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Synopsis 

NTRC functions in maintaining redox homeostasis of chloroplasts and heterotrophic 

plastids of Arabidopsis. Leaf-specific expression of NTRC was sufficient to restore leaf 

and root growth, whereas root-specific expression of NTRC was not. The results 

emphasize the function of chloroplasts not only as source of carbon and energy, but also 

of signaling molecules for development of heterotrophic organs. 
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ABSTRACT  

Plastids are organelles present in photosynthetic and non-photosynthetic plant tissues. 

Whilst it is well known that thioredoxin-dependent redox regulation is essential for leaf 

chloroplast function, little is known of the redox regulation in plastids of non-

photosynthetic tissues, which cannot use light as direct source of reducing power. Thus, 

the question remains whether redox regulation operates in non-photosynthetic plastid 

function and how it is integrated with chloroplasts for plant growth. Here we show that 

NADPH-thioredoxin reductase C, NTRC, previously reported as exclusive to green 

tissues, is also expressed in non-photosynthetic tissues of Arabidopsis thaliana, where it 

is localized to plastids. Moreover, we show that NTRC is involved in maintaining the 

redox homeostasis of plastids also in non-photosynthetic organs. To test the relationship 

between plastids of photosynthetic and non-photosynthetic tissues, transgenic plants 

were obtained with redox homeostasis restituted exclusively in leaves or in roots, 

through the expression of NTRC under the control of organ-specific promoters in the 

ntrc mutant. Our results show that fully functional chloroplasts are necessary and 

sufficient to support wild type rate of root growth and lateral root formation. In contrast, 

fully functional root amyloplasts are not sufficient for root, or leaf, growth unless 

chloroplasts are functional. 
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INTRODUCTION 

 

Redox regulation based on disulfide-dithiol interchange of key cysteine residues of 

regulatory enzymes is a rapid and reversible mechanism, which allows the control of 

metabolic fluxes and its adjustment to ever changing environmental constraints. This is 

a universal type of regulation, present in all types of organisms, from bacteria to plants 

and animals (Buchanan and Balmer, 2005; Meyer et al., 2009). Thioredoxins (TRXs), 

small proteins of 12-14 kDa with a conserved WC(G/P)PC active site, play a central 

role in redox regulation. In its reduced state, the TRX is able to reduce disulfides of 

target proteins so that its own active site becomes oxidized to a disulfide. Thus, for a 

new catalytic cycle, oxidized TRX needs to be reduced in a reaction catalyzed by 

NADPH-dependent thioredoxin reductase (NTR). Therefore, in all types of organisms 

the maintenance of the redox status includes a two-component system formed by NTR 

and TRX, the so-called NADPH-TRX system (NTS), which uses NADPH as the source 

of reducing power and, in eukaryotic cells, is localized to the cytoplasm and 

mitochondria (Jacquot et al., 2009).  

Although the NTS is universal, plants have several characteristics that make them 

unique organisms concerning redox regulation. While in bacteria, yeast and animals 

NTR and TRX are encoded by 1-2 genes, the plant genomes so far sequenced reveal the 

presence of two genes encoding NTR, stated NTRA and NTRB, but a large number of 

up to eleven genes encoding the h-type (h for heterotrophic) TRXs (Gelhaye et al., 

2005; Meyer et al., 2005). In plants, as in other eukaryotes, the NTS is localized in 

mitochondria and cytoplasm, NTRA being the major cytosolic isoform, whereas NTRB 

is more abundant in mitochondria (Laloi et al., 2001; Reichheld et al., 2005). Regarding 

h-type TRXs, most of them are predicted to be localized to the cytoplasm, but 

alternative localization to mitochondria (Gelhaye et al., 2004) and nucleus (Serrato et 

al., 2001; Serrato and Cejudo, 2003) have been reported. Even a double targeting to 

nucleus and mitochondria has been described for a novel o-type TRX from pea (Marti et 

al., 2009). Moreover, in cereal seeds cells that suffer oxidative stress during 

development and germination NTR is also accumulated in the nucleus and has been 

proposed to play an antioxidant function based on its ability to reduce 1-Cys PRX 

(Pulido et al., 2009). 

A remarkable characteristic of redox regulation in plants and algae is the presence 

of a specific and complex set of TRXs in chloroplasts. These include types f, m, x and y 



4 
 

(Collin et al., 2003), and additional TRXs and TRX-like proteins more recently 

identified such as HCF164 (Motohashi and Hisabori, 2006), CDSP32 (Broin et al., 

2000), TRX z (Arsova et al., 2010; Chibani et al., 2010) or the family of atypical TRXs 

stated ACHT (Dangoor et al., 2009). The chloroplast also contains a specific system for 

TRX reduction, which is dependent on ferredoxin (Fd) reduced by the photosynthetic 

electron transport chain and an Fd-dependent TRX reductase (FTR) (Schürmann and 

Buchanan, 2008). Therefore, redox regulation in chloroplasts has been considered to 

rely on reduced Fd, thus being light-dependent, in contrast with redox regulation in 

heterotrophic organisms, and non-photosynthetic plant tissues, which use NADPH as 

source of reducing power. In chloroplasts NADPH is produced during the day as the 

final product of the photosynthetic electron transport chain in a reaction catalyzed by 

Fd-NADP+oxidoreductase (FNR) (Ceccarelli et al., 2004; Lintala et al., 2007), and also 

during the night by the oxidative pentose phosphate pathway (Neuhaus and Emes, 

2000). Therefore, the use of reduced Fd, but not NADPH, for redox regulation in this 

organelle was considered to be due to the lack of an enzyme able to use NADPH rather 

than to the lack of NADPH itself. This view of the redox regulation of the chloroplast 

changed after the discovery of a novel bimodular enzyme named NADPH-thioredoxin 

reductase C, NTRC, which is localized in chloroplasts (Serrato et al., 2004). NTRC is 

composed of NTR and TRX domains and conjugates both activities to efficiently reduce 

2-Cys PRXs using NADPH as source of reducing power (Moon et al., 2006; Pérez-Ruiz 

et al., 2006; Pérez-Ruiz and Cejudo, 2009). Hence, NTRC allows the use of NADPH to 

maintain redox homeostasis in the chloroplast (Spínola et al., 2008).  

The severe phenotype of an Arabidopsis NTRC knock out mutant, which is highly 

dependent on photoperiod and darkness (Pérez-Ruiz et al., 2006; Lepistö et al., 2009), 

shows that the function of NTRC is very important for plant growth and development. 

Moreover, the comparison of the ntrc mutant with mutants lacking TRX x and 2-Cys 

PRX suggested that NTRC is the principal reductant of 2-Cys PRX in the chloroplast 

(Pulido et al., 2010). Among the redox-regulated processes of the chloroplast, in which 

NTRC plays a role, some are dependent on its ability to reduce 2-Cys PRX, such as 

chlorophyll synthesis (Stenbaek et al., 2008; Stenbaek and Jensen, 2010). However, the 

phenotype of the ntrc mutant is more severe than the phenotype of the 2-Cys PRX 

double mutant, suggesting that NTRC has additional functions, which are independent 

of 2-Cys PRX reduction (Pulido et al., 2010). Some of these functions have already 

been identified and include aromatic amino acid and auxin synthesis (Lepistö et al., 
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2009) and starch biosynthesis, since NTRC is involved in the redox regulation of ADP-

glucose pyrophosphorylase (AGPase) (Michalska et al., 2009). 

Interestingly, redox regulation of AGPase was severely affected not only in leaves 

of the Arabidopsis NTRC knock out mutant, but also in roots. This finding revealed the 

involvement of NTRC in redox regulation in plant heterotrophic tissues and therefore 

implied the localization of NTRC in these tissues. Thus, the first objective of this work 

was to establish the pattern of expression of the NTRC gene and the subcellular 

localization of the enzyme in Arabidopsis plants. Our results show a pattern of broad 

expression of the NTRC gene in both photosynthetic and non-photosynthetic tissues, 

and the localization of the enzyme in any type of plastids. This localization of NTRC 

led to the hypothesis that the enzyme functions as a general molecular switch able to 

convert NADPH into redox signals in plastids and, thus, might serve to integrate redox 

regulation between photosynthetic and non-photosynthetic tissues. However, whilst the 

function of the chloroplast for plant growth is well known, very little is known about the 

function of non-green plastids. To gain insight into the relative function of root 

amyloplasts in plant growth, as compared to chloroplasts, we have constructed 

transgenic Arabidopsis plants expressing NTRC exclusively in leaves or in roots. The 

phenotypes of these plants show the supreme importance of the chloroplast for the 

growth of non-photosynthetic plant tissues, including roots. In contrast, root 

amyloplasts have a low impact on root growth. 

 

RESULTS 

 

The NTRC gene is expressed in photosynthetic and non-photosynthetic tissues of 

Arabidopsis plants 

 

To establish the pattern of expression of the NTRC gene in Arabidopsis, the content of 

transcripts in different organs of mature plants was analyzed by qPCR. This analysis 

confirmed the expected high expression of this gene in leaves and also revealed a high 

content of transcripts in stems and flowers, whereas in roots the presence of NTRC 

transcripts was detected at a much lower level (Fig. 1A), a pattern which was confirmed 

with data from Genevestigator (Suppl. Table 1). In agreement with this pattern of 

expression, Western blot analysis showed a high content of the NTRC protein in leaves, 

stems and flowers, and a much lower content in roots (Fig. 1B). Furthermore, this 
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analysis confirmed the absence of NTRC in any of the organs of the ntrc knock out 

mutant (Fig. 1B). 

To further analyze the pattern of expression of the NTRC gene in Arabidopsis, a 

1.05-kbp fragment containing its putative promoter (Suppl. Fig. 1) was transcriptionally 

fused to the -glucuronidase (GUS) reporter gene and introduced into Arabidopsis wild 

type plants. GUS staining of transgenic lines confirmed the high level of expression 

driven by the NTRC gene promoter in green tissues such as cotyledons and first leaves 

of seedlings grown under long-day (Fig. 2A) or short-day conditions (Fig. 2B). 

Expression was high in leaf mesophyll cells in agreement with the high content of 

NTRC transcripts in leaves, but GUS staining revealed a higher expression associated 

with the vascular tissue (Fig. 2C), as well as in stem guard cells (Fig. 2E). NTRC 

promoter driven expression was also detected in roots (Fig. 2D and G) and hypocotyls 

(Fig. 2G), staining being associated to the vascular tissue and the base of hypocotyls 

diverging to the cotyledons (Fig. 2F). GUS staining was also analyzed in reproductive 

organs of the transgenic plants, which showed the expected high expression of NTRC in 

green tissues, such as sepals of inflorescences and flowers (Fig. 2H, I, L). In addition, 

GUS staining revealed NTRC expression in stigma (Fig. 2I, J), anthers (Fig. 2I, K), 

siliques and silique petioles (Fig. 2M, N). 

 

NTRC is localized in plastids of photosynthetic and non-photosynthetic tissues in 

Arabidopsis plants 

 

Once established the broad distribution of NTRC expression in photosynthetic and non-

photosynthetic tissues of Arabidopsis plants, a set of new transgenic lines was designed 

to analyze the subcellular localization of the enzyme. To that end, a translational fusion 

of Arabidopsis NTRC, including its signal peptide, with GFP was expressed in 

Arabidopsis wild type and ntrc mutant plants under the control of the CaMV 35S or the 

NTRC gene promoter. The expression of NTRC-GFP in ntrc mutant plants partially 

complemented the mutant phenotype (Suppl. Fig. 2), thus showing the functionality of 

the fusion protein. Confocal microscopy analysis of the transgenic plants revealed 

coincidence of the green fluorescent signal, corresponding to NTRC-GFP, with 

chlorophyll red fluorescence in leaf mesophyll and guard cells of plants expressing the 

fusion protein under the CaMV 35S promoter (Fig. 3A, C) or the NTRC promoter (Fig. 

3B, D), and revealed the presence of the protein in stromules, which were clearly 
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labeled in lines expressing the NTRC-GFP fusion protein under the 35S promoter (Fig. 

3C, arrow).  

The analysis of the green fluorescence signal in primary and secondary roots of 

transgenic plants showed the localization of NTRC in amyloplasts either in plants 

expressing the fusion protein under the 35S (Fig. 3E) or the NTRC promoter (Fig. 3F), 

in contrast with the diffuse signal observed in transgenic plants expressing GFP not 

fused to NTRC (Fig. 3G). The analysis of petals (Fig. 3H) and anthers (Fig. 3I) showed 

the localization of NTRC in plastids in these tissues. Finally, hypocotyls of etiolated 

plants showed the localization of NTRC in etioplasts (Fig. 3J), indicating the 

localization of NTRC in plastids of photosynthetic and non-photosynthetic tissues of 

Arabidopsis plants, regardless of growth under light or dark conditions. Therefore, the 

analysis of plants expressing the GUS reporter gene under the NTRC promoter in 

conjunction with plants expressing the NTRC-GFP fusion protein under the 35S and 

NTRC promoter allow the conclusion that NTRC is widely expressed in both 

photosynthetic and non-photosynthetic tissues, with the enzyme being localized to 

plastids.  

 

NTRC is involved in maintaining the redox homeostasis of plastids from 

photosynthetic and non-photosynthetic tissues 

 

Previous studies carried out with the aid of different Arabidopsis mutants showed that 

the redox status of the chloroplast 2-Cys PRX is essentially controlled by NTRC (Pulido 

et al., 2010). The finding of the localization of NTRC in plastids of non-photosynthetic 

tissues of Arabidopsis plants suggested that this enzyme might also be involved in the 

maintenance of the redox homeostasis of these plastids. This possibility was tested by 

the analysis of the redox status of the 2-Cys PRX in different tissues of wild type and 

ntrc mutant plants. Western blot analysis, under reducing conditions, confirmed the 

expected expression of 2-Cys PRX in organs with green tissues such as leaves, stems 

and flowers, and revealed the presence of the enzyme, though at lower level, in roots 

(Fig. 4A). These results are in agreement with the content of transcripts of 2-Cys PRXs 

A and B genes obtained from Genevestigator, which showed lower expression of both 

genes in roots than in leaves, stems and flowers (Suppl. Table 1). Gel electrophoresis 

under non-reducing conditions showed the decreased content of monomeric 2-Cys PRX, 

indicative of unbalanced redox status, in any of the organs analyzed of the NTRC knock 
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out mutant as compared with wild type plants (Fig. 4B). Therefore, these results show 

that NTRC is involved in the maintenance of the redox homeostasis of chloroplasts and 

non-photosynthetic plastids. 

 

Restitution of chloroplast, but not of amyloplast, redox homeostasis is sufficient for 

wild type level root growth 

 

The finding that NTRC is involved in redox regulation in plastids from photosynthetic 

and non-photosynthetic tissues led us to test whether the enzyme has any function 

integrating redox regulation in both types of plastids, and the contribution of each of 

them to plant growth. To this end, we took advantage of the Arabidopsis NTRC knock 

out mutant, which was used to generate plants expressing NTRC exclusively in leaves 

or in roots with the aim of restituting NTRC-dependent redox regulation in either 

photosynthetic or in non-photosynthetic organs. For leaf-specific expression, the 

Arabidopsis NTRC cDNA was expressed in the ntrc mutant background under the 

control of the Rbcs gene promoter (Donald and Cashmore, 1990), whereas the 

promoters of the phosphate transporter genes Pht1,2 and Pht1,3 (Mudge et al., 2002) 

were used for root-specific expression. In parallel, Arabidopsis transgenic plants 

expressing the GUS-reporter gene under the control of these promoters confirmed the 

expected pattern of expression exclusive in leaves, for the Rbcs promoter, or in roots, 

for the Pht1,2 and Pht1,3 promoters (Suppl. Fig. 3).   

Of the transgenic plants obtained for each construct, two representative lines of 

each promoter (termed #1 and #2) were chosen for further analysis. In addition, for 

comparative purposes, transgenic plants expressing NTRC in leaves and roots, under the 

CaMV 35S promoter, or transformed with the empty vector, were also included. The 

Western blot analysis of extracts from leaves and roots shows the expected content of 

NTRC - high in leaves and low in roots - in wild type plants, whilst NTRC was 

undetectable in either organ of the ntrc mutant or the mutant transformed with the 

empty vector (Fig. 5A). Plants expressing NTRC under the CaMV 35S promoter were 

obtained either in the wild type or in the ntrc background. A line in the wild type 

background (WT35S_NTRC) showing high expression in leaves and low in roots, and a 

line in the mutant background (ntrc35S_NTRC) with the opposite pattern, high 

expression in roots and low in leaves, were chosen (Fig. 5A). Finally, among the 

transgenic plants with organ-specific promoters, those expressing NTRC under the Rbcs 
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promoter accumulated NTRC exclusively in leaves, line #1 showing higher content than 

line #2, whereas transgenic plants with the Pht1,2 promoter showed root-specific 

accumulation of NTRC (Fig. 5A). However, the Pht1,3 promoter, which produced the 

expected high expression of NTRC in roots, was not specific since, although at a low 

level, the enzyme was also detected in leaves (Fig. 5A). To test the functionality of 

NTRC in the transgenic lines, the redox status of 2-Cys PRX was determined. Fig. 5B 

shows the expected low content of monomeric 2-Cys PRX, indicative of unbalanced 

redox status, in leaves and roots of the ntrc mutant, as compared to the wild type plants. 

A high level of monomeric 2-Cys PRX in leaves and roots was recovered in transgenic 

plants expressing NTRC under the 35S promoter, the level in roots being higher in the 

ntrc35S_NTRC line in agreement with the higher content of NTRC in roots of these 

plants. Similarly, transgenic lines expressing NTRC under the Pht1,3 promoter 

recovered the redox status of 2-Cys PRX in leaves and roots (Fig. 5B), in agreement 

with the presence of NTRC in roots but also in leaves (Fig. 5A) of these plants. The 

redox status of the 2-Cys PRX was restored in leaves of plants expressing NTRC under 

the Rbcs promoter, but not under the Pht1,2 promoter, in agreement with the presence 

or absence, respectively, of NTRC in leaves of these plants (Fig. 5A, B). Similarly, 

plants showing leaf-specific expression of NTRC, under the control of the Rbcs 

promoter, showed almost undetectable amounts of monomeric 2-Cys PRX in roots, 

which was recovered in plants with root-specific expression of NTRC, with the Pht1,2 

promoter (Fig. 5B). Therefore, these results show that the redox status of the 2-Cys 

PRXs in leaves and roots is highly dependent of the presence of NTRC in these organs 

and thus confirm the functionality of NTRC in the transgenic lines under analysis.  

The phenotype of these transgenic plants was thereafter analyzed with the aim of 

testing the effect of NTRC-dependent redox regulation of plastids from leaves and 

roots, respectively, on plant growth. Plants were grown under short-day conditions, 

which were previously described to cause a more severe phenotype on the ntrc mutant 

(Pérez-Ruiz et al., 2006; Lepistö et al., 2009). Under these conditions, the NTRC knock 

out plants showed the characteristic inhibition of growth, with the corresponding lower 

leaf and root fresh weight (Fig. 6A-C). As expected, the constitutive expression of 

NTRC, under the 35S promoter, in leaves and roots of the ntrc mutant background, 

recovered the wild type phenotype in terms of both leaf and root fresh weight (Fig. 6A-

C). In agreement with these results, plants expressing NTRC under the Pht1,3 promoter, 

which contained NTRC both in leaves and roots, showed also recovery of the wild type 
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phenotype with respect to both leaf and root growth (Fig. 6A-C), although these plants 

displayed a different distribution of NTRC, with a higher content in roots than in leaves, 

as compared to the wild type plants (Fig. 5A). Interestingly, the expression of NTRC 

exclusively in leaves was sufficient to completely recover wild type phenotype in terms 

of leaf and root fresh weight (Fig. 6A-C). In sharp contrast, the expression of NTRC 

exclusively in roots resulted in a slight increase of leaf and root fresh weight as 

compared to ntrc mutant plants (Fig. 6A-C).  

 

Chloroplast redox homeostasis is essential for root growth and lateral root 

formation 

 

         The poor effect of root-specific expression of NTRC on root growth suggests that 

amyloplast function required fully functional chloroplasts. As a well-recognized 

function of photosynthesis is to provide sucrose as source of carbon and energy for sink 

organs, we analyzed in more detail the rate of root growth and the effect of the addition 

of sucrose to the growth medium (Fig. 7). The rate of root growth was lower in NTRC 

knock out plants than in wild type plants, and feeding with sucrose had a slightly 

positive effect on both types of plants. As expected, constitutive expression of NTRC in 

leaves and roots, under the 35S or the Pht1,3 promoter, recovered wild type level of 

root growth rate. The expression of NTRC exclusively in leaves was sufficient to 

recover wild type level of root growth despite the fact that root amyloplasts show signs 

of redox unbalance (Fig. 5B). Notably, expression of NTRC exclusively in roots, under 

the Pht1,2 promoter, was not sufficient to recover wild type level of root growth 

regardless of the addition of sucrose to the medium. Therefore, the reestablishment of 

the redox homeostasis of root amyloplasts is not sufficient for recovery of root growth, 

whereas functional chloroplasts are necessary and sufficient to recover root growth 

independently of the redox status of the root amyloplasts.  

The weak effect of exogenous sucrose on root growth in plants expressing 

NTRC exclusively in roots suggested that chloroplasts provide something else than 

carbon and energy for root growth. To further analyze this possibility we studied root 

phenotypes caused by NTRC deficiency. During early seedling growth the ntrc mutant 

shows a slow rate of root growth, but also less abundant lateral roots than the wild type 

plants (Fig. 8A, B). As lateral root formation is highly influenced by auxins, this 

phenotype of the ntrc mutant suggests the involvement of NTRC in auxin signaling. 
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Treatment with exogenous indole-3-acetic acid (IAA) exerted a similar inhibitory effect 

on root growth in wild type and ntrc mutant plants (Fig. 8C), showing that NTRC 

deficiency does not affect auxin sensitivity. We then analyzed the content of lateral 

roots in Arabidopsis lines with organ-specific expression of NTRC to determine the 

function of chloroplasts and amyloplasts on lateral root formation. As expected, 

expression of NTRC in leaves and roots, under the 35S or the Pht1,3 promoter, rescued 

wild type level of lateral root formation (Fig. 8B). Interestingly, leaf-specific expression 

of NTRC, with the Rbcs promoter, was sufficient to recover wild type level of lateral 

roots, whereas root-specific expression of NTRC, with the Pht1,2 promoter, was not 

(Fig. 8B). Inhibition of root growth in response to exogenous IAA treatment was similar 

for all transgenic lines under analysis (Suppl. Fig. 4), showing no alteration of auxin 

sensitivity. Therefore, restitution of chloroplast redox homeostasis is sufficient for 

lateral root formation even in plants with impaired amyloplasts.  

 

An alternative pathway for redox regulation is expressed in roots 

 

The recovery of the wild type rate of root growth and lateral root formation in plants 

expressing NTRC exclusively in leaves indicates that the presence of NTRC in root 

amyloplasts is not essential for root growth, thus suggesting the presence of an 

alternative pathway for redox regulation in amyloplasts. Redox regulation by this 

pathway would require the transfer of electrons from NADPH, generated from sugars 

by the oxidative pentose phosphate pathway, to amyloplast TRXs with the participation 

of FNR, Fd and FTR. To test for the presence of this alternative pathway in roots, the 

content of the corresponding gene transcripts was analyzed by qPCR in wild type and 

ntrc mutant plants. Of the four genes encoding FNR in Arabidopsis, FNR1 and FNR2 

showed leaf-specific expression, whereas RFNR2 was expressed at higher level in roots 

and RFNR1 showed a poor expression in both tissues (Fig. 9A). No significant 

difference of transcript content was observed in wild type and mutant plants (Fig. 9A). 

In agreement with these results, Genevestigator data (Suppl. Table 2) show higher 

expression of FNR1 and FNR2 genes in leaves than in roots, whereas RFNR2 gene is 

expressed at higher level in roots. However, the Genevestigator data predicts higher 

expression of the RFNR1 gene than determined in our qPCR-based analysis (Fig. 9A). 

Genes encoding Fd (Fd1 and Fd2), the catalytic (FTRB) and regulatory (FTRA) subunits 

of FTR and the two genes encoding type-f TRXs (Trxf1 and Trxf2), which were chosen 
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as example of TRXs, showed higher expression in leaves but were also detected in roots 

(Fig. 9B-D), in agreement with Genevestigator data (Suppl. Table 2). The analysis of 

expression of these genes in the ntrc mutant revealed higher expression of Fd2, FTRA 

and the two genes encoding TRX f in leaves, but not in roots (Fig. 9 A-D). Therefore, 

genes encoding the alternative pathway for redox regulation are expressed in roots 

though at lower level than in leaves, like the NTRC gene. 

 

DISCUSSION 

 

NTRC is important for redox homeostasis of plastids of photosynthetic and non-

photosynthetic tissues 

 

The recent finding that the redox regulation of AGPase was severely altered in roots of 

the Arabidopsis NTRC knock out mutant (Michalska et al., 2009) implied the presence 

of NTRC in roots, in contrast with the previously established view of NTRC as an 

enzyme exclusive to photosynthetic tissues (Serrato et al., 2004; Moon et al. 2006; 

Lepistö et al., 2009). Thus, the first objective of this work was to establish the pattern of 

expression of NTRC in Arabidopsis mature plants. Both qPCR and Western blot 

analyses, as well as Genevestigator data, confirmed the expression of NTRC in organs 

with photosynthetic cells, and revealed the presence of the enzyme, though at a lower 

levels, in roots (Fig. 1). This broad pattern of expression was confirmed by NTRCpro-

GUS transgenic lines, which showed high level of expression driven by the NTRC gene 

promoter in green tissues but also in root or hypocotyl, in which it is associated to the 

vascular tissue. Moreover, the analysis of these plants revealed a more unexpected 

expression in tissues of reproductive organs, such as stigma and anthers. Therefore, 

although NTRC is expressed at high level in photosynthetic tissues, in agreement with 

previous reports (Serrato et al., 2004; Moon et al., 2006; Alkhalfioui et al., 2007; 

Lepistö et al., 2009), the different approaches carried out in this work reveal a broad 

pattern of expression in either photosynthetic and non-photosynthetic tissues for this 

gene. 

Different studies based on Western blot analysis of purified chloroplasts from 

rice leaves (Serrato et al., 2004), Arabidopsis plants expressing an NTRC-GFP fusion 

protein (Moon et al., 2007), or immunogold labeling (Pérez-Ruiz et al., 2009) clearly 

indicated that NTRC is a chloroplast-localized enzyme, in agreement with the high-level 
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of expression of the gene in green tissues and the function of the enzyme in chloroplast-

localized processes such as chlorophyll and starch synthesis (Stenbaek et al., 2008; 

Stenbaek and Jensen, 2010; Michalska et al., 2009). However, the finding of NTRC 

expression in non-photosynthetic tissues raised the question of the subcellular 

localization of the enzyme in these tissues. This question was addressed by the 

generation of Arabidopsis lines expressing the NTRC-GFP fusion protein, which 

confirmed the localization of the enzyme in chloroplasts and showed the localization of 

NTRC in plastids of any of the non-photosynthetic tissues analyzed including roots, 

hypocotyls, anthers and petals (Fig. 3).  

The presence of NTRC in plastids of non-photosynthetic tissues suggested that 

redox regulation might be an important component for the control of the metabolic 

pathways in these organelles, and that NTRC, which is able to use NADPH for redox 

regulation, may play a central function in these plastids with no photochemical 

reactions. Although 2-Cys PRXs were described as chloroplast-localized enzymes 

(Baier and Dietz, 1997), Western blot analysis under reducing conditions showed that 

these enzymes are also present in non-photosynthetic tissues of Arabidopsis plants (Fig. 

4A). Moreover, expression in non-photosynthetic tissues of the genes encoding 2-Cys 

PRXs was confirmed by Genevestigator data (Suppl. Table 1), thus indicating that the 

redox state of these proteins may be taken as marker of the redox homeostasis of non-

photosynthetic plastids. In chloroplasts, 2-Cys PRXs were proposed to be reduced by 

CDSP32 (Broin et al., 2002; Rey et al., 2005) and TRX x (Collin et al., 2003), but 

NTRC appeared to be the main reductant of this enzyme in vivo (Pulido et al., 2010). 

Indeed, Western blot analysis under non-reducing conditions showed a lower content of 

the monomeric form of the 2-Cys PRX in the ntrc mutant not only in leaves but in any 

of the other tissues here analyzed (Fig. 4B), thus indicating the involvement of NTRC in 

the maintenance of the redox status in plastids from either photosynthetic and non-

photosynthetic tissues. These results are in agreement with the previous finding that 

NTRC is involved in the redox regulation of AGPase in roots (Michalska et al., 2009) 

and emphasize the notion that redox regulation occurs in plastids of non-photosynthetic 

tissues.  

 

NTRC is a redox switch able to convert NADPH into redox signal 
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In chloroplasts, redox regulation relies on Fd reduced by the photosynthetic electron 

transport chain. This is the source of reducing power to the FTR/TRX system, which 

thus participates in the control of the redox status of the numerous TRX targets so far 

identified (Buchanan and Balmer, 2005). As a complementary pathway for chloroplast 

redox regulation, NTRC allows the use of NADPH, produced both by the oxidative 

pentose phosphate pathway and the photosynthetic electron transport (Spínola et al., 

2008). In contrast to the thorough knowledge of redox regulation in chloroplasts, very 

little is known about the function and redox regulation of plastids in heterotrophic 

tissues. Plastids from some non-photosynthetic tissues, such as amyloplasts of cereal 

endosperm, are specialized in starch synthesis (Tetlow et al., 2008). However, recent 

proteomic analyses suggest that these plastids perform a complex diversity of metabolic 

pathways (Balmer et al., 2006a, b; Dupont, 2008). The finding of a complete 

Fd/FTR/TRX system in amyloplasts isolated from wheat endosperm and the 

identification of TRX targets in this organelle suggested that redox regulation may be an 

important component of the regulation of starch synthesis, but also of amino acid and 

lipid biosynthesis (Balmer et al., 2006a). Moreover, the presence of TRX y in 

Arabidopsis roots (Collin et al., 2004), and of TRXs f and m in pea roots and flowers 

(Barajas-López et al., 2007; Traverso et al., 2008) lend further support to the notion that 

redox regulation is a relevant aspect of plastid function in non-photosynthetic tissues. 

The identification of TRX y targets in Arabidopsis roots suggests that metabolic 

pathways including amino acid, lipid and phenylpropanoid metabolism, protein 

degradation and folding and the response to oxidative stress are redox-regulated 

processes (Marchand et al., 2010). 

The localization of NTRC in plastids of photosynthetic and non-photosynthetic 

tissues of Arabidopsis reported here (Fig. 3) supports the notion of plastid redox 

regulation as a general phenomenon in plants. Since heterotrophic plastids lack 

photochemical reactions, reducing power to support redox regulation in these plastids 

relies entirely on NADPH produced from sugars by the oxidative pentose phosphate 

pathway (Kammerer et al., 1998; Neuhaus and Emes, 2000). The biochemical properties 

of NTRC, including its high affinity for NADPH and the presence of a TRX domain at 

the C-terminus, allow us to propose that NTRC acts as a redox switch able to convert 

reducing power in the form of NADPH, which might be indicative of the capacity to 

perform biosynthetic metabolism, into a redox signal through the thiol groups of its 

TRX domain. Thus, NTRC may constitute a direct pathway for redox homeostasis in 
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heterotrophic plastids (Fig. 10). However, transfer of electrons from NADPH to Fd, 

catalyzed by FNR, is also possible in heterotrophic plastids, as suggested by the high 

expression of the RFNR2 gene in roots (Fig. 9A), in agreement with the previous report 

of a root-specific form of this enzyme (Oji et al., 1985). Though at a lower level than in 

leaves, qPCR analyses showed the expression in roots of genes encoding Fd, the 

catalytic and regulatory subunits of FTR and TRX f1 and TRX f2 (Fig. 9B-D), a pattern 

confirmed by the Genevestigator data (Suppl. Table 2). Therefore, the Fd/FTR/TRX 

pathway might be also operative in non-photosynthetic plastids (Fig. 10), as it is in 

chloroplasts. The fact that plants that lack NTRC in root amyloplasts, but express the 

enzyme in chloroplasts, show wild type levels of root growth, suggests that the 

Fd/FTR/TRX pathway compensates for NTRC deficiency in these organelles, although 

the roots of these plants will probably have unbalanced metabolite levels. The 

identification of specific targets of NTRC and the different TRXs of root amyloplasts 

will help to establish the metabolic processes which depend on NTRC or the 

Fd/FTR/TRX pathway.  

 

Chloroplast function is sufficient to support root growth in plants with impaired 

amyloplast redox homeostasis 

 

It has long been known that light, as the primary source of energy for plants, is used for 

the production of photosynthates in chloroplasts of source tissues, which are transported 

to sink tissues to support their growth. Therefore, growth of heterotrophic tissues is 

highly dependent on photosynthetic ones. Moreover, it has been proposed that 

photosynthates form part of a signaling network integrating both photosynthetic and 

non-photosynthetic tissues (Koch, 1996; Paul and Foyer, 2001). Based on the finding of 

an Fd/TRX system in wheat amyloplasts, Balmer et al. (2006a) proposed that TRX 

might act integrating redox regulation between both types of organelles, but due to the 

scarce knowledge of redox regulation in heterotrophic tissues this proposal has not been 

tested yet. The presence of NTRC in both photosynthetic and heterotrophic plastids and 

the unique properties of the enzyme serving as a switch of NADPH into redox signal 

suggest that NTRC might be important for such integration.  

In this work, we have taken advantage of the severe phenotype of the 

Arabidopsis NTRC knock out mutant to address whether NTRC functions in 

coordinating plastid redox regulation between photosynthetic and heterotrophic tissues 
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and the relevance of each type of plastid for plant growth. Leaf-specific expression of 

NTRC restored redox homeostasis in leaf chloroplasts and recovered wild type leaf and 

root phenotypes. In contrast, restitution of redox homeostasis exclusively in roots was 

insufficient to recover leaf growth and remarkably was also insufficient for recovery of 

root growth and lateral root formation. Therefore, these results establish that chloroplast 

function is necessary and sufficient to reach wild type rate of root growth, thus 

emphasizing the essential function of chloroplasts for growth of heterotrophic tissues.  

The poor growth of roots of transgenic lines expressing NTRC exclusively in 

roots might be due to deficiency of sucrose supply for amyloplast function since these 

plants have impaired chloroplast redox homeostasis. However, external addition of 

sucrose to the culture medium exerted a poor effect on root growth in these plants thus 

showing that leaf chloroplast function is required to provide other metabolites and/or 

signaling molecules, besides sucrose, for root growth. In this regard it should be 

mentioned that NTRC deficiency causes decreased auxin content (Lepistö et al., 2009). 

Moreover, the ntrc mutant shows not only slower root growth but also impairment of 

lateral root formation (Fig. 8), which is a process profoundly affected by shoot-derived 

auxins at early stages of seedling growth (Bhalerao et al., 2002). The lateral root 

formation phenotype of the NTRC-deficient mutant was rescued by expression of 

NTRC exclusively in leaves, but not in roots (Fig. 8B), thus showing that the recovery 

of the redox homeostasis of the chloroplast is sufficient to rescue lateral root formation 

regardless of amyloplast function. These results point to chloroplasts as source of 

signaling molecules important for development of heterotrophic organs and are in 

agreement with the model proposed by Ljung et al. (2005) according to which IAA 

synthesized in leaves at early stages of seedling development are important for lateral 

root formation, before roots gain more competence for auxin synthesis. Deficiency of 

NADP-dependent thioredoxin and glutathione systems, as occurs in the triple mutant 

ntra ntrb cad2, affects auxin signaling. This triple mutant shows lower auxin content, 

which causes a severe phenotype including defects of secondary root growth, 

vasculature and pin-like phenotype (Bashandy et al., 2010). In contrast, the auxin-

related phenotype of the ntrc mutant is less-severe affecting only lateral roots. Because 

NTRC deficiency affects auxin synthesis (Lepistö et al., 2009) but not auxin sensitivity 

(Fig. 8C), the lateral root formation phenotype of the ntrc mutant might indicate a lower 

content of auxins, but more work is still needed to test this possibility.  
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In conclusion, the results presented in this report show that NTRC is broadly 

expressed in all plant tissues, localizes to plastids, and is involved in the maintenance of 

plastid redox homeostasis of photosynthetic and heterotrophic tissues. The biochemical 

properties of NTRC allowed us to propose its function as a redox switch converting 

NADPH into redox signal, thus enabling a direct use of NADPH for redox regulation. 

The finding that restitution of chloroplast redox homeostasis is sufficient to recover 

root-related phenotypes in plants with impaired amyloplast redox homeostasis 

emphasizes the essential role of the chloroplast for the growth of heterotrophic tissues. 

Consequently, green plastids are not only a source of carbon and energy, but also of 

signaling molecules, which may be important in coordinating the growth of 

photosynthetic and heterotrophic organs of the plant.  

 

METHODS 

 

Plant material and growth conditions 

 

Arabidopsis thaliana wild type (ecotype Columbia), ntrc mutant, line SALK_012208 

(Serrato et al., 2004), and the transgenic plants generated in this work were grown in 

soil supplemented with Hoagland medium in culture chambers under long-day (16 h 

light/8 h darkness) or short-day (8 h light/16 h darkness) conditions at 22ºC during the 

light and 20ºC during darkness. The light intensity was set at 140 mol m-2 s-1. For root 

growth experiments seeds were surface sterilized (3 min in 70% (v/v) ethanol followed 

by 4 min in 30% bleach), placed on plates containing 1 x MS media solidified with 

0.8% agar and stratified for 2 days at 4ºC. Plates were oriented vertically and incubated 

in a growth chamber under short-day conditions. Seven-day-old seedlings were 

transferred onto fresh MS plates supplemented with 30 mM sucrose or 30 mM mannitol 

for 14 additional days.  For auxin treatments seedlings grown on MS media for five 

days were transferred to media containing indole-3-acetic acid (IAA) for an additional 

period of 3 days. Root length and number of lateral roots were measured with the 

ImageJ software. 

 

qPCR and Western blot analysis 
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Total RNA (1 µg) was extracted from tissues dissected from mature plants grown for 48 

days using Trizol™ and retro-transcribed by means of QuantiTect™ RT-kit (Qiagen). 

Real time PCR was performed in a total reaction volume of 20 µL containing primers (4 

µM each), cDNA (40 ng) and 10 µL of iQTM SYBR Green Supermix (Bio-Rad). Results 

obtained from 3 independent biological samples (3 analytical replicates each) are 

represented as 2-CT (Threshold Cycle) as described by Livak and Schmittgen (2001). 

Ubiquitin 10 was used as reference gene. Gene specific primers used are described in 

Suppl. Table 3. Fluorescence of PCR products was determined continuously by the iQ5 

cycler (Bio-Rad).  

Western blot analysis was performed as previously described (Kirchsteiger et al., 

2009) using as probes previously described antibodies (anti-NTRC, anti-NTRB and 

anti-2Cys Prx). For optimized resolution, SDS-PAGE was performed at 12-15% 

Acrylamide/Bisacrylamide gels.  

 

Generation of Arabidopsis transgenic lines expressing the NTRCpro:GUS gene 

 

The NTRCpro:GUS gene was constructed in the binary vector pGII0229 (Hellens 

et al., 2000) by a three-step process. First, a 276-bp fragment containing the nopaline 

synthase gene terminator (NOSter) was amplified by PCR from the pBI121 plasmid 

using oligonucleotides F-NOSter-NotI (5’-AATTGCTACCGCGGCCGCGAATTT-3’) 

and R-NOSter-SacI (5’-CAGTGAGCTCCCGATCTAGTAACATAGAT-3’) 

introducing NotI and SacI restriction sites, underlined, used to clone the NOSter 

fragment into the pGII0229 vector. The NTRC gene (At2g41680) is separated of the 

flanking At2g41690 gene by approx. 2.7 kbp. Both genes are transcribed in opposite 

directions so that this 2.7-kbp sequence, which shows an even distribution of putative 

cis-acting elements (Suppl. Fig. 1), may contain the promoters of both genes. Thus to 

analyze the putative NTRC promoter, avoiding as much as possible interference with the 

flanking At2g41690 gene promoter, we selected a 1.05-kbp fragment upstream the 

NTRC gene coding sequence (Suppl. Fig. 1). This fragment was amplified from 

Arabidopsis (ecotype Columbia) genomic DNA with oligonucleotides FpNtrc-HindIII 

(5’GTAAGCTTCACGCGTCTGTAAAT-3’) and RpNtrc-XbaI (5’-

GGTCTAGAATTTTTTTTGATTGCCTTACC-3’) introducing HindIII and XbaI 

restriction sites, underlined, which were used to insert the fragment into the pGII0229-

NOSter plasmid. Finally, the UidA gene from E. coli, encoding the GUS-reporter 
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enzyme was amplified with oligonucleotides F-GUS-XbaI (5’-

AACACGGGGGACTCTAGAGGATCC-3’) and R-GUS-NotI (5’-

ACGCGGCCGCAGTTGTTGATTCATTGTTT-3’) introducing XbaI and NotI sites, 

underlined, which were used to transcriptionally fuse the GUS-reporter gene to the 

NTRC promoter. The final construct was sequenced and introduced into Agrobacterium 

tumefaciens (C58pMP90). Arabidopsis plants were then transformed by the floral dip 

method (Clough and Bent, 1998), and homozygous plants for the transgene were 

selected. 

 

Histochemical GUS staining 

 

Histochemical detection of GUS activity was performed using the substrate 5-bromo-4-

chloro-3-indolyl glucuronide (X-gluc; Jefferson et al., 1987), by vacuum-infiltrating 

seedlings in assay buffer (50 mM sodium phosphate pH 7.0, 0.2% Triton X-100, 0.5 

mM potassium ferrocyanide, 0.5 mM potassium ferricyanide, and 10 mM EDTA) 

containing 0.05% X-gluc. Samples were incubated at 37ºC overnight wrapped in 

aluminium foil to keep them in the dark. Green tissues were cleared with ethanol prior 

to observation. 

 

Generation of Arabidopsis transgenic lines expressing the NTRC-GFP fusion 

protein 

 

Subcellular localization of NTRC was analysed in Arabidopsis transgenic plants 

expressing the NTRC-GFP fusion protein. Given the putative presence of a transit 

peptide at the N-terminus of NTRC, the GFP was translationally fused at the C-terminus 

of the enzyme. To this end, the cDNA encoding GFP was digested from the peGFP 

plasmid (kindly provided by Prof. Thomas Roitsch, Graz University, Austria) by 

digestion with SmaI and XbaI. These restriction sites were then used to clone this 

fragment into the pBIBA7 vector (Becker, 1997) to generate the pBIBA7-GFP plasmid. 

Then, the full-length coding sequence of Arabidopsis NTRC was amplified by PCR 

from plasmid pUNI_U14278 (TAIR Accession Sequence 504962595) with 

oligonucleotides Ntrc-F-KpnI (5’-CAGGTACCATGGCTGCGTCTCC-3’) and Ntrc-R-

SmaI (5’-GACCCGGGaTCATTTATTGGCCTCAATG-3’) introducing KpnI and SmaI 

restriction sites (underlined), the mutation of the stop codon TGA to TCA (bold) and the 
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insertion of an additional nucleotide (lower case) to keep the coding frame. The NTRC 

fragment was then introduced in the pBIBA7-GFP plasmid to generate the pBIBA7-

NTRC-GFP construct for expression under the CaMV 35S promoter. For expression of 

the NTRC-GFP fusion protein under the control of the NTRC gene promoter the XbaI-

NotI fragment containing the UidA gene coding sequence, in the NTRCpro:GUS 

construct described above, was replaced by an  XbaI-NotI fragment containing the 

coding sequence of the NTRC-GFP fusion protein. All plasmids were checked by 

sequencing and introduced into Agrobacterium tumefaciens (C58pMP90) to transform 

Arabidopsis plants by the floral dip method, as above indicated.  

 

Generation of Arabidopsis transgenic lines with leaf and root-specific expression of 

NTRC  

 

The Pht1,2 (2000-bp), Pht1,3 (1647-bp) and Rbcs1A (1700-bp) promoters were PCR 

amplified from wild type Arabidopsis (ecotype Columbia) genomic DNA using specific 

primers with GATEWAYTM tails. The forward primers contain the AttB1 tail (5´-

GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’), and the reverse primers contain 

the AttB2 tail (5´- GGGGACCACTTTGTACAAGAAAGCTGGGT-3’). Specific 

sequences for each oilgonucleotide were: Pht1,2-Fw (5´- 

TAGGATCCGATCACTATACAACTCTGC-3´), Pht1,2-Rev (5´- 

GAGGTACCTCTCTTGTCTTTCC-3´), Pht1,3-Fw (5´- 

TAGGATCCTAATGAGTATAAGAG-3´), Pht1,3-Rev (5´- 

CTGGTACCTCTCCTATTTTGCAC-3´), Rbcs-Fw (5´- 

TGGGATCCTGAGTCTCAAAGTGGC-3´) and Rbcs-Rev (5´- 

TGGTACCTCTTCTTTACTCTTTG-3´). All PCR products were introduced into the 

GATEWAYTM pDONR207 (Invitrogen) vector using BP Clonase, generating promoter 

entry clones. The promoter fragments were then transferred into the pGWB3 and 

pGWB1 destination vectors (Nakagawa et al., 2007) using LR Clonase II (Invitrogen). 

Restriction sites BamHI and KpnI (underlined) were incorporated into the specific 

sequence primer to facilitate subsequent cloning.  

The full-length NTRC cDNA from Arabidopsis (DNA stock no. U-14278), was 

amplified by PCR with oligonucleotides (5´- CAGGTACCATGGCTGCGTCTC-3´ and 

5´- GAGAGCTCTCATTTATTGGCCTCA-3´), which added KpnI and SacI restriction 

sites, underlined, at the 5´and 3´ends, respectively. The fragment was cloned into the 



21 
 

pGEMt vector (Promega) which was sequenced in both strands. The NTRC cDNA was 

digested with KpnI and SacI and fused to the KpnI/SacI site of a binary vector pGWB1 

to yield plasmids pGWB1-Pht1,2-AtNTRC, pGWB1-Pht1,3-AtNTRC and pGWB1-

Rbcs-AtNTRC. 

The constructs were integrated into the Arabidopsis T-DNA insertion mutant 

SALK_012208 (ntrc) by A. tumefaciens (C58pMP90) mediated floral dip procedure  

(Clough and Bent, 1998) and transgenic seedlings were selected on half-strength MS 

medium containing 20 mgL-1 hygromycin. Several independently transformed plants 

were obtained with each construct. An empty vector transgenic line, which showed no 

difference to wild-type plants, was used as control. 
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Suppl. Figure 1. Scheme showing the position of the NTRC gene (Atg41680) and the 

flanking At2g41690 gene in Arabidopsis and distribution of possible cis-acting 

elements.  

 

Suppl. Figure 2. Characterization of transgenic plants expressing the NTRC-GFP 

fusion protein or GFP under the control of the CaMV 35S promoter in wild type and 

ntrc mutant backgrounds.   

 

Suppl. Fig. 3. Histochemical localization of GUS expression under the control of 

organ-specific promoters. 
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Suppl. Fig. 4. Effect of IAA treatment on root growth inhibition. 

 

Suppl. Table 1. Expression of genes encoding NTRC, 2-Cys PRX A and 2-Cys PRX B 

in different Arabidopsis organs based on data obtained from Genevestigator. 

 

Suppl. Table 2. Expression of genes encoding the alternative pathway for redox 

regulation in root amyloplasts based on data obtained from Genenvestigator. 

 

Suppl. Table 3. Gene-specific oligonucleotides used for qPCR analysis. 
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Figure 1. Expression pattern of NTRC in Arabidopsis.  

(A) qPCR analysis of NTRC transcripts in different organs of Arabidopsis wild type 

plants. The amount of transcripts in each organ was represented as arbitrary units 

relative to the level in leaves, which was set to 1.0. Analysis was performed three times 

on two independent biological samples and the mean values ± standard errors are 

indicated. (B) The amount of NTRC protein was determined by Western blot probed 

with an anti-NTRC polyclonal antibody. Samples (30 g of protein) were subjected to 

SDS-PAGE, transferred onto nitrocellulose membranes and probed with anti-NTRC or 

anti-NTRB antibodies, to test even protein loading, as indicated. Arabidopsis wild type 

and ntrc mutant plants were grown under long-day conditions for 48 days. RNA, for 

qPCR, and protein, for Western blot analysis, were extracted from leaves (L), roots (R), 

stems (S) and flowers (F). 
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Figure 2. Histochemical localization of GUS expression in Arabidopsis plants 

transformed with the NTRCpro-GUS reporter gene.  

GUS staining of ten-day-old seedlings grown under long-day conditions (A, C, D, E) or 

under short-day conditions (B, F). (G) Etiolated seedlings showing GUS staining in root 

and hypocotyl. GUS staining of inflorescence (H), flower (I), stigma (J), anthers (K), 

sepal (L), silique petiole (M) and silique (N) of Arabidopsis plants grown for 42 days 

under long-day conditions.  

 

 



31 
 

10um50um

10um50um

A

B D

C

160um

50um

160um 40um

40um

E

F

G

H

I

25um

J

Figure 3
 

 

Figure 3. Subcellular localization of NTRC in Arabidopsis plants. 
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A-D, Confocal microscopy micrographs of mesophyll (A, B) and guard cells (C, D) of 

Arabidopsis plants transformed with the NTRC-GFP fusion protein expressed under the 

CaMV 35S promoter (A, C) or the NTRC gene promoter (B, D).  Plants were grown for 

18 days. E-J Subcellular localization of NTRC in non-photosynthetic tissues of 

Arabidopsis. Confocal microscopy micrographs showing plastid localization of NTRC 

in roots of five-day-old seedlings with the NTRC-GFP fusion protein expressed under 

the CaMV 35S promoter (E) or the NTRC gene promoter (F), and a root of plants 

expressing the GFP protein not fused to NTRC (G).  Plastid localization of NTRC in 

petal (H), anther (I) of 48-day-old plants, and hypocotyl of five-day-old Arabidopsis 

seedlings grown under darkness (J) and expressing the NTRC-GFP fusion protein under 

the 35S promoter. Red, chlorophyll autofluorescence; green, GFP fluorescence. Arrow 

indicates a chloroplast stromule. Magnifications are indicated in bars. 
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Figure 4. Unbalanced redox status of 2-Cys PRXs in photosynthetic and non-

photosynthetic tissues of ntrc mutant plants. 

Protein extracts from leaves (L), roots (R), stems (S) and flowers (F) of Arabidopsis 

wild type and ntrc mutant plants  were subjected to SDS-PAGE under reducing (7.5 g 

of protein loaded)  (A) or non-reducing conditions (15 g of protein loaded)  (B), as 

indicated, electrotransferred to nitrocellulose sheets, and probed with anti-2-Cys PRX 

antibodies. mon indicates the monomeric; dim, the dimeic form of the enzyme. 

Molecular mass markers (kD) are indicated on the left. 



34 
 

Figure 5
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Figure 5. Effect of the presence of NTRC in leaves and roots on the redox status of 2-

Cys PRX.  

(A) Western blot analysis of the content of NTRC in leaf (30 g of protein) and root (50 

g of protein) extracts from wild type, ntrc mutant, ntrc mutant transformed with the 

empty vector (ntrc-ev) and transgenic lines expressing NTRC under the CaMV 35S, 

Rbcs, Pht1,3 and Pht1,2 promoters, as indicated, in the ntrc mutant background. 
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Proteins were subjected to SDS-PAGE under reducing conditions, electrotransferred to 

nitrocellulose sheets, and probed with anti-NTRC antibodies. (B) Aliquots (15 g of 

protein) of the same protein samples indicated above were subjected to SDS-PAGE 

under non-reducing conditions, eletrotransferred to nitrocellulose sheets, and probed 

with anti-2-Cys PRX antibody. mon, indicates monomeric; dim, dimeric form of the 

enzyme. Molecular mass markers (kD) are indicated on the left. 
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Figure 6. Effect of NTRC expression in photosynthetic and non-photosynthetic tissues 

on plant growth. 

Wild type, ntrc mutant and the different transgenic lines, as indicated, were grown 

under short-day conditions for 53 days and rosette leaves (A) or roots (B) from seven 

plants were dissected and weighed. Mean values ± standard errors are shown. The 

experiment was repeated at least three times with similar results and a representative 

one is shown. (C) Photographs of representative plants of each of the lines under 

analysis.  
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Figure 7. Effect of NTRC expression in photosynthetic and non-photosynthetic tissues 

on root growth. 

Root length for each of the Arabidopsis lines, as indicated, was determined as follows. 

Seven-day-old seedlings grown in absence of any added sugar were transferred onto 

fresh MS plates supplemented with 30 mM, final concentration, of sucrose (black bars) 

or mannitol (grey bars) for 14 additional days under short day conditions on vertical-

oriented plates. Assays were repeated three times with at least 21 plants per treatment. 

Mean values ± standard errors are shown. 
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Figure 8. NTRC is involved in lateral root formation in Arabidopsis seedlings.  

(A) Images of eleven-day-old WT and ntrc mutant seedlings, as indicated, grown under 

long day conditions. (B) Quantification of the number of lateral roots related to root 

length of seedlings of the different Arabidopsis lines, as indicated, grown for 11 days 

under long day conditions. (C) Five-day-old WT and ntrc mutant seedlings grown on 

MS media were transferred to media  supplemented with increasing concentrations of 

IAA for an additional period of 3 days. Root length was expressed as a percentage of 

root elongation of untreated seedlings, which was considered 100%. Assays were 

repeated three times with at least 21 plants per treatment. Mean values ± standard errors 

are indicated. 
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Figure 9
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Figure 9. Expression of FNR, Fd, FTR and type-f TRX in leaves and roots of 

Arabidopsis wild type and ntrc mutant plants.  

qPCR analysis of transcripts of genes encoding FNR (A), Fd (B), FTR (C) and TRX f 

(D) in leaves and roots of Arabidopsis wild type and ntrc mutant plants, which were 

grown during 14 days under short day conditions on plates containing MS medium 

supplemented with sucrose. The amount of transcripts was represented as arbitrary units 

relative to the level of one of the genes for each family in leaves, which was set to 1.0. 

Analysis was performed three times on two independent biological samples and the 

mean values ± standard errors are indicated.  
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Figure 10. Schematic representation of alternative pathways for redox regulation in root 

amyloplasts. 

In the absence of photochemical reactions, redox regulation in root amyloplasts depends 

on NADPH produced from sucrose by the oxidative pentose phosphate pathway 

(OPPP). Whilst NTRC is able to directly use NADPH for redox regulation, the 

alternative pathway requires the reduction of Fd catalyzed by FNR and the transfer of 

reducing power to amyloplast TRXs catalyzed by FTR. Evidence has been reported 

showing NTRC-dependent redox regulation in amyloplasts of AGPase (Michlaska et 

al., 2009) and 2-Cys PRX (this work). 

 


