
Time-freeness and Clock-freeness and Related
Concepts in P Systems ?

Artiom Alhazov1,2??, Rudolf Freund3, Sergiu Ivanov4,5,
Linqiang Pan2,6, and Bosheng Song2

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

2 Key Laboratory of Image Information Processing
and Intelligent Control of Education Ministry of China,
School of Automation,
Huazhong University of Science and Technology,
Wuhan 430074, China

3 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

4 LACL, Université Paris Est – Créteil Val de Marne
61, av. Général de Gaulle, 94010, Créteil, France
sergiu.ivanov@u-pec.fr

5 TIMC-IMAG/DyCTiM, Faculty of Medicine of Grenoble,
5 avenue du Grand Sablon, 38700, La Tronche, France
sergiu.ivanov@univ-grenoble-alpes.fr

6 School of Electric and Information Engineering,
Zhengzhou University of Light Industry,
Zhengzhou 450002, China

Summary. In the majority of models of P systems, rules are applied at the ticks of a
global clock and their products are introduced into the system for the following step. In
timed P systems, different integer durations are statically assigned to rules; time-free P
systems are P systems yielding the same languages independently of these durations. In
clock-free P systems, durations are real and are assigned to individual rule applications;

? The work is supported by National Natural Science Foundation of China (61320106005
and 61033003) and the Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012). This paper was finished with Rudolf
Freund during Artiom Alhazov’s and Sergiu Ivanov’s stay in Vienna in August 2017.

?? The work is supported by National Natural Science Foundation of China (61320106005
and 61033003) and the Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 A. Alhazov et al.

thus, different applications of the same rule may last for a different amount of time. In
this paper, we formalise timed, time-free, and clock-free P system within a framework
for generalised parallel rewriting. We then explore the relationship between these vari-
ants of semantics. We show that clock-free P systems cannot efficiently solve intractable
problems. Moreover, we consider un-timed systems where we collect the results using
arbitrary timing functions as well as un-clocked P systems where we take the union over
all possible per-instance rule durations. Finally, we also introduce and study mode-free
P systems, whose results do not depend on the choice of a mode within a fixed family of
modes, and compare mode-freeness with clock-freeness.

1 Introduction

Membrane systems with symbol-objects are formal computational models of dis-
tributed multiset rewriting. While standard models often assume maximal paral-
lelism and a global-clock synchronization of rules (overview in [12]), there have
been a number of attempts in the literature to relax this condition. The extreme
variant are so-called asynchronous systems, where the parallelism is arbitrary in-
stead of maximal [1, 7]. Not surprisingly, in many cases such systems are much
weaker (e.g., defining PsMAT instead of PsRE) or need much stronger ingredi-
ents to be able to perform the same goal.

A different way to relax the global synchronisation condition is lifting the
assumption that all rule executions take one step. For example, in timed P sys-
tems [5], a numerical function is defined, associating to each rule the positive
integer number of steps its application takes. In this context, time-freeness is an
(undecidable) property that the result of all computations of a P system does not
depend on the timing function.

The motivation for studying time-freeness is investigating the power and the
efficiency of P systems that are robust with respect to rule execution times. Yet, the
definition of the time-freeness property is not restrictive enough for some goals—
the time a rule application lasts cannot be different in different situations. Indeed,
since the timing function is defined on the set of rules, the following facts are
immediate:

1. If a rule is simultaneously applied multiple times, then all instances finish
simultaneously.

2. If a rule is simultaneously applied in different membranes with the same label,
then all rules finish simultaneously.

3. If a rule is applied at different steps of a computation, then all instances last
for the same amount of time.

4. If a rule is applied in different non-deterministic branches of a computation,
then all instances last for the same amount of time.

A number of publications investigate the efficiency of time-free P systems in solving
intractable problems, e.g. [15, 16, 17, 18]. We believe that the constructions in these
publications rely on the residual synchronisation facts listed above.

Time-freeness and Clock-freeness in P Systems 45

In this paper we focus on a variant of timing which allows individual rule
executions to last differently. This variant was introduced under the name “clock-
freeness” in [14]. In clock-free P systems, rule applications may last for “arbitrary”
real periods and even applications of the same rule may have different durations.
We prove that clock-freeness deprives any variant of P systems operating under
this semantics of the capability of solving intractable (NP-complete) problems in
polynomial time.

Clock-freeness changes the way in which a P system operates quite a bit. In-
deed, since durations of rule applications are real numbers, such a P system does
not follow the ticks of a global clock any more, but instead “listens” to events—
situations in which rule applications finish and release new potential reactants
(compare this to the preliminary observations in [11]). Such a P system therefore
becomes event-driven and operates in continuous time, similarly to the Gillespie
algorithm [10] or to data stream-driven reactive programs, e.g. [6]. In the present
work, we formally define event-driven P systems and show their relationship to
clock-free and time-free P systems. Moreover, we also introduce un-timed and un-
clocked P systems, where as a result we take the union of all results obtained by
any timing and per-instance timing function, respectively.

We also consider yet another freeness property: mode-freeness. A P system
which is mode-free with respect to a family of modes has the same behaviour under
all modes from this family. We show a large family of modes under which generating
P systems yield trivial languages, but accepting P systems are computationally
complete. Finally, we explore the form of some clock-free and mode-free P systems
and show some relatively strong connections between the two freeness properties.

This article is organised as follows. Section 2 recalls some basic notions of formal
language theory and then introduces a general definition of P systems rewriting
objects from a computable set O. Section 3 recalls and formally defines timing
functions, time- and clock-free P systems, as well as introduces event-driven P
systems. Subsection 3.4 investigates the connections between these objects. Sec-
tion 4 shows one of the main results of this paper: clock-free P systems cannot
solve intractable problems in polynomial time. Section 5 introduces un-timed and
un-clocked P systems. Section 6 recalls the notion of an evolution mode, introduces
mode-freeness with respect to a family of modes, and then shows some properties
of mode-free P systems. Section 7 compares clock-freeness with mode-freeness and
points out some connections between these two properties. Section 8 discusses
further possibilities for defining per-instance timing and clock-freeness. Section 9
concludes the paper and also lists several open problems.

2 Preliminaries

We assume the reader to be familiar with the basics of formal language theory
and P systems, but we recall some of the notions for convenience. For further

46 A. Alhazov et al.

introduction to the theory of formal languages and P systems, we refer the reader
to [12, 13].

After recalling these basic notions, we will give a formal explanation of general
rewriting in order to be able to introduce a general definition of P systems as
hierarchical rewriting systems, somewhat in the spirit of [2] and [8].

2.1 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is denoted
by V ◦. By abusing string notation, the empty multiset is denoted by λ. We will
also (ab)use the symbol ∈ to denote the relation “is a member of” for multisets.
Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

Given two multisets w, v ∈ V ◦, w is a submultiset of v if w(a) ≤ v(a), for all
a ∈ V . In this case, removing w from v means constructing the multiset v − w
with the property (v − w)(a) = v(a)− w(a).

For a multiset of tuples w ∈ (A1 × . . . × An)◦ we will use the notation w|Ai

to refer to the multiset of projections of the elements of w on the dimension Ai,
1 ≤ i ≤ n. Formally, w|Ai

∈ A◦i and w(ai) for a fixed ai ∈ Ai is equal to the
number of tuples of the form (a1, . . . , ai, . . . , an) in w.

2.2 General Sequential and Parallel Rewriting

Consider an (infinite, computable) alphabet of objects O. An O-rewriting rule is
a partial function r : O → O. For an object o ∈ O for which r(o) is undefined,
we say that r is not applicable to o. Often, the semantics of computing r(o) is
given by “removing the left-hand side” or r from the object o and then “adding
back the right-hand side”. Accordingly, we define the pair of partial functions
r−, r+ : O → O such that their total effect is the same as that of r, i.e., r = r+◦r−.

Example 1. Consider the alphabet V = {a, b} and the set O = V ◦ of all finite
multisets over V . The partial function r : V ◦ → V ◦ replacing an instance of a
with two instances of b is an O-rewriting rule and is often written as r : a→ bb or
r : a→ b2 (note that, in this notation, the symbol → is used to specify rule sides
and not the domain or the codomain of a function); r is defined for all multisets
containing at least an instance of a and is undefined for all other multisets.

For the multiset rewriting rule r, the value r−(w) can be defined by removing
the left-hand side a from the multiset w (if possible) and r+(w) by adding the
right-hand side bb to w. Thus, r = r+ ◦ r−.

Example 2. Consider, again, the alphabet V = {a, b} and the set O = V ∗ of
all finite strings over V . In this case, an O-rewriting rule is a partial function
r : O → O replacing a substring at a particular position. To express the effect of
rewriting any substring of a string s ∈ O satisfying some particular criteria, we

Time-freeness and Clock-freeness in P Systems 47

need to consider a family of functions (ri : O → O)i∈I replacing the substring at
its i-th occurrence. To express the effect of rewriting any substring in any finite
string in O, we need to consider the family of functions (ri : O → O)i∈N.

Fix a set of O-rewriting rules R. To capture the possibility of applying multiple
rules R in parallel, we define the (computable) partial function apply : R◦×O → O
which applies a multiset of rules fromR to an object fromO and yields a new object
in O, if possible. As for the case of individual rules, to represent the idea of “re-
moving the left-hand sides” and “adding the right hand sides”, we define two other
mappings apply− and apply+ such that apply(ρ, o) = apply+(ρ, apply−(ρ, o)), with
ρ ∈ R◦ and o ∈ O.

Example 3. Consider the alphabet V = {a, b} and O = V ◦, as in Example 1, and
two rewriting rules r1 : ab → bb as well as r2 : bb → a. Take the multiset of
rules ρ = r1r2; classically, the function apply(ρ, w) is defined for such multisets
w ∈ O which contain the submultiset ab3 = ab bb, necessary to satisfy both the
applicability requirements of rules r1 and r2. In this case, apply−(ρ, w) is the
function removing the multiset ab3 from w, apply+(ρ, w) is the function adding
bb a to w, and apply(ρ, w) is the function first removing ab3 from w and then
adding bb a.

A sequential O-rewriting framework is the pair (O,R), where O is a set of
objects and R is a set of R-rewriting rules. A parallel O-rewriting framework is the
pair (O,R, apply−, apply+), where (O,R) is a sequential O-rewriting framework
and apply−, apply+ : R◦ ×O → O are the (computable) partial functions defining
the semantics of parallel application of rules from R to objects in O.

Our definition of rewriting frameworks are strongly inspired by the work [8].

2.3 P Systems

The definition of P systems we give in this paper directly generalises various mod-
els of cell-like (hierarchical) P systems in which rules are “located within” the
membranes and whose membrane structure may evolve: transition P systems with
membrane dissolution rules, P systems with active membranes, etc.

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [12]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [20], as well as to the bulletin of the International Membrane Computing
Society [19].

Given a parallel O-rewriting framework (O,R, apply−, apply+), a P system is
the following tuple:

Π = (O,OT , µ, w1, . . . , wn, I, R1, . . . , Rn, hi, ho),

where O is a (computable, infinite) set of objects, OT ⊆ O is a (computable)
set of terminal objects, µ is the initial membrane structure injectively labelled by

48 A. Alhazov et al.

the numbers from {1, . . . , n} and usually given by a sequence of correctly nested
brackets, I is the set of allowed ingredients (explained below), wi ∈ O is the initial
object in membrane i, Ri ⊆ R × I is the set of O-rewriting rules associated with
membrane i and enriched with some ingredients, 1 ≤ hi ≤ n is the label of the
input membrane and 1 ≤ ho ≤ n is the label of the output membrane.

The set of ingredients I in the above definition captures the variety of additional
actions which may be associated with O-rewriting rules. We give some examples:

• Target indications: If O = V ◦, target indications can be represented by defining
I = {none}∪(V ×Tar)◦, thus allowing rules to specify multisets of pairs (a, tar)
of symbols a ∈ V and target indications tar ∈ Tar.

• Membrane dissolution: Membrane dissolution can be represented by defining
I = {none, δ} and by writing non-dissolving rules as (u → v, none) and dis-
solving rules as (u→ v, δ), with the usual dissolution semantics.

• Membrane division, creation, etc.: Similarly to dissolution, any modification of
the membrane structure may expressed by adding the corresponding symbols
to the set I.

Finally, note that membrane polarisations can be represented without ingredi-
ents by extending the set of objects to O × π, where π is the set of polarisations
(e.g., π = {−, 0,+}), and by having the rules read and modify the polarisations if
necessary.

A configuration of the P system Π is the tuple C = (µ′, w′1, . . . , w
′
n), where µ′ is

the current membrane structure and w′i ∈ O is the object contained in membrane
i. For P systems which do not dynamically modify their membrane structure, the
first component (µ′) of the tuple may be omitted.

A k-step computation of Π is a sequence of configurations (Cj)0≤j≤k with the
following properties:

• C0 = (µ,w1, . . . , w
′
hi
, . . . , wn), where µ is the initial membrane structure of Π,

wi, 1 ≤ i ≤ n, is the initial object in membrane i, and w′hi
= whi

]win, where
whi ∈ O is the initial object in the input membrane hi, win ∈ O is the input
object, and] is the operation of combining two objects (e.g., multiset union if
O = V ◦);

• for any configuration Cj , 0 ≤ j < k, the configuration Cj+1 can be obtained
from Cj by applying the rules to the objects of Cj according to a fixed evolution
mode (e.g., the maximally parallel mode), and by then executing the actions
required by the ingredients associated with the applied rules;

• Ck is a halting configuration, i.e., a configuration satisfying the halting condi-
tion of Π. One of the best known halting condition is requiring that no rule be
applicable any more according to the fixed derivation mode (total halting by
inapplicability).

The result of the computation (Cj)1≤j≤k is derived from the object who
found

in membrane ho in the halting configuration Ch. A typical way of deriving the
result is applying the terminal projection pT : O → OT which allows for retrieving

Time-freeness and Clock-freeness in P Systems 49

the “terminal part” pT (wh0
). Another way may be declaring that the derivation

(Cj)1≤j≤k only produces a result if who
∈ OT (otherwise Π produces no result).

P systems as we defined them are general device computing functions, yet
particular cases are often considered. Π is said to work in the generating mode if it
takes no input (the starting configuration C0 is the same for all computations). Π
is said to work in the accepting mode if it takes an input and accepts by a halting
computation, whereas non-accepted inputs only yield non-halting computations.

A special case of accepting P systems are deciding P systems: for any input,
all its computations must halt and are grouped into two classes—accepting and
rejecting; for each input, all computations must belong to one of these groups. One
usual way of discriminating between the two types of computation is by looking at
the form of the object who

in the output membrane in the halting configuration:
e.g., if O = V ◦, an accepting halting configuration of Π must contain the symbol
yes in who

and a rejecting halting configuration must contain the symbol no.
We will denote the language of objects generated (respectively, accepted) by

the P system Π by Lgen(Π) (respectively, Lacc(Π)). Sometimes we will use the
notation L(Π) when the context makes it clear whether Π is an acceptor or a
generator.

3 Time- and Clock-freeness

In this section, we briefly recall (and generalise) the definition of timed and time-
free P systems originally introduced in [5]. We then recall the original definition of
clock-free P systems as introduced in [14] and give a formalisation. Finally, we show
how clock-freeness can easily be captured via a simpler event-driven semantics (a
natural continuation of [11]).

We start by defining the notion of a rule queue. Given a set of rules R, and
the set of ingredients I, we will call any finite multiset of rules ρ ∈ (R × I)◦ a
rule queue. For a number set X, we will call any finite multiset ρ ∈ (R× I ×X)◦

an X-timed rule queue. Intuitively, a rule queue is just an unordered collection
of rules and ingredients, while an X-timed rule queue is a collection of rules and
ingredients which have timestamps.

Given a P system Π, an extended configuration (with rule queues) is a tuple
C = (µ,w1, . . . , wn, ρ1, . . . , ρn), where C = (µ,w1, . . . , wn) is a configuration of Π
and ρi is a rule queue (with or without timestamps).

3.1 Time-free P Systems

We will now recall the definitions of timed and time-free P systems from [5] and
generalise them to our definition of P systems.

Given a P system Π as defined in Subsection 2.3, a timing function is a com-
putable mapping e : RΠ → N+, with N+ = N \ {0} and RΠ =

⋃
1≤i≤nRi, which

assigns durations to the rules of Π. The timed P system Π(e) is a P system with
semantics modified in the following way.

50 A. Alhazov et al.

Computations of Π are sequences of extended configurations with N+-timed
rule queues (i.e., the rules in rule queues have natural timestamps). To compute the
configuration Cj+1 from a configuration Cj , consider the membrane i containing
the object wi and the rule queue ρi. Π(e) shall perform the following actions:

1. Constitute the submultiset of rules ρnow of the queue ρi which have the time-
stamp j+ 1; in other words, any tuple in ρnow must have the form (r, i, j+ 1).
Build the new multiset ρ′i by removing ρnow from ρi. Take the multiset ρnow|R
of all O-rewriting rules in ρnow and compute the object w′i in the following way:
w′i = apply+(ρnow|R, wi). Finally, implement the effects of all the ingredients
listed in ρnow.

2. Pick a multiset of rules ρapp applicable to w′i according to a fixed evolution
mode and set the timestamp for every rule r added to ρapp to j + 1 + e(r).
Take the multiset ρapp|R of all O-rewriting rules in ρapp and compute the new
object w′′i in the following way: w′′i = apply−(ρapp|R,w′i). Add ρapp to ρ′i thus
constituting the new rule queue ρ′′i .

3. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

Thus, the queues in an extended configuration Cj contain the rules whose applica-
tion started in the previous steps (excluding step j), including the rules which are
scheduled to finish at step j. All queues are empty in the starting configuration
and the first evolution step consists in launching some rules (in a sense, it is a
“dummy” step or a “half step”).

To halt, Π(e) needs to exhaust all of the rule queues: that is, the evolution
continues until there are still rules scheduled to finish in some future steps, and
all queues must be empty in the halting configuration.

The result of a computation of the timed P system Π(e) is derived from the
contents of its output membrane in its halting configuration in the same way as
described for non-timed P systems in Subsection 2.3.

A P system Π is called time-free if there exists a language of objects L ⊆ O such
that L(Π(e′)) = L(Π(e)), for any (computable) timing functions e : RΠ → N+

and e′ : RΠ → N+, and L = L(Π(e)) for some timing function e : RΠ → N+.
Therefore, time-freeness is the property of P systems to yield the same results
independently of durations statically assigned to the rules.

3.2 Clock-free P Systems

In this subsection, we will formally define clock-free P systems following the origi-
nal work [14]. The motivating intuition is as follows: real-world processes are rarely
synchronised via a shared global clock. Timed and time-free P systems capture the
fact that processes may have different durations and that some systems are robust
to arbitrary variations in such durations; however the durations are integer num-
bers, which still implies the presence of a discrete global clock. Furthermore, in
timed P systems, all applications of the same rule last for the same amount of

Time-freeness and Clock-freeness in P Systems 51

time, which does not take into account the variations in the execution time of
different instances of the same process. Clock-free P systems as introduced in [14]
lift both of these restrictions: different applications of the same rule are allowed
to last for different, real, amounts of time.

Following the same scheme as for timed and time-free P systems, we can intro-
duce per-instance real rule timing in the following way. Consider a P system Π as
defined in Subsection 2.3 with O-rewriting rules enriched with ingredients RΠ × I
and the set C of all sequences of extended configurations of Π. A per-instance
(real) timing function is a mapping τ : C × (RΠ × I)◦ → (RΠ × I × R+)◦, with
R+ = {x ∈ R | x > 0}, assigning positive real durations to the rules in a multiset
of rules based on the given history of configurations.

Even before we define the effect of per-instance timing function, we give an
informal example to give an intuitive impression.

Example 4. Consider the following one-membrane multiset rewriting P system:

Π1 = ({a, b}◦, {a, b}◦, []
1
, a, {none}, {r1 : a→ bb, r2 : b→ aa}, 1, 1)

and suppose it works in the maximally parallel mode. Take the initial configu-
ration C0 = ([]

1
, aa, λ). Suppose we want to apply the rule r1 : a → bb twice

in this configuration. We will define the per-instance timing function τ to have
the value (r1, none, 0.5)(r1, none,

√
2) for the singleton sequence (C0) and the

multiset of rules (r1, none)
2. This will move the system into the configuration

C1 = ([]1, λ, (r1, none, 0.5) (r1, none,
√

2)).
Among the two applications of r1, one is scheduled to finish earlier, at time

0.5. At this moment, it releases the multiset bb into the skin, which renders the
rule r2 applicable. We define the per-instance timing function τ to have the value
(r2, none, sin 1)(r2, none, cos 1) for the sequence (C0C1) and the multiset of rules
(r2, none)

2. This moves the system into the configuration C2 = ([]
1
, λ, ρ2) with

ρ2 = (r1, none,
√

2)(r2, none, 0.5 + sin 1)(r2, none, 0.5 + cos 1).

We will now define the semantics of per-instance real timing functions. Take a P
systemΠ and fix a per-instance real timing function τ for it. Computations ofΠ(τ)
are sequences of extended configurations with R+-timed rule queues (compare
this with N+-timed rule queues for timed P systems recalled in Subsection 3.1).
The queues in an extended configuration Cj contain the rules whose applications
started in configurations previous to Cj (according to a fixed derivation mode),
including rules scheduled to finish in this configuration. Consider a sequence γ =
(Cm)0≤m≤j of extended configurations with R+-timed rule queues. To compute
the next configuration Cj+1 from this sequence, Π(τ) proceeds in the following
way:

1. Find the smallest timestamp tj ∈ R across all rule queues in configuration Cj .
2. In every membrane i, take the submultiset ρnow of the queue ρi in which the

rules have the timestamp tj and compute the object w′i in the following way:
w′i = apply+(ρnow|R, wi); also implement the effects of the ingredients listed in

52 A. Alhazov et al.

ρnow. Build ρ′i by removing ρnow from ρi. (This procedure is identical to that
described in the semantics of timed P systems in Subsection 3.1, point 1.)

3. In every membrane i, pick a multiset of rules ρapp applicable to w′i according
to a fixed evolution mode, compute ρ′app = τ(γ, ρapp), add tj to all timestamps
in ρ′app, and add the result to the new rule queue ρ′i. Take the multiset ρapp|R
of all O-rewriting rules in ρapp and compute the new object w′′i in the following
way: w′′i = apply−(ρapp|R,w′i). Add ρapp to ρ′i, thereby forming the new queue
ρ′′i . (This procedure is very similar to that described in the semantics of timed
P systems in Subsection 3.1, point 2.)

4. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

Like for timed P systems, the starting configuration of any computation of
Π(τ) has all rule queues empty, and, to halt, Π(τ) needs to exhaust all queues.

The result of a computation of the P system Π(τ) equipped with the per-
instance real timing function τ is derived from the contents of the output mem-
brane in the halting configuration in the same way as described for non-timed P
systems in Subsection 2.3.

A P system Π is called clock-free if there exists a language of objects L ⊆ O
such that L(Π(τ ′)) = L(Π(τ)), for any (computable) per-instance real timing
functions τ and τ ’, and L = L(Π(τ)) for some per-instance real timing function τ .
Therefore, clock-freeness is the property of P systems to yield the same results
independently of positive real durations dynamically assigned to rule applications.

We will explicitly explain why our definition corresponds exactly to the slightly
informal presentation given in [14]. In the cited paper, the author states that every
rule application may have a different real duration. His proofs suppose durations
may be arbitrary, but show computational completeness nevertheless. The fact
that rule applications may have different real durations is captured by our per-
instance real timing functions. Robustness with respect to arbitrary durations is
captured by our definition of the clock-freeness property.

Example 5. Consider again the P system Π from Example 4 and the sequence
of extended configurations (C0, C1, C2). The corresponding evolution of the rule
queue associated with the only membrane of Π is illustrated in Figure 1.

The hollow bullets on the time axis (denoted by the letter t on the figure) mark
the “steps”, i.e., the moments at which there is at least a rule which finishes its
execution and when Π has to check whether any new rules have to be started.
Clearly, the illustration does not show a halting computation of Π: new rules are
started at moments t = 0 and t = 0.5, but, of course, other rules are applicable
at the other moments highlighted in the figure. We do not show or treat them to
avoid clutter.

Finally, we define an important class of per-instance real timing functions. We
will call such a function τ a Markovian real timing function if its value does not
depend on the first argument. Formally, τ is Markovian if, for a fixed multiset of

Time-freeness and Clock-freeness in P Systems 53

t

(r1, none, 0.5)

(r2, none, cos 1)

(r2, none, sin 1)

(r1, none,
√

2)

Fig. 1. A graphical illustration of the two-step computation of Π1 described in Exam-
ple 4. The hollow bullets mark the “steps”.

rules ρ and for any two sequences of configurations γ1 and γ2, the following holds
τ(γ1, ρ) = τ(γ2, ρ). We will call P systems which are clock-free with respect to the
class of Markovian timing functions Markovian clock-free.

3.3 Event-driven P Systems

Consider again the semantics of P systems with per-instance real timing func-
tions, and especially the illustration in Figure 1. The evolution of such P systems
is quite clearly centred around the concept of an event: the moment at which some
rule executions finish and release the results into the membrane. The computa-
tions driven by per-instance real timing functions are essentially sequences of such
events. This intuitively implies that what only matters is the order in which rules
finish, and not so much the actual individual timings. This observation was stated
in a preliminary form in [11].

In this section we first introduce event-driven P systems and then show the
equivalence between this variant and clock-free P systems.

Following the same scheme as for per-instance real timing functions, we can
define finishing functions in the following way. Consider a P system as defined in
Subsection 2.3 with O-rewriting rules enriched with ingredients RΠ × I and the
set C of all sequences of extended configurations of Π with simple rule queues (no
timestamps). A finishing function is a mapping φ : C × (RΠ × I)◦ → (RΠ × I)◦

indicating, based on the history of configurations, which rules from a given rule
queue must finish their execution. Note that φ may also return an empty multiset.

Take a P system Π and fix a finishing function φ for it. We define the semantics
ofΠ(φ) in the following way. Computations ofΠ(φ) are sequences of configurations
with simple rule queues (no timestamps). Again, the rule queues of an extended
configuration Cj contain the rules whose applications started before Cj according
to the corresponding fixed derivation mode and Π(φ). Given a sequence γ =
(Cm)0≤m≤j of extended configurations with simple queues, Π(φ) proceeds in the
following way to obtain the configuration Cj+1. In membrane i containing the
object wi and the rule queue ρi, Π does the following:

54 A. Alhazov et al.

1. Apply the finishing function to find the submultiset of rules ρnow which must
finish: ρnow = φ(γ, ρi). Take the multiset ρnow|R of all rewriting rules in ρnow
and compute the new object w′i = apply+(ρnow|R, wi); also implement the
effect of the ingredients listed in ρnow. Build ρ′i by removing ρnow from ρi.

2. Pick a multiset of rules ρapp applicable to w′i according to a fixed evolution
mode and add ρapp to ρ′i, thereby constituting the new rule queue ρ′′i . Compute
the new object w′′i in the following way: w′′i = apply−(ρapp, w

′
i).

3. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

As before (Subsections 3.1 and 3.2), all computations start with empty rule
queues and the system needs to exhaust all rule queues in order to halt. The
result is retrieved as for P systems operating under conventional semantics (Sub-
section 2.3).

Recall that the finishing function φ is allowed to return an empty multiset. In
this paper, we choose to only consider functions which, for a given sequence of
configurations γ of a fixed P system Π, return a non-empty multiset for at least
one rule queue (non-denying functions). This ensures that every configuration in
a computation of Π corresponds to a rule finishing event.

Example 6. Consider again the P system from Example 4:

Π1 = ({a, b}◦, {a, b}◦, []
1
, a, {none}, {r1 : a→ bb, r2 : b→ aa}, 1, 1)

and the first three configurations of its computation (C0, C1, C2) illustrated in Fig-
ure 1. We can reproduce the effects of these three steps using a finishing function.
The initial configuration will be, as before, K0 = ([]

1
, aa, λ). In this configuration

the maximally parallel mode forces Π to apply r1 twice and to move into the fol-
lowing configuration K1 = ([]1, λ, (r1, none)

2). We define the finishing function
φ to return (r1, none) for history (K0,K1) and the queue (r1, none). This will
release the products of r1 into the skin membrane and render r2 applicable. The
maximally parallel derivation mode enforces the two applications of r2, moving
Π1 into the configuration K2 = ([]

1
, λ, (r1, none) (r2, none)

2).

We now show side by side the configurations C0, C1, and C2 of Π(τ) working
under the per-instance real timing function τ from Example 4 and the configura-
tions K0, K1, and K2 from the previous example (we denote t1 = 0.5 + sin 1 and
t2 = 0.5 + cos 1):

Note that, with the finishing function from Example 6, we are able to repro-
duce the contents of rule queues in (C0, C1, C2), without using time stamps. We
will later formally show that per-instance real timing functions are equivalent to
finishing functions, which makes them into a useful instrument for reasoning about
computations with per-instance real timing.

For a P system Π to be independent of the finishing strategy φ means that there
exists a language L ⊆ O of objects of Π such that L = Π(φ) for any computable
finishing function φ.

Time-freeness and Clock-freeness in P Systems 55

Ci Ki

0 ([]
1
, aa, λ) ([]

1
, aa, λ)

1 ([]
1
, λ, (r1, none, 0.5) (r1, none,

√
2)) ([]

1
, λ, (r1, none)

2)

2 ([]
1
, λ, (r1, none,

√
2) (r2, none, t1) (r2, none, t2)) ([]

1
, λ, (r1, none) (r2, none)

2)

Table 1. A comparison between the forms of configurations in Examples 4 and 6. We
denote t1 = 0.5 + sin 1 and t2 = 0.5 + cos 1.

Since a finishing function essentially defines the sequencing of the releases of
“processed” rule products, P systems which are independent of this sequencing
can be seen as “waiting” for events to happen and “handling” them. Thus, we will
refer to such systems using the term event-driven P systems.

Finally, in analogy with Markovian per-instance timing functions, we define
Markovian finishing strategies. We will call a strategy φ a Markovian finishing
strategy if its value does not depend on the first argument. Formally, φ is Markovian
if, for a fixed multiset of rules ρ and for any two sequences of configurations γ1
and γ2, the following holds: τ(γ1, ρ) = τ(γ2, ρ). We will call P systems which are
event-driven with respect the class of Markovian finishing functions Markovian
event-driven.

3.4 Timing Types and Finishing Strategies

Because timed P systems, P systems with per-instance real timing, and P systems
with finishing strategies stem from the same idea—introduce rule durations to
P systems—it is not surprising that these models have a lot in common. In this
subsection, we outline the main connections.

First of all, we would like to bring the reader’s attention upon the form of the
configurations shown in Table 1: in many of them, the multisets contained in the
membranes are empty, the “semantic focus” being on rule queues. This is an ef-
fect which may be surprising at first, but which actually underlines the important
difference of P systems with rule queues as compared to usual P systems: in the
former case, configurations mark the intervals the start of some rule applications
and the end of some other rule applications (also seen in Figure 1), while config-
urations for P systems operating under conventional semantics (Subsection 2.3)
capture the moments between the end of some rule applications and the start of
some other rule applications.

We will now show a series of intuitively clear inclusions of families of P systems
with rule queues. We start with a general statement about timing functions and
per-instance real timing functions.

Proposition 1. Given a P system Π and any timing function e (Subsection 3.1)
there exists a per-instance real timing function τe (Subsection 3.2) such that
L(Π(e)) = L(Π(τe)).

56 A. Alhazov et al.

Proof. Consider the timing function τe always assigning the duration e(r) to any
application of the rule r in any evolution of Π. It follows from the definitions
of semantics in Subsections 3.1 and 3.2 that, for any computation γe of Π(e)
there exists a computation γτ of Π(τe) producing the same output object, and
conversely. Moreover, for a given step j, the configurations Cj ∈ γe and Kj ∈ γτ
are identical (modulo the inclusion of N into R).

The converse proposition is not true: there exist per-instance timing functions
which do not have a corresponding timing function.

Proposition 2. There exists a multiset-rewriting P system Π and a per-instance
timing function τ such that L(Π(τ)) 6= L(Π(e)) for any timing function e.

Proof (Sketch). Consider the one-membrane multiset rewriting P system Π with
the following rules:

r1 : a→ c r3 : cb→ d

r2 : c→ f r4 : cd→ ♥

Fix the starting multiset in the only membrane of Π to aab. We can construct
a per-instance real timing function for Π which will yield the evolution shown in
Figure 2. Note that the two applications of r1 take a different amount of time,

a a b

c

cr1

r1

d

r3

♥

r4

Fig. 2. A computation impossible without per-instance timing (because two applications
of r1 : a→ c take different time).

which lets the first c arrive (on the right) to produce a d together with b so that,
when the second c arrives (on the left), it can produce ♥ together with d. On the
other hand, if all applications of r1 lasted for the same amount of time, both c’s
would appear at the same time, and one of them would have to evolve by rule r3
turning into f and guaranteeing that rule r4 cannot be applied.

The fact that in timed P systems in the sense of Subsection 3.1 different ap-
plications of the same rule last for the same amount of time implies the statement
of the proposition.

According to the previous two propositions, per-instance timing allows richer
behaviour than simple timing (in the sense of Subsection 3.1). This immediately
implies the following statement.

Time-freeness and Clock-freeness in P Systems 57

Theorem 1. A P system Π which is clock-free is also time-free.

The relationship between per-instance timing functions and finishing strategies
is even stronger. In the following, we say that two rule queues are equivalent modulo
timestamps removing all timestamps from both yields two equal rule queues. We
also consider the natural extension of this equivalence to configurations with rule
queues.

Proposition 3. Given an O-rewriting P system Π and any per-instance real tim-
ing function τ such that its value τ(α, o) for the object o ∈ O does not depend on
the timestamps in the sequence of configurations α, there exists a finishing strategy
φ such that L(Π(τ)) = L(Π(φ)).

Proof. Take a computation γ of Π(τ) and suppose that we have already defined
φ sufficiently to build a prefix γ̄′j of length j of a computation γ′ of Π(φ) in
which all configurations are equivalent modulo timestamps to the corresponding
configurations in the prefix γ̄j of γ. Extend the definition of φ to require the
same rules to finish in configuration Kj of γ′ as those which are scheduled to
finish in Cj in γ. Since we require τ to be independent of the timestamps in γ̄j ,
extending φ in this way is always possible. This observation, together with the
fact that the starting configurations of γ and γ′ are vacuously equivalent modulo
timestamps (since their rule queues are empty), implies that we can define φ such
that all configurations in γ′ are equivalent modulo timestamps to the corresponding
configurations in γ. This means that the results in the halting configurations of γ
and γ′ are equal, which proves the proposition.

Corollary 1. Given a P system Π and any Markovian per-instance real timing
function τ , there exists a finishing strategy φ such that L(Π(τ)) = L(Π(φ)).

This corollary directly implies the following statement about event-driven P
systems and Markovian clock-free P systems.

Theorem 2. Any P system Π which is event-driven is Markovian clock-free.

The converse of Proposition 3 also holds.

Proposition 4. Given a P system Π and any finishing strategy φ, there exists a
per-instance real timing function τ such that L(Π(φ)) = L(Π(τ)).

Proof. Take a computation γ of Π(φ); γ is a sequence of configurations with simple
rule queues (without timestamps). Construct a new sequence of configurations γ′

with R+-timed rule queues in which all rules in all rule queues of configuration Cj
get the timestamp j. Now consider the per-instance real timing function τ which
assigns exactly these timestamps to rule applications in γ′. The fact that we can
always carry out this transformation implies the statement of the proposition.

58 A. Alhazov et al.

According to the previous proposition, per-instance timing strategies may en-
sure richer behaviour than finishing strategies, which implies the following state-
ment.

Theorem 3. A P system Π which is clock-free is event-driven (in the sense of
Subsection 3.3).

Figure 3 summarises the relations between the various kinds of freeness prop-
erties of P systems with rule queues we have considered in this paper. This figure

Clock-free
P systems

Time-free
P systems

Event-driven
P systems

Markovian clock-free
P systems

Theorem 1

Theorem 2

Theorem 3

Fig. 3. Inclusions between the different kinds of freeness properties considered in this
section.

also takes into consideration that any clock-free P system is trivially Markovian
clock-free (because Markovian per-instance timing functions form a proper sub-
class of per-instance timing functions). This relation is represented as a dashed
arrow.

4 Clock-freeness and Efficiency: P versus NP

One of the famous features of some variants of P systems is the capability of solving
intractable (NP-complete) problems in polynomial time. The classical approach is
generating an exponential number of computing units in polynomial time, which
allows fast exploration of the space of candidate solutions (see [12] for some classic
examples). Recently, efficient time-free solutions to intractable problems have been
provided, e.g. in [15, 16, 17, 18]. Since there is no upper bound on the values the
timing function may assign, the authors of the cited papers measure the time
complexity of their constructions in terms of rule starting steps—the number of
moments in the evolution of the P system at which rule executions start—rather
than in terms of the total running time.

On the other hand, we tend to see the number of rule finishing steps as a better
measure for time complexity of time- and clock-free P systems. We take as a mo-
tivating example a computation in which rules only start in the first configuration
and then finish at different times. This computation has only one starting step, but

Time-freeness and Clock-freeness in P Systems 59

it may have multiple finishing steps, the number of which is more closely related
to the number of events that occurred.

We now show that, assuming that in order to solve an NP-complete problem
an exponential number of computing units is necessary, efficient (in terms of the
number of finishing steps) clock-free solutions are impossible to construct (we as-
sume P 6= NP). The intuition is as follows: in time-free P systems, we may not
assume any particular duration for a given rule application, but we are sure that
all applications of the same rule take the same amount of time. The fact that this
property is no longer guaranteed under clock-freeness turns out to be essential for
(in)efficiency.

Theorem 4. Consider an NP-complete problem P and take a P system Π solving
it. Then there exists a per-instance (real) timing function under which all com-
putations of Π contain an exponential (in the size of the input) number of rule
finishing steps (assuming that in order to solve an NP-complete problem an expo-
nential number of computing units is needed).

Proof. In P systems as defined in Subsection 2.3, the atomic “computing units”
are single rule applications. Therefore, according to our assumption, Π must run
an exponential number of rule applications. Since Π operates under per-instance
timing, we can ensure that no two rule applications end at the same time, which
implies that Π has exponentially many rule finishing steps.

5 Un-timed and Un-clocked P Systems

In contrast to time-free P systems, where all timing functions have to generate the
same results, in an un-timed P systems we collect all the results obtained by using
any timing function, i.e., for a given P system Π we define

Lun−timed(Π) =
⋃

t timing function

L(Π, t).

Moreover, in the same way, in an un-timed P system we collect all the results
obtained by using any per-instance timing function, i.e., for a given P system Π
we define

Lun−clocked(Π) =
⋃

τ per−instance timing function

L(Π, τ).

In an un-clocked P system, we simply may assume each rule application to last
an arbitrary amount of time. In the following we give a small example which yields
different results when considered as an un-clocked or as an un-timed system and
is neither time- nor clock-free:

Example 7. We consider the one-membrane multiset rewriting P system Π with
the following non-cooperative rules with inhibitors:

60 A. Alhazov et al.

r1 : a→ aa|¬c and r2 : b→ c

Starting from the axiom ab, in parallel we have to apply both r1 : a→ aa|¬c and
b → c in parallel. Considering Π as an un-timed system, r1 can be applied again
and again in parallel to all symbols a being generated until the application of the
rule r2 has finished which immediately stops the derivation by the appearance of
the inhibitor c. In sum, we obtain

Lun−timed(Π) =
⋃

t timing function

L(Π, t) =
⋃
n∈N
{a2

n

c}.

Of course, this system is neither time- nor clock-free. The infinite set is gen-
erated not due to the choice between applicable rule multisets, but due to the
non-deterministic choice of the timing function.

Considering Π as an un-clocked system, again r1 : a→ aa|¬c and b→ c have to
be applied in parallel in the first step, and r1 can be applied until the application of
the rule r2 has finished which immediately stops the derivation by the appearance
of the inhibitor c. Yet in contrast to the un-timed version, the applications of the
rule r1 to the symbols a appearing in the meantime may end at arbitrary moments
of time. To the two symbols a appearing when the first application of rule r1 has
finished, r1 has to be applied simultaneously to both symbols a, yet from that
moment on the different instances of rule r1 may finish in an unsynchronized way.
Hence, as we sum up all possible results, we may restrict ourselves to consider
only the events when just one rule application ends. The only symbols to which a
rule, i.e., r1, now can be applied are the two symbols a having evolved as a result
of this one rule application, and to these two symbols two copies of r1 have to be
applied simultaneously. In fact, this only means that the number of symbols a has
increased by one with each finishing of a rule r1. Therefore, in sum we obtain

Lun−clocked(Π) =
⋃

τ per−instance timing function

L(Π, τ) = {anc | n ∈ N+ \ {1, 3}}.

A similar result can be obtained by the one-membrane multiset rewriting P
system Π ′ with the following non-cooperative rules with promoters:

r1 : a→ aa|b, r2 : b→ b, and r3 : b→ c

Starting from the axiom ab, we now may assume that the execution of the rules
r1 and r2 takes exactly the same time, because the promoter b is needed to allow
the copies of rules r1 to be applied. Again, the derivation halts as soon as the
promoter b is eliminated by applying r3. For the un-timed mode, the application
of rules r1 still is synchronized, too, and we therefore obtain

Lun−timed(Π
′) =

⋃
t timing function

L(Π ′, t) =
⋃
n∈N
{a2

n

c}.

Time-freeness and Clock-freeness in P Systems 61

In the un-clocked mode, the finishing of rules may be arbitrary, yet still the
promoter b is needed to continue with applying rule r1, i.e., only when the appli-
cation of the rule r2 : b→ b has finished, rule r1 can be applied. In sum, we again
obtain

Lun−clocked(Π
′) =

⋃
τ per−instance timing function

L(Π ′, τ) = {anc | n ∈ N+ \ {1, 3}}.

6 Mode-freeness

Considering time-free, clock-free, and event-driven P systems motivates further
discussion about robustness with respect to variations of other parameters. In this
section we will consider mode-freeness: robustness with respect to the choice of the
evolution mode.

6.1 Evolution Modes

Take a (computable) set of objectsO and consider a parallelO-rewriting framework
(O,R, apply−, apply+). Following [9], we denote by Appl(R, o) the set of multisets
of rules applicable to the object o ∈ O in parallel. Given an n-membrane O-
rewriting P system Π and a configuration C of it, we denote by Appl(Π,C) the
set of tuples of the form (ρ1, . . . , ρn), in which ρi is a multiset of rules applicable
to the object wi in membrane i in configuration C.

Example 8. Consider the multiset ab and the set of multiset rewriting rules
R = {r1 : a → b, r2 : b → c}. Then Appl(R, ab) = {r1, r2, r1r2}. Take a
multiset-rewriting P system Π with the set of ingredients I = {none} and two
membranes with equal sets of rules R1 = R2 = {(r1, none), (r2, none)}. Con-
sider the configuration C = (µ, ab, ab) of Π, then Appl(Π,C) = A × A, where
A = {(r1, none), (r2, none), (r1, none)(r2, none)}.

Given a P system Π and a configuration C, an evolution mode (derivation
mode) is a strategy ϑ for filtering the set Appl(Π,C). According to [9], we denote
by Appl(Π,C, ϑ) ⊆ Appl(Π,C) the set of tuples of multisets of rules of Π appli-
cable in configuration C according to the derivation mode ϑ. When Appl(Π,C, ϑ)
contains more than one element, Π chooses between the allowed tuples non-
deterministically in order to continue the computation. We will denote the lan-
guage generated (respectively, accepted) byΠ operating under the derivation mode
ϑ by Lgen(Π,ϑ) (respectively, Lacc(Π,ϑ)).

We will now recall some typical examples of derivation modes considered in [9].
All of these examples are formulated for a P system Π and a configuration C of
it.

Example 9. The asynchronous derivation mode asyn is the mode allowing any
combination of rules to be applied: Appl(Π,C, asyn) = Appl(Π,C).

62 A. Alhazov et al.

Example 10. The sequential derivation mode sequ is the mode only allowing one
rule to be applied at any time. Appl(Π,C, sequ) therefore contains tuples of sin-
gleton multisets of rules.

Example 11. The maximally parallel derivation mode max only includes tuples of
non-extendable multisets of rules.

Formally, for a tuple (ρ1, . . . , ρn) ∈ Appl(Π,C,max), the set Appl(Π,C) con-
tains no tuple (ρ′1, . . . , ρ

′
n) such that at least one ρi is a submultiset of ρ′i, for

1 ≤ i ≤ n.

A very interesting derivation mode (considered in a detailed way in [3]) is the
following one.

Example 12. The set-maximally parallel mode smax only allows tuples of multisets
containing at most one instance of any rule. Formally, for any tuple (ρ1, . . . , ρn) ∈
Appl(Π,C, smax), it is true that ρi(r) ≤ 1 for any rule r in membrane i, 1 ≤ i ≤ n.

Finally, we show several more derivation modes which we use later.

Example 13. The max≥k mode only allows tuples of multisets which contain at
least k rules. That is, for any tuple (ρ1, . . . , ρn) ∈ Appl(Π,C,max≥k), it must
hold that |ρi| ≥ k, for all 1 ≤ i ≤ k.

Example 14. Suppose that the sets of rules Ri associated with membranes i of Π,
1 ≤ i ≤ n, are equipped with total orders ≤i and consider the mode det (“the
determinator”) which only allows tuples of singleton multisets of rules, which are
also minimal with respect to the corresponding order. Formally, for any tuple
(ρ1, . . . , ρn) ∈ Appl(Π,C, det), it is true that |ρi| ≤ 1 and, for any other tuple of
singleton multisets (ρ′1, . . . , ρ

′
n) ∈ Appl(Π,C), it holds that ri ≤i r′i, where ρi = ri,

ρ′i = r′i, and 1 ≤ i ≤ n.

Note that, according to this definition, Appl(Π,C, det) is either empty (if
Appl(Π,C) is empty) or a singleton set, which justifies the informal name “the
determinator”.

Finally, an extreme example of an evolution mode.

Example 15. The empty evolution mode ∅ is the evolution mode disallowing any
rule applications: Appl(Π,C,∅) = ∅.

6.2 Freeness with Respect to a Family of Modes

Consider an O-rewriting P system Π and the family of evolution modes Θ. We say
that Π is Θ-mode-free if there exists a language L ⊆ O such that L = L(Π,ϑ), for
all ϑ ∈ Θ. We use the notation pLgen(O,Θ) to refer to the family of languages over
O generated by Θ-mode-free O-rewriting P systems. We replace the subscript gen
by acc to refer to the family of languages accepted by Θ-mode-free O-rewriting P
systems.

Time-freeness and Clock-freeness in P Systems 63

It turns out that the idea mode-freeness has already been indirectly invoked in
the literature. Indeed, the constructions from the paper [3] that literally hold for
the modes max and smax are {max, smax}-mode free.

We start our discussion of more general kinds of mode-freeness by remarking
that mode-freeness with respect to the family of all modes (denoted by ΘU) is a
very restrictive condition filtering out non-trivial behaviour.

Proposition 5. Consider the family of all derivation modes ΘU . Then the follow-
ing statements hold:

• pLgen(O,ΘU) only contains ∅ and singleton languages,
• pLacc(O,ΘU) = 2O, where 2O is the set of all subsets of O, but all computation

is done by the procedure extracting the result from the output object.

Proof. Consider the ΘU -mode free O-rewriting P system Π. Since Π should yield
the same language under any mode, it is sufficient to investigate its behaviour
under the empty mode ∅. Under this mode, Π never evolves.

For generation, this means that the result is computed from the initial object
placed in the output membrane, which, depending on the procedure for extracting
the result, may yield a singleton language or the empty language (e.g., in the case
in which the initial object in the output membrane has no corresponding terminal
projection).

Suppose now that Π is an acceptor. We will consider the following cases.

• If Π accepts by halting, it accepts any object because it halts immediately:
Lacc(Π) = O.

• Suppose Π accepts by placing an object of a specific form into the output
membrane.
– If the output membrane of Π is different from its input membrane and

the initial object placed into the output membrane does not satisfy the
acceptance criterion, then Π rejects all inputs: Lacc(Π) = ∅.

– If the output membrane of Π is the same as its input membrane, then Π
will accept those inputs objects which satisfy the acceptance criterion for
output objects. Therefore Π can be made to accept any subset of O by
varying its acceptance criterion.

These observations conclude the proof.

To avoid trivial results, we assume in what follows that the procedure for
extracting the result out of the output object is reasonably simple.

As we have just seen, ΘU -mode-freeness is a very strong restriction. We will now
consider an important subfamily of ΘU : non-denying modes. Given a P system Π,
a mode ϑ is non-denying if, for any configuration C of Π, Appl(Π,C) 6= ∅ implies
that Appl(Π,C, ϑ) 6= ∅. The mode is called denying otherwise. We will use the
notation Θ¬deny to refer to the subfamily of non-denying modes.

64 A. Alhazov et al.

Example 16. The derivation modes asyn, sequ, max, smax, and det are non-
denying. The derivations modes max≤k and ∅ are denying modes.

Mode-freeness with respect to non-denying modes turns out to be a much more
interesting property than ΘU -mode-freeness. In the generative case, Θ¬deny -mode-
freeness yields P systems generating singleton languages and the empty language.
(Note that ΘU -mode-free P systems can achieve the same behaviour only by play-
ing on the procedure for extracting the result out of the output object.)

Proposition 6. pLgen(O,Θ¬deny) only contains ∅ and singleton languages.

Proof. Consider a Θ¬deny -mode-free P system Π. Since Π should generate the
same language under any non-denying mode, we can investigate its behaviour
under “the determinator” mode det. Under this mode, Π evolves sequentially and
deterministically. This means that it can either generate a singleton language, or
the empty language in case it never halts or generates an output object without a
terminal projection.

The situation changes drastically in the accepting case: indeed, determinis-
tic acceptor P systems simulating deterministic register machines exist (e.g., [4,
Theorem 2]). We nevertheless sketch a simple construction here.

Theorem 5. Given an alphabet V and the set of recursively enumerable multiset
languages RE ⊂ V ◦, the following holds: pLacc(V

◦, Θ¬deny) = RE.

Proof (Sketch). Consider the one-membrane multiset-rewriting P system Π sim-
ulating a deterministic register machine M . Π uses cooperation and inhibitors.
For every instruction p : (A(r), q) incrementing register r and going from state
p to state q, Π has a rule p → qr. For every instruction p : (S(r), q, z) checking
register r for zero in state p, decrementing r and moving into state q, or moving
into state z if the decrement is not possible, Π includes the rule pr → q to ensure
the decrement and the rule p→ z|¬r for the zero check.

Two properties follow from this construction sketch:

• Π correctly simulates the computations of M ,
• exactly one rule is applicable in any evolution step of Π, which means that Π

is sequential and deterministic.

The second property implies that, if we take L = Lacc(Π, det), then L = Lacc(Π,ϑ)
for any non-denying derivation mode ϑ ∈ Θ¬deny , i.e., Π is Θ¬deny -mode-free. The
fact that we can perform this construction for any register machine M implies the
statement of the theorem.

The two previous statements highlight a huge gap between the generating and
the accepting cases under mode-freeness with respect to non-denying modes: mode-
free generation only produces trivial languages, while mode-free acceptance is com-
putationally complete.

The construction in Theorem 5 allows us to derive a sufficient criterion for
mode-freeness with respect to non-denying modes.

Time-freeness and Clock-freeness in P Systems 65

Theorem 6. If a P system Π is deterministic under the evolution mode asyn in
any reachable configuration, then it is Θ¬deny -mode-free.

Proof. For Π to be deterministic under asyn means that, for any reachable config-
uration C, the set Appl(Π,C, asyn) is a singleton set. This only happens when at
most one rule is applicable to C in the whole system. The effect of all non-denying
modes on Π will therefore be the same: apply the only applicable rule (if there
exists one), or halt if no more rules are applicable anywhere. This observation
implies that Π is Θ¬deny -mode-free.

The converse statement is not necessarily true in general: for example, a
multiset-rewriting P system whose only behaviour consists in erasing all the sym-
bols in the input one by one will be able to behave similarly under any non-denying
mode. We do expect the converse statement to be true for “reasonable” P systems,
however.

Conjecture 1. Any computationally universal Θ¬deny -mode-free P system is deter-
ministic under asyn in any of its reachable configurations.

We recall that being computationally universal means being capable to “run
any program”. More concretely, a P system is computationally universal if it can
simulate a universal register machine. We refer the reader to [12] for comprehensive
explanations.

7 Clock-freeness versus Mode-freeness

In this section we start a discussion about the relationship between clock- and
mode-freeness. Despite their different origins, the two freeness properties exhibit
a number of similarities. Consider, for example, the sketch of the Θ¬deny -mode-
free P system simulating an arbitrary register machine from Theorem 5. This
system is trivially clock-free because at most one rule can be applied at any time.
Furthermore, we can reformulate the criterion from Theorem 6 for the clock-free
case in the following way.

Theorem 7. If a P system Π is deterministic under the evolution mode asyn in
any reachable configuration, then it is clock-free.

Proof. By the same arguments as in the proof of Theorem 6, we conclude that a
P system Π with the required properties may only apply at most one rule at any
step, which trivially implies clock-freeness.

In case Conjecture 1 is true, being Θ¬deny -mode-free is equivalent to being
deterministic under the mode asyn for computationally universal P systems. This
allows us to formulate the following derived hypothesis.

Conjecture 2 (assuming Conjecture 1). Any computationally universal Θ¬deny -
mode-free P system is also clock-free.

66 A. Alhazov et al.

The two statements we have formulated in this section reveal parts of a strong
relationship between clock- and mode-freeness. In particular, the previous conjec-
ture warrants wondering whether any clock-free P system is also Θ¬deny -mode-
free. The following example and the associated propositions allow us to answer
this question in the negative.

Example 17. Consider a register machine M and construct a one-membrane mul-
tiset rewriting P system ΠM in the following way.

• For every instruction p : (A(r), q, q′) which increments register r and non-
deterministically moves from state p to either state q or q′, add the rules p→ qr
and p→ q′r to ΠM .

• For every instruction p : (S(r), q, z) decrementing r and moving into state q,
or moving into state z if the decrement is not possible, add the following rules
to ΠM :

p→ p′pr

p′ → p′′ prr → dr
p′′pr → z p′′dr → q

ΠM operates under the maximally parallel mode, under normal semantics (no
timing, finishing strategies, etc.), and simulates the register machineM . Simulation
of the increment instruction is straightforward. To simulate the decrement, ΠM

splits the state symbol p into p′ and pr. pr tries to decrement the register r by
the rule prr → dr while p′ waits for one step turning into p′′. Then, if p′′ finds a
dr (meaning that the register was successfully decremented), the rule p′′dr → q is
applied; otherwise the rule p′′pr → z is applied ensuring the correct choice between
states q and z.

Proposition 7. ΠM operating under the [set-]maximally parallel mode is clock-
free (and event-driven).

Proof. The only moment at which ΠM applies more than one rule is during the
simulation of the decrement, when the symbols p′ and pr are produced and the
configuration contains an instance of r. In this case, p′ and pr are immediately
consumed by the applications of the corresponding rules (because ΠM operates in
the [set-]maximally parallel mode). Note that no rule in ΠM is applicable before
both p′′ and dr are produced, which makes the behaviour of ΠM independent of
the timings on the individual applications of rules in this branch of the simulation.
These observations imply that ΠM is clock-free.

Proposition 8. ΠM is not Θ¬deny -mode-free.

Proof. As seen in the proof of the previous proposition, ΠM operating under the
modes max and smax simulates the register machine M . However, if we fix a total
order on the rules of ΠM such that p′ → p′′ is less than prr → dr, and have ΠM

operate under “the determinator” mode det, then ΠM will never have the chance
to apply the rule prr → dr, meaning that ΠM will not simulate M any more.

Time-freeness and Clock-freeness in P Systems 67

This shows that the language accepted/generated by ΠM is different under two
different non-denying modes (max and det) which implies the statement of the
theorem.

Corollary 2. There exists a clock-free P system which is not Θ¬deny -mode-free.

8 A Note on the Semantics of Clock-freeness

We would now like to use the instruments we have constituted throughout the
paper to point out some issues with the informal introduction of clock-freeness
in the original work [14]. These issues appear under derivation modes different
from the maximally parallel one—extendable modes—or with rules which have
non-monotonous rule applicability semantics. We now define these terms formally.

Given a P system Π and a configuration C of Π, we will call a mode ϑ non-
extendable if all multisets in Appl(Π,C, ϑ) are non-extendable, i.e., for any ρ ∈
Appl(Π,C, ϑ), there exists no ρ′ ∈ Appl(Π,C) such that ρ is a submultiset of ρ′.
If ϑ is not non-extendable, it is called extendable.

Example 18. The maximally parallel mode is by definition a non-extendable mode,
but any other mode ϑ such that Appl(Π,C, ϑ) ⊆ Appl(Π,C,max) is non-
extendable as well.

Given a parallel rewriting framework F = (O,R, apply−, apply+) and a par-
tial order relation ⊆ on O, we say that the rule applicability semantics of F is
monotonous if, for two objects o1, o2 ∈ O, o1 ⊆ o2 implies that Appl(R, o1) ⊆
Appl(R, o2), where Appl(R1, o) denotes the set of multisets of rules from R appli-
cable to o1.

Example 19. The semantics of cooperative multiset rewriting is monotonous: for a
fixed set of multiset rewriting rules R and two multisets w1 and w2 such that w1

is a submultiset of w2, at least as many rules are applicable to w2 as to w1.
The semantics of cooperative multiset rewriting rules with inhibitors is non-

monotonous: consider the singleton set of rules R = {r : a→ b|c} and the multisets
w1 = a and w2 = ac; w1 is a submultiset of w2, but r is only applicable to w1 and
not to w2.

Now consider again the informal definition of clock-free semantics from [14] and
take a P system Π with non-monotonous rule applicability semantics. Whenever
some rules can be applied, Π has to start their application by “removing their
left-hand sides” using apply−. However, since the applicability semantics in Π is
non-monotonous, this may immediately render more rules applicable. Letting Π
continue “removing the left-hand sides” would mean that Π may run parts of the
computation which should follow each other at the same moment.

Suppose now that Π works under a mode ϑ which is extendable. This means
that Π does not have to start all of the rules which are potentially applicable

68 A. Alhazov et al.

immediately. Since Π does not have a global clock, we do not know when Π should
consider applying these left-over rules, and if it starts applying them immediately,
it would violate the derivation mode ϑ.

The definitions in Subsection 3.2 address both of these issues by declaring that
the only time Π should start new rule applications is when some (other) rule
applications release new products. Another way of handling these problems would
be restricting per-instance real timing functions to only take values in a closed
interval [c0; +∞) ⊆ R+, for some fixed positive constant c0 ∈ R+. Under this
restriction, we know that any rule takes at least c0 units of time to finish, which
means that Π could reconsider applying new rules either when some rule products
become available, or c0 units of time after the last pack of rule applications started.

Changing the way in which per-instance timing is defined should give rise
to formulations of different event-driven semantics. Indeed, with the restriction
described in the previous paragraph, the types of events to which Π may react
would be extended with the ticks of a “local timer” going off in c0 units of time
after each start of some rule applications.

9 Conclusion and Discussion

In this paper we recalled timed, time-free, and clock-free P systems and provided
a common framework for the three notions. This framework allows discussing dif-
ferent kinds of timing functions and freeness properties for P systems operating
on arbitrary object types allowing for parallel rule application. We also discussed
mode-freeness and showed that, even though mode-freeness and clock-freeness ex-
press robustness with respect to variations in quite different parameters, mode-free
and clock-free P systems exhibit a number of similarities.

Both mode-freeness and clock-freeness as well as the other concepts like in
un-timed and un-clocked P systems seem to offer plenty of possibilities for future
research, among which we would like to state the following ones, in no particular
order.

1. Complete Figure 3: Further investigate the relationship between the freeness
properties shown in Figure 3. Find new inclusions, show the (non-)strictness of
the known inclusions, consider yet different variations of the timing functions
and finishing strategies.

2. Prove or disprove Conjecture 1: This conjecture states that that any Θ¬deny -
mode-free P system is asyn-deterministic in any reachable configuration C. As
shown in Conjecture 2, this could reveal a strong connection between mode-free
P systems and clock-free ones.

3. Other families of modes: We have only considered two infinite families of evolu-
tion modes in detail—the family of all modes ΘU and the family of non-denying
modes Θ¬deny . We showed that the properties of P systems being mode-free
with respect to these families are rather unusual (huge gap between the power

Time-freeness and Clock-freeness in P Systems 69

of generators and acceptors). Are there other families of modes exhibiting sim-
ilar properties?

4. Halting conditions: In this paper we essentially glossed over halting conditions.
Investigating mode-freeness and clock-freeness with respect to different halting
conditions may prove interesting. What would freeness with respect to some
families of halting conditions mean?

5. Mode-freeness without inhibitors: Theorem 5 shows a computationally com-
plete family of Θ¬deny -mode-free P systems. These P systems rely on cooper-
ativity and on inhibitors (as usual, priorities would work just as well). What
are the languages accepted by multiset-rewriting Θ¬deny -mode-free P systems
without inhibitors?

6. Different clock-freeness: As pointed out in Section 8, the intuitive idea of allow-
ing individual rule applications to last for a different amount of time gives rise
to multiple possible semantics. Subsection 3.2 describes one of them; exploring
other possibilities may prove interesting for applications in modelling.

7. Un-timed and un-clocked P systems: Which variants of P systems still remain
computationally complete when being considered as un-timed or un-clocked
systems?

References

1. Artiom Alhazov and Rudolf Freund. Asynchronous and maximally parallel deter-
ministic controlled non-cooperative P systems characterize NFIN and confin. In
Erzsébet Csuhaj-Varjú, Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and
György Vaszil, editors, Membrane Computing - 13th International Conference, CMC
2012, Budapest, Hungary, August 28-31, 2012, Revised Selected Papers, volume 7762
of Lecture Notes in Computer Science, pages 101–111. Springer, 2012.

2. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Marion Oswald. Observations
on P systems with states. In Marian Gheorghe, Ion Petre, Mario J. Pérez-Jiménez,
Grzegorz Rozenberg, and Arto Salomaa, editors, Multidisciplinary Creativity. Hom-
mage to Gheorghe Păun on His 65th Birthday. Spandugino, 2015.

3. Artiom Alhazov, Rudolf Freund, and Sergey Verlan. P systems working in maximal
variants of the set derivation mode. In Alberto Leporati, Grzegorz Rozenberg, Arto
Salomaa, and Claudio Zandron, editors, Membrane Computing - 17th International
Conference, CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected Papers,
volume 10105 of Lecture Notes in Computer Science, pages 83–102. Springer, 2016.

4. Cristian S. Calude and Gheorghe Păun. Bio-steps beyond Turing. BioSystems,
77(1-3):175–194, November 2004.

5. Matteo Cavaliere and Dragoş Sburlan. Time–independent p systems. In Giancarlo
Mauri, Gheorghe Păun, Mario J. Pérez-Jiménez, Grzegorz Rozenberg, and Arto Sa-
lomaa, editors, Membrane Computing: 5th International Workshop, WMC 2004, Mi-
lan, Italy, June 14-16, 2004, Revised Selected and Invited Papers, pages 239–258.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

6. Conal Elliott and Paul Hudak. Functional reactive animation. In International
Conference on Functional Programming, 1997.

70 A. Alhazov et al.

7. Rudolf Freund. Asynchronous P systems and P systems working in the sequential
mode. In Giancarlo Mauri, Gheorghe Paun, Mario J. Pérez-Jiménez, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Membrane Computing, 5th International Workshop,
WMC 2004, Milan, Italy, June 14-16, 2004, Revised Selected and Invited Papers, vol-
ume 3365 of Lecture Notes in Computer Science, pages 36–62. Springer, 2004.

8. Rudolf Freund, Marian Kogler, and Marion Oswald. A general framework for reg-
ulated rewriting based on the applicability of rules. In Jozef Kelemen and Alica
Kelemenová, editors, Computation, Cooperation, and Life - Essays Dedicated to Ghe-
orghe Paun on the Occasion of His 60th Birthday, volume 6610 of Lecture Notes in
Computer Science, pages 35–53. Springer, 2011.

9. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P sys-
tems. In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg,
and Arto Salomaa, editors, Membrane Computing, volume 4860 of Lecture Notes in
Computer Science, pages 271–284. Springer Berlin Heidelberg, 2007.

10. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

11. Sergiu Ivanov. A formal framework for clock-free networks of cells. International
Journal of Computer Mathematics, 90(4):776–788, 2013.

12. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Handbook of
Membrane Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

13. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, 3
volumes. Springer, New York, NY, USA, 1997.

14. Dragoş Sburlan. Clock-free P systems. In Pre-proceedings of the Fifth Workshop on
Membrane Computing (WMC5), Milano, Italy, June 2004, pages 372–383, Milano,
Italy, June 2004.

15. Bosheng Song, Mario J. Pérez-Jiménez, and Linqiang Pan. An efficient time-free
solution to SAT problem by P systems with proteins on membranes. J. Comput.
Syst. Sci., 82(6):1090–1099, 2016.

16. Bosheng Song, Tao Song, and Linqiang Pan. Time-free solution to SAT problem by P
systems with active membranes and standard cell division rules. Natural Computing,
14(4):673–681, 2015.

17. Bosheng Song, Tao Song, and Linqiang Pan. A time-free uniform solution to subset
sum problem by tissue P systems with cell division. Mathematical Structures in
Computer Science, 27(1):17–32, 2017.

18. Tao Song, Luis F. Maćıas-Ramos, Linqiang Pan, and Mario J. Pérez-Jiménez. Time-
free solution to SAT problem using P systems with active membranes. Theor. Com-
put. Sci., 529:61–68, 2014.

19. Bulletin of the International Membrane Computing Society (IMCS). http://

membranecomputing.net/IMCSBulletin/index.php.
20. The P Systems Website. http://ppage.psystems.eu/.

