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Abstract. A design of a parallel algorithm for labeling color flat zones
(precisely, 4-connected components) of a gray-level or color 2D digital
image is given. The technique is based in the construction of a particu-
lar Homological Spanning Forest (HSF) structure for encoding topological
information of any image. HSF is a pair of rooted trees connecting the image
elements at inter-pixel level without redundancy. In order to achieve a cor-
rect color zone labeling, our proposal here is to correctly building a sub-
HSF structure for each image connected component, modifying an initial
HSF of the whole image. For validating the correctness of our algorithm,
an implementation in OCTAVE/MATLAB is written and its results are
checked. Several kinds of images are tested to compute the number of iter-
ations in which the theoretical computing time differs from the logarithm
of the width plus the height of an image. Finally, real images are to be com-
puted faster than random images using our approach.

Keywords: Digital image + Gray-level + Color - Adjacency - Flat zone -
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1 Introduction

In general, n-xel’s values of biomedical digital images have a relevant physical
meaning. In this context, to find a semantically correct segmentation of a gray-
level or color nD digital image based on merging original regions (or flat zones) of
constant color represents an important processing problem in image under-
standing. For undertaking this task, we can start with an initial decomposition of
the domain of the image into a set {R;} given by the color flat zones of I (con-
nected components where color is constant). This is called here color-constant
region pre-segmentation and the process in order to construct it, connected com-
ponent labeling (or CCL, for short) of the original image. Within the digital
context, this pre-segmentation strongly depends on the adjacency relationship we
choose for connecting n-xels. We can interpret this problem as well as the



generation of subsequent high level segmentations in terms of topological reduc-
tions (in number of cells) of abstract cell complexes (or ACC, for short) [18]
representing the segmentations. Depending of the dimensionality (0 or n) of the
cells of the different labeled connected components (CCs) of the image, we get a
Region-Incidency-ACC or a Contour-Incidency-ACC. Classically, this issue has
been treated in the literature with ACCs of dimension one (that is, graphs), like
the Region-Adjacency-Graph and its dual (see, for instance, [4,8,17] for a 2D
treatment). Problems yet unsolved of different nature and difficulty appears in
the process of building a model for digital images capable to be efficiently used
in topological recognition tasks. Recently, an important advance in this sense has
been the development of the HSF (Homological Spanning Forest) framework for
topological parallel computing of 2D digital images [7,20]. Roughly speaking,
an HSF of a digital image [ is a set of trees living at interpixel level within an
abstract cell complex version of I and appropriately connecting all cells without
redundancy. This notion is in principle independent of the pixel’s values of the
image. If there is an interest to analyze a concrete digital object D within it, it
is possible to construct an admissible sub-HSF structure for D, “adapting” an
original HSF of the whole image to the interpixel frontier or membrane between
the object and the background. In this way, such HSF structure can be a useful
tool for topologically classifying digital closed curves inside the object.

In this paper, working with the connectivity criterion of 4-adjacency for all
the pixels, we develop a parallel CCL algorithm for a gray-level or color 2D
digital image based on the previous computation of a particular HSF structure
of this image called region-contour HSF. This HSF is “adapted” to the image’s
contour (at interpixel level, the set of digital curves, formed by crack vertices
and edges, between neighbor color flat zones). Again, this adaptation process is
done in parallel via a combinatorial optimization technique called crack transport
applied to an initial HSF of the image (called Morse Spaning Forest). Figure 1
gives an idea of how this technique works.

Distinguishing some cells in the region-contour HSF it is possible to generate
a labeling procedure of 4-CCs, including their corresponding area and perimeter
measurements.
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Fig.1. (Left) A gray level 2D digital image. (Middle) HSF structure of the gray-
level image consisting in two trees that is not adapted to the image’s contour; (Right)
Resulting Region-contour HSF after three crack transports



A sledgehammer to crack nuts? The advantages of this new CCL approach
based on HSF structure are:

— It can be considered as one of the more parallel procedures for labeling CCs
up to know. Its theoretical time complexity is near the logarithm of the width
plus height of the image and the experimental results obtained certify that
the method correctly labels even large images. In this sense, we think that an
implementation over a many-core processor could significantly improve the
speed of the algorithm.

— It is susceptible to be extended to any dimension, due to the fact that the
topological HSF structures can be defined in nD space.

— Its versatility regarding the type (binary, gray-level, color, ...) of the analyzed
image. Most of the CCL algorithms existing in the literature exclusively works
for binary images.

— It is susceptible to be promoted to obtain a useful and efficient HSF-based
model representation for recognition tasks or other high level computer vision
applications. A possible idea for properly extending the above CCL algorithm
is to distinguish in a region-contour HSF extra critical cells of dimension 1
and 2 that allow to find relations of the kind “to be surrounded by” between
sets of neighbor CCs.

There is a plethora of CCL algorithms available in the literature. Regarding
the technique, there are mainly two classes of algorithms: raster-scan algorithms,
such as one-pass ([1,15]) and two-pass ([11,12,24,26,30]), and label propagation
algorithms ([3,5,14,27]). Regarding the processing, we have sequential ([25,28])
and parallel (]2,10,13,16,21]) algorithms. Regarding the type of image, there are
also two classes: binary CCL algorithms (most of the previous references enter
into this category) and gray-level and color ([6,19,22,23,29]) CCL algorithms.
A historical overview of this fundamental low-level image processing operation
is given in [9]. Most of the previous references are valid in 2D digital context
and the criterion of pixel connectivity relies on 4-adjacency or 8-adjacency.

2 Generation of HSF Trees

CCL is one of the fundamental operations in real time applications. The labeling
operation transforms an image into a symbolic matrix in which all elements
(pixels) belonging to a CC are assigned to a unique label. One of the possible
applications of a region-contour HSF is obtaining a CCL. The information of CCs
and their contours is registered in some special cells, which are called critical cells.
For example, in Fig. 2, we show a region-contour HSF of a gray-level 2D digital
image and the same HSF in which we have distinguished on it some critical
cells of dimension 0 (square), 1 (circle) and 2 (hollow square), attending to some
criteria. Precisely, the O-critical cells we have choose are representative pixels
of the different 4-CCs. The 1-critical cells named by Al and B1 specify 1-holes
of the regions A and B, respectively. For instance, the hole Bl surrounds the
8-connected set formed by the 4-connected regions C, D, E and F. The 1-critical



Fig. 2. (left) Region-contour HSF structure of a gray-level 2D digital image; (right)
Distinguishing some critical cells on the HSF.

cells named by C’, D’, E’, and F’ determine 1-holes of the contour of the image.
The three 2-critical cells (hollow squares) are the crossing points of the image’s
contour. Let us limit ourselves to say that good choice of extra critical cells of
dimension 1 and 2 on a region-contour HSF would allow to discover efficient
topological recognition solvers.

From now on, we focus on strategies allowing the implementation of an effi-
cient and parallel computation of a region-contour HSF. In this respect, we keep
the mathematical background to a minimum and we avoid the use of a too
much technical and not informative pseudo-code style. The main three stages
for constructing an HSF structure of a digital image are in order:

1. Input data. Input data are 2-dimensional positive integer-valued matrices of
size m xn associated to a color or gray-level 2D digital image I. The outermost
border of I is filled with an inexistent color (e.g. —1).

2. Generation of initial HSF trees. The topological interpretation of the
image is condensed at inter-pixel level into two trees of an HSF of I. One
of them is composed by 0 and 1-cells (called 0-1 tree) whereas the rest of
1-cells and 2-cells lives on the 1-2 tree. In principle, an HSF is a notion that
is independent of the pixel intensities in the image. In our algorithm, the
initial constructed HSF is called Morse Spanning Forest (MrSF) and we limit
ourselves to say that it can be built in parallel [7], with an architecture of one
processing unit element (PE) for each image’s pixel.

This process is explained here using a 8 x 8-pixel image in Fig. 3. The O-cells
are drawn with small solid red circles, 1-cells with crosses and 2-cells with
squares. Edge-vectors of the HSF trees (called links in [7]) having a 0, 1 or
2-cell as its heads are respectively shown with red, blue and green lines. The
final result is that the 0-1 tree has a root at the most Northeast corner of the
image, while the 1-2 tree is rooted at the most southwest 1-cell. Some special
cells (called critical cells) are registered in this stage: a) The 0-cells ¢ (which
play a similar role to the sinks in [7]) which are the heads of a link (¢, ¢’)
whose tail is a 1-cell ¢’ surrounded by two 0-cells of different colors. In Fig. 3
(Left and Middle), sinks are marked with dotted circles; b) Those 1-cells ¢
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Fig. 3. (Left) A 2D digital image containing a stair-like shape. (Middle) the MrSF of
the image. O-cells are drawn with small solid red circles, 1-cells with little crosses and
2-cells with squares Links coming from 0, 1 and 2-cell are shown with red, blue and
green lines, resp. (Right) a resulting HSF after optimization based on crack transport.
(Color figure online)

(which play a similar role to the sources in [7]) that, being surrounded by
two O-cells of same color, are the head of a link (¢, ) whose tail is a 2-cell
¢ of a contour of the CC. In Fig.3 (Left and Middle), sources are marked
with triangles. In fact, associated to each sink and source ¢, there is a pair of
neighbor links: (¢, ¢') and (¢/,¢”), such that the dimension of ¢” is the same
than that of ¢. This pair of links is called a crack of the MrSF.

3. Crack transport. It is a combinatorial optimization process (in terms of
“transports” of cracks) in order to get two new trees (an HSF as in Fig. 3,
right) from the original MrSF. In the resulting region-contour HSF, there
is only one sink for each CC and one source for each hole. Finally in Fig.3
(right), there are only four sinks (one for each region) and one source (the
dummy contour of the image surrounds the rest of regions). This means that
the number of critical cells must be reduced to its minimum. The correct and
parallel implementation of these transports is detailed in the next section.

3 A Parallel Algorithm for Building the HSF of Color
Images

In this paper, we propose a variation of our previous works [7,20] so that two
important achievements are attained: (1) The parallel algorithm presented here
is extended to color images and; (2) No crack transport is done in a sequential
manner. The first goal is accomplished thanks to the proper definition of sinks
and sources for color images. This yields to the construction of an MrSF which
is valid for the following parts of the processing. The nature and degree of the
parallel computing in the MrSF construction remains the same than in [7]. In
consequence, working with a processing element per pixel, the time complexity
is preserved to be the logarithm of the width plus height of the image. We
refer the reader to these works for specific details of the algorithm, or directly
to our implementation (http://es.mathworks.com/matlabcentral/fileexchange/
62644--labeling-color-2d-digital-images-in-theoretical-near-logarithmic-time-).


http://es.mathworks.com/matlabcentral/fileexchange/62644--labeling-color-2d-digital-images-in-theoretical-near-logarithmic-time-
http://es.mathworks.com/matlabcentral/fileexchange/62644--labeling-color-2d-digital-images-in-theoretical-near-logarithmic-time-

B* A|B
A|C AlA

Fig. 4. Pixel patterns for detecting sinks (left) and sources (right). (*) means any color.
Letters A, B, C are specific colors, being A different from B and C.

The second aspect comes from certain properties of the MrSF trees. In this
case, the number of parallel crack’s transport to get to the final HSF is con-
siderably reduced in relation to the previous work. In fact, the biggest number
of iterations for images up to 4 Mpixels has been found to be 5 for only some
random images (and usually inferior for real images). To sum up, the time order
complexity results to be very near to that of the MrSF building (that is, loga-
rithmic). In the rest of this section several issues to construct the resulting HSF
are fully detailed.

MrSF is built in a similar manner to [7], that is, each 0-cell link must travel
only to its North or to its East. The next priority rules are followed in order
to compute the link direction of each 0-cell. First, connection between contour
pixels of the same color is preferred. If both (North and East) neighbors are in
the CC contour, the North direction is (arbitrarily) chosen. Second (if previous
rule is not satisfied), North direction is chosen if both neighbors have the same
color. Finally, if both neighbors have a different color, the 0-cell is marked as a
sink. Note that the case in which only one (North and East) neighbor has the
same color that of the current 0-cell is included in the first rule.

Besides, when the two North and East neighbors of a pixel have the same color
but the North-East one is of different color, one of the 1-cells that are between
these three identical color pixels is marked as critical. To sum up, in order to
build an MrSF for color images using a 4-adjacency criterion, the definitions of
sink and source are that given by Fig.4. Previous link direction rules and the
search of the critical cells can be done fully in parallel, which supposes a time
order complexity of O(1).

Once the rules for the 0-cell links are defined, the rules for the rest of links is
done in the same manner than in [7]. The next step is the building of a provisional
labeling over the MrSF trees. As our aim is finding topological magnitudes of an
image, it is necessary the extraction of global information. This force unavoidably
to insert a global searching across the whole image. In this step, parallelization
remains the same than in [7], which yields to a time order complexity equal to
O(log(m + n)). This is the most time consuming part of the parallel labeling.

After the previous MrSF provisional labeling, we proceed to transform the
MrSF into an HSF, which must contain the minimum possible number of critical
0-cells and 1-cells. This conversion can be understood from several points of view:

1. If a CC held several 0-1 trees (each one had a sink as a root), those trees must
be fused into one. This fusion supposes a crack transport that also changed
some links in the 1-2 tree. An example of a region with several 0-1 trees is
the biggest CC in Figure 3 (left). This region contains three sinks (marked



with dotted circles), thus it holds three 0-1 trees. After the fusion process,
the region will contain one tree (Fig. 3, right)

2. If a CC contained several sinks and several sources, they must be paired
so that finally only one sink (and one source per hole) would remain. This
cancellation process involves crack transports in both the 0-1 and the 1-2
trees. Using the same example, the biggest region in Fig.3 (left) has three
sinks and two sources, which implies that two sink/source pairs must be
canceled.

3. Previous viewpoints are useful to understand our goal but they do not give
any insight about how to proceed with the crack transports or cancellations in
a parallel manner. In order to achieve parallelism, we must find a procedure to
detect the maximum number of sink-source pairs that can be simultaneously
canceled. In this regard, the two MrSF tree structures provide uniqueness
conditions that help us finding a suitable parallel cancellation method.

In fact, the method proposed here develop the third point of view. In Fig. 5 (Left)
some possible indexations of three sinks (named 1, 2, 3) along the 1-2 tree are
shown. Indexation of sources A, B and C (along the 0-1 tree) are also drawn.
The indexation along a tree is unique. However, two nodes can arrive to the same
node as depicted in this figure. When a sink points to a source (through the 1-2
tree), and this source points to the same sink (through the 0-1 tree), this implies
that this sink/source pair can be canceled. Moreover, because indexations are
unique, all the pair cancellations can be done in parallel pairs. For example, in
Fig.5 (Left) the continuous arrows determine that the pairs 1/A and 3/C can
be canceled in parallel.

Furthermore, in the case of 2D images, two possible indexations of each sink
and each source must be taken into consideration. Each sink splits the 1-2 tree
into two parts: one of them would travel to the South and the other to the
West. Likewise, each source divides the 0-1 tree into two parts: one of them
would travel to the East, and the other to the North. This yields to two different
indexations for each critical cell and, thus, the possibility of considering two
possible cancellations for a same sink (with two different sources). This case is

1-2 tree Indexation 0-1 tree Indexation

1 '7 1
D /"'l—, el 1-2 tree Indexation 0-1 tree Indexation

Fig. 5. (Left) An example of tree indexations from two sinks and two sources. (Right)
an example of two possible pair cancellations for the same sink through two different
sources.
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depicted in Fig.5 (right), and can frequently occur for stair-like shapes as it
happens in the center sink of the biggest region of Fig. 3.

In conclusion, in order to proceed with parallel cancellations, in a first iter-
ation sink/source pairs must be searched, for instance, using the South indexa-
tion of every sink and the North indexation of every source (which can be called
South-then-North cancellation). After that, in a second iteration, different pairs
can be found using the West indexation of every sink and the East indexation of
every source (which can be called West-then-East cancellation). Note that the
selected order in our method is arbitrary: a similar procedure can be done in the
opposite order, or, even, using first the indexations from sources and then from
sinks. Evidently the selected order would produce different results in terms of
numbers of iterations. These numbers depend on the shapes of the regions that
are unknown when trying to label them.

To understand the computational difficulties involved in the crack transport,
a more complex example to transform the MrSF into HSF through two itera-
tions is given by the following Fig. 6. Figure 6 (left) shows an image that contains
a spiral, an L-shape and a reflected L-shape. The superfluous sink and source
(4 and A) of the L-shape region can be promptly canceled using a first itera-
tion (South-then-North cancellation). In consequence, this implies that cracks
of the trees are transported and those sinks that pointed to A now points to
B, and likewise, those sources that pointed to 4 must be now redirected to 5.
The resulting trees after the first South-then-North cancellation is displayed at
Fig.6 (middle). Nevertheless, it must be noted that the superfluous sink and
source of the spiral cannot be canceled in the first iteration. Thus, the spiral
must wait until a second iteration (West-then-East cancellation), resulting in
the final Fig.6 (right).

Previous redirections in the 0-1 and 1-2 trees suppose a searching of the
corresponding root that must jump across several hops. If the number of hops
is high, it may imply an increment of the total time processing. However, the
number of cells involved in these redirections is not very high, which means that
the total number of operations is very much lower than that of initial MrSF
building. One question remains: When should these iterations be stopped? This

Fig. 6. from left to right: The MrSF of an image containing a spiral, an L-shape and a
reflected L-shape; Its MrSF after a first iteration (South-then-North cancellation); Its
HSF, obtained after a second iteration (West-then-East cancellation). Letters indicate
the sources and numbers the sinks.



question can be answered if the number of false sources are counted. A true
source, which denotes the presence of a hole in a region, is that one whose
East and North indexations along the 0—1 tree points to the same sink (e.g. the
source C in Fig. 6, right). Conversely, a false source is that one whose East and
North indexations along the 0—1 tree points to two different sinks. After each
iteration, the number of false sources can be computed: if this number is exactly
zero, iterations must be stopped. In conclusion, the number of iterations for the
parallel crack transport process cannot be a priori known and depends on the
shapes of the regions of an image. As explained in the next section, our tests
show that this number is very low.

4 Experimental Results

In order to corroborate the correctness of our algorithm, an implementation
in OCTAVE/MATLAB is written. Results are checked against those values
returned by functions like bweuler() and bwlabel(). All the figures along this
work are generated with these codes. Several kinds of images are tested to com-
pute the number of iterations and the number of remaining sinks after each
iteration. In general, real images are computed faster than random images. The
number of iterations is lower for the first ones due to the fact that they usually
present fewer spiral-like shapes. In Table 1 results for random images of different
gray levels and sizes are presented. These images are generated by multiplying
the number of gray levels by the function rand(). From left to right, the rate in
which the number of sinks and false sources is reduced is shown (until no false
source remains). In general the less the number of levels, the more difficult to
process the image is (it needs more parallel iterations). Nevertheless, we have
not found any image requiring more than 5 iterations (for sizes until 2048x2048
pixels). Table 2 shows the corresponding result from some very viewed medical
images (taken from http://goldminer.arrs.org/top-40.php).

Another interesting parameter is the number of hops along the redirections
when searching for the root of each sink and source in the cancellation process.
This gives an idea of the total time spent on this stage. The mean results after
four tests using big random images are shown in Table 3. This implies that for
the image of 2-gray levels and 4 MiPixels only an amount of (1263 + 311 +
35)=1609 of access operations will be necessary; this number is reduced to 58
when processing the 8-gray level image of the same size. Evidently this quantities
are very much lower than the total number of operations for obtaining the initial
MrSF building, which means that this stage does not have a considerable impact
on the processing times. It can be seen that for random images the number
of hops decreases considerably along with the number of gray levels. Due to
this, real images present usually a much smaller number of hops: the maximum
number is 386 in the third iteration for the larger medical tested image.
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Table 1. Results for random images of different gray levels.

# heightiwidth|#iter|# ini-|# sinks|# sinks|# sinks|# sinks|# sinks|# ini-|# false|# false|# false|# false|# false
gray tial after |after |after |after |after [tial sources [sources [sources [sources|sources
levels sinks  |iter. 1 [iter. 2 |iter. 3 |iter. 4 [iter. 5 |false |after |after |after |after |after
sources [iter. 1 |iter. 2 |iter. 3 [iter. 4 [iter. 5
2 128 128 |3 3976|2532 |2169  |2153 1905|406 16 0
2 206 (256 |4 16175 [10222  [8594  [8520  [8518 7889 1776 [87 2 0
2 512|512 |4 65434 41871  [35162 34876  |34868 31615 |7347  |329 8 0
2 1024 [1024 |5 261152 [165643 [138842 137611 [137564 [137563 [127924 [29566 |[1428 |56 2 0
2 2048 [2048 [5 1049780 |667224 559273 [554159 [553986 553985 [513098 [119079 |5857  [193 2 0
8 128 128 |2 12225 |12035 12034 191 1 0
[} 256 (256 |2 49543 48703 |48692 856 11 0
8 512 [512 |2 199045 |195433 [195384 3661 |49 0
8 1024 [1024 |2 799253 |785023 784823 14430 [200 0
8 2048 [2048 |2 3207902 [3151400 [3150598 57304  [802 0
32 |128 128 |2 14807 |14883  |14883 14 0 0
32 [256 [256 |2 60503 60452  |60452 51 0 0
32 [512 512 |2 244186 243963 243963 223 0 0
32 [1024 [1024 |2 980744 979775 979775 969 0 0
32 2048 12048 |2 3928115 (3924217 (3924214 3901 3 0
Table 2. Results for several medical images of different sizes.
Image Name # gray|height |width |# # # # # # # ini-|# false|# false|# false|# false
levels iter. [initial [sinks [sinks |sinks |sinks [tial  |sources|sources|sources|sources

Sinks |after |after |after |after |false |after |after |after |after
iter. 1 |iter. 2 |iter. 3 [iter. 4 |sources|iter. 1 |iter. 2 [iter. 3 |iter. 4

EURORAD2015 256 600 498 |4 202861 196423 195659 |195645 |195644 |7323  |808 19 1 0
AJR2004 256 295 166 |3 13417 11286 [10457  |10432 4006|1378 |39 0
AJNR2013 256 1196 1800 |4 581353 [471635 460343 |460275 460274 122025 |11479 |71 2 0
AJR2009 256 295 260 |2 57208 |55608 |55492 1729|117 0

Radiology2007 256 526 1274 |2 264588 262253 |262127 2503|131 0
PartFibreToxicol2014  |256 1000|1200 |4 391612 353944 348131 |347876 |347850 |45881 6664  |422 48 0

Table 3. number of hops along the redirections when searching for link transports for
random images of different sizes and gray levels.

# gray|height |width [# iter. |# hops|# hops|# hops|# hops

levels during |during |during |during
iter. 1 |iter. 2 |[iter. 3 |iter. 4

2 512 512 4 0 32 166 375

2 1024 1024 4 0 34 414 674

2 2048 2048 4 0 35 311 1263

8 512 512 2 0 18

8 1024 1024 2 0 27

8 2048 2048 2 0 58

5 Conclusions

In this paper, we design a parallel 4-adjacency CCL algorithm based on region-
contour HSF of a 2D digital image. In a near future, we intend to progress in
several directions: (a) to develop a fully functional implementation of the HSF
framework in a language (like C++ or python) which allows us to efficiently
exploit the parallelism over multicore architectures; (b) to extend the CCL algo-
rithm based on HSF structure to 3D and 4D.



At long term, we are interested in developing a topologically consistent and
robust nD digital image analysis and recognition, trying to establish meaningful
and efficient topological representation models of images and objects based on
HSF structures. For future high level computer vision applications, CCs would
be the fundamental bricks whose adjacency relationships would be established
through an image HSF structure.
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