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not been available or have not been applied, and thus, the models
are still monolithic artifacts.

In order to tackle this problem, we present in this paper a modu-
larization transformation which can be reused for several modeling
languages by binding their concrete concepts to the generic ones of-
fered by the modularization metamodel. This binding is enough to
reuse different modularization strategies, mostly based on design
quality metrics, provided by search-based model transformations.
In its current version, we support modules which allow for com-
posing different entities. We demonstrate the applicability of the
modularization approach for Ecore models.

The contribution of this paper is threefold: (i) we provide
generic modularization support for modeling languages having at
least some kind of basic modularization support; (ii) we combine
query-driven model transformations and generic model transforma-
tions to provide generic means to deal with heterogeneities between
the generic modularization metamodel and the specific metamod-
els; (iii) we provide an application of the generic modularization
support for real-world Ecore models.

The outline of the paper is as follows. In Section 2 we present
the background needed for introducing our generic modularization
approach in Section 3. In Section 4 we apply the generic approach
for a set of real-world Ecore models. Finally, we discuss related
work in Section 5, before we conclude with an outlook on future
work in Section 6.

2. Background
In this section, we present the foundations on which we build our
modularization approach. First, we explain how modularization
is in its basic form supported in modeling languages and which
kind of transformations may be combined to implement a reusable
generic model transformation and how to instantiate it for perform-
ing a concrete modularization.

2.1 Modularization: The Basics
The basic modularization problem, also often referred to as soft-
ware clustering, considers as input a potentially huge set of ele-
ments having certain relationships among them (Praditwong et al.
2011; Mkaouer et al. 2015). The goal for the modularization task
is to find meaningful modules or clusters for these elements which
consider certain quality characteristics. Traditionally, modulariza-
tion approaches (or re-modularization approaches if some initial
module structure is already given which should be improved) con-
sidered code-based software engineering artifacts. For instance,
classes are modularized into modules based on their dependencies
such as method invocations or field access. The considered quality
characteristics are mostly based on object-oriented design metrics.
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1. Introduction

Modeling is considered as the technique to deal with complex 
and large systems (Brambilla et al. 2012). Consequently, mod-
ularization concepts have been introduced in several modeling 
languages in order to tackle the problem that real-world models 
quickly become monolithic artifacts, especially when large sys-
tems have to be modeled (Reijers and Mendling 2008). Different 
kinds of modularization concepts have been introduced such as 
modules, aspects (Wimmer et al. 2011b), concerns (Alam et al. 
2013), views (Atkinson et al. 2009), or subsets (Blouin et al. 2014), 
to name just a few. Having these concepts at hand allows for struc-
turing models during modeling activities. However, legacy models 
often lack a proper structure as these modularization concepts have
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Now the question arises how we may provide automated modu-
larization support for modeling languages. For instance, languages
such as UML and Ecore provide the package concept to structure
classifiers, and other languages such as SDL and BPMN provide
some means for modularization of models as well. While the lan-
guages themselves seem heterogenous, i.e., generic modeling lan-
guage vs. domain-specific language, structural vs. behavioural, and
so on, the modularization concepts in its basic form of having
modules containing entities seem common. Thus, we aim to ex-
plore how we may provide a generic modularization transformation
based on the combination of three different transformation types.

2.2 Generic Model Transformation
Currently there is little support for reusing transformations in dif-
ferent contexts since they are tightly coupled to the metamodels
they are defined upon. Hence reusing them for other metamodels
becomes challenging. Inspired from generic programming, generic
model-to-model transformations (Cuadrado et al. 2011) have been
proposed, which are defined over so-called metamodel concepts,
which are later bound to specific metamodels. Thus, with the help
of generic model transformations, we are able to define a generic
modularization metamodel which can be bound to different specific
modeling languages. Please note that a similar approach has been
proposed as role-based model transformations for in-place trans-
formations such as model refactorings (Reimann et al. 2010).

2.3 Query Structured Transformation
One major challenge for generic model transformations is to deal
with the heterogeneities (Wimmer et al. 2011a) between the generic
and the specific metamodels, i.e., one concept is defined in the
generic metamodel as a class, but the same concept is represented in
the specific metamodel as a pattern of different classes having spe-
cific relationships. In this paper, we propose to combine the generic
model transformation approach with another emerging transforma-
tion approach called query structured transformation (Gholizadeh
et al. 2014). The main idea behind the latter is to enhance the source
metamodel with concepts of the target metamodel in a query-driven
manner. By this, the source and the target metamodel are adjusted
and the mapping between the metamodels is reduced to one-to-one
correspondences. As we see later, this approach allows us to easily
use one-to-one correspondences for binding the generic modular-
ization metamodel to the specific metamodels.

2.4 Search-Based Model Transformations
Having now the mechanisms to define modularization as a generic
transformation and using query structured transformations to en-
hance the binding mechanisms, there is still the question how to
implement the generic transformation actually performing the mod-
ularization. In code-based modularization problems, the usage of
search-based algorithms, such as genetic algorithm, simulated an-
nealing, and so on, has been proposed to actually compute the opti-
mal module structure for a given problem (Praditwong et al. 2011;
Mkaouer et al. 2015). The success of search-based algorithms was
mostly based on the meta-heuristic search capabilities, i.e., finding
a good solution without enumerating the whole search space.

In our pervious work we combined search-based algorithms and
model transformations in a framework called MOMoT (Fleck et al.
2015). This framework allows for formulating the goals of a trans-
formation (such as it is needed for specifying the quality charac-
teristics of a modularization) and in the transformation execution
the meta-heuristic search algorithms are orchestrating the rule ap-
plications performed by the transformation engine to find a good
solution in the search space. Based on this capabilities, we se-
lected MOMoT for actually implementing the transformation rules
needed for the generic modularization transformation and for defin-
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Figure 1. Generic Modularization Metamodel.

ing the goals of the modularization. This clear separation of the
transformation rules and the transformation goals also allows more
easily to customize the generic modularization transformation for
specific modeling languages.

3. Generic Modularization
We now introduce our concept metamodel for modularization, our
modularization chain, and outline several strategies for performing
modularization based on the information provided by the concept
metamodel.

3.1 Generic Modularization Metamodel
Our generic modularization metamodel is presented in Figure 1
(abstract classes and relationships are depicted in grey). Elements
of type Language represent concrete instances of modeling lan-
guages (MLs). The concepts of a ML are therefore simplified to
Modules, Entities and Relationships. We can see that a language is
composed of modules, which represent the clusters that group enti-
ties with similarities. Such similarities can come in different ways.
For instance, we can consider the similarities between the names of
the entities, or the relationships among the entities. Furthermore,
we have defined weights for the relationships, since some of them
may be more important that others (cf. Section 4). We can see that
an entity can have several relationships with other entities. Each
relationship ends in a specific entity.

The idea is to express any modeling language in terms of our
generic modularization metamodel. This means that the concepts
appearing in the MLs are mapped to the three concepts described:
modules, entities and relationships.

3.2 Modularization Transformation Chain
The overall transformation chain for the generic modularization
of modeling languages is shown in Figure 2. Steps 1 and 2 are
explained in this section, while step 3 is explained in Section 3.3.
These three steps are exemplified with an application study in
Section 4. Finally, step 4 is left for future work.

Our approach takes as input a Modeling Language (ML). A
ML is defined in terms of a domain-specific language (DSL). The
structure of a DSL is expressed with a metamodel, which defines
the concepts of the language and the relationships among them. The
first step of our approach is implemented with a Query Structured
Model Transformation, whose purpose is to make it easier and
more generic the weaving of different DSLs. In our case, we want
to translate a ML to our generic modularization metamodel (cf.
Fig. 1).

Therefore, we seek the homomorphism between the metamodel
of the ML and our generic modularization metamodel, i.e., the
bindings between these two. This homomorphism, also called map-
ping, has to be manually identified by the software engineer, since
she/he has to decide what is a module, an entity and a relation-
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ship in the ML. Such mapping can be defined by simply annotating
the metamodel of the ML or by adding new derived properties and
classes to it that represent the mapping. The outcome of this step is
a Model with Bindings between ML and Generic Language, “bind-
ing model” for short from here on. Thus, we obtain a model where
specific concepts of the input ML are virtually connected to specific
concepts of our generic modularization language.

The second step is to apply a Generic Model Transformation to
such model. This transformation takes the binding model as input
and generates the Initial Generic Modularization Model. In order
to do so, it examines the bindings specified in the binding model.
The generated model conforms to our generic modularization meta-
model and is composed of only one module that contains all the
entities. The entities, in turn, have relationships among them. The
generic model transformation produces these relationships accord-
ing to the information specified in the binding model.

In our proof-of-concept implementation (Fleck et al. 2016), we
have implemented steps 1 and 2 with an ATL transformation for the
Ecore case study. In future work, we plan to decouple both steps.

3.3 Modularization Strategies
The third step in our approach has to do with the optimal grouping
of entities into modules. In order to do so, we apply search-based
techniques using our MOMoT tool (Fleck et al. 2015). Therefore,
we need to specify as input the Search Objectives that we want to
optimize in our modularization. According to the fitness function
defined by such objectives, our Search-Based Model Transforma-
tion decides the optimal modularization, i.e., how to optimally split
the entities contained by the only module in the initial generic mod-
ularization model into different modules.

In this paper, we define four objectives: (i) coupling (COP), (ii)
cohesion (COH), (iii) the difference between the maximum and
minimum number of entities in a module (DIF) and (iv) number
of modules (MOD). Coupling refers to the number of external re-
lationships a specific module has, i.e., the sum of inter-relationship
weights with other modules, whereas cohesion refers to the re-
lationships within a module, i.e., the sum of intra-relationship
weights in the module. Typically, low coupling is preferred as this
indicates that a group covers separate functionality aspects of a
system, improving the maintainability, readability and testability
of the overall system (Yourdon and Constantine 1979). On the
contrary, the cohesion within one module should be maximized to
ensure that it does not contain parts that are not part of its function-

ality. Regarding the number of modules, it should be maximized in
order to avoid having all entities in a single large module. At the
same time, the maximum and minimum number of classes in the
modules ought to be minimized to aim at equal-sized modules.

Our framework is implemented within the Eclipse Modeling
Framework (EMF)1 and builds upon Henshin2 (Arendt et al. 2010)
to define model transformations and the MOEA framework3 for
providing optimization techniques. Henshin is a graph transforma-
tion engine that provides a graphical notation for defining model
transformations as graph transformation rules. The MOEA frame-
work provides several multi-objective evolutionary algorithms,
such as NSGA-II (Deb et al. 2002), NSGA-III (Deb and Jain 2014),
and ε-MOEA (Deb et al. 2003), as well as tools to execute and sta-
tistically test the search performance of these algorithms.

fitness = {
preprocess = {
// use attribute for external calculation

val r o o t = MomotUtil . g e t R o o t (
s o l u t i o n . e x e c u t e , typeof ( Language ) )

s o l u t i o n . s e t A t t r i b u t e ( "metrics" ,
M e t r i c s C a l c u l a t o r . c a l c u l a t e ( r o o t ) )

}
objectives = {

Coup l ing : minimize { // java-like syntax
val m e t r i c s = s o l u t i o n . g e t A t t r i b u t e (

"metrics" , typeof ( La ng u ag eM et r i c s ) )
m e t r i c s . c o u p l i n g

}
Cohes ion : maximize {

val m e t r i c s = s o l u t i o n . g e t A t t r i b u t e (
"metrics" , typeof ( La ng u ag eM et r i c s ) )

m e t r i c s . c o h e s i o n
}
NrModules : maximize {

( r o o t as Language ) . ˆ modules
. filter [ m | !m. e n t i t i e s . empty ] . s i z e

}
MinMaxDiff : minimize {

val s i z e s = ( r o o t as Language ) . ˆ modules
. filter [m | !m. e n t i t i e s . empty ]
. map [m | m. e n t i t i e s . s i z e ]

s i z e s . max − s i z e s . min
}

}
}

Listing 1. Definition of objectives that should be optimized

The way our search approach works is the following. Given the
initial generic modularization model and a set of search objectives
defined in our configuration language, our approach introduces a
set of empty modules in the language. The number of empty mod-
ules that is initially introduced varies between a given range to in-
vestigate different areas of the search space. In order to evolve the
initial generic modularization model, we only need to define one
very simple Henshin rule (cf. Figure 3). This rule moves an entity
from one module to another. Our tool instantiates the input param-
eters of the rule with specific entities and modules names. Accord-
ing to the fitness function conformed by the objectives defined, the
search engine searches for the optimal assignments of entities into
modules. The output of the search is given as (i) the Optimized
Modularization Model, as well as (ii) the sequence of rule applica-
tions and their input parameters.

1 http://www.eclipse.org/modeling
2 http://www.eclipse.org/henshin
3 MOEA Framework, version 2.8, available from http://www.
moeaframework.org
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Since modularization is such a common and wellstudied problem, many metrics have been proposed which
indicate the quality of a module. Common metrics include coupling and cohesion. For our example, we follow
the EqualSize Cluster Approach, as described by Praditwong et al in Software Module Clustering as a Multi
Objective Search Problem. The goal of this approach is to produce equallysized modules, i.e., modules that
have a similar number of entities. Therefore, besides the above mentioned two objectives we also aim to
maximize the number of modules and minimize the difference between the minimum and maximum number
of entities in a module. In order to improve efficiency, we have outsourced evaluation of the objectives and
constraints into a separate class (MetricsCalculator), which calculates the values in one iteration through the
model. In the configuration example below, you can find how this external calculation can be integrated into
the fitness evaluation of MOMoT.

Coupling: Coupling refers to the number of external dependencies a specific module has, i.e., the sum of
interrelationships with other modules. Typically, low coupling is preferred as this indicates that a group
covers separate functionality aspects of a system, improving the maintainability, readability and testability of
the overall system.

Cohesion: Cohesion refers to the dependencies within a module, i.e., the sum of intrarelationships in the
module. As opposed to coupling, the cohesion within one module should be maximized to ensure that it does
not contain parts that are not part of its functionality.

Number of Modules: We aim to maximize the number of modules to avoid having all entities in a single
large module.

MinMax Difference: The difference between the module with the lowest number of entities and the module
with the highest number of entities should be minimized. By doing so, we aim to produce equallysized
modules as the optimal difference would be 0.

fitness = { 
 preprocess = { // use attribute storage for external calculation 

val root = MomotUtil.getRoot(solution.execute, typeof(Language)) 
 solution.setAttribute("metrics", MetricsCalculator.calculate(root)) 

 } 
 objectives = { 

Coupling : minimize { // java‐like syntax 
 val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics)) 
 metrics.coupling 
} 
 Cohesion : maximize {  

 val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics)) 
 metrics.cohesion 

 } 
 NrModules : maximize { 

 (root as Language).^modules.filter[m | !m.entities.empty].size 
 } 
 MinMaxDiff : minimize { 

 val sizes = (root as Language).^modules.filter[m | !m.entities.empty].map[m | m.entities.size] 
 sizes.max ‐ sizes.min 

  }   
} 

} 

References

Figure 3. assignModule rule.

As for the objectives that compose the fitness function, they can
be defined with a configuration language available in our frame-
work, as shown in Listing 1. We can see the definition of the four
objectives explained before. In this listing, we show two ways of-
fered by our framework for the definition of objectives. First, objec-
tives minimize coupling and maximize cohesion use an external cal-
culator with methods implemented for the calculation of the value
of the metrics. Second, objectives maximize number of modules and
minimize difference between number of entities in modules are cal-
culated directly in this configuration file. In MOMoT, the user can
choose either of the two ways or specify an OCL query to calculate
the objectives.

4. Application Study
In this section we apply our generic modularization chain presented
in the previous section for modularizing Ecore models. In order
to address this, we (i) define the research questions for our study,
(ii) explain how Ecore models are translated to our modularization
language (cf. Fig. 1), and finally (iii) describe the results obtained
by our search approach for real-world Ecore models.

4.1 Research Questions
We are interested in answering the following research questions
(RQs).

• RQ1. Is the binding between Ecore and the generic modulariza-
tion metamodel feasible with the proposed approach?
• RQ2. How good are the results of the modularization task, i.e.,

the results of applying the generic modularization strategies?

4.2 Binding between Ecore and the Generic Modularization
Metamodel

The first step is to conceptually bind the concepts of the Ecore lan-
guage with those of our generic modularization language by means
of a query-driven model transformation. A simplified version of
the Ecore metamodel with the concepts that we take into account
is presented in Figure 4. Please note that gray, and therefore un-
mapped, elements of Ecore are depicted with gray color. We can
see that EPackages contain EClasses and EDataTypes. EClasses
can inherit from other EClasses (eSuperTypes relationship). At the
same time, they contain EReferences and EAttributes. The former
are used to specify relationships among EClasses. Therefore, an
EReference has an eReferenceType that points to the end EClass.
Furthermore, an EReference can either be of type containment or
not. As for EAttributes, they are of a specific type (eAttributeType),
which is specified by an EDataType or an EEnum.

The homomorphism between the two languages is summa-
rized in Table 1. Bindings for EPackage, EClass, EDataType and
EEnum are quite straightforward (EPackage is mapped to mod-
ule, all EClassifiers are mapped to entity). Let us explain those
bindings that produce a relationship in the generic modularization
model. As we mentioned in Section 3.1, relationships can have
different weights, depending on how strong the relationship is. In
an Ecore model, we consider that the containment relationship is
the strongest one, since a contained element cannot exist with-
out its container. Therefore, for those EReferences that are of type

EPackage EClassifier

ENamedElement
name: String

EClass EStructuralFeature EDataType

EReference
containment: Bool

EAttribute EEnum

eClassifiers
0..*

eStructuralFeatures

0..*

eSuperTypes
0..*

eAttributeType

1..11..1
eReferenceType

Figure 4. Simplified Ecore Metamodel.

Table 1. Correspondences between Ecore Language and Generic
Modularization Language.

Ecore Gen Module Language

EPackage Module

EClass Entity
EDataType Entity

EEnum Entity

eSuperType Relationship (weight=2)
EAttribute Relationship (weight=1)

EReference (non-containment) Relationship (weight=1)
EReference (containment) Relationship (weight=3)

containment, we create a relationship with weight 3 between the
entities representing those EClasses that act as source and target of
the EReference. EReferences that are not of type containment are
the weakest ones in our mapping, so we give a weight of 1 to the re-
lationships created from them. As previously mentioned, EClasses
contain EAttributes. The latter, in turn, are typed with EDataType or
EEnum. Therefore, also a relationship is created between an entity
representing an EClass and those entities representing EDataTypes
or EEnums that are the type of the EAttributes of the EClass. These
relationships are also given weight 1. Finally, there are relationships
between those entities representing EClasses that have inheritance
relationships between them. As inheritance relationships span up
type hierarchies, the weight given to such relationships is 2.

According to this mapping, we have implemented an ATL trans-
formation4 that takes any Ecore model and produces a model con-
forming to our generic modularization metamodel. The latter model
contains as many Modules as EPackages the Ecore model has, and
all the entities and relationships among them are correspondingly
created. We implemented the transformation comprising the two
steps as explained before. First, helper functions are defining the
queries needed to incorporate the concepts of the modularization
metamodel in the Ecore metamodel (conceptually one can think
about derived properties). Second, we employ one-to-one rules to
actually produce the initial modularization models from the Ecore
models.

As Ecore models we have used the metamodels of HTML,
JAVA, OCL and QVT available in the ATL transforation zoo5 as
they represent middle-sized as well as large metamodels (Kusel
et al. 2013). We have transformed them with our approach. The
number of modules, entities, and relationships (of each of the three
types) obtained for these Ecore models are summarized in Table 2.

4 All artifacts can be found on our website (Fleck et al. 2016)
5 http://www.eclipse.org/atl/atlTransformations/



Table 2. Ecore models as modularization models.
Model #Mod #Ent #Rel(w=1) #Rel(w=2) #Rel(w=3)

HTML 2 62 14 42 7
JAVA 1 132 179 145 129
OCL 2 77 47 73 37
QVT 8 151 199 152 100

At this stage we can already answer RQ1: yes, the binding between
Ecore models and the generic modularization models is feasible
and has been, in fact, implemented with the proposed approach.

In the following subsection, we describe the application of the
search-based model transformation to modularize each of these
models.

4.3 Search-Based Optimization
The values for the metrics that define the different objectives before
and after we execute the search-based modularization approach are
shown in Table 3, where the direction of the arrow indicates the
objective direction (whether it should be maximized or minimized).

In order to perform the search to find the optimal modulariza-
tions, we make use of our MOMoT tool (Fleck et al. 2015) as ex-
plained before. The objectives that we use as input are those de-
scribed in Section 3.3. The result of a search-based algorithm is the
set of Pareto optimal solutions. Under Pareto optimality (Harman
2007), one solution is considered better than another if it is better
according to at least one of the individual objective functions and
no worse according to all the others. The algorithms used in SBSE
apply the notion of Pareto optimality during the search to yield a
set of non-dominated solutions. Each non-dominated solution can
be viewed as an optimal trade-off between all objective functions
where no solution in the set is better or worse than another solution
in the set.

Some works (Branke et al. 2004) argue that the most interesting
solutions of the Pareto-optimal front are solutions where a small
improvement in one objective would lead to a large deterioration
in at least one other objective. These solutions are sometimes also
called “knees”. In order to show some values for the solutions we
get, we have extracted the knee point solution for each of the case
studies by calculating the proper utilities for each solution (Shukla
et al. 2013). The solution shown in Table 3 after the search displays
the value of the different objectives for the solution considered as
knee point after executing the search.

Let us respond to RQ2 by studying the numbers in the table. As
we can see, the value of coupling (COP) for the first three example
models before the optimization is 0. In the case of JAVA, this is
obvious as there is only one module (MOD). Regarding HTML
and OCL, there are two modules, where one of those only has 3 to
4 entities without any dependency with any entity from the other
module. This is due to the fact that these modules contain only the
primitive types such as Boolean or Integer. As for QVT, since there

Table 3. Objectives values before and after optimization.
Example Model COH ↑ COP ↓ DIF ↓ MOD ↑

HTML Before 119 0 56 2
After 101 18 31 5

JAVA Before 856 0 - 1
After 517 339 2 7

OCL Before 257 0 69 2
After 262 42 45 4

QVT Before 587 216 38 8
After 448 355 2 8

are 8 modules, the value of coupling is larger than 0. These modules
come from the packages in the metamodel and are for example
QVT Template, Imperative OCL, EMOF, or QVT Operational. As
for the difference between the minimum and maximum number of
entities in each module (DIF), this value is quite high for HTML,
OCL, and QVT, i.e., the entities between the modules are not
distributed equally. In the JAVA language, on the other hand, this
value does not make sense as there is only one module. Finally,
regarding cohesion (COH), all initial languages present a very high
to optimal value due to the fact that most, if not all, entities are in
the same module.

If we investigate the values after the optimization is performed,
we see that in HTML we have now 5 modules, 7 in JAVA, 4 in
OCL and we keep the same number of modules in QVT. Since in
most cases we have more modules than before the optimization,
the values of cohesion and coupling have gotten worse, as it is
obvious. However, the value of DIF is improved to a great extent.
Therefore, we are sacrificing coupling and cohesion in favor of
having several balanced modules. This is, in fact, the motivation
for this study: to have several modules where entities are distributed
equally number-wise, as better as possible regarding cohesion and
coupling values.

Please note that these are the results produced by step 3 of our
approach, which conform to the optimized generic modularization
model. The last step would be to transform these solutions back
to the original modeling language. This is left as future work and
would require to inverse the transformation produced in step 1 and
2. As we are using a query structured approach and one-to-one
mappings for step 1 and 2, we see here no particular challenges
to inverse this transformation.

5. Related Work
Concerning related work, we shortly summarize work in software
modularization in general and then discuss specific model modu-
larization approaches.

As already mentioned in Section 2, several approaches have
been proposed for software modularization considering program-
ming artifacts (Praditwong et al. 2011; Mkaouer et al. 2015). In
this paper, we follow the same search-based spirit, but aim to pro-
vide a generic representation of the modularization problem which
may be reused for several modeling languages.

There are already some approaches which aim in splitting large
models into more manageable chunks. First of all, EMF Split-
ter (Garmendia et al. 2014) provides means to split large EMF
models based on metamodel annotations. Here the user has to come
up with a meaningful configuration for the model splitting and the
main use case is to deal with very large models. There are no de-
sign quality aspects considered as in our approach. The same is
true concerning Fragmenta (Amálio et al. 2015) which is a theory
on how to fragment models in order to ensure technical constraints.
In (Strüber et al. 2014) an approach for extracting submodels based
on textual description is presented. However, the usage of quality
metrics such as done in this paper, is mentioned only as subject
to future work. A graph clustering approach has been presented
in (Strüber et al. 2013) to modularize large metamodels. While in
our approach we are not proposing a specific transformation as it is
done in (Strüber et al. 2013), an interesting line of future research
is to compare the capabilities of the graph clustering algorithm
with respect to the search-based meta-heuristic approaches. Finally,
in (Henriksson et al. 2007), an approach is presented how modular-
ity can be added to existing languages. While we are assuming that
languages in our setting already offer some kind of modularization
concept, it would be interesting to integrate the modularization con-
cepts proposed by (Henriksson et al. 2007) in our modularization
metamodel in the future.



6. Conclusions
In this paper, we have presented a first approach to deal with mod-
ularization of models in a generic and reusable way. We have
achieved this goal by combining several kinds of transformation
approaches: generic, query-structured, and search-based transfor-
mations. While the results seem already promising for the Ecore
case study, several future lines of research are needed to deal with
the specific characteristics of modeling approaches such as having
megamodels, multi-viewpoint modeling, as well as having sepa-
rated but highly interconnected artifacts such as models, metamod-
els, and transformations, to name just a few examples. Finally, we
plan to study more powerful modularization approaches such as
aspect-orientation and concern-oriented ones as well as how to sup-
port other related approaches such as model merging, model link-
ing, and model splitting with our search-based transformations.
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