

The use of GeoGebra in Discrete Mathematics

Ph.D. Raúl M. Falcón

School of Building Engineering. University of Seville, Spain.

rafalgan@us.es

Ph.D. Ricardo Ríos

I.E.S. Julio Verne, Seville, Spain.

profesofricardo@yahoo.es

ABSTRACT: In this paper we explain how to make use of the

commands that are available in GeoGebra to deal with some

realistic problems related to the field of Discrete Mathematics.

We also expose how to define new tools that make possible the

study of theoretical results in Graph theory.

KEYWORDS: Discrete Mathematics, Graph Theory, Shortest

Path Problem, Bézier curves, Pattern recognition, Art Gallery

Problem, Travelling Problem, Random graphs.

1 Introduction

Discrete Mathematics deals with structures formed by a set of objects that can

be either finite or enumerated by the set of positive integers. From an

educational point of view, this field constitutes an interesting subject to be

included in the curriculum of Mathematics not only at the university level but

also at the secondary level [Ouv14, RFR97]. It is due to the fact that Discrete

Mathematics comprises distinct and varied topics that can be easily applied

in the real world and immediately understood by any student without an

extensive background in Mathematics. Examples of these topics are, for

instance, Combinatorics, Computer Science, Cryptography, Decision theory,

Discrete Probability, Game theory, Graph theory, Information theory or

Operation Research. Particularly, Brousseau [Bro97] established Game

theory as a main tool to analyze the processes of teaching and learning

Mathematics by conceptualizing the theory of didactical situations.

Incidence structures constitute one of the main structures studied in

Discrete Mathematics. An incidence structure is a triple (P, B, I) formed by a

finite set P of points, a finite set B of lines and an incidence relation I ⊆ P x

B, where, given a point p and a line l such that (p,l) œ I, it is said that p lies

on l or that l contains p. This incidence structure constitutes a graph if every

line passes exactly through two points. Equivalently, a graph G = (V, E) is a

pair formed by a set V of points called vertices and a set E of lines connecting

them called edges (see Figure 1). Since the problem of the Seven Bridges of

Königsberg, solved by Euler [Eul36] in 1736, Graph theory has been

established as a prolific source of applications to realistic problems like the

art gallery problem, the map coloring problem, the traveling problem or the

shortest path problem, amongst others.

Figure 1: Graph of 9 vertices and 12 edges drawn in GeoGebra.

Nowadays, there exists a wide amount of graph drawing software

systems that can be used to deal with distinct applications of Graph theory in

realistic problems like analysis and visualization of networks, flows, concept

maps or data mining, study of molecular interaction networks or generation

of random graphs [JP04]. Nevertheless, because of their complexity, these

systems do not constitute in general a good tool to teach basic concepts and

results on Graph theory. To this end, more simple and environment-friendly

systems are required like, for instance, the recent versions of Grafos [Rod10]

or GraphShop [And11]. In this paper, we propose the dynamic geometry

system GeoGebra as a very interesting alternative to deal with not only Graph

theory but Discrete Mathematics in general. The series of commands devoted

to Discrete Mathematics that GeoGebra has implemented by defect together

with its dynamical, intuitive and friendly environment constitutes a good

alternative to introduce basic concepts and results on the majority of the topics

that we have previously mentioned.

The paper is organized as follows. In Section 2 we introduce the seven

commands on Discrete Mathematics implemented by defect in GeoGebra 5.0

and we explain how to use them to solve distinct problems with application

in the real world and which can easily be implemented in Maths classes at the

secondary level. In Section 3 we explain how to develop new tools on Graph

theory to be implemented in GeoGebra. Specifically, we expose how to

construct random graphs whose edges are randomly generated according to a

normal distribution. Even if the paper is self-contained, we refer to the

monograph of Rosen [Ros99] for more details on basic concepts and

problems on Discrete Mathematics.

2 Commands devoted to Discrete Mathematics in GeoGebra

There exist seven commands on Discrete Mathematics that are implemented

by defect in GeoGebra 5.0: ConvexHull, DelaunayTriangulation, Hull,

MinimumSpanningTree, ShortestDistance, TravellingSalesman and Voronoi.

In this section we introduce them and we expose some possible applications

in real-world problems.

2.1 ConvexHull

A polygon P is convex if whenever two points P1 and P2 lie inside of P, then

the whole segment P1P2 is also inside of P. The convex hull of a set S = {P1,

…, Pn} of n points in the plane is the smallest convex polygon that contains

all the points in S. In GeoGebra, this polygon can be obtained by using the

command ConvexHull[<List of Points>]. This command can be used to solve

shortest path problems related to robot motion planning as the next one:

“Let P1 and P2 be two points on the outside of the convex hull of

a star-shaped polygon P such that the segment line P1P2 passes

through P. Determine the shortest path between the points P1 and

P2 such that none point of the path is inside of P.”

Recall that a polygon is said to be star-shaped if it contains a point from

which the entire polygon boundary is visible. To solve this problem, we draw

in GeoGebra both points P1 and P2 and the polygon P. After that, we use the

command ConvexHull to obtain the convex hull related to P1, P2 and all the

vertices of P. The boundary of this hull determines two paths from P1 to P2,

of which the shortest one is the solution of our problem. It can be determined

by using the tool Distance or Length of GeoGebra (see Figure 2).

Figure 2: Shortest path related to a convex hull.

An interesting property that can be easily tested in GeoGebra is

the fact that the Bézier curve of every set of control points is contained

in their convex hull (see Figure 3). Bézier curves are piecewise

polynomial functions defined from a set of control points, with the

property that any affine transformation of the curve coincides with the

Bézier curve of the transformed control points. Specifically, given a set

S = {P1, …, Pn} of n points in the plane, its Bézier curve is defined

parametrically as

���� � 	∑ �	
 �
�
 � �

	�
	�� �1 � ����	,

where 0 ≤ t ≤ 1. In GeoGebra, this curve can be defined by entering the

next commands in the input bar:

n = Length[S]

T=Sequence[BinomialCoefficient[n-1,i]x^i (1 - x)^(n - 1 - i),i, 0, n - 1]

Px = Sequence[x(Element[S, i]) Element[T, i], i, 1, n]

Py = Sequence[y(Element[S, i]) Element[T, i], i, 1, n]

Sx(x) = Sum[Px]

Sy(x) = Sum[Py]

Curve[Sx(t), Sy(t), t, 0, 1]

For more details about the visualization of Bézier curves in

GeoGebra we refer to the paper of Viera [Vie14].

Figure 3: Bézier curve and convex hull of five points in GeoGebra.

2.2 DelaunayTriangulation

The Delaunay triangulation of a set S = {P1, …, Pn} of n points in the plane

is the subdivision into triangles of the convex hull of S such that no point in

S is inside the circumcircle of any triangle of the triangulation. This

triangulation is unique and constitutes the most regular possible triangulation

because it maximizes the minimum angle of all the triangles. Particularly, any

pair of closer points are always connected by an edge of the triangulation.

Due to all these facts, the Delaunay triangulation has a wide range of

applications in pattern recognition, terrain modeling, computer vision or

image and video compression, amongst others. In GeoGebra, this

triangulation can be determined by using the command

DelaunayTriangulation[<List of Points>]. Figure 4 shows the Delaunay

triangulation constructed by GeoGebra from a cloud of points that

characterizes the colour and contrast changes in a picture of a rose.

Figure 4: Pattern recognition in GeoGebra.

The command DelaunayTriangulation can also be used in GeoGebra to

deal with other problems in Discrete Mathematics that require the use of a

triangulation. This is the case, for instance, of the art gallery problem, which

consists originally of determining the minimum number of guards that are

required to look after an art gallery. This gallery is represented by a polygon

on whose vertices must be placed the guards. To solve this problem, the

polygon is triangulated and 3-coloured, that is, the vertices of the

triangulation are coloured with three distinct colours so that every triangle

contains all the three colours. After that, the smallest set of vertices with the

same colour determines the position of the guards. This set has at most ⌊n/3⌋
vertices, where n is the number of vertices of the polygon. Figure 5 shows an

example in this regard that has been solved by using GeoGebra. In the figure,

the orange gallery has been considered as a polygon, its 24 vertices have been

drawn and their Delaunay triangulation has been constructed. The vertices of

those triangles contained in the gallery has then been 3-coloured. Remark that

any of the resulting three sets of vertices having a same colour determines a

possible distribution of guards because all of them have cardinality eight.

Figure 5: Art gallery problem in GeoGebra.

2.3 Hull

Given a set S = {P1, …, Pn} of n points in the plane, the command Hull[<List

of Points>, Percentage] determines in GeoGebra a polygon that constitutes

the characteristic shapes or c-shapes of S according to the algorithm defined

by Duckham et al. [DK08]. Depending on a factor of percentage that fit the

adjustment of the polygon to the cloud of points, this polygon can always be

embedded in the Delaunay triangulation of S. The maximum percentage

corresponds to the convex hull of S and the minimum corresponds to the

maximum adjustment. Due to its relation with the Delaunay triangulation, c-

shapes are applied on shapes analysis and recognition. Figure 6 shows an

example in this regard, where we have made use of a slider in order to

determine explicitly the distinct adjustments constructed by GeoGebra for the

given set of points.

Figure 6: c-shapes and Delaunay triangulation in GeoGebra.

2.4 MinimumSpanningTree

Given a graph G = (V, E), the degree of a vertex v œ V is the number of edges

containing v. A tree is a graph with all its vertices having degree at most two.

The graph G is said to be connected if, given two vertices v and v’ in V, there

exists a series of vertices v0 = v, v1, …, vn=v’ such that vivi+1 determines an

edge in E, for all i œ {0, …, n - 1}. The series of edges e1 = v0v1, …, en =vn-1vn

determines a path between v and v’. The graph G is said to be weighted if all

its edges have associated a label or weight. A possible labelling is given by

the length of each edge or, equivalently, by the Euclidean distance among its

corresponding vertices. Finally, the graph G is said to be complete if every

pair of vertices determines an edge (see Figure 7).

Figure 7: Complete graph of 30 vertices drawn in GeoGebra.

A spanning tree of a connected graph G = (V, E) is a tree containing all

the vertices of V and whose edges are in E. If the graph G is weighted, then

the spanning tree is said to be minimum if there does not exist any other

spanning tree with a lower total sum of weights in its edges.

In GeoGebra, given a set S of points, the command

MinimumSpanningTree[<List of Points>] determines the minimum spanning

tree of the weighted complete graph having S as set of vertices and the

Euclidean distance between vertices as weight. This command can be used,

for instance, to solve the next shortest path problem:

“Determine the road network of minimum cost joining the

following central-European cities: Paris, Brussels, Luxembourg,

Amsterdam, Berlin, Prague, Bern, Vaduz, Vienna, Bratislava and

Budapest.”

To solve this problem, we insert in GeoGebra a political map of Europe

and mark the mentioned cities with eleven points C1, …, C11. After that, we

write in the input box the command MinimumSpanningTree[{C1, C2, C3, C4,

C5, C6, C7, C8, C9, C10, C11}]. The solution of the problem is shown in Figure

8.

Figure 8: Road network of minimum cost.

2.5 ShortestDistance

Given a weighted graph G = (V, E), the shortest distance problem consists of

finding the path of minimum weight between two given vertices of the graph.

In GeoGebra, this problem can be solved by using the command

ShortestDistance[<List of Segments>, <Start Point>, <End Point>,

<Boolean Weighted>], where the Boolean value can be true or false,

depending, respectively, on whether we use the Euclidean distance or the

number of edges between points. Figure 9 shows an example in this regard.

The red edges determine the shortest path between the points B and E

according to the Euclidean distance, whereas the green ones determine the

path with the minimum number of edges between these two points.

Figure 9: Shortest distances in GeoGebra.

Figure 10 shows a similar construction, based on a real situation.

“Which is the shortest path in New York to walk from the Empire

State Building to the United Nations Headquarters?”

Figure 10: Shortest paths in New York by using GeoGebra.

2.6 TravellingSalesman

Given a set S = {P1, …, Pn} of n points in the plane, the travelling salesman

problem consists of finding the tour or cyclic path of minimum length that

passes through all the points of S exactly once. This tour is determined in

GeoGebra with the command TravellingSalesman[<List of Points>]. A

possible problem in this regard is

“Determine the cyclic road network of minimum length joining

the following central-European cities: Paris, Brussels,

Luxembourg, Amsterdam, Berlin, Prague, Bern, Vaduz, Vienna,

Bratislava and Budapest.”

To solve this problem in GeoGebra, it is enough to replace the

command MinimumSpanningTree that we used in the shortest path problem

exposed in Subsection 2.4 by the command TravellingSalesman. The solution

obtained is shown in Figure 11.

Figure 11: Tour of minimum length.

2.7 Voronoi

The Voronoi diagram of a set S = {P1, …, Pn} of n points in the plane

constitutes the dual of its Delaunay triangulation. It consists of the subdivision

of the plane into n cells, one for each point of S, with the property that a point

P lies in the cell corresponding to the point Pi if and only if d(P,Pi)<d(P,Pj),

for all j ≠ i, where d represents the Euclidean distance in the plane. The

corresponding Delaunay triangulation can then be obtained by joining those

points whose related cells are neighbours. In GeoGebra, the Voronoi diagram

can be obtained by using the command Voronoi[<List of Points>].

Voronoi diagrams are applied in a wide range of distinct fields like

optimization, location, networks, computer graphics, engineering, biology or

chemistry, amongst others. A realistic problem that can be solved in

GeoGebra is

“The council of Seville wants to construct a new public bicycle

rent service point in the center of the city, but it has to be as far

as possible of the already existing service points. Determine the

best location to construct the new service point.”

Figure 12 shows the distinct steps to be followed in order to solve this

problem with GeoGebra: Once the city map is inserted in the graphics view

and the existing service points are marked, we determine their Voronoi

diagram and their convex hull. The vertices of the Voronoi cells and the

intersection points between the Voronoi diagram and the convex hull are the

possible candidates to be the location of the new service point. The exact

location is the point having maximum distance with the service points of its

neighbourhood.

Figure 12: Location of new services by using GeoGebra.

3 Creating new tools in Graph theory

Even if there do not exist specific tools in GeoGebra to analyze results on

Graph theory apart from the commands that have been introduced in the

previous section, it is possible to create our own tools. In this section we

expose a first example in this regard. Specifically, we focus on the explicit

construction of random graphs and the definition of distinct commands that

make possible the study of basic related concepts. To this end, in a new

worksheet of GeoGebra, we create a slider n with integers values defined in

the interval [1, 30], which will determine the number of vertices of our graph

(the maximum value 30 can be changed if it is required). After that, we define

explicitly these vertices as the nth roots of unity, which are homogeneously

distributed in the circumference of center (0, 0) and radius 1. To this end we

enter in the input bar the sequence

V=Sequence[cos(2k π / n) + ί sin(2k π / n), k, 0, n-1]

The edges of our graph will be determined from its adjacency matrix,

that is, from an n x n binary symmetric matrix M = (mij) such that mij = 1 if

there exists an edge between the vertices i and j, and 0, otherwise. The entries

of this matrix will be randomly generated according to a normal distribution

of a certain probability p that we introduce previously as a second slider

defined in the interval [0, 1] with increment 0.01. Particularly, the graph will

be complete if p = 1 and will not have any vertex if p = 0. In order to generate

our adjacency matrix and because of its symmetry, we create firstly a random

list with the entries that are above its main diagonal

L=Sequence[Sequence[RandomBinomial[1,p],j,i+1,n],i,1,n-1]

The adjacency matrix and the edges of our graph are then respectively

defined as

M=Sequence[Join[Join[Sequence[Element[Element[L,j],i-j],j,1,i-

1],{0}], Sequence[Element[Element[L,i],j],j,1,n-i]],i,1,n]

A=Sequence[Sequence[If[Element[M,i,j]≠0,Segment[Element[V,i],

Element[V, j]]], j,i+1,n],i,1,n]

Our construction (see Figure 13) facilitates the definition of basic

concepts related to a graph like its order (number of vertices), its size (number

of edges) or the number of triangles formed by its edges:

Order=n

Size=Sum[Sequence[Sum[Element[L,i]],i,1,n-1]]

Triangles=Sum[Sequence[Element[M^3,i,i],i,1,n]] /6

Figure 13: Random graph constructed in GeoGebra.

4 Conclusions

GeoGebra can be an excellent software to introduce distinct concepts and

problems on Discrete Mathematics. In this paper we have dealt with the

commands that are already implemented in GeoGebra to this end, we have

exposed how to apply them to solve distinct realistic problems and we have

shown how to generate random graphs and determine some basic properties.

All the underlying concepts that are necessary to understand and solve the

exposed problems are easy enough even for secondary students, who can be

attracted by the simplicity of solving them by using a dynamic software like

GeoGebra. In any case, it is only a first and very general approach to the wide

range of possibilities that offer this software to deal with the field of Discrete

Mathematics. A more comprehensive analysis of each exposed tool and their

consequent effect in the teaching-learning process at the secondary and

university level would be very interesting to be further developed.

References

[And11] A. Andersen – GraphShop: An interactive software environment

for graph theory research and applications, Master Thesis, Utah

State University, 2011.

[Bro97] G. Brousseau – Theory of didactical situations in mathematics,

Mathematics Education Library, vol. 19, Springer Netherlands,

1997.

[DK08] M. Duckham, L. Kulik, M. Worboys, A. Galton – Efficient

generation of simple polygons for characterizing the shape of a

set of points in the plane, Pattern recognition, vol. 41 (10): 3224-

3236, 2008.

[Eul36] L. Euler – Solutio problematis ad geometriam situs pertinentis,

Commentarii academiae scientiarum Petropolitanae, vol. 8: 128-

140, 1736.

[JM04] M. Jünger, P. Mutzel (eds.) – Graph Drawing Software,

Springer-Verlag, New York, 2004.

[Ouv14] C. Ouvrier-Buffet – Discrete Mathematics Teaching and

Learning, in Encyclopedia of Mathematics Education, pp.181-

186, 2014.

[RFR97] J. G. Rosenstein, D. S. Franzblau, F. S. Roberts (eds.) –

Discrete mathematics in the schools, DIMACS: Series in Discrete

Mathematics & Theoretical Computer Science, vol. 36, American

Mathematical Society & NCTM, Providence, 1997.

[Ros99] K. H. Rosen – Handbook of Discrete and Combinatorial

Mathematics, CRC Press, 1999.

[Rod10] A. Rodríguez Villalobos – Grafos: software para la

construcción, edición y análisis de grafos, Bubok Publishing

S.L., España, 2010.

[Vie14] F. R. Viera Alves – Visualizing Bezier´s curves: some

applications of Dynamic System Geogebra, GeoGebra

International Journal of Romania, vol, 3 (2): 57-68, 2014.

