
A Tool for Link-Based Web Page Classification

Inma Hernández, Carlos R. Rivero, David Ruiz, and Rafael Corchuelo

University of Seville
Seville, Spain

{inmahernandez,carlosrivero,druiz,corchu}@us.es

Abstract. Virtual integration systems require a crawler to navigate
through web sites automatically, looking for relevant information. This
process is online, so whilst the system is looking for the required in-
formation, the user is waiting for a response. Therefore, downloading a
minimum number of irrelevant pages is mandatory to improve the crawler
efficiency. Most crawlers need to download a page to determine its rele-
vance, which results in a high number of irrelevant pages downloaded. In
this paper, we propose a classifier that helps crawlers to efficiently navi-
gate through web sites. This classifier is able to determine if a web page
is relevant by analysing exclusively its URL, minimising the number of
irrelevant pages downloaded, improving crawling efficiency and reducing
used bandwidth, making it suitable for virtual integration systems.

Keywords: Crawling, Web Page Classification, Virtual Integration.

1 Introduction

Virtual Integration aims at accessing web information in an automated manner,
retrieving information relevant to a user query from the Web. Automated access
to the Web requires a crawler, which is a tool able to navigate through web
sites automatically, looking for relevant information. Traditional crawlers visit
every link on every page, download their target, and check whether the page
contains relevant information. This means that, even when a page is irrelevant,
the crawler has to download it and check if it is relevant or not, which results in
a large number of irrelevant pages downloaded.

Note that the Virtual Integration process is online, which means that whilst
the system is looking for the required information, the user is waiting for a re-
sponse. Therefore, downloading a minimum number of irrelevant pages is manda-
tory to improve the crawler efficiency, which is a concern for several researchers
[9,15,26].

There are some techniques that improve traditional crawlers efficiency by
endowing the crawler with classification skills. For example, focused crawlers

� Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

find pages belonging to one or more topics exclusively, so they are supported by
a content-based classifier that determines whether each page belongs to those
topics [1,11,14,22,24]. Other crawlers include classifiers based on other features
like page structure [19,20,27]. Finally, there are crawling techniques that rely
completely on the user to define navigation patterns [2,5,8,23,29].

In this paper, we focus on web sites that follow a certain navigational pattern,
which is the most common pattern in the Web [19]. This pattern starts with a
form page; then, after users submit a query, the system returns a hub, i.e., a
page containing an indexed list of answers to it, each of which contains just a
brief description and a link to a detail page. Note that the term “hub” is based
on the hub and authority concepts introduced by Kleinberg [18].

In this kind of web sites, hubs are created by instantiating scripts with data
stored in a database [7]. This means that all hubs from the same web site share a
common template, usually in the form of headers, footers and side bars contain-
ing navigational aids, copyright information and advertising [30], which frame
the page areas that contain the information that varies from hub to hub. Simi-
larly, URLs that point to each hub and detail page are generated as well by the
same process of filling a URL pattern with keywords that identify the generated
page. Therefore, all URLs from a certain site can be expressed by a collection of
URL patterns.

We propose a classifier that helps crawlers to efficiently navigate through web
sites, by determining if a web page is relevant by analysing exclusively its URL.
Our classifier is different to existing proposals, since it is based on features that
are not in the page to be classified, but in pages that link to it. Therefore, it
is not necessary to download a page to classify it, which avoids downloading
irrelevant pages, reducing the bandwidth and making it efficient and suitable for
Virtual Integration systems. Moreover, our proposal is automated, requiring a
minimum intervention from users. Furthermore, our classifier is trained using an
unlabelled training set of URLs, thus relieving the user from the tedious task of
assigning a label to each training page.

Our hypothesis is that there is usually a correspondence between URL pat-
terns and the concept contained in the pages with URLs following that pattern,
so that we can classify web pages containing different concepts by means of the
pattern matching their URL. Therefore, our classification technique consists on
finding the different URL patterns or prototypes that compose links in a given
web site. Then, we use these prototypes to classify links by template matching.
Furthermore, our technique is able as well to detect links belonging to the Web
site template.

The rest of the paper is structured as follows. Section 2 presents the related
work in the web page classification area; Sections 3 and 4 introduce the core
definitions that will be used throughout the paper; Section 5 describes the tool
design; Section 6 presents the evaluation of our tool; finally, Section 7 lists some
of the conclusions drawn from the research and concludes the paper.

2 Related Work

Web page classification has been extensively researched, and several techniques
have been applied with successful experimental results. In general, we catalogue
classifiers according to the type and location of the classification features. There
are three main trends in feature types: content-based, structure-based and hybrid
classifiers. As for feature location, most approaches obtain features from the page
to be classified, whilst others get them from neighbour pages.

Content-based classifiers ([17,25]) categorize a web page according to the
words and sentences it contains. These kinds of classifiers group all pages within
the same topic, assigning them the same class label. As for structure-based clas-
sifiers ([3,4,6,13,27,28]), the main feature used to classify pages is their physical
organisation of contents, usually expressed in a tree-like data structure, like a
DOM Tree. Also, there are hybrid approaches [10,21] which take both content
and structural features into account.

All previous classifiers consider different kinds of features, but in most cases
those features are extracted from the page to be classified, which requires down-
loading it previously. There are also classifiers that explore the possibility of
classifying a web page by using features extracted from neighbour pages, in-
stead of the page itself, being the neighbour of a page another page that has
a link to the former, or, conversely, that is linked from it. All these proposals
are content-based, and usually rely on features such as the link anchor text, the
paragraph text surrounding the anchor [12], the headers preceding the anchor,
the words in the URL address, or even a combination of them [16]. If the link
is surrounded by a descriptive paragraph or the link itself contains descriptive
words, it is possible to decide the page topic in advance of downloading it.

3 Core Definitions

In this Section, we introduce some preliminary concepts that will be used through-
out the rest of the paper.

Hub. Each hub is defined by the set of links that it comprises, Hi =
{l1, l2, l3, ..., lm}

Hubset. Set of hubs obtained from a particular site. H = {H1, H2, H3, ..., Hn}
Linkset. Set of links that are comprised in a hubset H , L =

n⋃

i=1

Hi ∈ H

Link. Tuple that represents a URL, l = (S, A, P, N, V). Links are obtained
from URLs by means of a tokeniser, according to RFC 3986, where S is the
schema of the URL, A is its authority or domain name, P is a sequence
of path segments, N is a sequence of names of the parameters in the URL
query string and V is the sequence of the former parameters values. For the
sake of simplicity, throughout the paper we use the notation X to refer to
any of the sequences P , N or V .

Prototype. Link p = (S, A, P, N, V) that represents a URL pattern, where
each element in P , N and V is either a literal or a wildcard, �. A wildcard
represents any sequence of characters (excluding separators ’?’, ’/’, ’#’, ’=’
and ’&’)

Common Path Links. Let L be a linkset from a given site, l be a link in L and
X(i) be the i-th element of sequence X in l. We define the set CPLX(l, i) as
the set of all links l’ in L having the same prefix as l up to (and excluding)
X(i). Recall that a prototype is a link that includes some wildcard sections,
so we can calculate the CPL set of a prototype likewise.

4 Classification Features

In this Section, we introduce the features that support building the set of pro-
totypes that represent all links in a given site. We take a statistical approach to
the problem of prototype building, and we base our technique in the definition
of probabilistic features for each link and each token inside a link. First we give
a formal definition of these features and later we illustrate their use by means
of an example.

4.1 Features Definition

Definition 1 (Link feature). Let H be a hubset from a certain web site with
size n, and l be a link l ∈ H. Probability FL of a link in the context of H is
defined as follows.

FL(l) =
|{Hi ∈ H · l ∈ Hi, i ∈ [1, n]}|

n
(1)

In Equation 1, we must assure that the hubset is sufficiently large so that the
probability estimation is statistically significant, hence we require that |H | ≥ 30,
which is the usual threshold in statistical literature. FL (l) takes values in the
range [1/n, 1]. Links that appear more frequently in hubs from a hubset, have
a higher FL than those appearing just in a few of them, to the point that links
with FL = 1 appear in every single Hi ∈ H . At the other end of the distribution,
links with FL near to 0 never appear in any of H hubs.

As an example, Figure 1a shows the histogram of FL values obtained from
100 hubs in an e-commerce site (Amazon.com) an two academic sites (Microsoft
Academic Search and TDG Scholar).

Definition 2 (Tokens Features). Let H be a hubset from a given site with
size n, L its linkset, l a link of the form (S, A, P, N, V, Q) in L and X(i) be the
i-th element of X, we define the feature value of X(i) given as the following
probability.

FX(l, i) =
|{Hj ∈ H · Hj ∩ CPLX(l, i + 1) �= ∅, j ∈ [1, n]}|

n
(2)

These features values are in the same range as FL, [1/n, 1]. Same as with FL,
path segments that appear more frequently in hubs from H have a higher FP

than those that only appears in URLs from some of the hubs.
Figure 1b shows the histogram of FP , FN and FV values from the same

hubsets and sites as defined for FL values. It is noticeably similar to the FL his-
togram presented earlier, with the majority of values around 1/n, and just a small
tail near 1.

1

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
r
e

q
u

e
n

c
y

 (
lo

g
)

Mean Values

F
L
values

TDG

Amazon

MSA

(a) FL values histogram

1

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
r
e

q
u

e
n

c
y

 (
lo

g
)

Mean Values

F
X
Values

TDG

Amazon

MSA

(b) FP , FN , FV values histogram

Fig. 1. FP , FN , FV and FL values histogram, from sites: Amazon.com, TDG Scholar
and Microsoft Academic Search

Given that a prototype has the same signature as a link, both previous defini-
tions 1 and 2 are applicable as well to prototypes. For the sake of simplicity, we
assume that FP (p, i) = 1 iff p = {S, A, P, N, V, Q} ∧ P (i) = � (similarly, with
FN and FV).

4.2 Features Examples

Example 1. Consider an experiment over Amazon.com, in which we issue 100
queries using the top 100 words in English language, discarding stop words. The
result of this experiment is a hubset H composed of n = 100 hubs. The FL values
calculated for some of the links in H are shown in Table 1.

All Amazon pages contain a navigation bar in their upper part, including links
such as “Home” “Sign In” and “Help”. Examples of these links URLs are, re-
spectively, links with ID 2, 3 and 4, and they are always present in every page
from the site. Therefore, for any hubset extracted from Amazon, the probability
of these URLs is always 1.

On the other side, there are links whose appearance depends on the specific
page being considered. For example, links to a page with detailed information
about a product, just like links with ID 1, 5 and 6 in the example, only appear
in hubs which are answers to certain queries. Therefore, its probability depends
on the hubset, although we can assume that, for a random set of hubs, FL value
is rather low.

In general, our hypothesis is that for links whose FL in a hubset H is not 1
(or near 1), it is in fact around 1/n, i.e., probability values are grouped around
the two extremes of the distribution (0 and 1), and the number of links whose
probability is in the middle of the distribution is very low. Back to Figure 1a, we
observe that most values are grouped around 0.05, which means that most links
just appear in a range of 1 to 5 hubs, approximately. We must note that there is
a small but significant group of values around 1, i.e., the group of links that are
present in every hub from the site. We can therefore conclude that links with
FL = 1 are those belonging to the site template. Hence, our technique allows us
to detect the template of a given site, besides classifying its links according the
concept contained in their targets.

Table 1. Values for feature FL in Example 1

ID l FL(l)
1 http://www.amazon.com/Head-First-Java/dp?ie=UTF8&qid=130 0.01
2 http://www.amazon.com/ref=gno_logo 0.99
3 http://www.amazon.com/Help/b/ref=topnav_help?ie=UTF8&node=508510 0.99
4 http://www.amazon.com/gp/yourstore/ref=pd_irl_gw?ie=UTF8&signIn=1 1.00
5 http://www.amazon.com/Effective-Java/dp?ie=UTF8&qid=130 0.01
6 http://www.amazon.com/Head-First-Java/product-reviews?ie=UTF8 0.03

Let l1 be the link with ID = 1 in previously defined H . After the experiment,
we obtain the values for features FP , FN and FV presented in Table 2a. As
a comparison, in Table 2b, we show the values for features FP , FN and FV

for the prototype p that results when we replace the first path segment in l1
(“Head-First-Java”) with a wildcard.

Table 2. Values for features FP , FN and FV for l1 and p, in Example 1

X(i) Value X(i) Value
FP(l1, 1) Head-First-Java 0.01 FP(p, 1) � 1
FP(l1, 2) dp 0.01 FP(p, 2) dp 0.98
FN(l1, 1) ie 0.01 FN(p, 1) ie 0.99
FN(l1, 2) qid 0.01 FN(p, 2) qid 0.99
FV(l1, 1) UTF-8 0.01 FV(p, 1) UTF-8 0.99
FV(l1, 2) 123 0.01 FV(p, 2) 123 0.01

(a) Values for l1 (b) Values for p

Based on the former example, we can extract some conclusions from the dif-
ferent values of FP , FN and FV . For example, token “dp”, with FP (p, 2) = 0.98,
is a fixed part of every link to Amazon product detail pages, and therefore, it
is more frequent throughout the site than token “123”, whose FV (p, 2) is near 0
as it is a parameter that identifies queries, and therefore, it is different for every
issued query. As a result, its FV value is 0.01, indicating that it just appears
in links from a single hub. Similarly, parameter 1, with name “ie” and value
“UTF-8”, is also a fixed part in all Amazon links, so their FN and FV values
respectively are near to 1 in Table 2b.

Our hypothesis regarding FP , FN and FV values is the same exposed earlier
for FL values. In this case, the straightforward application is to build prototypes:
tokens with a near-zero value are not relevant, so we can abstract over them and
obtain a more general representation of all such segments in the form of a regular
expression, i.e., of a prototyping token. Meanwhile, tokens with a feature value
significantly higher than the others (usually around 1) appear in most hubs, so
they are part of the characteristic URL patterns used to compose site URLs,
i.e., they are relevant, so we keep them as literals.

5 Classification Tool

Based on the previous features, we implemented a link classifier, following the
architecture in Figure 2. First, a training set is needed, composed by links from

Link Classifier

Link
Extractor

Setup

DW Access

Form
Filler

Form
Analyser

Keyword
Manager

Form
Model

Link
Prototyping

Keywords

Prototypes

LinksHubset Tokeniser
Features
Calculator

Features

Fig. 2. Workflow of the architecture

the site we wish to extract information from. For this purpose, we make use of
the Form Analyser which analyses the forms to obtain a form model, and the
Form Filler that uses this model to automatically fill in the form and retrieve the
resulting hubs, composing a hubset. Our proposal is focused on keyword-based
queries, hence the form filler only deals with forms that contain at least one
text field. A Keyword Manager is responsible for finding a corpus of keywords
to be used by the form filler, trying to obtain the maximum number of hubs as
possible, minimising the keywords that yield no result.

Afterwards, all URLs from the retrieved hubset are extracted and tokenised.
For each link, values of features FP , FN , FV and FL, as defined in section 4 are
calculated, and used to build an ordered set of prototypes, where each prototype
represents a different class of links, i.e., links leading to pages containing a dif-
ferent concept. Some prototypes may subsume other prototypes, i.e., a regular
expression that is more general than other, and that matches all links matched
as well by the latter. To avoid misclassifications, in cases like that we always give
a higher priority to the most specifical prototype.

6 Evaluation

We developed a proof-of-concept application, based on the former architecture.
An example of the classification results is presented in Figure 3. We observe
that Cluster 0 represents the site template links, Cluster 8 products
(http://www.amazon.com/�/dp/�), Cluster 9 product reviews
(http://www.amazon.com/�/product-reviews/�) and Cluster 12 authors
(http://www.amazon.com/�/e/�), amongst others.

Fig. 3. Example of Link Classification: Amazon.com hub page

We performed an experiment to test our tool, evaluating the most relevant
concepts on three different sites. The classification was evaluated by means of
10-fold cross evaluation, obtaining values for precision, recall and f1-measure in
Table 3. For each measure, we show its mean value, as well as the confidence
interval of 95%.

Table 3. Evaluation results

Site Concept Precision Recall F1-Measure
Amazon Products 0.978 ± 0.022 0.703 ± 0.033 0.818 ± 0.011

Reviews 0.978 ± 0.029 0.705 ± 0.031 0.819 ± 0.030

TDG Scholar Authors 0.908 ± 0.005 0.761 ± 0.004 0.828 ± 0.014

Ms Academic Papers 0.979 ± 0.003 0.864 ± 0.006 0.851 ± 0.023

http://www.amazon.com/
/dp/
http://www.amazon.com/
/product-reviews/
http://www.amazon.com/
/e/

We observe that recall values are always lower than precision. We have con-
cluded that our proposal yields prototypes that are too specific, so our future
work is focused on improving these results by means of post processing.

7 Conclusions

Our proposal classifies pages according to their URL format without download-
ing them beforehand, saving bandwidth and time. Parting from an unlabelled
set of links, a set of prototypes is built, each of which represents all links to pages
containing a concept embodied in a particular web site. The resulting prototype
set can be used by a crawler to improve its efficiency by selecting in each page
only links leading to pages with concepts that are interesting for the user, reach-
ing those pages whilst downloading the minimum number of irrelevant pages.
Besides, our classifier is able to detect the template of a web site, i.e., links
that appear in every page in the site, and hence will most probably not lead to
information related to that query.

There are some proposals that classify pages according to the text surrounding
the link in the referring page. This is not a general technique, given that not all
links include in their surroundings words useful for classification. Our proposal
classifies web pages depending on the link URL format, so it is not only efficient,
but also generic and applicable in different domains. Besides, user supervision is
kept to a minimum, given that the classifier is trained using an unlabelled set of
links collected automatically.

References

1. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: On the design of a learning crawler for
topical resource discovery. ACM Trans. Inf. Syst. 19(3), 286–309 (2001)

2. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.F.: Automating web navigation
with the webvcr. Comp. Netw. 33(1-6), 503–517 (2000)

3. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In:
SIGMOD, pp. 337–348 (2003)

4. Bar-Yossef, Z., Rajagopalan, S.: Template detection via data mining and its appli-
cations. In: WWW, pp. 580–591 (2002)

5. Bertoli, C., Crescenzi, V., Merialdo, P.: Crawling programs for wrapper-based ap-
plications. In: IRI, pp. 160–165 (2008)

6. Blanco, L., Crescenzi, V., Merialdo, P.: Structure and semantics of Data-
IntensiveWeb pages: An experimental study on their relationships. J. UCS 14(11),
1877–1892 (2008)

7. Blanco, L., Dalvi, N., Machanavajjhala, A.: Highly efficient algorithms for struc-
tural clustering of large websites. In: WWW 2011, pp. 437–446. ACM (2011)

8. Blythe, J., Kapoor, D., Knoblock, C.A., Lerman, K., Minton, S.: Information in-
tegration for the masses. J. UCS 14(11), 1811–1837 (2008)

9. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scalable fully dis-
tributed web crawler. Softw., Pract. Exper. 34(8), 711–726 (2004)

10. Caverlee, J., Liu, L.: Qa-pagelet: Data preparation techniques for large-scale data
analysis of the deep web. IEEE Trans. Knowl. Data Eng. 17(9), 1247–1262 (2005)

11. Chakrabarti, S.: Focused web crawling. In: Encyclopedia of Database Systems, pp.
1147–1155 (2009)

12. Cohen, W.W.: Improving a page classifier with anchor extraction and link analysis.
In: NIPS, pp. 1481–1488 (2002)

13. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data ex-
traction from large web sites. In: VLDB, pp. 109–118 (2001)

14. de Assis, G.T., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: Exploiting Genre
in Focused Crawling. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 62–73. Springer, Heidelberg (2007)

15. Edwards, J., McCurley, K.S., Tomlin, J.A.: An adaptive model for optimizing per-
formance of an incremental web crawler. In: WWW, pp. 106–113 (2001)

16. Fürnkranz, J.: Hyperlink ensembles: a case study in hypertext classification. Inf.
Fusion 3(4), 299–312 (2002)

17. Hotho, A., Maedche, A., Staab, S.: Ontology-based text document clustering. In:
KI, vol. 16(4), pp. 48–54 (2002)

18. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

19. Lage, J.P., da Silva, A.S., Golgher, P.B., Laender, A.H.F.: Automatic generation of
agents for collecting hidden web pages for data extraction. Data Knowl. Eng. 49(2),
177–196 (2004)

20. Liddle, S.W., Embley, D.W., Scott, D.T., Yau, S.H.: Extracting Data Behind Web
Forms. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.) ER 2003. LNCS, vol. 2784,
pp. 402–413. Springer, Heidelberg (2003)

21. Markov, A., Last, M., Kandel, A.: The hybrid representation model for web docu-
ment classification. Int. J. Intell. Syst. 23(6), 654–679 (2008)

22. Mukherjea, S.: Discovering and analyzing world wide web collections. Knowl. Inf.
Syst. 6(2), 230–241 (2004)

23. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, Á.: Semi-automatic wrapper
generation for commercial web sources. In: EISIC, pp. 265–283 (2002)

24. Pant, G., Srinivasan, P.: Link contexts in classifier-guided topical crawlers. IEEE
Trans. Knowl. Data Eng. 18(1), 107–122 (2006)

25. Selamat, A., Omatu, S.: Web page feature selection and classification using neural
networks. Inf. Sci. 158, 69–88 (2004)

26. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance dis-
tributed web crawler. In: ICDE, pp. 357–368 (2002)

27. Vidal, M.L.A., da Silva, A.S., de Moura, E.S., Cavalcanti, J.M.B.: Structure-based
crawling in the hidden web. J. UCS 14(11), 1857–1876 (2008)

28. Vieira, K., da Silva, A.S., Pinto, N., de Moura, E.S., Cavalcanti, J.M.B., Freire,
J.: A fast and robust method for web page template detection and removal. In:
CIKM, pp. 258–267 (2006)

29. Wang, Y., Hornung, T.: Deep web navigation by example. In: BIS (Workshops),
pp. 131–140 (2008)

30. Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining.
In: KDD, pp. 296–305 (2003)

	A Tool for Link-Based Web Page Classification
	Introduction
	Related Work
	Core Definitions
	Classification Features
	Features Definition
	Features Examples

	Classification Tool
	Evaluation
	Conclusions
	References

