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Abstract. Searching all the configurations C′ which produce a given
configuration C is an extremely hard task. The current approximations
are based on heavy hand-made calculus by considering the specific fea-
tures of the given configuration. In this paper we present a general
method for characterizing all the configurations C′ which produce a given
configuration C in the framework of transition P systems without coop-
eration and without dissolution.

1 Introduction

Given a computational model with a universal clock, where the time is considered
in a discrete way and the transition from a state to the next one is produced by
a set of rules, it is usual to wonder about the previous state of a given one. Note
that the determinism of the model does not make the solution easier, since the
determinism of the computation does not lead to the determinism of the reverse
computation. One can pass deterministically from S to S0 and from S′ to S0,
but given S0, the reversed computation is not deterministic. A special situation
is considered when the rules are reversible, i.e., rules for which one can change
the left hand side and right hand side of the rule and the new rule suits to the
syntactic constraints of the considered P system model. In this case, it suffices to
apply the reversed rules to S1 according to the computational model to obtain
the desired states (it was studied for P systems in [1]).

In this paper we study the problem of characterizing the set of configurations
of a P system that produce a given configuration in one transition step. We
study the case in which the P system is not necessarily deterministic and the
rules are not reversible in general. In our study, we modify the representation
for rules and configurations used in [2,4] by introducing the notion of order
between pairs as in [3]. We use Linear Algebra as a tool for computing and
consider a restricted version of transition P systems without cooperation where
the membrane structure does not change along the computation.

The paper is organized as follows: first we expose an example that shows
the necessity of finding a method for computing backwards, avoiding the heavy
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calculus based on specific features of the given configuration. Next, our P system
model is briefly introduced and a representation for configurations and rules in
such a P system is presented. In Section 6 we prove our main result: Computing
the set of all the configurations C′ which produce a given configuration C can
be reduced to find solutions of a system of linear equations with values in N. In
Section 7 we provide a general method of calculus based on our theorem. Finally,
some conclusions and new open research lines are presented.

2 Motivation

Let us start with a P system Π with working alphabet Γ = {a, b, c}, set of labels
H = {e, s}, membrane structure μ = [ [ ]e ]s and the following set of rules R:

Rule 1: [ a→ b2c ]e Rule 4: [ b→ a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b→ c2 ]s Rule 6: [ c→ a ]e

In Section 3, we will give a detailed description of the P system model studied
in this paper, but by now it is enough to know that all the rules are applied in
a non-deterministic maximal parallel way as usual in the general framework of
Membrane Computing (see [5] for details).

Let us consider now the configuration C′ = [ [a2b ]e a2c ]s, i.e., the configura-
tion in which the multiset placed in the membrane labelled by e is a2b and the
multiset in the membrane s is a2c. Our problem is to find the configuration (or
configurations) C such that we can pass from C to C′ in one transition step. In
other words, we want to characterize all the configurations C such that produce
C′ in one transition step.

We can reason in the following way:

– We find two objects a in the membrane labelled by e in the configuration
C′. Since rules 1 and 2 consume all the objects in the membrane e from the
previous configuration C, we conclude that such pair of objects a must be
produced by the application of rule(s) of Π . It is easy to check that only
rule 6 produces objects a in membrane e, then the number of objects c in
configuration C must be at least 2. If we look at the set of rules again,
we observe that object c in membrane e only triggers rule 6. Hence, if the
number of objects c in e is higher than 2 we conclude that the number of
objects a in the membrane e in the configuration C must be greater than 2.
Therefore, we conclude that the number of objects c in the membrane e in
configuration C is exactly equal to 2.

– We find one object b in the membrane labelled by e in configuration C ′.
The unique rule that can produce it is rule 1, but the application of the rule
produces at least two objects b in membrane e. Then we conclude that rule
1 is not applied. The occurrence of such object b can only be explained by
considering its occurrence in configuration C. As one can check, no rule is
triggered by object b in the membrane e, then the number of objects b in
membrane e in the configuration C equals to 1.



– No object c are placed in the membrane e in C′. All such objects from
the previous configuration C are consumed by rule 6, so no object c in the
membrane e imply that rules 1 and 5 have not been triggered. From the
previous paragraph, it is known that rule 5 has not been applied. Since all
the objects a in membrane s send objects e into membrane c by means of
rule 5 and the numbers of objects c in such membrane in configuration C ′

is zero, we conclude that in configuration C no objects a are placed in the
membrane s.

– We find one object c in the membrane labelled by s in configuration C ′.
The unique rule that can produce it is rule 3, but the application of the rule
produces at least two objects c in membrane s. Then we conclude that rule
3 is not applied. The occurrence of such object b can only be explained by
considering its occurrence in configuration C. As one can check, no rule is
triggered by the object c in the membrane s, then the number of objects c
in membrane s in the configuration C equals 1.

– Finally, we find two objects a in the membrane labelled by s in the config-
uration C′. Since rule 5 consumes all the objects in the membrane e from
the previous configuration C, we conclude that such objects a must be pro-
duced by the application of rule(s) of Π . Rules 2 and 4 produce objects a in
membrane s. Rule 2 is triggered by an object a in the membrane e and rule
4 is triggered by an object b in membrane s. We can also check that all the
objects b in s produce objects a. Nonetheless, an object a in the membrane
e can trigger rules 1 and 2. Fortunately, we have seen that rule 1 is not
triggered, so can conclude that all the objects a in membrane e trigger rule
2. We conclude that the number of objects a in membrane e in the configu-
ration C and the number of objects b in the membrane s must be less than
or equal to 2 and the sum of both numbers must be exactly equal to 2.

Bearing in mind these considerations, there are exactly three configurations
C such that produce C′ in one transition step:

– C1 = [ [ bc2 ]e b2c ]s, i.e., we = bc2 and ws = b2c. It is easy to check that by
applying the rules 4 and 6 we obtain the configuration C′ = [ [a2b ]e a2c ]s.

– C2 = [ [ abc2 ]e bc ]s, i.e., we = abc2 and ws = bc. In this case, C′ is obtained
by applying the rules 2, 4 and 6.

– C3 = [ [ a2bc2 ]e c ]s, i.e., we = a2bc2 and ws = c. In this case, C′ is obtained
by applying the rules 2 and 6.

A question arises in a natural way: Could this reasoning be automated? In
other words, given a P system and a configuration C′, is there an algorithm such
that outputs the set C of configurations C and produce C′ in one transition step?

We can even go beyond. We wonder if there exists an algorithm such that
it takes a P system Π as input and it outputs a mapping RΠ which, for every
configuration C′ of Π , RΠ(C′) is the set of all computations C such that C′ is
reachable from C in one computational step. In this paper, we will give a positive
answer to both questions. Before, we need to stress the relationship between P
systems and Linear Algebra.



3 The P System Model

Throughout this paper, we will consider a restricted form of transition P sys-
tems without dissolution and without output membrane. Considering an output
membrane is irrelevant for our study, since we are not interested in the objects
placed in a particular membrane, but in the computation process itself. We also
restrict the type of rules. Cooperation is not allowed and then rules are triggered
by only one object.

Namely, along this paper a P system of degree m is a tuple

Π = (Γ,H, μ,w1, . . . , wm, R), where:

– Γ is the working alphabet whose elements are called objects;
– H = {1, . . . ,m} is the set of labels;
– μ is the membrane structure of the P system and membranes are bijectively

labelled with the elements of H ;
– w1, . . . , wm are strings that represent multisets over Γ associated with each

membrane of μ;
– R = {R1, . . . , Rm} is the set of sets of rules, where Ri with i ∈ {1, . . . ,m} are

finite sets of evolution rules over Γ . The type of evolution rules of Ri depends
on the membrane structure μ. Let j1, . . . , jr be the labels of membranes
immediately inside the membrane i. An evolution rule of Ri is of the form
a → v, where a ∈ Γ and v is an string over Γ i

tar, where Γ i
tar = Γ × TARi,

for TARi = {here, out} ∪ {injk
| k ∈ {1, . . . , r} }.

The symbols here, out and injk
are called target commands. The rules are

applied in a non-deterministic maximally parallel way. Given a rule a → v,
the effect of applying this rule in a compartment i is to remove the object a
and to insert the objects specified by v in the regions designated by the target
commands associated with the objects from v. In particular,

– if v contains (a, here), the object a will be placed in the same region where
the rule is applied;

– if v contains (a, out), the object a will be placed in the compartment that
surrounds the region where the rule is applied;

– if v contains (a, inj), the object a will be placed in compartment j, provided
that j is immediately inside i.

In one step, each object in a membrane can only be used for one rule (non
deterministically chosen when there are several possibilities), but any object
which can evolve by a rule of any form must do it. All the elements which are
not involved in any of the rules to be applied remain unchanged. Several rules
can be applied to different objects in the same cell simultaneously.

Along the computation, the multisets associated with the membranes can
change, but the alphabet Γ , the set of labels H , the membrane structure μ and
the set of rules R are constant. We call the 4-uple (Γ,H, μ,R) the skeleton of
the P system.

Notice that the P system presented in Section 2 is a particular case of this P
system model with a slight change of notation in the rules:



1. Notation [a → v]h where h ∈ H , a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a→ (v1, here) . . . (vn, here) belongs to the
set of rules Rh, with v = v1 . . . vn.

2. Notation a[ ]h → [v]h where h ∈ H , a ∈ Γ and v is a string over Γ is a
short notation to indicate that the rule a → (v1, inh) . . . (vn, inh) belongs
to the set of rules Rh∗ , with h∗ the label of the membrane surrounding the
membrane h and v = v1 . . . vn.

3. Notation [a]h → v[ ]h where h ∈ H , a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, out) . . . (vn, out) belongs to the
set of rules Rh, with v = v1 . . . vn.

4 Changing the Point of View

The key idea of the present paper is to consider an algebraic representation
for the configurations and the rules of a P system. The starting point is the
representation used in [2], but we introduce several changes.

First, our elementary objects are pairs of type (a, h) ∈ Γ ×H meaning that
object a ∈ Γ is placed in the membrane (labelled by) h ∈ H . Roughly speaking,
transitions in P systems are performed by rules in which the occurrence of an
element a0 in a membrane h0 produces the occurrence of β1 copies of element
a1 in membrane h1, β2 copies of element a2 in membrane h2, etc.

More formally, the rules in the P system model presented above can be refor-
mulated as follows:

(a0, h0) → (a1, h1)β1(a2, h2)β2 . . . (an, hn)βn

Note that, for all i ∈ {1, . . . , n}, if h0 = hi then, (ai, hi) is equivalent to the
pair (ai, here). Otherwise, if h0 �= hi both membranes must be adjacent (one
membrane is the father of the other one). If h0 is the father of hi, then the pair
(ai, hi) is equivalent, in some sense, to (ai, inhi). Finally, if hi is the father of
h0, then the pair (ai, hi) is equivalent to (ai, out). For each i ∈ {1, . . . , n}, βi

represents the multiplicity of (ai, hi) in the right-hand side (RHS) of the rule.
The second basic idea in the representation appears in [3] as well. It consists

on settling a total order in the set Γ ×H . Along the paper, in order to simplify
the notation, given an alphabet Γ and a set of labelsH , d will denote the cardinal
Γ×H . Let us consider a total order O on the set Γ×H , O : {1, . . . , d} → Γ ×H .
By using this order, we represent Γ×H as the finite sequence 〈γ1, . . . , γd〉, where
γi is the i-th pair of Γ ×H in the order O.

By using this order, each rule

(a0, h0) → (a1, h1)β1(a2, h2)β2 . . . (an, hn)βn

can be represented as
γ → γα1

1 γα2
2 . . . γαd

d



where (a0, h0) = γ and for all i ∈ {1, . . . , d}:
– If there exists j ∈ {1, . . . , n} such that γi = (aj , hj) then αi = βj .
– Otherwise αi = 0.

We say that γ → γα1
1 γα2

2 . . . γαd

d is the pairwise representation of the rule.
The use of an order on Γ ×H leads us to a more homogeneous representation

of rule γ → γα1
1 γα2

2 . . . γαd

d . It can be represented by a pair 〈γ,v〉 where γ (the
LHS of the rule) belongs to Γ × H , and v is a vector of dimension d whose
components are in N. Formally, we have the following definition:

Definition 1. Let us consider a P system Π with Γ the alphabet and H the set
of labels. Let Γ ×H be the ordered set 〈γ1, . . . , γd〉. The algebraic representation
of the rule

γ → γα1
1 γα2

2 . . . γαd

d

is the pair (γ,v) where v = (α1, . . . , αd). We say that v represents the right-hand
side of the rule ri.

Remark 1: Given an order 〈γ1, . . . , γd〉 on Γ ×H , a pair 〈γ,v〉 where γ ∈ Γ ×H
and v is a vector of dimension d (with values in N) defines a unique rule and
vice-versa, each rule having a unique algebraic representation.

Remark 2: If the P system is not deterministic, then there exists at least one
γ ∈ Γ ×H such that there exists two different vectors v1 and v2 such that pairs
〈γ,v1〉 and 〈γ,v2〉 represent two different rules.

Let us see an example of this algebraic representation.

Example 1. Let us consider the skeleton of the P system considered in Section
2 with Γ = {a, b, c}, H = {e, s}, μ = [ [ ]e ]s and R the set of rules

Rule 1: [ a→ b2c ]e Rule 4: [ b→ a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b→ c2 ]s Rule 6: [ c→ a ]e

The set of objects is Γ = {a, b, c} and the set of labels is H = {e, s}. Let us
consider the following total order in Γ ×H

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉
The six rules of the P system can be settled as

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

By using the previous total order in Γ ×H , these rules have the following alge-
braic representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉



4.1 Configurations

A configuration of such a P system is the description of the multiset placed in
the membranes of the P system in a given instant. Formally, given a P system
with working alphabet Γ and set of labels H , a configuration C is a multiset over
Γ ×H , C : Γ ×H → N, and we denote by C(a,m) the multiplicity of object a in
the membrane labelled by m of that configuration. The support of C, supp(C), is
defined as supp(C) = {(a,m) ∈ Γ ×H |C(a,m) �= 0} and, as usual in multisets
theory, C will be represented as {(a,m)C(a,m) | (a,m) ∈ supp(C)}. For example,
the configuration of our example [ [ b ]e c3 ]s can be represented as {(b, e), (c, s)3}.

From the idea of setting an order on Γ ×H , the representation of a configu-
ration via a vector is quite natural.

Definition 2. Let us consider a P system Π with Γ the alphabet, H the set of
labels and order 〈γ1, . . . , γd〉 on Γ ×H. An algebraic representation of a config-
uration C : Γ ×H → N is a vector

C = (C(γ1), . . . , C(γd))

that is, the j-th component in C is a number representing the multiplicity of the
j-th element of Γ ×H.

Let us remark that, if the order on Γ × H is set, then there exists a bijective
correspondence between a configuration C and its algebraic representation C.

Example 2. As we saw before, the initial configuration [ [ b ]e c3 ]s can be ex-
pressed as the multiset C = {(b, e), (c, s)3}. If we consider order

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉
then the algebraic representation of the configuration is C = (0, 1, 0, 0, 0, 3).

In order to formalize the concept of computation with this new representation,
we fix some notations. We denote by RHSr the right-hand side of rule r and for
all σ ∈ Γ ×H , |RHSr(σ)| denotes the multiplicity of σ in the multiset RHSr.

Example 3. Let us consider the pairwise representation of the rule r1 : (a, e) →
(b, e)2(c, e), then RHSr1 = (b, e)2(c, e) and |RHSr1(b, e)| = 2.

Definition 3. Let us consider an alphabet Γ , a set of labels H and the set of
rules R of a P system. We denote by LHS(R) the set of all the pairs from Γ ×H
that are the left-hand side of a rule from R. Formally

LHS(R) = {γ ∈ Γ ×H | ∃r ∈ R (γ = LHS(r))}
Example 4. Let us consider Γ = {a, b, c}, H = {e, s} and R the set of rules

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

In this case LHS(R) = {(a, e), (b, e), (a, s)}.



Definition 4. Let us consider an alphabet Γ and a set of labels H of a P system
Π and let R = 〈r1, . . . , rp〉 be an enumeration of its set of rules with rj =
(LHS(rj),vj). Let C : Γ ×H → N be a configuration of Π.

A partition of C with respect to R is a p-tuple

P = 〈(r1, k1), . . . , (rp, kp)〉
such that for all j ∈ {1, . . . , p}, kj ≥ 0 and for all γ ∈ LHS(R)

∑

LHS(rj)=γ

kj = C(γ)

Example 5. Let us consider an alphabet Γ = {a, b, c} a set of labels H = {e, s},
μ = [ [ ]e ]s and R the set of rules from example 4

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

Let us consider a configuration with algebraic representation C = 〈3, 0, 1, 7, 4, 1〉
associated with order 〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 of Γ×H . In this case,
one possible partition of C with respect to R is

P = 〈(r1, 2), (r2, 1), (r3, 0), (r4, 2), (r5, 5)〉
the number associated to each rule is a natural number and LHS(R) = {(a, e),
(b, e), (a, s)}, so in order to check that P is a partition it suffices to check

∑
LHS(rj)=(a,e) kj = k1 + k2 = 2 + 1 = 3 = C(a, e)∑
LHS(rj)=(b,e) kj = k3 = 0 = C(b, e)∑
LHS(rj)=(a,s) kj = k4 + k5 = 2 + 5 = 7 = C(a, s)

The different possible partitions capture the idea of different choice of rules in
the case of non-deterministic P system. Notice that in the case of a deterministic
P system, there exists only one partition

P = 〈(r1, C(LHS(r1))), (r2, C(LHS(r2))), . . . , (rp, C(LHS(rp)))〉
In order to obtain a new configuration C′ from a given configuration C and

from the set of rules {r1, . . . , rp}, we need to describe the multiplicity of any
σ ∈ Γ ×H in C′. For the calculus of such multiplicity we need

– A partition P = 〈(r1, k1), . . . , (rp, kp)〉 of C with respect to R.
– The set LHS(R)

In such multiplicity, each rule ri : γi → RHSri adds the multiplicity of σ
in the right hand side of the rule multiplied by the value ki in the partition P .
If the object is not consumed by any rule, we also add the multiplicity in the
original configuration.



Formally, for every σ ∈ Γ ×H we have:

C′(σ) =
{∑i=p

i=1 ki · |RHSri(σ)| if σ ∈ LHS(R)∑i=p
i=1 ki · |RHSri(σ)| + C(σ) if σ �∈ LHS(R)

Example 6. Let us come back again to our P system Π with alphabet Γ =
{a, b, c}, set of labels H = {e, s}, membrane structure μ = [ [ ]e ]s and the set of
rules R

Rule 1: [ a→ b2c ]e Rule 4: [ b→ a ]s
Rule 2: [ a ]e → a [ ]e Rule 5: a [ ]e → [ c ]e
Rule 3: [ b→ c2 ]s Rule 6: [ c→ a ]e

Let us consider configuration C1 = [ [ bc2 ]e b2c ]s, i.e., we = bc2 and ws = b2c.
It is easy to check that by applying rules 4 and 6 we obtain configuration
C′ = [ [a2b ]e a2c ]s. Such configuration can also be obtained by considering
the multiplicity of each pair in Γ × H and using the previous formula. First
we consider the partition P = 〈(r1, 0), (r2, 0), (r3, 0), (r4, 2), (r5, 0), (r6, 2)〉 and
LHS(R) = {(a, e), (b, s), (a, s), (c, e)}. Then, for example,

C ′(a, s) = k1 · 0 + k2 · 1 + k3 · 0 + k4 · 1 + k5 · 0 + k6 · 0 = 2 · 1 = 2
C′(b, e) = k1 · 2 + k2 · 0 + k3 · 0 + k4 · 0 + k5 · 0 + k6 · 0 + C(b, e) = 0 · 2 + 1 =1

and the remaining multiplicities in configuration C′ can be obtained in a similar
way.

5 Matrix Associated with the Skeleton

After defining the algebraic representation of rules and configurations, we de-
fine a numerical matrix associated with the skeleton of a P system. The next
definition of extended set of rules will be used in the definition of the matrix.

Definition 5. Let Γ be the alphabet, H the set of labels and R the set of rules
of a P system where R is a set of rules in its pairwise form. The extended set
of rules of R in this skeleton, R∗ is the set of rules R together with the identity
rule γ → γ for all the γ ∈ Γ ×H such that there is no rule in R with γ in its
left-hand side.

Considering identity rules, we obtain P systems whose computations never stop.
In this paper, we are interested only in the evolution of computation in time and
not in halting conditions. Let us remark two important considerations related
with the extended set of rules:

– If R∗ is the extended set of rules of R, then LHS(R∗) = Γ ×H .
– Consequently, if C is a configuration of a P system Π with 〈γ1, . . . , γd〉 an or-

der on Γ×H and P∗ = 〈(r1, k1), . . . , (rp, kp)〉 is a partition of a configuration
C of a P system with respect to its extended set of rules, then configura-
tion C ′ that can be obtained from C in one computation step following such
partition is C′(γj) =

∑i=p
i=1 ki · |RHSri(γj)| for all j ∈ {1, . . . , d}.



Example 7. Let us consider again the skeleton of example 1, and its set of rules,

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

Note that the pairs γ from Γ ×H such that there is no rule in R with γ as
its left-hand side are (b, e) and (c, s), therefore to obtain R∗ we have to add to
R the rules

r7: (b, e) → (b, e) r8: (c, s) → (c, s)

Obviously, the set of rules R∗ has also an algebraic representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

With the help of the concept of extended set of rules, we define the matrix
associated with a skeleton.

Definition 6. Let us consider skeleton Sk = (Γ,H, μ,R) of a P system and
let 〈r1, . . . , rp〉 be an enumeration of the extended set of rules R∗ of R in its
algebraic form. The matrix associated with skeleton Sk, MSk is the matrix whose
rows are vectors v1, . . . ,vp, where for each i with 1 ≤ i ≤ p, vi is the vector
which represents the right-hand side of rule ri.

Before showing an example, some remarks are necessary.

– The matrix associated with a skeleton depends on the skeleton, as well as
on the enumeration of the rules of the extended set and the order on Γ ×
H . A different enumeration produces a different order in the rows of the
matrix.

– In case of deterministic P systems, the number of rules in the extended set,
p, and the number of pairs in Γ ×H , d are the same and we have a square
matrix1. In general, MSk is a d× p matrix with d ≤ p.

Example 8. If we consider the skeleton of example 7 and the enumeration of the
eight rules of the extended set R∗ and the usual order on Γ ×H , 〈(a, e), (b, e),
(c, e), (a, s), (b, s), (c, s)〉

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

1 This kind of matrices were studied in [3].



we have the following matrix

MSk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6 Computing Backwards

The definition of these algebraic objects allows us to define an algebraic method
to characterize the set of configurations C which can produce a given configura-
tion C0 in one computation step. First, we need to find the solutions of a system
of linear equations.

Definition 7. Let Π be a P system, 〈r1, . . . , rp〉 an enumeration of its set of
extended rules, MSk the matrix associated with the skeleton of Π based on that
enumeration of R∗ and let C0 be the vectorial representation of a configura-
tion C0. We define the solution set of MSk and C0 and we will denote it
by SOL(MSk,C0) the set of real-valued vectors x with dimension p such that
C0 = x ·MSk.

Notice that according to the definition, SOL(MSk,C0) can be the empty set.
It is well known in Linear Algebra that if the range of the matrix MSk and the
range of the matrix MSk augmented with the vector of coefficients C0 is not the
same, then the system of equations has no solution.
SOL(MSk,C0) is a manifold of dimension p minus the range of the matrix

MSk embedded in a vectorial space of dimension p, but the study of the algebraic
properties of such manifold is out of the scope of this paper.

Example 9. Let us come back to our main example. If we take the matrix MSk

from example 8, configuration C′ = [ [ a2b ]e a2c ]s from Section 2 and algebraic
representation C′ = (2, 1, 0, 2, 0, 1), then in order to get SOL(MSk,C

′) we need
to solve the system

(2, 1, 0, 2, 0, 1) = (x1, x2, x3, x4, x5, x6, x7, x8)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



or equivalently,

x6 = 2x2 + x4 = 2, 2x1 + x7 = 1, 2x3 + x8 = 1, x1 + x5 = 0.

Then, SOL(MSk,C
′) is the following 3-dimensional manifold embedded in an

8-dimensional vectorial space

SOL(MSk,C
′) = {(α, β, γ, 2 − β,−α, 2, 1 − 2α, 1 − 2γ) |α, β, γ ∈ R }

Definition 8. Let Π be a P system and an order 〈γ1, . . . , γd〉 on Γ × H,
〈r1, . . . , rp〉 an enumeration of its set of extended rules, MSk the matrix associ-
ated with the skeleton of Π based on that enumeration of R∗ and let C be the
vectorial representation of a configuration C. We define the constructor mapping
as

ψΠ : SOL(MSk,C) → R
d

such that for all (x1, . . . , xp) ∈ SOL(MSk,C
′), ψΠ((x1, . . . , xp)) = (y1, . . . , yd)

verifying for all i ∈ {1, . . . , d},

yi =
∑

γi=LHS(rk)

xk

Notice that the set SOL(MSk,C) depends on the way in which the set of ex-
tended rules is enumerated, but ψΠ(SOL(MSk,C)) is independent of such enu-
meration. Obviously, if all the coordinates of x ∈ SOL(MSk,C

′) are natural
numbers, then all the coordinates of ψ(x) are also natural numbers.

Example 10. Following with the set SOL(MSk,C
′) from Example 9 and order

〈((a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 on Γ ×H , we have

y1 =
∑

(a,e)=LHS(rk) xk = x1 + x2 = α+ β

y2 =
∑

(b,e)=LHS(rk) xk = x7 = 1 − 2α
y3 =

∑
(c,e)=LHS(rk) xk = x6 = 2

y4 =
∑

(a,s)=LHS(rk) xk = x5 = −α
y5 =

∑
(b,s)=LHS(rk) xk = x3 + x4 = 2 + γ − β

y6 =
∑

(c,s)=LHS(rk) xk = x8 = 1 − 2γ

Therefore ψΠ(SOL(MSk,C)) is a 3-dimensional manifold embedded in an 6-
dimensional vectorial space

ψΠ(SOL(MSk,C)) = {(α+ β, 1 − 2α, 2,−α, 2 + γ − β, 1 − 2γ) |α, β, γ ∈ R}
Finally, we only consider the elements of SOL(MSk,C) such that all its coor-
dinates are natural numbers. We prove below that the image of such vectors by
means of the constructor mapping represent the searched configurations.

Definition 9. Let Π be a P system, 〈r1, . . . , rp〉 an enumeration of its set of
extended rules, MSk the matrix associated with the skeleton of Π based on that
enumeration of R∗ and let C be the vectorial representation of a configuration
C. We define



– NSOL(MSk,C)) = {(x1, . . . , xp) ∈ SOL(MSk,C)) | xi ∈ N, 1 ≤ i ≤ n}.
– A constructed configurations C1 of Π is a configuration such that C1 ∈
ψΠ(NSOL(MSk,C)).

Example 11. If we take ψΠ(SOL(MSk,C)) from example 10

ψΠ(NSOL(MSk,C)) =

⎧
⎨

⎩

(α+ β, 1 − 2α, 2,−α, 2 + γ − β, 1 − 2γ) |
α, β, γ ∈ R, α+ β ∈ N, 1 − 2α ∈ N,
−α ∈ N, 2 + γ − β ∈ N, 1 − 2γ ∈ N

⎫
⎬

⎭

The set ψΠ(NSOL(MSk,C)) has only three elements

C1 = (0, 1, 2, 0, 2, 1) C2 = (1, 1, 2, 0, 1, 1) C3 = (2, 1, 2, 0, 0, 1)

which correspond to the three configurations obtained in Section 2. Next we
prove that the result holds in the general case.

Theorem 1. Let Π be a P system with skeleton Sk = (Γ,H, μ,R) and let C
be a configuration of Π. Let 〈γ1, . . . , γd〉 be an order on Γ ×H and 〈r1, . . . , rp〉
an enumeration of the extended set of rules R∗ of R. Let MSk be the matrix
associated with the skeleton Sk following such order and enumeration. Then,
the configuration C1 produces C in one computation step if and only if C1 ∈
ψΠ(NSOL(MSk,C)).

Proof. Let us consider a configuration C1 such that C1 ∈ ψΠ(NSOL(MSk,C)).
Such configuration is a multiset C1 on the set Γ × H such that for all i ∈
{1, . . . , n}, C1(γi) ∈ N.

C1 ∈ ψΠ(NSOL(MSk,C)) if and only if there exist (x1, . . . , xp) ∈
SOL(MSk, C) with xi ∈ N for all i ∈ {1, . . . , p} such that ψΠ(x1, . . . , xn) =
(C1(γ1), . . . , C1(γd)). By definition of the constructor mapping
ψΠ : SOL(MSk,C) → R

d we have for all i ∈ {1, . . . , d},
C1(γi) =

∑

γi=LHS(rk)

xk

On the other hand, we also know that (x1, . . . , xp) ∈ SOL(MSk,C), i.e.,

(C(γ1), . . . , C(γd)) = (x1, . . . , xd) ·MSk

By construction of the matrix MSk, the previous equality means that for all
i ∈ {1, . . . , n},

C(γi) =
p∑

j=1

xj · |RHSrj(γi)|

To sum up, C1 ∈ ψΠ(NSOL(MSk,C)) if and only if there exist (x1, . . . , xp)
such that for all i ∈ {1, . . . , p}
(a) xi ∈ N

(b) C1(γi) =
∑

γi=LHS(rk) xk

(c) C(γi) =
∑p

j=1 xj · |RHSrj(γi)|



Since R∗ is a set of extended rules, LHS(R∗) is the set Γ ×H . Bearing this
equality in mind, properties (a) and (b) claim that P∗ = 〈(r1, x1), . . . , (rp, xp)〉
is a partition of C1 with respect to R∗ and property (c) claims that the config-
uration C can be obtained from C1 by using the partition P∗.

On the other hand, if C1 produces C in one computation step, then there
exist a vector (x1, . . . , xn) such that 〈(r1, x1), . . . , (rp, xp)〉 is a partition of C1

with respect to R∗ verifying properties (a), (b) and (c) and therefore C1 ∈
ψΠ(NSOL(MSk,C)).

7 A General Method

After the proof of Theorem 1, we come back to the questions asked at the end
of Section 2. We wondered if there exists an algorithm such that it takes a P
system Π as input and it outputs a mapping RΠ which, for every configuration
C′ of Π , RΠ(C′) is the set of all computations C such that C′ is obtained from
C in one computational step. A method for computing such algorithm is the
following:

Given a P system Π with skeleton Sk = (Γ,H, μ,R),

1. Fix an order 〈γ1, . . . , γd〉 for Γ ×H .
2. Consider the pairwise representation of the rules in R according to such

order.
3. Consider the extended set of rules R∗ from R and fix an enumeration 〈r1, . . . ,
rp〉 of the rules from R∗ in its algebraic representation.

4. Define matrix MSk following the orders 〈γ1, . . . , γd〉 and 〈r1, . . . , rp〉.
Matrix MSk is the same for all configurations. Next we provide a method for

finding all the configurations C′ such that C′ produce a given configuration C
in one computation step.

Given a configuration C of Π

1. Obtain the algebraic representation C of C according to the order
〈γ1, . . . , γd〉.

2. Find all the vectors x with natural coordinates such that C = x ·MSk. The
set of all these vectors is called NSOL(MSk,C).

3. For each x ∈ NSOL(MSk,C), we consider Cx = (y1 . . . , yd) where, for all
i ∈ {1, . . . , n}

yi =
∑

γi=LHS(rk)

xk

4. The set {Cx |x ∈ NSOL(MSk,C)} is the set of the algebraic representations
of all the configurations such that produce C in one computation step.

8 Conclusions and Future Work

In this paper, we provide a general method for finding all the configurations that
produce a given one in one computational step. For that purpose, we have used



an algebraic representation of rules and configurations and a matrix associated
with the skeleton of the P systems.

The key step of the algorithm is to find all the vectors of natural numbers
that are solutions of a system of linear equations. In such a system, the number
of equations is the number of objects in the alphabet multiplied by the number
of labels. The number of variables in the system is the cardinal of the set of
extended rules which is at least the same as the number of equations and has no
upper bound.

The problem of finding the solutions with natural values of a system of linear
equations is a problem involving heavy tasks, specially if we consider a high num-
ber of variables and equations (which is the usual case for P systems). Nonethe-
less, currently there exist some powerful software tools able to deal with large
numerical matrices and solve the corresponding systems under the restriction of
finding natural-valued vectors.

In this way, we hope that this method can be useful for researchers inter-
ested in computing backwards in Membrane Computing, since it can consider
the problem of finding the previous configurations as a computationally hard
problem of Integer Programming.

Finally, this work can be extended in several ways. Not only by going deeper
in the concept of computing backwards along a computation (and not only in
one step) but exploring if these ideas can be extended to other P system models.
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