
Limits on Efficient Computation in
P Systems with Symport/Antiport Rules

Luis F. Maćıas-Ramos1, Bosheng Song2,
Tao Song2, Linqiang Pan2, Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: lfmaciasr,marper@us.es

2 Key Laboratory of Image Information Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
E-mail: boshengsong@163.com, songtao0608@hotmail.com,

lqpan@mail.hust.edu.cn

Summary. Classical membrane systems with symport/antiport rules observe the con-
servation law, in the sense that they compute by changing the places of objects with
respect to the membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because the systems not only send objects to the
environment, but also bring objects from the environment. In the initial configuration of
a system, there is a special alphabet whose elements appear in an arbitrary large number
of copies. The ability of these computing devices with infinite copies of some objects has
been widely exploited in the design of efficient solutions to computationally hard prob-
lems. This paper deals with computational aspects of P systems with symport/antiport
rules and membrane division rules or membrane separation rules. Specifically, we study
the limitations of such P systems when the only communication rules allowed have length
1.

Key words: Membrane Computing, P System with Symport/Antiport rules,
Membrane Division, Membrane Separation, Computational Complexity.

1 Introduction

In Chapter 3, the computation efficiency of membrane systems has been studied
and new techniques and tools have been provided to tackle the P versus NP prob-
lem. For that, two framework has been considered: cell-like P systems with active
membranes (with or without using electrical charges) and tissue-like P systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

148 L.F. Maćıas-Ramos et al.

with cell division or cell separation. In both cases, the communication rules are
different. In the case of cell-like P systems, evolution rules, send-in and send-out
rules and dissolution rules are considered. In the case of tissue-like P systems,
communication rules have been implemented by using symport/antiport rules.

Membrane computing is a flexible and versatile branch of natural computing,
which arises as an abstraction of the compartmentalized structure of living cells,
and the way biochemical substances are processed in (or moved between) mem-
brane bounded regions [10]. Inspired by the structure of living cells, two main
classes of membrane systems have been investigated: a hierarchical (cell-like) ar-
rangement of membranes, inspired from the structure of the cell [10] and a net
of membranes (placed in the nodes of a directed graph), inspired from the cell-
interconnection in tissues [5] or inspired from the the way that neurons commu-
nicate with each other by means of short electrical impulses (spikes), emitted at
precise moments of time [4]. All classes of computing systems considered in the
field of membrane computing are generally called P systems, which are parallel
and distributed computational models. A comprehensive information in membrane
computing can be found in [13] and [2], and for the most up-to-date source of this
area, please refer to the P systems website http://ppage.psystems.eu.

On the one hand, cell-like P systems with symport/antiport rules were in-
troduced in [9] aiming to abstract the biological phenomenon of trans-membrane
transport of couples of chemical substances, in the same or in opposite directions.
On the other hand, tissue P systems with symport/antiport rules were introduced
in [8] by abstracting networks of elementary membranes such that some of them
are linked by “communication channels”.

In eukaryotic cells there are two relevant processes: mitosis and membrane
fission. The first one is a process of nuclear division in eukaryotic cells during
which one cell gives place to two genetically identical children cells. Membrane
fission occurs when a membrane gives place to two separated membranes, that
is, whenever a vesicle is produced or a larger subcellular compartment is divided
into smaller discrete units. These processes have been a source of inspiration to
incorporate new ingredients in membrane computing in order to be able to produce
exponential workspace in polynomial time. With respect to the mitosis process, P
systems with membrane division were introduced in [11], and with respect to the
membrane fission process, P systems with membrane separation were introduced
in [6]. These concepts were also introduced in the framework of tissue P systems:
tissue P systems with cell division [12] and tissue P systems with cell separation
[7].

Taking inspiration from living cells, we add abstractions of the mitosis and
the membrane fission processes as ingredients in P systems with symport/antiport
rules. Specifically, we allow new types of rules (membrane division and membrane
separation) in that framework leading to P systems with symport/antiport rules
and membrane division or membrane separation. The limitations of these systems
from the efficiency point of view are studied.

Limits on Efficient Computation in P Systems with S/A Rules 149

The paper is structured as follows. First, some basic concepts and notations
are introduced in order to provide a self-contained paper. Section 3 is devoted
to define the framework of cell-like P systems with symport/antiport rules and
membrane division or membrane separation. Next, recognizer tissue P systems
are briefly described and computational complexity classes in these system are
introduced. In Section 4, the limitations on the efficiency of cell-like P systems
with membrane division or membrane separation which use communication rules
of length one, that is, membrane systems without cooperation, are studied. Finally,
some conclusions and open problems are presented.

2 Preliminaries

An alphabet Σ is a finite non-empty set and their elements are called symbols.
An ordered finite sequence of symbols over Σ forms a string or word. The set of
symbols occurring in a string u over Σ is denoted by alph(u). The length of a
string u, denoted by |u|, is the number of occurrences of symbols it contains. For
an alphabet Σ, we denote by Σ∗ the set of all strings of symbols from Σ. The
empty string (with length 0) is denoted by λ. A language over Σ is a subset of Σ∗.

A multiset over an alphabet Σ, is an ordered pair (Σ, f) where f : Σ → N
is a mapping from Σ onto the set of non-negative numbers N. If m = (Σ, f) is a
multiset then its support is defined as supp(m) = {x ∈ Σ | f(x) > 0}. A multiset
is finite if its support is a finite set. We denote by ∅ the empty multiset and we
denote byMf (Σ) the set of all finite multisets over Σ.

Let m1 = (Σ, f1), m2 = (Σ, f2) are multisets over Σ, then the union of m1

and m2, denoted by m1 +m2, is the multiset (Σ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Σ. The relative complement of m2 in m1, denoted by m1 \ m2, is
the multiset (Σ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0
otherwise.

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x ̸= y), then y is the parent of node x and x is a child of
node y. The root is the only node in the tree with no parent (see [1] for details).

Let us recall that the Reachability Problem is the following: given a (directed
or undirected) graph G and two nodes a, b, determine whether or not the node
b is reachable from a, that is, whether or not there exists a path in the graph
from a to b. We denote by Reachability(G, a, b) the answer (yes or no) to the
Reachability problem with instance (G, a, b). It is easy to design an algorithm
running in polynomial time solving this problem. For example, given a (directed
or undirected) graph G and two nodes a, b, we consider a depth–first–search with
source a, and we check if b is in the tree of the computation forest whose root is

150 L.F. Maćıas-Ramos et al.

a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store
a linear number of items (it can be proved that there exists another polynomial
time algorithm which uses O(log2(|V |)) space).

3 P Systems with Symport/Antiport Rules

In this section we introduce a kind of cell-like P systems that use communication
rules capturing the biological phenomenon of trans-membrane transports of several
chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances (located in
different biological membranes) only pass with the help of each other (an exchange
of objects between both membranes).

Next, we introduce an abstraction of these operation in the framework of P
systems with symport/antiport rules following [9]. In these models, the membranes
are not polarized.

Definition 1. A P system with symport/antiport rules of degree q ≥ 1 is a tuple
Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet;
2. E (Γ ;
3. µ is a membrane structure (a rooted tree) whose nodes are injectively labelled

with 1, 2 . . . , q (the root of the tree is labelled by 1);
4.M1, . . . ,Mq are finite multises over Γ .
5. R1, · · · ,Rq are finite set of communication rules of the following forms:

⋆ Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ such
that |u| > 0;

⋆ Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such
that |u| > 0 and |v| > 0;

6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules of degree q

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed
in the q membranes of the system; (b) E is the set of objects initially located in the
environment of the system, all of them available in an arbitrary number of copies;
(c) R1, · · · ,Rq are finite sets of communication rules over Γ (Ri is associated with
the membrane i of µ); and (d) iout represents a distinguished region which will
encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer

Limits on Efficient Computation in P Systems with S/A Rules 151

to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0. The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u|
(resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport rules is described by the membrane structure at instant t,
all multisets of objects over Γ associated with all the membranes present in the
system, and the multiset of objects over Γ − E associated with the environment
at that moment. Recall that there are infinite copies of objects from E in the
environment, and hence this set is not properly changed along the computation.
The initial configuration of the system is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in such membrane. When applying
a rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (the parent p(i) of i), this can be the environment in
the case of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in the parent of i. When applying
a rule (u, in) ∈ Ri, the multiset of objects u goes out from the parent membrane
of i and enters into the region defined by the membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if membrane i is in Ct and multiset u is contained in such membrane, and
multiset v is contained in the parent of i. When applying a rule (u, out; v, in) ∈ Ri,
the objects specified by u are sent out of membrane i into the parent of i and, at
the same time, bringing the objects specified by v into membrane i.

The rules of a P system with symport/antiport rules are applied in a non-
deterministic maximally parallel manner: at each step we apply a multiset of rules
which is maximal, no further applicable rule can be added.

Let us fix a P system with symport/antiport rulesΠ. We say that configuration
C1 yields configuration C2 in one transition step, denoted by C1 ⇒Π C2, if we can
pass from C1 to C2 by applying the rules from R1∪ · · ·∪Rq following the previous
remarks. A computation ofΠ is a (finite or infinite) sequence of configurations such
that: (a) the first term of the sequence is the initial configuration of the system;
(b) each non-initial configuration of the sequence is obtained from the previous
configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and (c) if the sequence is finite (called
halting computation) then the last term of the sequence is a halting configuration
(a configuration where no rule of the system is applicable to it).

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout in the halting configuration. If C = {Ct}t≤r of Π
(r ∈ N) is a halting computation, then the length of C, denoted by |C|, is r, that is,

152 L.F. Maćıas-Ramos et al.

|C| is the number of non-initial configurations which appear in the finite sequence
C. We denote by Ct(i), 1 ≤ i ≤ q, the multiset of objects over Γ contained in the
membrane labelled by i at configuration Ct. We also denote by Ct(0) the multiset
of objects over Γ \ E contained in the environment at configuration Ct.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [16] and they provide a natural framework
to solve decision problems. Next, we introduce the concept of recognizer associated
with the systems defined in the previous section.

Definition 2. A recognizer P system with symport/antiport rules of degree q ≥ 1
is a tuple Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout), where:

• Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/anti-
port rules of degree q ≥ 1;

• the working alphabet Γ has two distinguished objects yes and no, with at least
one copy of them presents in some initial multisets M1, . . . ,Mq, but none of
them present in E;

• Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
• M1, . . . ,Mq are finite multisets over Γ \Σ;
• iin ∈ {1, . . . , q} is the input membrane;
• the output region iout is the environment;
• all computations halt;
• if C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

Let us notice that if a recognizer P system

Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

has a symport rule of the type (u, out) or (u, in) then alph(u) ∩ (Γ \ E) ̸= ∅, that
is, the multiset u must contains some object from Γ \ E because on the contrary,
all computations of Π would be non halting.

For each finite multiset w over the input alphabet Σ, a computation of Π =
(Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) with input multiset w starts from
the configuration of the form (µ,M1, . . . ,Miin + w, . . . ,Mq, ∅), where the input
multiset w is added to the content of the input membrane iin. That is, we have an
initial configuration associated with each input multiset w over Σ in recognizer P
systems with symport/antiport rules. We denote by Π + w the P system Π with
input multiset w.

Limits on Efficient Computation in P Systems with S/A Rules 153

3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Let us recall that a decision problem X is one whose solution is either “yes” or
“no”. This can be formally defined by an ordered pair (IX , θX), where IX is a
language over a finite alphabet and θX is a total boolean function over IX . The
elements of IX are called instances of the problem X. Next, according to [15], we
define what solving a decision problem by a family of recognizer P systems with
symport/antiport rules, in a uniform way, means.

Definition 3. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N} of recognizer P systems with symport/antiport rules
(in a uniform way) if the following conditions hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u))+ cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

According to Definition 3, we say that for each u ∈ IX , the P system Π(s(u)) +
cod(u) is confluent, in the sense that all possible computations of the system must
give the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [15] for details).

3.3 P systems with symport/antiport rules and membrane division or
membrane separation

In this section, we introduce new types of rules (membrane division and mem-
brane separation) inspired by the mitosis and the membrane fission processes, in
the framework of P systems with symport/antiport rules. These rules provide a
mechanism to construct an exponential workspace in polynomial time.

154 L.F. Maćıas-Ramos et al.

Definition 4. A P system with symport/antiport rules and membrane division of
degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with sym-
port/antiport rules.

2. R1, · · · ,Rq are finite set of symport/antiport rules which can also contain
rules of the following form: [a]i → [b]i[c]i, where i /∈ {1, iout} and a, b, c ∈ Γ
(division rules).

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at an instant
t if the following holds: (a) membrane i is in Ct; (b) object a is contained in
such membrane; and (c) membrane i is neither the skin membrane nor the output
membrane (if iout ∈ {1, . . . , q}). When applying a division rule [a]i → [b]i[c]i, under
the influence of object a, the membrane with label i is divided into two membranes
with the same label; in the first copy, object a is replaced by object b, in the second
one, object a is replaced by object c; all the other objects residing in membrane i
are replicated and copies of them are placed in the two new membranes.

Definition 5. A P system with symport/antiport rules and membrane separation
of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with sym-
port/antiport rules.

2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 ̸= ∅, Γ0 ∩ Γ1 = ∅;
3. R1, · · · ,Rq are finite set of rules symport/antiport rules which can also contain

rules of the following form: [a]i → [Γ0]i[Γ1]i, where i /∈ {1, iout} and a ∈ Γ
(separation rules).

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at an
instant t if the following holds: (a) membrane i is in Ct; (b) object a is contained
in such membrane; and (c) membrane i is neither the skin membrane nor the
output membrane (if iout ∈ {1, . . . , q}). When applying a separation rule [a]i →
[Γ0]i[Γ1]i ∈ Ri, in reaction with an object a, the membrane i is separated into
two membranes with the same label; at the same time, object a is consumed; the
objects from Γ0 are placed in the first membrane, those from Γ1 are placed in the
second membrane.

With respect to the semantics of these variants, the rules of such P systems are
applied in a non-deterministic maximally parallel manner (at each step we apply a
multiset of rules which is maximal, no further applicable rule can be added), with
the following important remark: when a membrane i is divided (resp. separated),
the division rule (resp. separation rule) is the only one from Ri which is applied
for that membrane at that step (however, some rules can be applied in a daughter
membrane). The new membranes resulting from division (resp. separation) could

Limits on Efficient Computation in P Systems with S/A Rules 155

participate in the interaction with other membranes or the environment by means
of communication rules at the next step – providing that they are not divided
(resp. separated) once again. The label of a membrane precisely identify the rules
which can be applied to it.

The concept of recognizer is extended to P systems with symport/antiport rules
and membrane division or membrane separation, in a natural way. We denote by
CDC(k) (resp. CSC(k)) the class of recognizer P systems with symport/antiport
rules and membrane division (resp. membrane separation) such that the commu-
nication rules of the system have length at most k.

4 Non Efficiency of P Systems from CDC(1)

In this section, we study the limitations of efficient computations in systems from
CDC(1). Specifically, we show that P = PMCCDC(1), that is, the polynomial
complexity class associated with the class of recognizer P systems CDC(1) is
equal to the class P.

Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recognizer P sys-
tem from CDC(1). We denote by M∗

j the multiset over Γ × {j} obtained from
Mj by replacing a ∈ Γ by (a, j), and for each finite multiset w over Σ, we denote
w∗ the multiset over Σ × {iin} obtained fromMj by replacing a ∈ Σ by (a, iin)

The rules from R1 ∪ · · · ∪ Rq are of the following form: (a, out), (b, in) and
[a]i → [b]i [c]i. These rules can be considered, in a certain sense, as a dependency
between the object triggering the rule and the object produced by its application.

• The rules in Ri of type (a, out) can be described as the pair (a, i) produces the
pair (a, p(i)).

• The rules in Ri of type (b, in) can be described as the pair (b, p(i)) produces
the pair (b, i).

• The rules in Ri of type [a]i → [b]i [c]i can be described as the pair (a, i)
produces the pairs (b, i) and (c, i).

We formalize these ideas in the following definition.

Definition 6. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recog-
nizer P system from CDC(1). The dependency graph associated with Π is the
directed graph GΠ = (VΠ , EΠ) defined as follows:

• The set of vertices is VΠ = {s} ∪ V LΠ ∪ V RΠ , where:
V LΠ = {(a, i) ∈ Γ × {0, . . . , q} | [(a, out) ∈ Ri] ∨ [∃j ∈ ch(i)((a, in) ∈ Rj)]∨

[∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ Ri])}
V RΠ = {(a, i) ∈ Γ × {0, . . . , q} | [(a, in) ∈ Ri] ∨ [∃j ∈ ch(i)((a, out) ∈ Rj)]∨

[∃b, c ∈ Γ ([b]i → [a]i[c]i ∈ Ri)]}.
• The set of edges is:

EΠ = {(s, (a, j)) | 1 ≤ j ≤ q ∧ (a, j) ∈M∗
j}∪

{((a, i), (b, j)) ∈ VΠ × VΠ | [a = b] ∧ [j = p(i) ∧ (a, out) ∈ Ri] ∨

156 L.F. Maćıas-Ramos et al.

[a = b] ∧ [i = p(j) ∧ (a, in) ∈ Rj] ∨
[i = j] ∧ [∃c ∈ Γ ([a]i → [b]i[c]i ∈ Ri)]}.

In what follows, we show that the dependency graph associated with a P sys-
tem from CDC(1), can be constructed by a single deterministic Turing machine
working in polynomial time.

Proposition 1. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a rec-
ognizer P systems from CDC(1). There exists a Turing machine that constructs
the dependency graph, GΠ , associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of rules and
the maximum length of the rules).

Proof. A deterministic algorithm that, given a recognizer P system Π from
CDC(1), whose set of rules is R = R1 ∪ · · · ∪ Rq, constructs the correspond-
ing dependency graph, is the following:

Input: (Π,R)
VΠ ← {s}; EΠ ← ∅
for j = 1 to q do

for each pair (a, j) ∈M∗
j do

EΠ ← EΠ ∪ {(s, (a, j))}
end for

end for

for each rule r ∈ R of Π do

if r = (a, in) ∈ Ri then

VΠ ← VΠ ∪ {(a, p(i)), (a, i)}; EΠ ← EΠ ∪ {((a, p(i)), (a, i))}
end if

if r = (a, out) ∈ Ri then

VΠ ← VΠ ∪ {(a, i), (a, p(i))}; EΠ ← EΠ ∪ {((a, i), (a, p(i)))}
end if

if r = [a]i → [b]i[c]i ∈ Ri then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i)), (b, i))} ∪ {((a, i), (c, i))}

end if

end for

The running time of this algorithm is bounded by O(|R|) ⊂ O(q · |Γ |3). �

Proposition 2. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a rec-
ognizer confluent P system from CDC(1). The following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2) There exists a path (with length greater or equal than 2) from s to (yes, 0) in

the dependency graph associated with Π.

Limits on Efficient Computation in P Systems with S/A Rules 157

Proof. (1)⇒ (2). First, we show that for each accepting computation C of Π there
exists a path from s to (yes, 0) in the dependency graph associated with Π. By
induction on the length n of C.

Let n = 1 and C = (C0, C1) be an accepting computation of Π with length 1.
Then, a rule of the form (yes, out) ∈ R1, with a ∈ Γ , has been applied at initial
configuration C0. Then, yes ∈ C0(1), so (yes, 1) ∈M∗

1. Hence, (s, (yes, 1), (yes, 0))
is a path from s to (yes, 0) in the dependency graph associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1)
be an accepting computation of Π with length n + 1. In this situation,
C′ = (C1, . . . , Cn, Cn+1) is an accepting computation of the system Π ′ =
(Γ, E , Σ, µ,M′

1, . . . ,M′
q,R1, · · · ,Rq, iin, iout), being M′

j = {(a, i) ∈ Γ ×
{0, . . . , q} | C1(j) = a} the “content” of membrane j in configuration C1, for 1 ≤
j ≤ q. By induction hypothesis there exists a path γC′ = (s, (b1, i1), . . . , (yes, 0))
from s to (yes, 0) in the dependency graph associated with Π ′ (with length greater
or equal than 2). We distinguish two cases. If b1 ∈ C0(i1) (that means that in the
first step of computation C, a division rule has been applied to membrane i1 such
that object b1 does not appear in the rule), then γC = (s, (b1, i1), . . . , (yes, 0)) is a
path from s to (yes, 0) in the dependency graph associated with Π, and the result
holds. Otherwise, there is an element b0 ∈ C0(i0) producing (b1, i1) at the first step
of computation C. Hence, γC = (s, (b0, i0), (b1, i1), . . . , (yes, 0)) is a path from s to
(yes, 0) in the dependency graph associated with Π.

(2)⇒ (1). Let us see that for each path from s to (yes, 0) in the dependency graph
associated with Π, with length k ≥ 2, there exists an accepting computation of
Π. By induction on the length k of the path.

Let k = 2 and (s, (a0, i0), (yes, 0)). Then, i0 = 1 is the label of the skin mem-
brane, (a0, out) ∈ R1, a0 = yes, and the computation C = (C0, C1) where the rule
(a0, out) ∈ R1 belongs to the multiset of rules that yields configuration C1 from
C0, is an accepting computation of Π.

Let us suppose that the result holds for k ≥ 2. Let

(s, (a0, i0), (a1, i1), . . . (ak−1, ik−1), (yes, 0))

be a path from s to (yes, 0) in the dependency graph of length k+ 1. If (a0, i0) =
(a1, i1), then the result holds by induction hypothesis. Otherwise, let C1 be a con-
figuration of Π reached from C0 by the application of a multiset of rules containing
a rule that yields (a1, i1) from (a0, i0). Then (s, (a1, i1), . . . (ak−1, ik−1), (yes, 0)) is
a path from s to (yes, 0) of length k, in the dependency graph of associated with
the system

Π ′ = (Γ, E , Σ, µ,M′
1, . . . ,M′

q,R1, · · · ,Rq, iin, iout),

where M′
j = {(a, i) | C1(j)} is the content of membrane j in configuration C1,

for 1 ≤ j ≤ q. By induction hypothesis, there exists an accepting computation
C′ = (C1, . . . , Ct) of Π ′. Hence, C = (C0, C1, . . . , Ct) is an accepting computation of
Π. �

158 L.F. Maćıas-Ramos et al.

Corollary 1. Let X = (IX , θX) be a decision problem. Let Π = {Π(n) | n ∈ N} be
a family of recognizer P systems from CDC(1) solving X, according to Definition
3. Let (cod, s) be the polynomial encoding associated with that solution. Then, for
each instance w of the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).
(b) There exists a path from s to (yes, 0) in the dependency graph associated with

the system Π(s(w)) with input multiset cod(w).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) + cod(w). Bearing in mind that Π(s(w)) +
cod(w) is a confluent system, from Proposition 4 we deduce that θX(w) = 1 if and
only if there exists a path from s to (yes, 0) in the dependency graph associated
with the system Π(s(w)) + cod(w). �

Theorem 1. P = PMCCDC(1)

Proof. We have P ⊆ PMCCDC(1) because PMCCDC(1) is a nonempty class
closed under polynomial–time reduction. Next, we show that PMCCDC(1) ⊆ P.
For that, let X ∈ PMCCDC(1) and let Π = (Π(n))n∈N be a family of recognizer
P systems from CDC(1) solving X, according to Definition 3. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) + cod(w).

- Construct the dependency graph GΠ(s(w))+cod(w) associated with

Π(s(w)) + cod(w).

- Reachability (GΠ(s(w))+cod(w), s, (yes, 0))

Obviously this algorithm is polynomial in the size |w| of the input. �

5 Non efficiency of P systems from CSC(1)

In this section, we show that the polynomial complexity class associated with the
class of recognizer P systems with symport/antiport rules and membrane sepa-
ration is equal to the class P, when we consider only communication rules with
length 1.

In order to associate a dependency graph with each P system from CSC(1),
let us notice that the application of a membrane separation rule [a]i → [Γ0]i [Γ1]i
consumes object a and the remaining objects in that membrane are separated in
two membranes with the same label.

Limits on Efficient Computation in P Systems with S/A Rules 159

Definition 7. Let Π be a recognizer P system from CSC(1) whose set of rules is
R = R1 ∪ · · · ∪Rq. The dependency graph associated with Π is the directed graph
GΠ = (VΠ , EΠ) defined as follows:

• The set of vertices is VΠ = {s} ∪ V LΠ ∪ V RΠ , where:
V LΠ = {(a, i) ∈ Γ × {0, . . . , q} : [(a, out) ∈ Ri] ∨ [∃j ∈ ch(i) ((a, in) ∈ Rj)]∨

[[a]i → [Γ0]i[Γ1]i ∈ Ri])}
V RΠ = {(a, i) ∈ Γ × {0, . . . , q} : [(a, in) ∈ Ri] ∨ [∃j ∈ ch(i)((a, out) ∈ Rj)]}.

• The set of edges is
EΠ = {(s, (a, j)) | 1 ≤ j ≤ q ∧ (a, j) ∈M∗

j} ∪
{((a, i), (a, j)) ∈ VΠ × VΠ : [j = p(i) ∧ (a, out) ∈ Ri] ∨

[i = p(j) ∧ (a, in) ∈ Rj]}.
In a similar way as in the previous section, the following results are obtained.

Proposition 3. Let Π be a recognizer P system from CSC(1). There exists a
Turing machine that constructs the dependency graph GΠ associated with Π, in
polynomial time.

Proposition 4. Let Π be a recognizer confluent P system from CSC(1). The
following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2) There exists a path (with length greater or equal than 2) from s to (yes, 0) in

the dependency graph associated with Π.

Theorem 2. P = PMCCSC(1)

6 Conclusions and Further Works

In the framework of (cell-like) P systems with symport/antiport rules, two new
kind of rules inspired by the processes of mitosis and membrane fission in eukary-
otic cells, have been considered, called P systems with symport/antiport rules and
membrane division or membrane separation.

By using the dependency graph technique, the computational efficiency of these
P systems has been studied in the case of non-cooperative systems, that is, systems
with communication rules of length 1.

For future work, we plan to establish the efficiency of these kind of P systems in
order to obtain borderline of the efficiency of the problems in terms of syntactical
ingredients of P systems with symport/antiport rules.

Acknowledgements

The work of L. Pan was supported by National Natural Science Foundation of
China (61033003, 91130034 and 61320106005). The work of M.J. Pérez-Jiménez
and L.F. Maćıas-Ramos was supported by Project TIN2012-37434 of the Ministerio
de Ciencia e Innovación of Spain.

160 L.F. Maćıas-Ramos et al.

References

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest. An Introduction to Algorithms. The MIT
Press, Cambridge, Massachussets, 1994.

2. P. Frisco. Computing with Cells: Advances in Membrane Computing, Oxford Univer-
sity Press, Oxford, 2009.

3. R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font. Characterizing tractabil-
ity by tissue-like P systems. Lecture Notes in Computer Science 5957, 5957 (2010),
289-300.

4. M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems, Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

5. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton. Tissue P systems, Theo-
retical Computer Science, 296, 2 (2003), 295–326.

6. L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

7. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems.
Journal of Complexity, 26, 3 (2010), 296–315.

8. A. Păun, Gh. Păun, G. Rozenberg. Computing by communication in networks of
membranes, International Journal of Foundations of Computer Science, 13, 6 (2002),
779–798

9. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport,
New Generation Computing, 20, 3 (2002), 295–305.

10. Gh. Păun. Computing with membranes, Journal of Computer and Systems Science,
61, 1 (2000), 108–143.

11. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6 (2001), 75–90.

12. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez. Tissue P system with cell division.
International Journal of Computers, Communications & Control , Vol. III, 3 (2008),
295–303.

13. Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, Oxford, 2010.

14. Gh. Păun. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, 94-115.

15. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, F. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

16. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial com-
plexity class in P systems using membrane division, Journal of Automata, Languages
and Combinatorics, 11, 4 (2006) 423–434.

