms. In Proc. of STOC02, pages 287–296. 2002.

7. N. Devanur, N. Garg, R. Khandekar, V. Pandit, A. Saberi, and V.V. Vazirani.
Price of anarchy, locality gap, and a network service provider game. In Proc. of

WINE05, pages 1046–1055. 2005.
8. E. Elkind, A. Sahai, and K. Steiglitz. Frugality in path auctions. In Proc. of

the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 701–
709. ACM Press, 2004.

9. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On
a network creation game. In Proc. of the 22th annual symposium on Principles

of distributed computing, pages 347–351. 2003.
10. F. Facchinei and J.-S. Pang. Exact penalty functions for generalized Nash

problems. In G. Di Pillo and M. Roma, editors, Large-scale nonlinear optimiza-

tion, pages 115–126. Springer, 2006.
11. D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, 1991.
12. C.J. Goh and X.Q. Yang. Vector equilibrium problem and vector optimization.

European Journal of Operational Research, 116:615–628, 1999.
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