
Uniform solutions to SAT and Subset Sum by spiking
neural P systems

Alberto Leporati Æ Giancarlo Mauri Æ Claudio Zandron Æ Gheorghe Păun Æ
Mario J. Pérez-Jiménez

Abstract We continue the investigations concerning the possibility of using spiking neural
P systems as a framework for solving computationally hard problems, addressing two
problems which were already recently considered in this respect: Subset Sum and SAT: For
both of them we provide uniform constructions of standard spiking neural P systems (i.e.,
not using extended rules or parallel use of rules) which solve these problems in a constant
number of steps, working in a non-deterministic way. This improves known results of this
type where the construction was non-uniform, and/or was using various ingredients added
to the initial definition of spiking neural P systems (the SN P systems as defined initially are
called here ‘‘standard’’). However, in the Subset Sum case, a price to pay for this
improvement is that the solution is obtained either in a time which depends on the value of
the numbers involved in the problem, or by using a system whose size depends on the same
values, or again by using complicated regular expressions. A uniform solution to 3-SAT is
also provided, that works in constant time.

A. Leporati � G. Mauri � C. Zandron
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano –
Bicocca, Viale Sarca 336, 20126 Milano, Italy
e-mail: leporati@disco.unimib.it

G. Mauri
e-mail: mauri@disco.unimib.it

C. Zandron
e-mail: zandron@disco.unimib.it

G. Păun (&)
Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, 014700 Bucharest, Romania
e-mail: george.paun@imar.ro; gpaun@us.es

G. Păun � M. J. Pérez-Jiménez
Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence,
University of Sevilla, Avda Reina Mercedes s/n, 41012 Sevilla, Spain
e-mail: marper@us.es

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Keywords Membrane computing � Spiking neural P system � SAT problem �
Subset sum problem � Complexity

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in Ionescu et al. (2006)
as a class of P systems which incorporate into membrane computing specific ideas from the
way biological neurons communicate through electrical impulses of identical form
(spikes). We refer to Ionescu et al. (2006) and to other papers which can be found at the
Web site of membrane computing (The P Systems Web Page: http://psystems.disco.
unimib.it.) for motivation and basic definitions.

In short, an SN P system consists of a set of neurons placed in the nodes of a directed
graph and sending signals (spikes, denoted in what follows by the symbol a) along the arcs
of the graph (called synapses). The spikes evolve by means of rules which, in the first
papers reported in this area, were of two types: (i) standard spiking rules, which are of the
form E/ac ? a; d, where E is a regular expression over {a} and c, d are natural numbers
such that c C 1, d C 0, and (ii) forgetting rules, of the form as ? k, where s C 1 is a natural
number. Using a rule of the former type means that if a neuron contains k spikes, k C c, and
ak [L(E), then it can consume c spikes and produce one spike, after a delay of d steps. This
spike is sent to all neurons connected by an outgoing synapse from the neuron where the
rule was applied. Using a forgetting rule means that s spikes are removed, provided that the
neuron contains exactly s spikes. If two spiking rules can be used at the same time in a
neuron (i.e., both their regular expressions describe the contents of that neuron), then one of
them is non-deterministically chosen, but, by definition, in Ionescu et al. (2006) it is for-

bidden to have a spiking rule E/ac ? a; d and a forgetting rule as ? k such that as [L(E).

A common generalization of these types of rules was introduced in Chen et al. (2006b)
and Păun and Păun (2007) under the name of extended rules. These rules are of the form
E/ac ? ap; d, with the meaning that when using the rule, c spikes are consumed and p
spikes are produced. Because p can be 0 or greater than 0, we obtain a generalization of
both standard spiking and forgetting rules, with the additional feature of having the for-

getting rules controlled by regular expressions. Moreover, forgetting rules are now allowed
to compete in a non-deterministic way with firing rules.

In each time unit (a common clock is assumed to exist, marking the time for all
neurons), each neuron which can use a rule, of any type, has to do it (each neuron can use
at most one rule, but the neurons work synchronously, evolving in parallel). One of the
neurons is considered to be the output neuron, and its spikes are also sent to the envi-
ronment. The moments of time when (at least) a spike is emitted by the output neuron are
marked with 1, the other moments are marked with 0. This binary sequence is called the
spike train produced by the system—it is infinite if the computation does not halt.

With a spike train we can associate various numbers, which can be considered as
computed (we also say generated) by an SN P system. For instance, in Ionescu et al. (2006)
only the distance between the first two spikes of a spike train was considered, while in Păun
et al. (2002) several extensions were examined which we do not mention here.

An SN P system can also work in the accepting mode: a neuron is designated as the
input neuron and a spike train is introduced in it; this spike train is accepted if the
computation halts. In particular, we can introduce a spike train with only two spikes,
coming at an interval of n steps, and then we say that the number n is accepted if the
computation halts.

http://psystems.disco.unimib.it.
http://psystems.disco.unimib.it.

Two main types of results on the computational power of SN P systems have been

obtained in the literature: computational completeness in the case when no bound was

imposed on the number of spikes present in the system, and a characterization of semi-

linear sets of numbers in the case when a bound was imposed. Improvements in the form of

the regular expressions, removing the delay, or the forgetting rules can be found in Ibarra

et al. (2007). The result is true both for the generative and the accepting cases.

SN P systems can be also used for solving decision problems: Given a problem Q, for

example, with instances Q(n, m) characterized by the size parameters n and m (as it is the

case of SAT; the satisfiability of propositional formulas in the conjunctive normal form,

where n is the number of variables and m is the number of clauses in a given formula), we

construct an SN P system PQ such that, when having an instance Q(n, m), we introduce a

polynomial number of spikes in a designated input neuron of PQ and the computation halts

if and only if Q(n, m) has a solution. Alternately, we can assume that Q(n, m) has a solution

if and only if the system sends at least a spike to the environment (we will see below that,

in certain circumstances, the two modes, halting or spiking at least once, are equivalent).

When the system is constructed in such a way to depend directly on the instance Q(n, m),

then we say that the construction is non-uniform (it is semi-uniform if it is done in a

polynomial time); then we do not need an input neuron, as the instance is embedded in the

structure (number of spikes, graph of neurons, rules) from the very beginning. In the case

of uniform constructions, a useful extension is to consider several input neurons, so that the

introduction of the encoding of an instance of the problem to be solved can be done in a

faster way, introducing parts of the code in parallel in various input neurons.

Besides the sequential use of rules in each neuron, also a parallel way was considered,

in two forms: the exhaustive mode of (Ionescu et al. 2007) (when a rule is enabled, then it

is used as many times as possible in that neuron), and the maximally parallel mode of

(Leporati et al. 2007b) (as many rules are used as enabled in a neuron).

The present paper considers SN P systems for solving decision problems, continuing the

papers of Leporati et al. (2007a, b). The first of these papers deals with the Subset Sum

problem, the latter with the SAT problem. For both these problems, constant time solutions

were provided in these papers by using SN P systems constructed in a semi-uniform way,

working in a non-deterministic way, and also using a series of ingredients added to SN P

systems of the standard form: extended rules, the possibility to have a choice between spiking

rules and forgetting rules, etc. We improve here the constructions from Leporati et al. (2007a,

b), by using only standard SN P systems, avoiding the use of delay, providing uniform
constructions (a uniform construction for solving SAT was also presented in Leporati et al.

(2007b), but the idea of the construction given here is different and more transparent).

It is worth stressing that we are mainly interested here in having uniform constructions (in the

sense of devising systems associated with the problems, not with specific instances; however,

we do not take care of the time needed for the construction), using standard features of SN P

systems, and in getting constant time solutions of the considered decision problems, working in

a non-deterministic way. Our systems are in general of an exponential size with respect to the

size of the problems (e.g., the number of neurons depends on the size of the numbers involved in

the Subset Sum problem and are polynomial in n and m for a SATðn;mÞ problem).

The paper is organized as follows. In the next section we formally introduce the SN P

systems, in Sect. 3 we deal with the Subset Sum problem, in Sect. 5 we provide solutions

to SAT; and in Sect. 6 we give a solution to the 3-SAT problem. Section 4 gives an auxiliary

result: in the case of extended systems, halting is the same as spiking, hence we do not

have to pay attention to this aspect of the definition. We close with some concluding

remarks and open problems in Sect. 7.

2 SN P systems

We introduce SN P systems in the standard form, in the computing version (i.e., able to

take an input and provide an output).

A computing spiking neural P system of degree m C 1 is a construct of the form

P ¼ ðO; r1; . . .; rm; syn; in; outÞ; where:

1. O = {a} is the singleton alphabet (a is called spike);

2. r1, …, rm are neurons, of the form ri = (ni, Ri), 1 B i B m, where:

a) ni C 0 is the initial number of spikes contained in ri;

b) Ri is a finite set of rules of the following two forms:

(1) E/ac ? a; d, where E is a regular expression over a and c C 1, d C 0 are

natural numbers;

(2) as ? k, where s C 1 is a natural number, with the restriction that for each

rule E/ac ? a; d of type (1) from Ri, we have as 62 LðEÞ;
3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with i = j for all (i, j) [syn, 1 B i, j B m

(synapses between neurons);

4. in, out [{1, 2, …, m} indicate the input and the output neuron, respectively.

The rules of type (1) are firing (we also say spiking) rules, those of type (2) are called
forgetting rules. The firing rules are applied as follows. If the neuron ri contains k spikes,
and ak [L(E), k C c, then the rule E/ac ? a; d [Ri can be applied. This means consuming
(removing) c spikes (thus only k - c spikes remain in ri); the neuron is fired, and it
produces a spike after d time units. If d = 0, then the spike is emitted immediately; if
d = 1, then the spike is emitted in the next step, etc. If the rule is used in step t and d C 1,
then in steps t, t + 1, t + 2, …, t + d - 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a neuron has
a synapse to a closed neuron and tries to send a spike along it, then that particular spike is
lost). In the step t + d, the neuron spikes and becomes again open, so that it can receive
spikes (which can be used starting with the step t + d + 1, when the neuron can again
apply rules). Once emitted from neuron ri, the spike reaches immediately all neurons rj

such that (i, j) [syn and which are open, that is, the spike is replicated and each target
neuron receives a copy of it; spikes sent to a closed neuron are ‘‘lost’’.

The forgetting rules are applied as follows: if neuron ri contains exactly s spikes, then
the rule as ? k from Ri can be used, meaning that all s spikes are removed from ri.

If a rule E/ac ? a; d of type (1) has E = ac, then we write it in the simplified form ac ? a; d.
If all rules of a system have d = 0, i.e., no delay is involved, then the parameter d is omitted
and the rules are written in the form E/ac ? a.

In each time unit, if a neuron ri can use one of its rules, then a rule from Ri must be used.
Since two firing rules, E1=ac1 ! a; d1 and E2=ac2 ! a; d2; can have LðE1Þ \ LðE2Þ 6¼ ;; it is
possible that two or more rules can be applied in a neuron, and in that case, only one of them is
chosen non-deterministically. Note however that, by definition, if a firing rule is applicable,
then no forgetting rule is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, at most one in each step,
but neurons work in parallel with each other. It is important to notice that the applicability of a
rule is established depending on the total number of spikes contained in the neuron.

The initial configuration of the system is described by the numbers n1, n2, …, nm of

spikes present in each neuron, with all neurons being open. During the computation, a

configuration is described by both the number of spikes present in each neuron and the

state of the neuron, that is, the number of steps to count down until it becomes open again

(this number is zero if the neuron is already open). Thus, hr1=t1; . . .; rm=tmi is the con-

figuration where neuron ri contains ri C 0 spikes and it will be open after ti C 0 steps, for

i = 1, 2, …, m; with this notation, the initial configuration of the system is

C0 ¼ hn1=0; . . .; nm=0i:
A computation in a system as above starts in the initial configuration. In order to compute a

function f : Nk �! N;we introduce k natural numbers n1, …, nk in the system by ‘‘reading’’

from the environment a binary sequence z ¼ 10n1�110n2�11. . .10nk�11: This means that the

input neuron of P receives a spike in each step corresponding to a digit 1 from the string z and

no spike otherwise. (Another possibility is to consider k input neurons and to introduce each

ni, 1 B i B k, as the distance between two spikes which enter the ith input neuron.) The result

of the computation is also encoded in the distance between two spikes: we impose the

restriction that the system outputs exactly two spikes and halts (sometimes after the second

spike), hence it produces a spike train of the form 0b1 10r�11bb2 ; for some b1, b2 C 0 and with

r = f(n1, …, nk) (the system outputs no spike a non-specified number of steps from the

beginning of the computation until the first spike).

The previous definition covers many types of systems/behaviors. If the neuron rin is not

specified, then we have a generative system: we start from the initial configuration and we

collect all results of computations. Alternatively, we can compute a function which relates

the input to the output.

A further possibility is to use an SN P system in the accepting mode: an input is

introduced in the system and it is accepted if and only if the computation halts, or if and

only if the output neuron spikes at least once. Precisely, an accepting SN P system of

degree ðm; ‘Þ; with m C 1 and 0� ‘�m; is defined like a standard SN P system of degree

m, the only difference being that now there are ‘ input neurons denoted by in1; . . .; in‘: As a

particular case, when ‘ ¼ 0 we have SN P systems without any input neuron. A valid input
of an accepting SN P system of degree ðm; ‘Þ is a set of ‘ binary sequences, that collec-

tively encode an instance of a decision problem.

A computation in an accepting SN P system of degree ðm; ‘Þ starts in the initial configu-

ration. The valid input (encoding an instance of a decision problem) is processed, by making

each input neuron ini read from the environment a binary sequence zi ¼
10ni;1�110ni;2�11. . .10ni;ki

�11 as described above. In this way, neuron ini reads the sequence

ni;1; ni;2; . . .; ni;ki
of natural numbers. Then, the computation proceeds as usual, and we say that

it is an accepting computation if and only if the system halts and the output neuron spikes

exactly once. Let us note that the time spent by an SN P system working with a valid input is, at

least, the maximum length of the binary sequences provided by the input.

We do not give here further details, but we refer the reader to the bibliography. In

particular, we do not give examples of SN P systems, but several explicit constructions of

SN P systems will be provided in the next sections.

2.1 Complexity classes in SN P systems

Since in this paper we will be dealing with the Subset Sum; SAT and 3�SAT NP-complete

decision problems, we recall here some basic definitions concerning the solution of

decision problems by means of SN P systems.

Definition 1 Let X = (IX, hX) be a decision problem, and g : N! N a computable function.

We say that X is solvable by a family P ¼ PðnÞð Þn2N of SN P systems, in time bounded by g,

in a non-deterministic and uniform way (we denote it by X [NSN(g)), if the following holds:

– The family P is polynomially uniform by Turing machines; that is, there exists a

deterministic Turing machine working in polynomial-time which constructs the SN P

system PðnÞ from n [N.

– There exist polynomial time computable functions, cod and s, over IX, such that

• For each instance w [IX, s(w) is a natural number, and cod(w) is a valid input of the

SN P system PðsðwÞÞ .

• The family P is g-bounded with respect to (X, cod, s); that is, for each instance w
[IX, the minimum length of an accepting computation of PðsðwÞÞ with input

cod(w) is bounded by g(|w|).

• The family P is sound with respect to (X, cod, s); that is, for every w [IX, if there

exists an accepting computation of PðsðwÞÞ with input cod(w), then hX(w) = 1.

• The family P is X-complete with respect to (X, cod, s); that is, for every w [IX, if

hX(w) = 1 then there exists a computation of PðsðwÞÞ with input cod(w) which is

an accepting computation.

Definition 2 We say that a decision problem X = (IX, hX) is solvable in polynomial time

by a family P ¼ PðnÞð Þn2N of SN P systems, in a non-deterministic and uniform way (we

denote it by X [NPSN), if there exists k [N such that X is solvable by the family P in

time bounded by a polynomial, in a non-deterministic and uniform way.

Definition 3 Let X = (IX, hX) be a decision problem, and g: N ? N a computable

function. We say that X is solvable by a family P ¼ PðwÞð Þw2IX
of SN P systems, in time

bounded by g, in a non-deterministic and semi-uniform way (we denote it by X
[NSN*(g)), if the following holds:

– The family P is polynomially uniform by Turing machines; that is, there exists a

deterministic Turing machine working in polynomial-time which constructs the SN P

system PðwÞ from the instance w [IX.

– The family P is g-bounded with respect to X; that is, for each w [IX, the minimum

length of an accepting computations of PðwÞ is bounded by g(|w|).

– The family P is sound with respect to X; that is, for every w [IX, if there exists an

accepting computation of PðwÞ , then hX(w) = 1.

– The family P is complete with respect to X; that is, for every w [IX, if hX(w) = 1 then

there exists a computation of PðwÞ which is an accepting computation.

Definition 4 We say that a decision problem X = (IX, hX) is solvable in polynomial time

by a family P ¼ PðwÞð Þw2IX
of SN P systems, in a non-deterministic and semi-uniform

way (we denote it by X [NPSN*), if there exists k [N such that X is solvable by the
family P in time bounded by a polynomial, in a non-deterministic and semi-uniform way.

Let us only comment upon the soundness and the completeness properties. The
soundness property requires that if we obtain an acceptance response from the system
(associated with an instance) through some computation, then the answer of the problem
(for that instance) is affirmative. On the other hand, the completeness property means that
if we obtain an affirmative response to an instance of the problem, then there exists an
accepting computation of the system (associated with that instance).

Let us finally note that the complexity classes defined above are closed under poly-

nomial time reduction, in the classical sense, but in general they are not closed under

complementation.

3 Solving Subset Sum

Let us start by recalling the NP-complete Subset Sum problem, here reformulated in an

equivalent form with respect to Garey and Johnson (1979, p. 223)

Problem 1 NAME: Subset Sum

– INSTANCE: a (multi)set V = {v1, v2, …, vn} of positive integer numbers, and a positive

integer number S.

– QUESTION: is there a sub(multi)set B � V such that
P

b2B

b ¼ S?

In Leporati et al. (2007a) an SN P system (recalled in Fig. 1 in a slightly modified form;

note that we omit the delay when it is 0 for all rules) was given for solving the Subset Sum

problem in a non-deterministic way, in two steps: neurons r1, …, rn choose non-deter-

ministically some numbers among v1, …, vn, and neuron rout checks whether the sum of

the chosen numbers equals S; if this is the case, a spike is sent to the environment. Hence,

the instance of the problem encoded in the system, by means of the initial spikes present in

neurons r1, …, rn as well as of the rules of these neurons (and also of rout, which ‘‘knows’’

the value of S) has a solution if and only if there is a computation which spikes in step 2. It

is important to note that the system is rather simple, but it is non-uniformly constructed, it

uses extended rules, and is allowed to contain forgetting rules which are used in compe-

tition with spiking rules. This competition provides the choice opportunity, necessary for

the non-deterministic behavior of the system. We will improve this construction below

from several of these points of view.

An alternative way to solve Subset Sum is to use the system depicted in Fig. 2, which is

inpired by Proposition 3.1 in Leporati et al. (2007b). Given the instance (V = {v1, v2, …,

vn}, S) of Subset Sum; let

Fig. 1 The SN P system given in
Leporati et al. (2007a) for
solving the Subset Sum problem

E ¼ ðav1 [kÞðav2 [kÞ. . .ðavn [kÞ

be the corresponding regular expression built using the values v1, v2, …, vn from V. The

neuron that composes the system depicted in Fig. 2 contains only the firing rule E/aS ? a
(the omitted delay is 0, and E is the above regular expression), and is initialized with S
spikes. According to the standard definition of SN P systems, the rule can fire (thus sending

a single spike to the environment) if and only if aS [L(E), that is, if and only if there exists

a subset of V whose elements sum up to S. Also this solution uses a system which is non-

uniformly constructed, but it does not use neither extended rules nor forgetting rules in

competition which spiking rules. However it uses complicated regular expressions, that

involve strings whose length is proportional to the values vi contained into V (and thus,

possibly exponential with respect to the usually agreed instance size of Subset Sum :
Hðn log KÞ; where K = max{v1, …, vn, S}).

Let us now consider the SN P system depicted in Fig. 3. It uses only standard rules, and

solves the Subset Sum problem in four steps, working non-deterministically. The non-

determinism is now provided by the rules a ? a; 0 and a ? a; 1 from neurons rc1
; . . .; rcn

:
If the first rule is chosen in rci

; then neuron rdi
receives immediately two spikes (one is

coming from neuron rc0
), fires, and sends a spike to neurons rei;j

; 1� j� vi; each of these

neurons spikes and sends one spike to neuron rout. If the rule a ? a; 1 is chosen in rci
; then

rdi
receives one spike from rc0

and forgets it in the next step, when also a spike from rci

arrives, and it is also removed by the forgetting rule. Thus, no spike is sent to neurons

rei;j
; 1� j� vi; hence to rout. This means that some of the numbers vi, 1 B i B n, are non-

deterministically chosen, and the output neuron accumulates their sum. The output neuron

spikes if and only if this sum equals S; this spike is sent to the environment in step 4 of the

computation.
n

Fig. 2 A simple SN P system
that solves one instance of
Subset Sum

Note that this system is constructed in a non-uniform way, it consists of
P

i=1 vi + 2n + 2
neurons, and initially contains n + 1 spikes.

At the price of getting the result after 5 steps and of slightly increasing the number of
neurons and of initial spikes, the delay feature can be avoided. To this aim, the neurons
rci ; rdi —as well as rc0 —are replaced as suggested in Fig. 4. This time, the choice is
between using the rule a2/a ? a or the rule a2 ? a in the first step of the computation. In
the first case, one spike remains to be used in the second step, when the rule a ? a sends it
to neuron rdi : In this way, during the first step of computation rdi either receives one spike
or two from rci : In step 2, rdi also receives two spikes from neuron rc0 through neurons
rc0

0
; rc

0
00 : From now on, the computation proceeds as in the system from Fig. 3.

Let us now pass to constructing the system which solves the Subset Sum problem in a
uniform way. This means that the system can ‘‘know’’ only the number n, while v1, …, vn
and S should be introduced in the system (in a specified form) at the beginning of the
computation. We choose to introduce the instance of the problem in the system as follows:
we consider n + 1 input nodes, and we introduce 2vi, 1 B i B n, spikes in the first n of
them and 2S spikes in the (n + 1)th input neuron. The system is presented in Fig. 5, with
these spikes already present in the input neurons rini ; 1 B i B n + 1.

These spikes cannot be used until receiving a spike from rdi
; in step 2. This happens

non-deterministically, in the same way as in the system from Fig. 3. When firing, each

neuron rini
sends two spikes (duplicated by rei;1

; rei;2
) both to the ‘‘accumulator’’ racc and

to the ‘‘comparison trigger’’ rt1 : In each step, starting with the fourth one, neuron rt1 also

receives a spike from rh4
: Having an odd number of spikes inside, greater than or equal to

3, rt1 forgets its spikes. When all spikes from neurons rini
activated by neurons rci

; rdi

Fig. 3 A standard, non-uniform solution to Subset Sum

Fig. 4 Removing the use of delays

were moved to racc, no spike comes to rt1 ; except the spike produced by rh4
: In that

moment, rt1 can use the rule a ? a; 0. The produced spike is sent both to rt2 (which just

waits with this spike inside) and to rh4
and rh5

; which from now on contain (at least) two

spikes and stop firing. At the same step, rt1 receives one more spike from rh4
; fires, and in

this way rt2 gets two spikes. It fires, and sends a spike to both racc and rinnþ1
: With an odd

number of spikes, these neurons start to fire, each of them sending one spike to rg1
: With

two spikes inside, this neuron forgets them. If the number of spikes accumulated in racc

equals the number of spikes from rinnþ1
; then the computation will halt. If this is not the

case, after exhausting the spikes from racc or from rinnþ1
; neuron rg1

will receive only one

spike and will fire. The produced spike will ‘‘feed’’ neurons rg2
and rg3

which will work

forever, thus preventing the halting of the computation.

Consequently, the computation halts if and only if the non-deterministic choice made by

neurons rci
provides a solution to the given instance of the Subset Sum problem.

The system from Fig. 5 contains 5n + 13 neurons, and the computation stops after at

most 3
P

i=1
n vi + 6 steps (we have two initial steps, at most 2 maxfvi j 1� i� ng steps for

Fig. 5 A uniform SN P system solving the Subset Sum problem

moving the spikes from neurons rini
; to racc, 4 steps to send a spike from rt1 to racc and

rinnþ1
; then at most Ri=1

n vi steps for the comparison; since maxfvi j 1� i� ng�Rn
i¼1vi; we

obtain the stated upper bound on the number of computation steps; of course, we may

assume that S B Ri=1
n vi, otherwise it is obvious that the problem has no solution).

The non-determinism is again ensured by the choice between a rule with delay 0 and a

rule with delay 1; as we did in Fig. 4, we can avoid using a non-zero delay, by adding one

further step to the computation. However, the computation is no longer performed in a

constant number of steps, but in a number which is bounded by the values of input numbers

vi, 1 B i B n, which can be exponential with respect to n (precisely, with respect to the size

of the instance, measured in bits). It is an open problem whether the construction can be

improved from this point of view.

Then, we have another aspect here: the problem has a solution if and only if there is a

halting computation, and this gives us the opportunity to remark that, in certain circum-

stances, there is no difference between defining successful computations by halting or by

having a spike emitted to the environment.

4 Halting versus Spiking

The following two observations can be considered as auxiliary lemmas with respect to the

other results of this paper.

First of all, given a system P; with standard or extended rules, with or without delays,
we can construct a system P0; with rules of the same kinds as those of P; which spikes if
and only if P halts.

Indeed, let us consider an SN P system P of degree n. For each neuron ri of

P; 1 � i � n; let Pi ¼
S
fpjE=ac ! ap; d is a rule of rig be the set of all possible

numbers of spikes which can be produced by ri using one of its rules. Let us now define:

D ¼ maxfd j E=ac ! ap; d is a rule of Pg þ 1

as the maximal delay occurring in rules, plus 1, and

K ¼
Xn

i¼1

pijpi 2 Pi

()

� f0g

as the set of all possible numbers of spikes which can be produced by P in a computation

step, excluding number 0.

Clearly, the system P halts if and only if for D consecutive steps no spike is produced in

the system (if the system does not use the delay feature, then it stops if in one step no rule

is used): if a neuron uses a forgetting rule, then it remains empty, hence it can use again a

rule, of any type, only if it will receive further spikes; such spikes arrive at the same time

with the use of the forgetting rule or in the next at most D - 1 steps; thus, if no spike is

generated in the system P for D steps, then no further rule can be used.

We construct the system P0 as suggested in Fig. 6, where five neurons are added to the

system P: The components of P are kept unchanged, and from each neuron of P there is a

synapse to rc1
: In each step where at least one spike is produced in P; some spikes (whose

number belongs to the set K) are sent to neuron rc1
; which spikes immediately and sends a

spike to rout. Note that K may contain an exponential (in n) number of elements; hence,

neuron rc1
may contain an exponential number of rules as well. In each step, starting with

the second one, this neuron also receives two spikes from rc3
and rc4

: Any odd number of

Fig. 6 Passing from halting to
spiking

spikes smaller than 2D are removed from rout. If 2D spikes are accumulated in rout, this
means that the system P has produced no spike for D consecutive steps, that is, it halted; in
that case, the output neuron of P0 spikes (and stops, because neurons rc3 ; rc4 cannot work
further, but this is just a by-product of our construction, it is not requested in the statement
of our result). Thus, P0 spikes if and only if P halts.

Note that the neurons added to P use only standard rules, without delays, and that their
functioning is deterministic.

Unfortunately, we do not have a proof for the reverse assertion for standard SN P
systems, but only for the case when extended rules are used, and in all of these rules the
delay is 0. Indeed, let us consider an SN P system P with extended rules, and let rout be its
output neuron. We ‘‘double’’ this system by doubling the number of spikes present in the
initial configuration in each neuron, and replacing each rule E/ac ? ap; 0 with 2E/a2c

? a2p; 0, where 2E is a regular expression for the set f2n j n 2 LðEÞg (this is a regular set
of numbers for each regular expression E, hence the expression 2E exists and can be
constructed effectively). Let us denote by 2P the obtained system. Clearly, in this way the
behavior of the system is not changed, in the sense that the new system spikes if and only if
P spikes. Now, let us add a further neuron, rnew, with an incoming synapse from rout and
with outgoing synapses to all neurons of 2P: Provide a rule a2p ? a; 0 to rnew for each
rule 2E/a2c ? a2p; 0 from rout (in the form obtained by ‘‘doubling’’). Thus, if rout spikes,
then also rnew spikes, and its spike goes to all neurons of 2P; because in this way, the
number of spikes from each neuron of 2P becomes odd, no rule of 2P can be used from
now on, hence the system halts. Consequently, spiking implies halting—but the use of
extended rules is essential in this construction.

Whether or not the extended rules or the restriction to have no delay can be avoided
remains as an open problem.

5 Solving SAT

Let us pass now to SAT; the most invoked NP-complete problem (Garey and Johnson 1979,
p. 39). The instances of SAT depend upon two parameters: the number n of variables, and
the number m of clauses. As a consequence, SAT will be uniformly solved by means of a
family fPðhn; miÞgn;m2N of SN P systems, where Pðhn; miÞ solves all the instances
composed by m clauses, built using n variables.

We recall that a clause is a disjunction of literals, occurrences of xi or :xi; built on a

given set X = {x1, x2, …, xn} of Boolean variables. In what follows we will require that no

repetitions of the same literal may occur in any clause; in this way, a clause can be seen as

a subset of all possible literals. An assignment of the variables x1, x2, …, xn is a mapping a:

X ? {0, 1} that associates to each variable a truth value. The number of all possible

assignments to the variables of X is 2n. We say that an assignment satisfies the clause C if,

assigned the truth values to all the variables which occur in C, the evaluation of C
(considered as a Boolean formula) gives 1 (true) as a result.

Problem 2 NAME: SAT

– INSTANCE: a set C = {C1, C2, …, Cm} of clauses, built on a finite set {x1, x2, …, xn} of

Boolean variables.

– QUESTION: is there an assignment of the variables x1, x2, …, xn that satisfies all the

clauses in C?

An SN P system which solves this problem in a number of steps which is linear in the

number of variables, independent of the number of clauses, working non-deterministically,

can be constructed in a uniform manner, using only standard rules. The construction is

given again in a pictorial way, starting with the general structure suggested in Fig. 7. Note

that, differently from the number of computation steps, both the size and the structure of

the system depend upon the number of clauses. Several modules appear in this figure which

will be explained below.

Because the construction is uniform, we need a way to codify a given instance of SAT:
Let us consider a propositional formula in the conjunctive normal form, c ¼ C1 ^ C2 ^

. . . ^ Cm: A variable xi, 1 B i B n, can appear or not in a clause Cj, and in the case that it

appears, it can be negated or not (:xi or xi). Thus, we have to distinguish between three

cases; that is why we use a code of two digits 0 and 1 for indicating the relation between xi

and Cj: 00 indicates the case when xi does not appear in Cj, 01 (equally, we can use 10)

indicates the case when xi appears in Cj, and 11 corresponds to the case when :xi is present

in Cj. It is important to note that this means that 0, 1, or 2 spikes are to be introduced in the

input neuron of the system.

Actually, we consider m input neurons, one for each clause, and in each of them we

introduce a sequence of 2n digits 0 and 1 (with a spike sent inside in the steps corre-

sponding to the occurrence of 1), describing the situation of each variable x1, …, xn with

respect to the corresponding clause.

For instance, for the formula

c ¼ ðx1 _ x3 _ :x4Þ ^ ð:x2 _ x3Þ;

Fig. 7 The structure of the SN P
systems solving SAT

we have two input neurons, the first one receiving the spike train 01000111, and the second

one receiving the spike train 00110100. Note the important fact that introducing the input

takes 2n steps, hence the computation cannot last less than 2n steps (and, for the con-

struction below, we cannot separate the introduction of the data from the actual

computation; later we will improve from the computation duration point of view).

A module Xi exists for each variable xi, 1 B i B n, and a module Yj is associated with

each clause Cj, 1 B j B m. Each module Xi has three synapses going to each module Yj, as

precisely specified below.

The structure of every module Xi is suggested in Fig. 8. Actually, neurons rc0
; rc0

0
; rc00

0
;

and rc000
0

are common to all modules Xi (they appear only once and have synapses to all the

neurons of modules Xi, as indicated in Fig. 8).

These modules non-deterministically produce a truth-assignment for the variables x1,

…, xn, using the same idea as in the case of Subset Sum : the choice between rules a ? a;

0 and a ? a; 1. Of course, at the price of one further step, the delay can be avoided, as

indicated in Fig. 4.

Neuron rc0
not only feed rdi

; but also sends—with a certain delay—two spikes to

neuron rbj;1
from modules Yj associated with clauses. In turn, neurons rdi

; rei
send one or

no spike to rbj;1
: No spike is interpreted as the value false assigned to xi, and one spike is

interpreted as the value true assigned to xi. Therefore, rbj;1
receives either two or three

spikes from the module Xi, and these spikes meet in rbj;1
the spikes which codify the type of

presence of xi in clause Cj (no occurrence, negated, not negated).

In order to synchronize the check performed in neurons rbj;1
; i.e., to bring here the truth

assignment of variable xi in the moment when the code of the presence of xi in Cj arrives in

this neuron, we use the delaying neurons labeled generically in Fig. 8 with f and g. No such

neurons appear in module X1, two neurons in each row appear in X2, in general, i - 1

couples of neurons appear in each row of module Xi. In this way, a delay of 2(i - 1) steps

is enforced, thus ensuring the synchronization: in steps 1 + 2i, all neurons rbj;1
receive

both the truth assignment of xi and the code of the way xi is related with Cj. This last

information is produced and processed as indicated in Fig. 9, where the module Yj is

represented.

As one can see from the previous explanations, in steps 3, 5, …, 2n + 1, neurons

rbj;1
; 1� j�m; receive a number of spikes as follows:

Fig. 8 Module Xi

2 if xi ¼ false and xi does not appear in Cj;
3 if xi ¼ true and xi does not appear in Cj;
3 if xi ¼ false and xi appears in Cj;
4 if xi ¼ true and xi appears in Cj;
4 if xi ¼ false and :xi appears in Cj;
5 if xi ¼ true and :xi appears in Cj:

Thus, the rules of rbj;1 produce a spike only in the case when the clause Cj becomes true

for the corresponding truth assignment of variable xi. This spike reaches both the output

neuron and the ‘‘flooding neurons’’ rbj;2
; . . .; rbj;7

; which send six spikes to rbj;1
and make

this neuron halt. The use of these ‘‘flooding neurons’’ ensures the fact that rout receives at

most one spike from each module Yj, namely, only if clause Cj has been satisfied. Con-

sequently, the whole system spikes (in step 2n + 2) only if the truth assignment produced

non-deterministically by modules Xi satisfies formula c.

It should be noted that the number of neurons of the system constructed above is

3n2 + 8m + 5, and that the computation lasts a number of steps which is linear in n and

independent of m.

The duration of the computation can be made constant at the price of using a larger

number of input neurons: instead of introducing the whole description of clause Cj in a

neuron, bit by bit, we can use n input neurons for each clause, each of them receiving the

two bits which describe the relation between a variable and the clause.

Specifically, for each j = 1, 2, …, m we consider n neurons rj,i, 1 B i B n; neuron rj,i

will receive the spike train 00, 01 (or 10), 11, depending on the fact whether xi does not

appear, appears non-negated in Cj, or appears negated in Cj, respectively. After receiving

the spikes which correspond to these codes (0, 1, or 2 spikes), the input neurons just pass

the spikes to neurons rbj;i
; 1� i� n; 1� j�m; which behave like neurons rbj;1

from Fig. 9:

all these neurons contain the rules

a2 ! k; a3 ! k; a4 ! a; 0; a5 ! k;

thus checking the truth value of clause Cj with respect to variable xi. This check is done in

parallel for all variables and all clauses, in 3 steps, because the input neurons receive the

spikes at the same time. In turn, also the modules Xi are modified, all of them sending the

spikes (3 for value true and 2 for value false) to all neurons rbj;i
; in two steps, simultaneously.

Fig. 9 Module Yj

Three more steps are necessary in order to produce the output. A neuron rj is associated
with each clause, with synapses coming from all rbj;i ; 1 � i � n; to rj. If at least one spike
comes along these synapses, this means that clause Cj was satisfied by at least one variable.
That is why neuron rj contains all rules ar ? a; 0, for r = 1, 2, …, n.

Then, all neurons rj, 1 B j B m, are linked by a synapse to the output neuron rout, where
the rule am ? a; 0 is present. Therefore, the system spikes in step 6 if and only if a truth
assignment was ‘‘guessed’’ which satisfies all the clauses of the propositional formula.

The details of this construction are left to the reader. We only mention that this time the
number of neurons is equal to 2nm + 2n + m + 4. Since in 3-SAT the number of clauses
is bounded by 8n3 (see below), in this case we can bound the number of neurons with
respect to n: it is at most 16n4 + 8n3 + 2n + 4. A more economical solution from this
point of view will be given in the next section, based on a different idea: encoding the
instance which is introduced in the system.

6 Solving 3-SAT

In this section we focus our attention to 3-SAT; which is defined just like SAT (see Problem
2), the only difference being that now each clause contains exactly three literals. In what
follows we will sometimes equivalently say that an instance of 3-SAT is a Boolean formula
cn, built on n Boolean variables and expressed in conjunctive normal form, with each
clause containing exactly three literals.

Note that the number m of clauses appearing in a SATðn; mÞ problem may be very large
(e.g., exponential) with respect to n: every variable can be used negated or non-negated,
thus obtaining 2n literals, and every clause can be seen as the disjunction of a subset of all
possible literals (recall that we avoid repetitions of the same literal). Hence the number of
all possible clauses is 22n. The reason for which we are here interested into 3-SAT is that the
number of possible 3-clauses which can be built by putting a negated or non-negated
variable in each of the three available positions is at most (2n)3 = 8n3, a polynomial
quantity with respect to n. This quantity is obtained by looking at a 3-clause as a triple, and
observing that each component of the triple may contain one of the 2n possible literals. If
we do not allow the repetition of literals in the clauses, then the resulting number of
possible clauses becomes 2n�(2n - 1)� (2n - 2), which is again H(n3).

As shown in Garey and Johnson (1979, p. 48), every instance c of SAT can be transformed
in polynomial time (with respect to n and m) into an instance c0 of 3-SAT; in such a way that c is
satisfiable if and only if c0 is satisfiable. However this transformation introduces a new set of
variables, whose number is polynomial in m (and thus, possibly, exponential in n).

Figure 10 depicts an SN P system which can be used to solve any instance cn of 3-SAT built
on n Boolean variables. The system is composed by four layers of neurons. Moving from right
to left, in the fourth layer we have a neuron that operates just like an 8n3-input AND gate, since
it fires if and only if the number of spikes it contains is exactly 8n3. These spikes come from
the third layer, in which we have one neuron for every possible clause that can be built using n
variables. The input to the system is given to these neurons (spikes arrive here in step 2, as
explained below). Precisely, each of these neurons can be ‘‘selected’’ by putting in it 4 spikes,
or can be ignored (i.e., no spike is inserted in it). In what follows we will also say that these
ignored clauses are ‘‘unselected’’. An instance of 3-SAT is thus indicated by selecting the
clauses it contains. Since the output neuron in the fourth layer fires if and only if exactly 8n3

spikes arrive during the third computation step, the neurons in the third layer will have to be
designed in such a way that if they have not been selected then they fire (a somewhat

counterintuitive behavior). They will not fire only if they have been selected but the chosen

assignment to the variables does not satisfy the corresponding clauses.

The second and the first layer of the system are composed by modules which are similar

to those used in the semi-uniform solution of 3-SAT given in Leporati et al. (2007b). Note

that these modules use extended rules to choose, during the first step of computation,

whether to emit one or two spikes; we will remove this requirement below. Every neuron

rXi
in the first layer is connected with its two associated neurons in the second layer, that

correspond to the non-negated and to the negated literal which can be built using the

Boolean variable xi, respectively. Instead, the neurons of the second layer are connected

with those of the third layer according to what literals appear in each clause. Since we are

dealing with 3-SAT; every neuron in the third layer will have exactly three input synapses

coming from the second layer.

During the computation, spikes move from the first to the fourth layer, and then one spike is

(eventually) expelled to the environment. In the initial configuration, every neuron in the first

layer (which is bijectively associated with one of the n variables of the selected instance cn)

contains two spikes, neuron rs contains one spike, and all the other neurons are empty. Note

that we are not still considering the mechanism used to select the clauses: such a mechanism is

composed by 8n3 subsystems, described below, that of course must be initialized at the

beginning of the computation. In the first computation step, in each neuron of the first layer it

is non-deterministically chosen whether to assign 1 or 0 to the corresponding variable, that is,

Fig. 10 A non-deterministic SN P system that uniformly solves the 3-SAT problem in constant time

whether to assign 1 to the non-negated or to the negated literal. This choice is made by

choosing between two rules: one that sends two spikes to the next layer, and one that sends a

single spike. In the former case, only the neuron that corresponds to the negated literal will fire

during the next computation step; in the latter case, only the neuron that corresponds to the

non-negated literal will fire. Since literals are directly connected to the clauses in which they

appear, every neuron associated to a clause will receive from 0 to 3 spikes, according to the

number of literals of the clause which are satisfied. Thanks to the contribution of neuron rs,

during step 2 all the neurons of the third layer will receive a further spike. Other 4 spikes will

arrive during the same computation step to all those neurons of the third layer which corre-

spond to the clauses which have been selected.

In order to allow the user to select or unselect each possible clause, one copy of the

subsystem depicted in Fig. 11 is attached to every neuron of the third layer (neuron rCj
in

the figure). To select the clause, the user puts one spike in the leftmost neuron of the

corresponding subsystem before starting the computation of the entire system; the absence

of this spike indicates that the clause has not been selected. Note that the user must provide

all these spikes simultaneously, that is, in parallel. This is a crucial point to keep in mind

when we will consider the execution time of our system.

The core of the system is thus composed by the neurons rC1
; . . .; rC

8n3
of the third layer.

As stated above, an unselected neuron should emit one spike, and also a selected neuron

that corresponds to a satisfied clause should emit one spike. The neuron should not fire only

when it corresponds to a selected clause which is not satisfied. In order to implement this

behavior, we can play with the number of spikes contained into the neuron. An unselected

neuron will receive from the second layer a number of spikes comprised between 1 and 4.

If we add 4 spikes to select a clause, then the corresponding neuron will contain a number

of spikes ranging from 5 to 8. The only case in which the neuron does not have to fire is

when it is selected but no literals are satisfied, that is, when it contains exactly 5 spikes.

Figure 12 illustrates the rules that allow to correctly implement this behavior.

Fig. 11 The subsystem that
allows to select a clause by
means of a spike given in input

Fig. 12 A neuron that realizes
the behavior of a selected/
unselected and satisfied/not
satisfied clause Cj

The system illustrated in Fig. 10 contains 8n3 + 3n + 3 neurons, hence the size of the

system is polynomially bounded in n. Also the number of rules and spikes contained into

the system during the computations is polynomially bounded. The system solves (in a non-

deterministic way) the selected instance of 3-SAT in 4 steps. This last sentence, concerning

non-determinism, should be interpreted as follows: either the system ‘‘magically’’ chooses

the correct assignment (if it exists) that satisfies all the clauses, exploiting the power of

non-determinism, or at least one of the possible computations produces the correct

assignment (if it exists). Notice that we are able to keep constant the execution time of the

system by forcing the user to provide its input (the set of spikes that indicates which

clauses occur in the selected instance cn of 3-SAT) in parallel.

Stated otherwise, the user must provide one spike—in the initial configuration of the

system—to every subsystem depicted in Fig. 11 that corresponds to a clause that has to be

selected. If the user would like to give its input in a sequential way, for example as a bit

string of length 8n3, where a 1 (resp., 0) in a given position indicates that the corresponding

clause has to be selected (resp., ignored), then he should use a sort of sequential to parallel

conversion buffer. Such a buffer would read one bit at each computation step, it would

produce one spike in the corresponding position of an array when it reads a 1, and finally

would release the contents of the array in parallel to the neurons of the third layer of the SN

P system depicted in Fig. 10, during the appropriate computation step. This modification

would clearly make the computation time of the entire system linear with respect to the

length of the bit string provided by the user.

One drawback of the proposed system is that it uses extended rules to produce, during

the first computation step, one or two spikes in a non-deterministic way. If we want to

avoid the use of extended rules, we have at least two possibilities. The first one is depicted

in Fig. 13; here the extended rules have been replaced with a non-deterministic choice

between a firing and a forgetting rule, also a feature which is missing in the standard

definition of SN P systems. A second possibility is to use the module depicted in Fig. 14,

where also two clauses are represented to make clear how the connections between the

second and the third layer of the system should be made. In this module, the use of

extended rules is replaced by the use of delays. Note that neurons r1 and r2 of Fig. 14

occur only once in the system, and are connected with every neuron of the second and of

the third layer, respectively. In particular, neuron r1 plays the role that was played by rs in

Fig. 10; here, however, it also provides one spike to every neuron of the second layer.

If desired, also the delays contained in the subsystem of Fig. 14 can be removed, by

complicating a bit the module, as we have done in Fig. 4. The resulting subsystem is

depicted in Fig. 15. In this subsystem one or two spikes are produced after four compu-

tation steps; these spikes are sent to the neurons that represent the literals, just like it

Fig. 13 An alternative way to
generate an assignment

Fig. 14 Another way to generate the assignments. Neurons r1 and r2 occur only once in the system, and are
connected with every neuron of the second and of the third layer, respectively

happened in the first layer of Fig. 10. All subsequent computation steps proceed like

before, and thus the resulting system that uniformly solves any instance cn of 3-SAT;
without using neither extended rules nor delays, operates in 6 steps.

7 Final remarks

Investigations related to the possibility of using SN P systems for solving problems are very
recent; in particular, the use of such systems for solving computationally hard problems, an
issue of a definite interest, is addressed only in a few papers (besides Leporati et al. 2007a, b),
mentioned above, we also mention (Chen et al. 2006a), where a different idea is proposed:
start from a pre-computed SN P system, of an arbitrarily large size, but of a rather uniform
structure and without spikes inside; the problem is specified by introducing a polynomial
number of spikes in certain neurons; the answer, computed in a deterministic way, can be read
from the system after a predefined number of computation steps. A way to solve SAT in
constant time by means of this model was discussed in Chen et al. (2006a).

The present paper is a contribution to this research direction, with results dealing with
the type of the ingredients used in SN P systems which are uniformly constructed for
solving, in a non-deterministic manner, Subset Sum and SAT problems. Many open
problems were mentioned in the previous sections, most of them dealing with

improvements of the constructions we have proposed here (for instance, from the point of

view of their complexity, the number of neurons or of spikes present in the initial con-

figurations of the systems).

It is important to note that, as proved in Leporati et al. (2007b), an SN P system of

polynomial size cannot solve in a deterministic way in a polynomial time an NP-complete

problem (unless P = NP), hence efficient solutions to NP-complete (or harder) problems

cannot be obtained without introducing features which enhance the efficiency (pre-com-

puted resources, ways to exponentially grow the workspace during the computation, non-

determinism, and so on). A more careful examination of such features—maybe in relation

with the (supposed) way the brain works—is a research direction of a clear interest.

Acknowledgments The first three authors were partially supported by the project ‘‘Azioni Integrate Italia-
Spagna—Theory and Practice of Membrane Computing’’ (Acción Integrada Hispano-Italiana HI 2005-
0194). The work of the last two authors was supported by the project TIN 2006-13425 from the Ministerio
de Educación y Ciencia of Spain, co-financed by FEDER funds, the Excellence project TIC-581 from the
Junta de Andalucı́ a, and the Acción Integrada Hispano-Italiana HI 2005-0194. Gh. Păun was also partially
supported by project BioMAT 2-CEx06-11-97/19.09.06.

References

Chen H, Ionescu M, Ishdorj T-O (2006a) On the efficiency of spiking neural P systems. In: Proceedings of
8th international conference on electronics, information, and communication, Ulanbator, Mongolia,
pp 49–52

Chen H, Ishdorj T-O, Păun Gh, Pérez-Jiménez MJ (2006b) Spiking neural P systems with extended rules. In:
Gutiérrez-Naranjo MA et al (eds) Proceedings of fourth brainstorming week on membrane computing,
vol I. Fenix Editora, Sevilla, pp 241–265

Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory on NP–Completeness.
W.H. Freeman and Company, CA, USA

Ibarra OH, Păun A, Păun Gh, Rodrı́guez-Patón A, Sosik P, Woodworth S (2007) Normal forms for spiking
neural P systems. Theor Comput Sci 372(2–3):196–217

Fig. 15 Another way to generate an assignment. Here we do not use neither extended rules nor delays

Ionescu M, Păun Gh, Yokomori T (2006) Spiking neural P systems. Fundam Inform 71(2–3):279–308
Ionescu M, Păun Gh, Yokomori T (2007) Spiking neural P systems with an exhaustive use of rules. Int J

Unconvent Comput 3(2):135–154
Leporati A, Zandron C, Ferretti C, Mauri G (2007a) Solving numerical NP-complete problems with spiking

neural P systems, In: Eleftherakis G, Kefalas P, Păun Gh, Rozenberg G, Salomaa A (eds) Membrane
computing, International Workshop, WMC8, Thessaloniki, Greece, Selected and Invited Papers, LNCS
4860, Springer-Verlag, Berlin, pp 336–352

Leporati A, Zandron C, Ferretti C, Mauri G (2007b) On the computational power of spiking neural P
systems. Int J Unconvent Comput, in press

Păun Gh (2002) Membrane computing—an introduction. Springer, Berlin
Păun A, Păun Gh (2007) Small universal spiking neural P systems. BioSystems 90(1):48–60
Păun Gh, Pérez-Jiménez MJ, Rozenberg G (2002) Spike trains in spiking neural P systems. Int J Found

Comp Sci 17(4):975–1002

	Uniform solutions to SAT and Subset Sum by spiking neural P systems
	Abstract
	Introduction
	SN P systems
	Complexity classes in SN P systems

	Solving {\tt Subset}\,{\tt Sum}
	Halting versus Spiking
	Solving SAT
	Solving 3-SAT
	Final remarks
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

