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Nowadays, sound classification applications are becoming more common in the Wireless Acoustic Sensor Networks (WASN)
scope. However, these architectures require special considerations, like looking for a balance between transmitted data and local
processing. This article proposes an audio processing and classification scheme, focusing on WASN architectures. This article also
analyzes in detail the time efficiency of the different stages involved (from acquisition to classification). This study provides useful
information which makes it possible to choose the best tradeoff between processing time and classification result accuracy. This
approach has been evaluated on a wide set of anurans songs registered in their own habitat. Among the conclusions of this work,
there is an emphasis on the disparity in the classification and feature extraction and construction times for the different studied
techniques, all of them notably depending on the overall feature number used.

1. Introduction

In the last few years, the number of devices focused on the
monitoring and analysis of environmental parameters has
grown strongly. However, sometimes the intended purpose
is not related to the direct measurement of a parameter and
requires the analysis of complex phenomena. An example
of this is phenology, which consists of the study of periodic
plant and animal life cycle and how some events are related
to seasonal and climate variations [1].

Furthermore, reversing this study, it has been used for the
prediction of climate evolution. A proof of this fact can be
seen in some studies [2, 3] where the songs of some anuran
species are proposed as an excellent indicator of climate
change. However, these approaches are supported by a large
number of audio recordings, which are usually collected in
the field, and analyzed one by one later. Fortunately, the emer-
gence of the Wireless Acoustic Sensor Networks (WASN) [4]
has changed this approach. As an example, [5] proposes a
WASN to distinguish between some anuran species (even

between their different songs). For this, it extracts some
MPEG-7 descriptor from audio frames and applies two sim-
ple classifiers (minimum distance and maximum likelihood)
over them. Extending this studywith a datamining approach,
[6] increases the number of classifiers up to ten, using only
frame features, without any temporal relationship between
them. Furthermore, [7] proposes increasing the classification
success rate, adding additional features which reflect the
sequence of frames.

All of these studies are traditionally focused on compar-
ing different techniques of audio processing, audio feature
selection, or classification. However, a WASN approach
requires contemplating more factors, such as execution times
or the amount of transmitted information for each approach,
which can seriously condition the applicability of each one.

In this sense, this paper proposes an audio processing and
classification scheme, focusing on these kinds of architec-
tures. Additionally, it is also completed with a detailed time
analysis of the different processes involved in this proposed
scheme (from acquisition to classification stages), providing
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useful information to choose the best option with the best
tradeoff between processing time and classification result
accuracy.

Specifically, this paper is organized as follows: Section 2
shows an overview of the different processes that make up
the proposed scheme. Section 3 briefly describes the WASN
architecture for this scheme. Section 4 describes in detail the
proposed audio processing scheme, explaining the different
proposed approaches for each stage that comprises it. A
reflection of the temporal implications of each one is raised in
Section 5. Section 6 provides an extensive comparative study
of the temporal requirements of each proposed approach,
using a real problem (the classification of anurans species
based on their song) as testbed. Finally, Section 7 sums up
the conclusions.

2. Audio Process Architecture

The proposed architecture is focused in distributed solution
where the audio analysis in the distributed nodes of a WASN
is resolved. This network is made up by a mesh structure
with dynamic routing (network topology is described later in
Section 3).Thus, each network node is responsible for imple-
menting its own audio processing, from audio acquisition to
audio classification. In this sense, Figure 1 summarizes the
proposed audio processing scheme, which is made by the
following stages:

(1) Sound Framing. In this first stage, the audio signal
is captured by local microphones. Each one samples
the audio signal at 44.1 kHz, using a 16-bit codifica-
tion. This sample rate was chosen, as will be seen
later, because it is the most restrictive definition of
the analyzed standards (this frequency could be set
following the application requirements).This module
also groups these samples in frames, which will be
used as basic elements for analysis.

(2) Feature Extraction. It analyzes each frame separately,
extracting 𝐷 parameters from each one. For this
extraction, two alternative approacheswere proposed,
based on the Multimedia Content Description Inter-
face of MPEG-7 [8] standard or based on Mel
Frequency Cepstral Coefficients (MFCCs) [9]. Both
approaches will be described in detail on Section 4.1.

(3) Feature Construction. This stage uses the information
of the previous stage. It can be considered a comple-
mentary feature extraction stage, adding information
about frame evolutions (trends) or the order in which
they appear (sequences).Three approaches have been
proposed for this stage: no feature added; analysis
of adjacent frame trends; and sequences modeling.
These approaches will be described in detail on
Section 4.2.

(4) Frame Classification. Each audio fragment (frame or
sequence) is associated with one of the sound classes.
This stage applies different classifiers, which have a
different number of inputs, depending on previous
stage choices. The proposed classification technique
will be described in Section 4.3.

(5) Sound Classification. This final stage analyzes the par-
tial results associated with each frame, choosing the
most frequent class in the frame classification proc-
ess as a global classification result.

3. Wireless Acoustic Sensor Network

The proposed WASN architecture is made up of a set of
distributed nodes and a central node called base station (see
Figure 2).

On the one hand, the base station is traditionally a
standard PC, which has a radio adapter for the WASN
connection. It acts as a gateway with other network technolo-
gies and provides centralized storage and processing capaci-
ties.

On the other hand, the distributed nodes are embedded
systems, which have a wireless radio that allows them to
connect with the other network elements (neighboring nodes
and base station). Due to the remote location of the nodes, in
a natural environment, they also require an alternative power
source (i.e., solar systems), supported by batteries to guar-
antee their operation in adverse environmental conditions.
This fact makes the consumption a critical constraint in these
nodes, requiring drastic reductions in computational and
radio power consumption. However, low power transceivers,
such as ones based on IEEE 802.15.4 [10], have a limited
coverage, precluding the communication between the base
station and nodes. Due to this, mesh topologies are typical in
these applications, routing themessages through neighboring
nodes, and using protocols that support these structures
(e.g., ZigBee [11] and 6LowPAN [12]). Additionally, another
critical limit is the bandwidth restrictions. In traditional
audio applications, each node often sends the raw data (441
samples per frame). However, this approach requires a lot
of energy and can greatly overload the network. Against
this, the proposed approach poses to send only the essential
information, even reducing the payload up to a single data
(the class to which the sound belongs).

Specifically, depending on user needs, different tradeoffs
between the amount of transmitted information (radio con-
sumption) and execution time (computational cost) can be
established. In this sense, each network node must be able
to locally characterize and classify sounds, where the lowest
classification error is not the only objective. Furthermore,
computational requirements of the each algorithm must
also be considered for its viability over these kinds of plat-
forms.

Due to this, in the next sections, the proposed scheme is
detailed and completed later with a comprehensive analysis
of their execution performance in each audio classification
stages.

4. Feature Extraction and Classification

As it was introduced above, the audio features extraction is
done frame by frame, obtaining several parameters for each
one. Later, based on these first direct features, this informa-
tion set is completed with second features construction stage,
where new additional estimated information is provided.
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(1) Sound framing

(5) Sound classification

(2) Frames’ feature
extraction

(3b) Frames’ feature
construction

(3c) Segment modeling

(4b) Frame sequential
classification

(4c) Segment sequential
classification

(4a) Frame nonsequential
classification

Figure 1: Audio processing scheme.
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Table 1: MPEG-7 features and their origin analysis.

Feature Symbol Based on
Total power 𝑃𝑡

Spectrogram
analysis

Relevant power
(power in a certain frequency band) 𝑃𝑟

Power centroid 𝐶𝑝
Spectral dispersion 𝐷𝑠
Spectrum flatness 𝐹𝑙
Frequency of the formants (×3)
(the three first formants are considered) 𝐹𝐹𝑛

Linear
prediction

coding (LPC)
analysis

Bandwidth of the formants (×3)
(the three first formants are considered) 𝐹𝐵𝑛

Pitch 𝑃𝑖
Harmonic centroid 𝐶𝐻
Harmonic spectral deviation 𝐷𝐻
Harmonic spectral spread 𝑆𝐻
Harmonic spectral variation 𝑉𝐻
Harmonicity ratio 𝑅𝐻 Harmonicity

analysisUpper limit of harmonicity 𝐹𝐻

Both analyses are detailed in the two next subsections, while
the classification stage is analyzed in the third.

4.1. Frame Feature Extraction. In this work, the feature
extraction of a frame has two approaches. On the one hand,
the first proposed approach consists of extracting the features
defined byMPEG-7 standard.This standard defines a sample
rate of 44.1 kHz and recommends a hopSize of 10ms. Both
constraints define the frame size for this application, involv-
ing a set of 441 samples. To characterize this information, up
to 18 parameters have been defined (𝐷 = 18, see Table 1),
which are derived from three kinds of base analysis:

(i) Spectrogram Analysis 𝑆(𝑓). It uses the Fast Fourier
Transform (FFT) to identify the frequency compo-
nents of a frame. From this analysis, up to 5 MPEG-7
features are defined (see Table 1).

(ii) Linear Prediction Coding (LPC) Analysis. It poses that
a sound 𝑠(𝑛) can be calculated as a linear combination
of past samples and an error signal. LPC analysis
models a sound source using a harmonic generator,
a noise generator, and a digital filter (which charac-
terizes the vocal tract). The characteristic polynomial
roots of this filter are complex, play a key role in
this technique, and determine the different formants
(resonant notes) in the audio samples. The formants
are defined by its frequencies (𝑓𝑖) and bandwidths
(𝐵𝑖). From this LPC analysis, up to 11 MPEG-7
parameters are defined (see Table 1).

(iii) Harmonicity Analysis. It represents the degree of
acoustic periodicity and is based on an autocorrela-
tion analysis 𝜌(𝑘) of the audio samples 𝑠(𝑛). From this
analysis, up to 2 MPEG-7 features are defined (see
Table 1).

For more details, MPEG-7 standard [5, 8] widely des-
cribes the definitions and extraction techniques of these fea-
tures.

On the other hand, other alternatives propose an MFCC
analysis for the feature extraction. MFCCs are based on the
sound cepstral through its homomorphic processing [13].
Thus, this analysis is a widely extendedmethod for audio fea-
tures extraction (i.e., for speech recognition). However,
MFCCs have the disadvantage that they do not have any gen-
eral purpose standardized method, although, for telephony
applications, the ETSI standard [14] defines an extended pro-
cedure to obtain these coefficients. However, this approach
requires some tuning to make it comparable with the first
feature extraction alternative described above. Specifically,
this modification is related to the frame size. ETSI standard
proposes a frame length of 25ms for a sample rate of 16 kHz,
obtaining 400 samples per frame. In our case, the sample rate
chosen for this work (44.1 kHz) is not defined in this stand-
ard and, keeping the frame length, the number of samples per
frame increases above a thousand. So, resembling theMPEG-
7 approach, a frame size of 10ms has been proposed, which
leads to a number of samples per frame (441) quite similar
to the ETSI standard recommendation (400). Furthermore,
according to this approach, the number of MFCCs to repre-
sent a frame is 13 (𝐷 = 13).

4.2. Frame Feature Construction. In previous section, D
direct features were extracted from each frame. However,
these features do not consider the intrinsic sequential char-
acteristic of the sound temporal evolution. So, this sequential
information should be added constructing some more new
features. Three constructing feature approaches have been
considered: no new feature being added (for comparison
purposes); trend analysis of adjacent frames; and sequences
(groups of N frames) modeling.

4.2.1. No Feature Construction. This approach represents “a”
or left branch in Figure 1 and consists directly in not deriving
any additional information, considering the direct frame
information enough for the next classification stage.

4.2.2. Feature Construction Using Frame-Trend Analysis. This
approach represents “b” or the center branch in Figure 1 and
consists of combining extracted information of the frame
under analysis with the extracted features of its neighbors,
obtaining C, new features for the next stage. Specifically, up
to three alternatives are proposed as follows:

(a) Regional Dispersion (RegDis) [15]. This approach consists
of using an analysis sequence of𝑁 frames (composed by the
frame under analysis and its adjacent ones), each one being
characterized by its𝐷 extracted features.The general idea for
this feature construction technique is to use the time axis to
construct new temporal axis based features. Commonly, these
techniques are based on the frame feature’s values without
considering their order, which is usually called a bag of
features. Average values or some other related statistics are
usually employed. In our case some of the anuran calls to
be classified show the typical croaking of a frog while others



Wireless Communications and Mobile Computing 5

are similar to a whistle. The croaking sound is produced
by repeatedly opening and closing the vocal cords (roughly,
every 10msec., the frame length) leading to a sequence of
frames featuredwith highly spread values. On the other hand,
the whistle-like sounds is produced by a continuous air flow
showing low spread in feature values. So, to incorporate this
information in the classification process a new set of features
is constructed considering not the average but the spread of
the extracted feature values. And to avoid the influence of
outliers, the interquartile range instead of the standard devi-
ation is selected. In the implementation used in this paper,
first for every frame, a “window” centered in that frame is
considered, using the closest neighbor frames. And for every
original parameter, a new derived parameter is constructed.
For this purpose the values of the original parameter for
every frame in the window are considered. The interquartile
range of these values (the difference between 75th and 25th
percentiles) is computed, and this value is considered the new
derived parameter. In this way, the number of constructed
features is𝐶 = 𝐷, so up to 2×𝐷 parameters (a vector inR2×𝐷)
are now identifying a frame, where 𝐶 of them include some
kind of sequential information. In this approach a 10-frame
window size (100msec.) has been used.

(b) Δ Parameters. This second approach characterizes the
trend (ascending or descending) that follows a frame feature
sequence. It is in some sense the derivative of each extracted
feature, following the expression of [16]. In this sense, for each
frame, one trend feature per each extracted one is constructed
(𝐶 = 𝐷). Additionally, this procedure can also be extended to
second-order derivative (Δ2 parameters) or even higher. The
total number of features after applying this technique will be
𝐷 + 𝐶 = 2 × 𝐷 (in case of using Δ parameters) or 3 × 𝐷
(𝐶 = 2 × 𝐷, in case of using Δ and Δ2 parameters).

(c) Sliding Windows (SW) [17]. This last trend-analysis ap-
proach proposes the use of a short window made up of a
sequence of 𝑤 adjacent frames, centered in the frame under
analysis. In this approach, the constructed features are the set
of the𝐷 extracted features for every frame under the window.
Therefore, in this method, the total number of features for a
frame will be 𝑤 × 𝐷.

4.2.3. Feature Construction Using Sequence-Based Modeling.
The last alternative is represented by “c” or right branch in
Figure 1. It consists of using techniques which directly analyze
sets of frames (or audio segments). Specifically, for this paper,
two approaches have been studied.

(a) Autoregressive Integrated Moving-Average (ARIMA) Mod-
els [18].This method starts from aXmatrix, which character-
izes an audio sequence with𝑁 frames, transforming it into a
vector A, which is made up by coefficient matrices (X→ A).
ThematrixX has a dimension of𝑁×𝐷, containing𝑁 vectors
of parameter (Xi ∈ R𝐷) associated with each frame of the
audio segment. Thus, to obtain the vector A, it considers that
the sequence of frame features (Xi) is the result of a Vector
ARIMA temporal series, VARIMA (𝑝, 𝑑, 𝑞). It is defined by
(1), in which 𝑝 is the order of the autoregressive model, 𝑑 is

the degree of differencing, and 𝑞 is the order of the moving-
average model:

X(d)i = C0 +
𝑝

∑
𝑘=1

AkX
(d)
i−k +

𝑞

∑
𝑘=1

Bk𝜀i−k + 𝜀i. (1)

Ak andBk are two coefficientmatrices, which have a𝐷×𝐷
dimension.C0 is a vector, which represents the average vector
time series and has 𝐷 components. Usually, this time series
is normalized, so that C0 vector has a null mean and it is
being typically omitted. Due to this, the parameter number to
characterize a sound segment is (𝑝 + 𝑞) × 𝐷2. Additionally, it
is also typical to assume that the time series is stationary (𝑑 =
0), and VARMA models can be approximated by equivalent
VARmodels (𝑞 = 0).Therefore, using theAkaike Information
Criterion (AIC) [19], it is possible to find an optimal value
of the model order (𝑝) and Ak matrix using a maximum
likelihood technique [20].

In this sense, this method provides 𝑝 × 𝐷2 features to
characterize each sound segment, which will be used by
nonsequential classifiers on the next stage.

(b) HiddenMarkovModels (HMM) [21]. Firstly, a HMM takes
the 𝐷 extracted features of each frame (Xi ∈ R𝐷) of the
segment, quantizing them [22] and obtaining an observation
𝑂𝑖, which is defined by the integer code 𝑐𝑘 in the [0, 𝐶 − 1]
range. An HMM has several connected states (defined by S),
which produce an observation sequence. For isolated “words”
(anuran calls) recognition, with a distinct HMMdesigned for
each class, a left-right model is the most appropriate, and the
number of states should roughly correspond to the number
of sounds (phonemes) within the call. However, differences
in error rate for values of𝑁 close to 5 are small.The structure
and the value of 𝑁 have been taken from [21]. The 𝑆𝑎 state
generates the 𝑐𝑘 code with a 𝐸𝑎𝑘 probability and evolves to
𝑆𝑏 with a 𝑇𝑎𝑏 probability. E and T matrices of each class 𝜃
are obtained by the pattern frames of each class (Π𝜃), using
a forward-backward algorithm [23]. Once the parameters
of an HMM are estimated (following structure proposed in
Figure 3), this algorithm takes the observation sequence of a
sound segment (formed by𝑁 frames), which is characterized
by its 𝑁 × 𝐷 features and computes the probability that the
sequence had been generated by the HMM of each class.
Finally, the segment is labeled as belonging to the sound class
with the highest probability from the above computation.

4.3. Feature and Sound Classification. Once the different
alternatives of frame featuring have been analyzed, the next
step is using these features to identify the class to which
they belong (step (4) of all branches in Figure 1). Except
for classifiers such as HMM, which intrinsically consider the
sequential character of the sound, the remaining classification
procedures proposed in this paper have a nonsequential phi-
losophy. That is, they require increasing their input set with
some additional constructed features to acquire the sequen-
tial information (using the methods explained in Section 4.2
or by building ARIMAmodels). All of the classifiers that will
be considered perform a supervised classification. That is,
they compare the constructed features of a sequence to sound
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Figure 3: HMM structure.

patterns of known classes and identify the class to which
it belongs. Specifically, as a representative example of these
kinds of techniques, several classifiers have been studied in
this paper:minimumdistance (MinDis) [24],maximum like-
lihood (MaxLik) [25], decision trees (DecTr) [26], 𝑘-nearest
neighbors (𝑘NN) [27], support vector machine (SVM) [28],
logistic regression (LogReg) [29], neural networks (Neur)
[30], discriminant function (Discr) [31], and Bayesian classi-
fiers (Bayes) [32]. This set represents general purpose classi-
fiers which are well suited for this kind of applications [6, 33].

In the final stage, (5) of Figure 1, once all frames of a sound
have been classified, the most repeated class in them is finally
assigned as the global classification for the audio file.

5. Considerations about Classification Times

In previous sections, different implementations or alterna-
tives for animal sound analysis have been proposed.However,
from an implementation point of view, these algorithms are
not trivial and may require a lot of execution time.

In this sense, an exhaustive time analysis of each stage is
essential to guarantee the real-time application. Specifically,
and according to the previous section, the analysis time
can be divided into five stages: audio acquisition, frame
feature extraction (direct frame analysis), frame or sequence
feature construction (frame set or sequence analysis), feature
classification of each frame, and finally the global sound
classification. However, for some of them, their processing
times are not static. Specifically, as was described in previous
sections, an animal sound can be characterized by a set of
𝑃 features (or by a point in the R𝑃space). Therefore, as will
be seen in the next sections, this space dimension (or feature
number) is a keystone in processing time studies, affecting the
following ways:

(i) The features extraction time of each frame grows
when the number of these parameters increases.

(ii) The features construction time of additional informa-
tion for each frame (or sequence) grows when the
number of direct or additional parameters increases.

(iii) The classification time of each frame (or sequence)
increases with its features dependency.

(iv) As it will be addressed in Section 6.4 (see Figure 22),
the classifier generation time increases with the num-
ber of features for most algorithms, some of these

growths being very intense (between one or two
orders of magnitude).

Considering the three first times in the former list, their
sum is an important restriction in real-time audio processing
applications, where this total time must always be less than
the audio fragment duration. In this sense, this constraint
makes an exhaustive comparative time study of all proposed
alternatives essential, seeking the best tradeoff between the
feature number and the time available.

Moreover, although not directly related to real-time
applications, the time needed to obtain the classifiers is
also related to the feature space dimension. Due to this,
a comparative analysis of this time could also be useful,
especially in applications with a dynamic knowledge base in
which the training process is repeated periodically.

From all of the above, these times have been studied in
the next section in detail.This analysis makes the comparison
between the different proposed alternatives possible, identi-
fying the least computationally demanding.

6. Results and Discussions

As a testbed of the previously described strategy, 63 sound
files provided by the Zoological Sound Library [34] were
used. Specifically, these files correspond to two anuran
species; the Epidalea calamita (natterjack toad) and theAlytes
obstetricans (common midwife toad), with a total of 605,300
frames, every one of 10ms. length, that is, a total of 6,053 sec-
onds.These audio files have a total duration of 1 h:40:53, an
average duration per file of 96 seconds (1:36) and a median
duration of 53 seconds. This is a large dataset as the total
number of observations which has to be classified is 605,300
(most of the algorithms considered in this paper are frame-
based classifiers). For training purposes, a small portion
of these frames (13,903), properly selected and labeled by
biologists, was used as sound patterns (see detailed summary
in Table 2).

Furthermore, a common characteristic to all of these
sounds is that they were recorded in a natural habitat with a
significant presence of noise (wind, water, rain, traffic, voices,
etc.), which poses an additional challenge in the classification
process.

Although the whole process was designed to be finally
implemented in distributed nodes, this study was imple-
mented over a laboratory prototype, equipped with an Intel�
Core� i7-4770 processor at 3.4GHz and 8GB of RAM. All
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Table 2: Testbed audio details.

Sound class Sound Patterns
Files Seconds Files Seconds Frames

Epidalea calamita
(mating call) 23 2,576 2 21 1,439

(10.35%)
Epidalea calamita
(release call) 10 415 1 29 248

(1.78%)

Alytes obstetricans 30 3,062 2 89 375
(2.70%)

Silence/noise — — — — 11,841
(85.17%)

Total 63 6,053 5 139 13,903
(100%)

the algorithms have been coded inMATLAB�with an imple-
mentation that does not explicitly exploit code parallelism
over the different cores. However, the MATLAB by default
built-in multithreading computation has been exploited.

The next sections show and discuss processing time
results related to the classification of these sounds.

6.1. Frame Feature Extraction Time. As it was mentioned
in Section 4.1, obtaining the MPEG-7 features of a single
frame requires applying three basic techniques; spectrogram,
LPC, and harmonicity analysis. Later on, a specific derivation
is also necessary for each feature. Table 3 summarizes all
of these times where it can be seen that, for instance,
obtaining the power centroid (𝐶𝑝) requires computing a
spectrogram (primary process) and performing an additional
specific center-of-mass calculation (or secondary process).
Obviously, to obtain other features based on the same pri-
mary process, only adding the time of its secondary process
is required. This fact can condition the feature selection,
the feature type (primary process dependency) being more
important than the number of them within it.

On the other hand, the MFCC features use a single
process, being calculated all at once (see Table 3).

In summary, the extraction time for the full MPEG-
7 feature set is 3.2ms (approx. 1/3 of frame duration).
MFCC feature set requires 45 𝜇s, a time significantly lower
than the previous one (and lower than the duration of the
frame). MFCCs are calculated simultaneously, and they use
an algorithm based on a spectrogram analysis (due to this, its
time is similar to the MPEG-7 spectrogram process).

In this sense, a reduction in MPEG-7 feature dimension-
ality (reduction in the number of features extracted) will
improve this time of frame features extraction. However, as
discussed above, this time is strongly conditioned by the
parameter type (or their primary process needs), obtaining a
significant reductionwhen any of them is not necessary. Con-
versely, a reduction in MFCC feature dimensionality does
not involve any reduction in this time, since all are obtained
simultaneously.

6.2. Frame Feature Construction Time. Following the tech-
niques described in Section 4.2, the construction of addi-
tional features extends the information associated with each
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Figure 4: Sliding window behavior for different number of features.

frame. In this sense, Table 4 shows, for every feature construc-
tion technique (first column), the time spent (4th column)
and the accuracy obtained (5th column) when these con-
structed features are used with the best of the classifiers con-
sidered in Section 4.3 (6th column). As it can be seen, all the
times, with the exception of the ARIMA method, show very
small values (below 1% of the total frame duration).

However, the calculation times of these parameters pre-
sent a significant dependence on the number of parameters.
Figure 4 shows the relationship between SW construction
time and the number of features (for different window sizes).

In this figure, it is easy to note that the construction time
shows an approximately linear behavior. Moreover, this time
also has a lineal dependence on the window size (as it can be
clearly seen in Figure 5). Similar behavior was obtained for
MFCCs.

In HMM technique, for each sequence, the feature con-
struction consists of converting the original parameter vector
(Xi) into a scalar observation (𝑂𝑖) through a quantization
process. In this sense, the HMM processing time also signif-
icantly depends on the number of features. Figure 6 shows
this dependency for the case ofMPEG-7 parameters. As it can
be seen in this figure, HMM construction time is defined by
a piecewise function, approximately linear to steps between
sections.

Moreover, ARIMA analysis consists of converting the
original parameter matrix (X ∈ R𝑁×𝐷) into a vector of
coefficient matrices (A ∈ R𝑝×𝐷

2

), modeling its time series.
This technique characterizes an audio sequence (or a frame
set). Due to this, for an adequate comparison with other
techniques, the ARIMA sequence feature constructing times
have been normalized to its equivalent frame times (dividing
by the number of frames in the sequence).

Like other techniques, this time also significantly depends
on the number of features. Figure 7 depicts this time
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Table 3: Time analysis of the frame feature extraction.

Parameter type Requirement Feature
Processing time

Secondary
(𝜇s)

Total
(𝜇s)

MPEG-7
(17)

Spectrogram, primary processing time 41.33 𝜇s

𝑃𝑡 2.48 43.80
𝑃𝑟 20.23 61.55
𝐶𝑝 9.42 50.75
𝐷𝑠 14.01 55.33
𝐹𝑙 52.22 93.55

LPC, primary processing time 1,777.92 𝜇s

𝐹𝐹𝑛 0.00 1,777.92
𝐹𝐵𝑛 0.00 1,777.92
𝑃𝑖 0.00 1,777.92
𝐶𝐻 5.86 1,783.78
𝐷𝐻 8.75 1,786.67
𝑆𝐻 1.87 1,779.79
𝑉𝐻 2.78 1,780.70

Harmonicity, primary processing time 1,262.02 𝜇s 𝑅𝐻
𝐹𝐻

0.00
0.00

1,262.02
1,262.02

MFCC
(13) 44.29 44.29

Table 4: Time analysis of the feature construction process.

Feature
constr.

Feature
type

Number of
features

Processing
time (𝜇s) Accuracy Best

clas.

RegDis MFCC 13 85.74 92.59% Bayes
MPEG-7 18 99.60 91.53% DecTr

Δ MFCC 13 0.388 94.71% Bayes
Δ + Δ2 MFCC 13 0.652 94.71% Bayes
SW
(5
frames)

MFCC 13 10.62 94.71% Bayes
MPEG-7 18 14.72 91.53% DecTr

HMM MPEG-7 18 84.39 84.13% —
ARIMA
(3,0,0) MPEG-7 18 25,613.0 70.37% Bayes

dependency when MPEG-7 features are used, showing an
exponential increase when the number of features character-
izing each frame (𝐷) also increases.

6.3. Frame (or Sequence) Classification Time. Once the fea-
ture extraction and construction processes are analyzed, the
next step must be to analyze the classification procedure
based on these features.

In a first stage, only extracted (or nonsequential) features
will be considered for classification purposes ((4a) or left
branch approach in Figure 1). As an example, Figure 8 shows
the time spent by the decision tree (the best classifier among
the proposed ones) to classify sounds of different duration
(or different number of frames), using the complete MPEG-
7 feature set. This classification time follows a clear linear
behavior (red line), this trend being similar to behavior
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Figure 5: Sliding window behavior for different window size.

obtained for the every proposed classifier.Therefore, it is pos-
sible to assume that the sound classification time is approxi-
mately proportional to the number of its frames, or, in other
words, that the classification time per frame is approximately
constant for the different proposed classifiers.

In this sense, Table 5 shows a summary of this time anal-
ysis. Additionally, it also shows the classification time relative
to the standard frame length (10ms), the relative classifica-
tion speed (the number of frames classified in a frame length),
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Figure 7: ARIMA behavior for different number of features.

and the accuracy of the classification process when 18MPEG-
7 features are used. A more detailed explanation of the classi-
fication performance can be found in [6].

Obviously, for real-time audio processing, this relative
timemust be less than 100% (or in the samewords, the relative
speed must be greater than 1). As it has been previously
shown, all the algorithms fulfill these conditions, however
two of them being significantly slower: maximum likelihood
and 𝑘-nearest neighbors. This information is also depicted
in Figure 9 (using a logarithmic scale), which also indicates
the upper time limit (using a dashed red line) if a real-time
analysis is required.

However, the classification time per frame directly
depends on the number of features used (or input parame-
ters). In this sense, Figure 10 shows this dependence, where
its vertical axis is normalized by the maximum classification
time of each technique (obtained for 18 features).
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Figure 8: Decision tree classification time versus sound duration.

Table 5: Time analysis of the classification stage.

Classifier
Classification

time
(𝜇s)

Normalized
time
(%)

Speed
(classif. per
frame)

Accuracy
(MPEG-7)

MinDis 15 0.15% 690 58.73%
MaxLik 1175 11.75% 9 86.24%
DecTr 7 0.07% 1389 91.53%
kNN 207 2.07% 48 82.01%
SVM 27 0.27% 372 82.01%
LogReg 7 0.07% 1515 76.72%
Neur 8 0.08% 1333 75.66%
Discr 8 0.08% 1299 77.78%
Bayes 7 0.07% 1449 80.95%

In general, it is possible to identify an upward trend in
the classification time with the number of features for most
algorithms. Figure 11 shows the linear regression line for
this dependence. It reflects a moderate 20% increase when
the number of features increases from its minimum to its
maximum value.

Another issuewhich has to be addressed is the effect of the
number of classes on the processing times. It has no influence
on feature extraction and feature construction times as these
processes precede (and independent of) the definition of
classes. However, the number of classes does potentially have
influence on classification times. To explore this topic the
original dataset has been modified introducing additional
classes (anuran species or sounds) and labeling every frame
with a uniformly distributed random class (silence/noise is
considered as a class). It has to be underlined that they are not
real classes and their only purpose is for testing the impact of
the number and distribution of classes on processing times.
Figure 12 shows the results obtained for every algorithm and
its linear regression (dashed red line in the figure). Formost of
the classifiers, there is a moderate increase when the number
of classes increases.
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Figure 9: Relative classification time per frame using 𝐷 = 18
extracted features.
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Figure 10: Normalized classification time for different number of
features.

Following the scheme proposed in this paper, the next
step considers the sound sequential information using frame-
trend features (branch (4b) of Figure 1). This classification
extracted and constructed features are combined, using them
as input of the nonsequential classifiers being described
above. Specifically, frame trends are extracted using regional
dispersion, Δ parameters, or sliding window. However, as it
was seen above, these construction techniques can signifi-
cantly increase the total number of features. In this sense,
sliding window is the most restrictive (worst) case which,
using a window with 𝑤 frames, determines the use of 𝑤 × 𝐷
features in the classifier.
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Figure 11: Linear regression of classification time (results of all
classifiers).
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Figure 12: Normalized classification time for different number of
classes and its linear regression (dashed red line).

Figure 13 shows the normalized classification time (for
a 10ms frame length) corresponding to each analyzed algo-
rithm, when the full set of MPEG-7 features (18) and the SW
with a window size of 10 is used.

As in the previous analysis, all studied classifiers fulfill the
time constraints to operate in real-time mode, nevertheless
the maximum being the likelihood and 𝑘-NN results close to
the feasibility limit.

Obviously, this time also depends on the number of
features, which directly depends on the configuration of the
construction method (i.e., window size for SW). Figure 14
shows the classification time as a function of the number of
parameters when a feature construction method is used. In
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Figure 13: Relative classification time per frame using sliding
windows.
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Figure 14: Normalized classification time for different number of
features (extended to constructed features).

this figure, a SW with a window size of 10 frames has been
used and the time values (vertical axis) have been normalized
by the maximum feature dimension (10 × 18).

In this sense, it is easy to note that there exists a global
increasing behavior in the classification time depending on
the number of feature.This trend is clearly shown in Figure 15
where the linear regression of global data (all classifiers) has
been represented.Thus, it is possible to observe that the global
difference between 18 features (window size of 1, not adding
any trend-frame information) and 180 features (window size
of 10, maximum studied dimensionality) shows a remarkable
increase of approximately 50%.
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Figure 15: Linear regression of classification time (results of all
classifiers extended to constructed features).

Table 6: HMM classification time for an audio segment.

Classifier Classification
time

Classification
speed

Accuracy
(MPEG-7)

HMM 12.56ms/s
(1.26%) 80 84.13%

To finish the study of the classification time, the last topic
to be addressed is the sound segment (frame or sequence)
classification ((4c) or right branch of Figure 1). Specifically,
in this approach, two techniques have been evaluated: HMMs
and ARIMA models.

Figure 16 shows the HMM classification time as a func-
tion of the sound duration, when the minimum or the maxi-
mum number of MPEG-7 features are used. In this figure,
it is easy to identify a clear linear trend where the classifica-
tion time increases with the sound duration. So, it can be con-
cluded that the unitary classification time is approximately
constant, and it increases with the number of features.
Specifically, Table 6 shows the HMM classification time and
classification speed for the 18 MPEG-7 features set. As the
unitary classification time is less than 100%, it is possible to
claim that this algorithm is suitable for real-time processing.
Figure 17 reflects the dependency of this classification time
with respect to the number of features.

Conversely, ARIMA approach (as it was described above)
uses the same classifiers as those applied for frame classifica-
tion, now usually increasing the size of the feature set. There-
fore, the classification time is the same as that has already
been analyzed above and is reflected in Figure 14. The best
result corresponds to the Bayesian classifier with an accuracy
of 70.37%.

Finally, the last step is the classification of the full sound
file (process (5) of Figure 1). But this classification is just a
simple count of frame or segment classes, where the soundfile
is labeled as belonging to themost frequent frame class.Thus,
its processing time (approx. 10 ns) is negligible in comparison
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Figure 16: HMM classification time for different durations.
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Figure 17:HMMclassification time for different number of features.

with previously analyzed classification processes, so it will be
ignored in this analysis.

6.4. Classifier Generation Time. After studying temporal
requirements of the three proposed stages for the audio
fragment classification, the next study will be the time
required to obtain each classifier. Obviously, this time is less
critical than those previously studied, since this stage is not
properly concerned in the real-time classification process.
However, this study would be of interest in cases where the
knowledge base is dynamic, or it has a periodic or iterative
training approach. In addition, it is true that the techniques
proposed (based on supervised classification approach) may
have significant deviations in the training period (depending
on the training data; the number of patterns; or their content).
Nevertheless, its results can be taken as a starting point
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Figure 18: Classifier generation time (for the full MPEG-7 feature
set).

to get some knowledge in comparing classifier generation
times.

Following the structure of this paper, the first analysis is
focused on the classifiers for nonsequential analysis (only a
single frame is considered). Figure 18 shows (in logarithmic
scale) the times required to obtain every classifier, using as
input patterns the set of 13,903 frames with the full set of
MPEG-7 features (18). Although some of these times are
highly valued for certain algorithms (several tens of seconds),
this fact does not make it a great challenge because, as it was
already mentioned, the classifiers are off-line generated and
they only have to be obtained once.

At a first glance, these generation times just depend on the
number of features. But a deeper insight into the classification
process shows that they also depend on the number of
patterns and even their values.Therefore, in order to compare
how the reduction of the number of features affects over these
times, several trainings with different feature set (mixing all
of them) have been performed as patterns. Figure 19 collects
this information, averaging the data obtained for the different
training data sets. It is important to note that vertical axis is
logarithmically scaled, and its values are normalized by the
classifier generation time when the full MPEG-7 feature set is
considered (see also Figure 18).

Additionally, the number distribution and proportion of
classes could have a certain impact on the time required to
train a classifier. To explore this issue, as it was previously
mentioned, the original dataset has been modified intro-
ducing additional classes (anuran species or sounds) with a
random distribution and proportion. Figure 20 shows the
results obtained that reveals, for most of the algorithm, a very
limited influence (with the logistic regression classifier as the
only remarkable exception).

Now, let us focus the analysis in the cases where frame
sequence information is added, that is, when some features
are constructed using regional dispersion, Δ parameters,
or sliding window techniques. As it was seen above, these



Wireless Communications and Mobile Computing 13

0 2 4 6 8 10 12 14 16 18
Number of parameters

N
or

m
al

iz
ed

 ti
m

e f
or

 o
bt

ai
ni

ng
 cl

as
sifi

er
s (

se
c.)

MinDis
MaxLik
DecTr
kNN
SVM

LogReg
Neur
Discr
Bayes

102

101

100

10−1

10−2

Figure 19: Normalized classifier generation time for different num-
ber of features.
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Figure 20: Normalized classifier generation time for different num-
ber of classes.

construction techniques can significantly increase the total
number of features. In this sense, sliding window is the
most restrictive (worst) case which, using a window with 𝑤
frames, determines the use of 𝑤 ×𝐷 features in the classifier.
Figure 21 summarizes the classifier generation times using the
full MPEG-7 feature set and a window size of 10 (reaching a
total of 180 features).

As for nonsequential classifiers, Figure 22 shows the
generation times as a function of the number of features used.
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Figure 21: Classifier generation time (using the fullMPEG-7 feature
set and SW with a windows size of 10).
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Figure 22: Normalized classifier generation time for different
number of features (extended to constructed features).

This relationship has been analyzed with a large number of
pattern combinations (mixing all of them) and then averaging
all performance data from different training processes. It is
important to note that vertical axis also is logarithmically
scaled, and its values are normalized by the classifier gener-
ation time when the full MPEG-7 feature set is considered
(180).Thus, it is easy to note that the classifier generation time
increases with the number of features for most algorithms,
some of these growths being very intense (between one or two
orders of magnitude).

Finally, the last concern of this analysis will be the
generation times for sequential classifiers, that is, HMM and



14 Wireless Communications and Mobile Computing

0 2 4 6 8 10 12 14 16 18
50

100

150

200

250

300

Number of parameters

Ti
m

e f
or

 o
bt

ai
ni

ng
 th

e c
la

ss
ifi

er
 (s

ec
.)

Figure 23: HMM classifier generation time for different number of
features.

ARIMA models. In the first of these approaches (HMM),
Figure 23 shows the time needed to obtain the classifier based
on the training patterns (averaging its results among the
different combinations or training sets). In this sense, it is easy
to note that, for more than three features, the generation time
exceeds the audio fragment duration (139 sec., see Table 2).

On the other hand, audio classification using ARIMA
models uses the same classifiers previously considered,
although increasing the feature set dimension. In this sense,
the generation times of these classifiers will show the same
results to those analyzed above (Figure 22).

7. Conclusions

Throughout this paper, an animal voice classification scheme
forWASNhas been proposed.This scheme proposes different
alternatives to achieve this goal, always taking into account
the power composition limitations of these kinds of plat-
forms. In this sense, this paper is completed with a detailed
comparative time study of each proposed algorithm within
the scheme. It has been possible to find a tradeoff between
the classification result accuracy and the required processing
time.

From this analysis, several conclusions can be high-
lighted. For example, MPEG-7 feature extraction requires an
important relative computational load (around of 30% of the
audio fragment time). Conversely, this load falls to 0.5% for
MFCC extraction time, considerably reducing the computa-
tional load. Additionally, it is easy to note that most fea-
ture construction techniques (either adding frame trend or
sequential information) require a low processing cost, rang-
ing approximately between the 1% of the frame time for
regional dispersion or HMM and the 0.1% for sliding win-
dows. Conversely, ARIMA models significantly exceed this
limit where classification times exponentially grow with the
number of features. For the first classification stage, it is also
easy to note that the classification time depends remarkably
on the type of classifier and the number of parameters (as

it can be seen in the different comparisons). However, these
requirements are also typically low (between 0.1% and 1%
of the frame duration). Only in two of them (maximum
likelihood and 𝑘-neighbors), this time reaches up to the
40%, which could jeopardize its application to real-time
classification. Finally, although classifier generation times
do not affect its real-time capabilities, it could be useful in
systems with dynamic knowledge base, increasing some of
them (i.e., logistic regression, SVM, or HMM) several orders
of magnitude respect to others with lower computational cost
(minimal distance and 𝑘-NN).

From an implementation approach, a first result indicates
that the proposed prototype for anuran song classification is
able to operate in real-time, taking all alternatives less than
the audio duration. Thus, some concerns have to be taken
into account when this algorithm is deployed in a WASN
node (typically with fewer resources). In this sense, these
potential node limitations could be easily compensated with
the Digital Signal Processing (DSP) resources, commonly
available in modern platforms for this purpose (i.e., ARM�
Cortex�-M4 processes), which would greatly reduce feature
extraction times (one of themost costly phases in theMPEG-
7 approach). Additionally, a reduction in the sample rate
could also be occasionally possible if it was necessary.
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