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Abstract

In this paper, we focus on studying the existence of attractors in the phase spaces L2(Ω) and
Lp(Ω) (among others) for time-dependent p-Laplacian equations with nonlocal diffusion and non-
linearities of reaction-diffusion type. Firstly, we prove the existence of weak solutions making use
of a change of variable which allows us to get rid of the nonlocal operator in the diffusion term.
Thereupon, the regularising effect of the equation is shown applying an argument of a posteriori
regularity, since under the assumptions made we cannot guarantee the uniqueness of weak solu-
tions. In addition, this argument allows to ensure the existence of an absorbing family in W 1,p

0 (Ω).
This leads to the existence of the minimal pullback attractors in L2(Ω), Lp(Ω) and some other
spaces as Lp

∗−ε(Ω). Relationships between these families are also established.
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1 Introduction

Nonlocal problems have become of great interest in many fields by their applications. They play
a key role in Medicine [8], in the industry [16, 28] and last but not least, to study the behaviour
of a population with accuracy [24]. Within this framework, Chipot and Rodrigues [12] analyse the
behaviour of a population of bacteria in a container considering an elliptic nonlocal diffusion equation.

In the parabolic setting, an equation with nonlocal diffusion which has caught the attention of
many authors has been

ut − a(l(u))∆u = f,

where a ∈ C(R;R+) is bounded from below by a positive constant, and l ∈ L(L2(Ω),R).
Despite the similarities between the heat equation and the previous one, which looks like a simple

perturbation, several difficulties arise in different contexts when nonlinear diffusion appears. For
instance, the existence of a Lyapunov structure is only guaranteed under suitable assumptions (see
[11] for more details) or for some specific nonlocal operators (cf. [14, 13]).

Regarding the above parabolic equation and its variations, a wide range of results have been
published analysing comparison results between the solution of the evolution problem and station-
ary solutions [10, 11], the existence of global minimizers [14], the convergence of the solution of the
evolution problem to a stationary solution [15], existence of pullback attractors [3, 4] or the upper

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


semicontinuous behaviour of attractors [4], amongst others.

When the Laplace operator is replaced by the p-Laplacian, there are only two papers [13, 5] in which
close nonlocal problems are analysed. The p-Laplacian appears in a wide range of areas in Physics
(see [34, 35, 25, 30] for more details). In addition, we would like to highlight that analysing a p-
Laplacian problem involves additional (nontrivial) difficulties compared to the study for the Laplacian
(cf. [3, 4, 6]), since, for example, in the result of the existence of solutions, it is necessary to rescale
the time in order to use monotonicity arguments for identifying the limit.

In [13] Chipot and Savitska consider

∂u

∂t
−∇ · a(‖∇u‖pp)|∇u|p−2∇u = f,

fulfilled with zero Dirichlet boundary conditions. In addition to proving the existence of solutions
making use a suitable change of variable (specified below, see (12)), they establish a classification of
the critical points of some energy functional. In [5], the existence of the compact global attractor in
L2(Ω) is analysed when the nonlocal operator is given by a(l(u)) instead of a(‖∇u‖pp) as considered in
[13].

In this paper, we study a much more general problem than in [5], since time-dependent terms
and nonlinearities of reaction-diffusion type appear here, and the obtained results (see below) are also
stronger. Namely, we consider the non-autonomous nonlocal problem for the p-Laplacian

du

dt
− a(l(u))∆pu = f(u) + h(t) in Ω× (τ, T ),

u = 0 on ∂Ω× (τ, T ),
u(x, τ) = uτ (x) in Ω,

(1)

where Ω is a bounded open set of RN , p ≥ 2,

a ∈ C(R; [m,∞)), (2)

where m > 0. Observe that we do not assume any Lipschitz condition on the function a as in [3, 6].
As a consequence, in the existence result we are not able to guarantee the uniqueness of weak solutions
to (1). We also suppose that l ∈ (L2(Ω))′, which means that

l(u) = lg(u) =

∫
Ω

g(x)u(x)dx for some g ∈ L2(Ω).

Furthermore, uτ ∈ L2(Ω), T > τ and h ∈ Lp
′

loc(R;W−1,p′(Ω)), where p′ is the conjugate exponent of p.
In addition, f ∈ C(R) and there exist positive constants κ, α1 and α2 and q ≥ 2, such that

−κ− α1|s|q ≤ f(s)s ≤ κ− α2|s|q ∀s ∈ R. (3)

From (3), we deduce that there exists β > 0 such that

|f(s)| ≤ β(1 + |s|q−1) ∀s ∈ R. (4)

In this paper, there are two main aims. Firstly, we want to prove the existence (and regularity) of
weak solutions to the nonlocal p-Laplacian problem (1). Secondly, we study the asymptotic behaviour
of the solutions in a multi-valued setting, as we have mentioned above. We do this in several phase
spaces and their corresponding norms, namely in L2(Ω), Lp(Ω) and Lp

∗−ε(Ω) among others (see below
for more details). Since we are dealing with a non-autonomous problem, there are several approaches to
achieve our goal. For instance, one could make use of skew-product flows (cf. [27]), uniform attractors
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and their kernel sections (cf. [9]) or pullback attractors (see [21]; in relation with random dynamical
systems see [17]). In this work, we use the last approach because it allows us to use more general
forcing terms and the attractors fulfil an invariance property. Within this framework, there are several
choices, we can employ the concept of attraction related to fixed nonempty bounded sets or with a
more general class of families called universe D. This class of families is usually made up by sets
which vary in time and fulfil a tempered growth condition (see [7, 19] for more details). In addition,
it is possible to establish relationships between the attractors defined by the two cited concepts of
attraction (cf. [23]).

Although some authors have been interested in proving the existence of pullback attractors for non-
autonomous parabolic equations for the p-Laplacian (cf. [1, 29]), as far as we know, in the previous
literature there is no study for the dynamical system considered in this paper. To show the existence
of these attractors, we need to check the pullback asymptotic compactness. Due to the presence of
the nonlocal operator in the diffusion term together with the nonlinearity of the p-Laplacian, it does
not seem to be possible to use the energy method applied in [20, 23, 19], in which it is not necessary
to consider more regular non-autonomous terms belonging to L2

loc(R;L2(Ω)). In this case, we build an

absorbing family in W 1,p
0 (Ω) and make use of the compact embedding W 1,p

0 (Ω) ⊂⊂ L2(Ω). To prove
the existence of an absorbing family in W 1,p

0 (Ω), in addition to assuming that h ∈ L2
loc(R;L2(Ω)), we

suppose that the function f ∈ C(R) satisfies

|f(s)| ≤ C(1 + |s|γ+1) ∀s ∈ R, (5)

with γ fulfilling

γ :



=
p

2
if p > N,

<
N

2
if p = N,

=
2p+ pN − 2N

2N
if p < N.

Observe that this estimate has been obtained using interpolation results (cf. [33, Lemma II.4.1, p.
72]) and the regularity of the weak solutions (cf. Remark 20 (iii)). In fact, we also deduce∫ T

τ

∫
Ω

|f(u(x, t))|2dxdt ≤ 2C2|Ω|(T − τ) + 2C2

∫ T

τ

‖u(t)‖2γ+2
2γ+2dt (6)

≤ 2C2|Ω|(T − τ) + 2C2(CI(N))2θ(γ+1)‖u‖2(1−θ)(γ+1)
L∞(τ,T ;L2(Ω))‖u‖

2θ(γ+1)

Lp(τ,T ;W 1,p
0 (Ω))

,

where θ ∈ [0, 1] is an interpolation exponent and CI(N) is the constant of the continuous embedding of
W 1,p

0 (Ω) into the Lp-spaces. This way, the term f(u), with u ∈ L∞(τ, T ;L2(Ω)) ∩ Lp(τ, T ;W 1,p
0 (Ω)),

belongs to L2(τ, T ;L2(Ω)) and it allows us to prove the regularising effect of the equation (cf. Theorem
4) and the pullback asymptotic compactness (cf. Lemma 12 and Proposition 13).

The structure of the paper is as follows. Section 2 is devoted to studying the existence of solutions
and the regularising effect of the equation. To prove the existence result, we perform a change of
variable which allows us to deal with a problem with local diffusion. To analyse the regularising effect
of the equation, we apply an argument of a posteriori regularity, because under the assumptions made
on the functions a and f , we cannot guarantee the uniqueness of weak solutions. Thereupon, in Section
3 we prove our main first result, that is, the existence of pullback attractors in different universes in
the phase space L2(Ω). To do this, we prove the pullback asymptotic compactness via an absorbing
family in W 1,p

0 (Ω) and making use of the compactness of the embedding W 1,p
0 (Ω) ⊂⊂ L2(Ω). Further-

more, some relationships between these families of pullback attractors are established. To conclude,
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in Section 4 we show the existence of pullback attractors in more regular spaces, as Lp(Ω) and in fact
any Banach space X such that the embeddings W 1,p

0 (Ω) ⊂⊂ X and X ⊂ L2(Ω) are compact and
continuous respectively (cf. Corollary 19), as for instance in the Lebesgue spaces Lp

∗−ε(Ω).

Thereupon, the notation utilised along the text is described. We use (·, ·) to denote the inner
product in L2(Ω), ‖·‖s to represent the norm in Ls(Ω), and | · | for the Lebesgue measure of a subset of
RN . Thanks to the identification of L2(Ω) with its dual, the chain of dense and compact embeddings
W 1,p

0 (Ω) ⊂⊂ L2(Ω) ⊂⊂ W−1,p′(Ω) holds. In addition, making use of the Riesz theorem, there exists
l̃ ∈ L2(Ω) with 〈l, u〉(L2(Ω))′,L2(Ω) = (l̃, u), and since (L2(Ω))′ ≡ L2(Ω), it holds that l = l̃. However,
instead of using (l, u) to denote the inner product between l and u, we employ the traditional notation
l(u). The duality product between Lq(Ω) and Lq

′
(Ω) elements (where q is the conjugate exponent of q′)

is also represented by (·, ·). By 〈·, ·〉, we denote the duality product between W 1,p
0 (Ω) and W−1,p′(Ω),

between W 1,p
0 (Ω) ∩ Lq(Ω) and W−1,p′(Ω) + Lq

′
(Ω), and between H−s(Ω) and Hs

0(Ω). The norm in

W 1,p
0 (Ω) is represented by ‖∇ · ‖p, the (Lp(Ω))N norm of the gradient, and the norm in W−1,p′(Ω), by
‖ · ‖∗.

Before starting with the study of the existence of solutions, we would like to recall that the p-
Laplacian operator is a one-to-one map from W 1,p

0 (Ω) into W−1,p′(Ω), defined as follows

〈−∆pu, v〉 = (|∇u|p−2∇u,∇v) ∀u, v ∈W 1,p
0 (Ω),

where for short (|∇u|p−2∇u,∇v) denotes
∑N
i=1(|∂iu|p−2∂iu, ∂iv).

Definition 1. A weak solution to (1) is a function u that belongs to L∞(τ, T ;L2(Ω))∩Lq(τ, T ;Lq(Ω))
∩Lp(τ, T ;W 1,p

0 (Ω)) for all T > τ , with u(τ) = uτ , such that

d

dt
(u(t), v) + a(l(u(t)))〈−∆pu(t), v〉 = (f(u(t)), v) + 〈h(t), v〉 ∀v ∈W 1,p

0 (Ω) ∩ Lq(Ω), (7)

where the above equation is understood in the sense of the distributions.

Remark 2. If u is a weak solution to (1), taking into account (2), (4) and (7), it holds that u′ ∈
Lp
′
(τ, T ;W−1,p′(Ω)) +Lq

′
(τ, T ;Lq

′
(Ω)) for any T > τ . Then, u ∈ C([τ,∞);L2(Ω)) and therefore, the

initial datum in (1) makes complete sense. Furthermore, it fulfils

‖u(t)‖22 + 2

∫ t

s

a(l(u(r)))‖∇u(r)‖ppdr

=‖u(s)‖22 + 2

∫ t

s

(f(u(r)), u(r))dr + 2

∫ t

s

〈h(r), u(r)〉dr (8)

for all τ ≤ s ≤ t (for more details see [18, Théorème 2, p. 575], [32, Lemma 3.2, p. 71]).

2 Existence of solution

In this section, we will prove the existence of weak solutions to (1). To that end, we will use the Galerkin
approximations and a change of variable which has been already applied for nonlocal problems (cf.
[14, 13, 5]). Finally, we pass to the limit by using compactness and monotonicity arguments.

Theorem 3. Assume that (2)-(3) hold and h ∈ Lp
′

loc(R;W−1,p′(Ω)). Then, for each uτ ∈ L2(Ω), there
exists at least a weak solution to (1).
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Proof. Consider fixed T > τ . We will show the existence result in the interval (τ, T̂ ), where T̂ :=
α−1(m(T − τ)) ∈ (τ, T ] and the function α is defined below (see (12)). Repeating the arguments and
making use of a concatenation procedure, we can achieve the existence of a solution in (τ, T ).

To prove this result, we consider {wj} ⊂ Hs
0(Ω), which is a special basis of L2(Ω), with s ≥

max
{
N(q−2)

2q , 2p+N(p−2)
2p

}
. This way, Hs

0(Ω) ⊂ W 1,p
0 (Ω) ∩ Lq(Ω) (see [2, Chapter 1, p. 39]). From

now on, we denote by Vn = span[w1, . . . , wn]. Observe that the set
⋃
n∈N Vn is dense in L2(Ω).

For every integer n ≥ 1, the function un(t; τ, uτ ) =
∑n
j=1 ϕnj(t)wj (for short, un(t)) denotes a

(local) solution to
d

dt
(un(t), wj) + a(l(un(t)))〈−∆pun(t), wj〉 = (f(un(t)), wj) + 〈h(t), wj〉 a.e. t ∈ (τ, T ),

(un(τ), wj) = (uτ , wj), j = 1, . . . , n.

(9)

Indeed, it is defined in a maximal interval (τ, tn) with tn < T and after the following a priori estimates,
one can see that tn = T . Multiplying by ϕnj(t) in (9) and summing from j = 1 to n, making use of
(2), we have

1

2

d

dt
‖un(t)‖22 +m

∫
Ω

‖∇un(t)‖ppdx ≤ (f(un(t)), un(t)) + 〈h(t), un(t)〉 a.e. t ∈ (τ, tn). (10)

From (3) and the Young inequality, we deduce

(f(un(t)), un(t)) ≤ κ|Ω| − α2‖un(t)‖qq,

〈h(t), un(t)〉 ≤ 1

p′

(
2

mp

)p′/p
‖h(t)‖p

′

∗ +
m

2
‖∇un(t)‖pp.

Then, taking this into account, from (10) we obtain

1

2

d

dt
‖un(t)‖22 +

m

2
‖∇un(t)‖pp + α2‖un(t)‖qq ≤ κ|Ω|+

1

p′

(
2

mp

)p′/p
‖h(t)‖p

′

∗ a.e. t ∈ (τ, tn).

Therefore, the sequence {un} can be considered in the whole interval (τ, T ) and it is actually
bounded in L∞(τ, T ;L2(Ω)) ∩ Lp(τ, T ;W 1,p

0 (Ω)) ∩ Lq(τ, T ;Lq(Ω)).

From this, we deduce that {−∆pun} is bounded in Lp
′
(τ, T ;W−1,p′(Ω)). Furthermore, making use

of (4), it fulfils that {f(un)} is bounded in Lq
′
(τ, T ;Lq

′
(Ω)).

As a consequence, the sequence {u′n} is bounded in Lp
′
(τ, T ;H−s(Ω)). To prove that, we need

to consider Pn : H−s(Ω) 3 f 7→ Pnf :=
∑n
j=1〈f, wj〉wj ∈ Vn, which is the continuous extension

of the projector Pn defined as Pn : L2(Ω) 3 f 7→ Pnf :=
∑n
j=1(f, wj)wj ∈ Vn. Moreover, the

sequences {f(un)/a(l(un))}, {(f(un)un)/a(l(un))} and {un/a(l(un))} are bounded in Lq
′
(τ, T ;Lq

′
(Ω)),

L1(τ, T ;L1(Ω)) and Lp(τ, T ;W 1,p
0 (Ω)), respectively, thanks to the fact that f ∈ C(R), l ∈ L2(Ω) and

a ∈ C(R;R+) fulfilling (2).
Therefore, using the Aubin-Lions lemma, we deduce that there exist a subsequence of {un} (re-

labeled the same), ξ ∈ Lp′(τ, T ;W−1,p′(Ω)), u ∈ L∞(τ, T ;L2(Ω))∩Lp(τ, T ;W 1,p
0 (Ω))∩Lq(τ, T ;Lq(Ω))
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with u′ ∈ Lp′(τ, T ;H−s(Ω)), such that

un
∗
⇀ u weakly-star in L∞(τ, T ;L2(Ω)),

un ⇀ u weakly in Lp(τ, T ;W 1,p
0 (Ω)),

un ⇀ u weakly in Lq(τ, T ;Lq(Ω)),

un → u strongly in Lp(τ, T ;Lp(Ω)),

−∆pun ⇀ ξ weakly in Lp
′
(τ, T ;W−1,p′(Ω)),

u′n ⇀ u′ weakly in Lp
′
(τ, T ;H−s(Ω)),

f(un)

a(l(un))
⇀

f(u)

a(l(u))
weakly in Lq

′
(τ, T ;Lq

′
(Ω)),

f(un)un
a(l(un))

⇀
f(u)u

a(l(u))
weakly in L1(τ, T ;L1(Ω)),

un
a(l(un))

⇀
u

a(l(u))
weakly in Lp(τ, T ;W 1,p

0 (Ω)),

(11)

where the last three convergences have been proved applying [22, Lemme 1.3, p. 12].
The next aim is to check that ξ = −∆pu. To do this we will use the same idea from [13] (see also

[14, 5]). We rescale the time in the following way

α(t) =

∫ t

τ

a(l(u(s)))ds. (12)

Then, making use of (12), solving problem (1) is reduced to dealing with
vs(α(t))−∆pv(α(t)) =

f(v(α(t)))

a(l(v(α(t))))
+

h(t)

a(l(v(α(t))))
in Ω× (τ, T ),

v = 0 on ∂Ω× (τ, T ),
v(x, α(τ)) = uτ (x) in Ω,

where u(x, t) = v(x, α(t)). Then, ut(x, t) = vs(x, α(t))α′(t) = vs(x, α(t))a(l(u(t))).
Observe that the previous problem becomes

vt −∆pv =
f(v)

a(l(v))
+
h(α−1(t))

a(l(v))
in Ω× (0, α(T )),

v = 0 on ∂Ω× (0, α(T )),
v(x, 0) = uτ (x) in Ω.

(13)

To deal with this problem rigorously, we consider the Galerkin approximation problems associated
to (13) and

αn(t) :=

∫ t

0

a(l(un(s)))ds.

Namely, vn(t) =
∑n
j=1 ϕ̃nj(t)wj , which is set such that vn(x, αn(t)) := un(x, t), solves

d

dt
(vn(t), wj) + (|∇vn(t)|p−2∇vn(t),∇wj) =

〈f(vn), wj〉
a(l(vn(t)))

+
〈h(α−1

n (t)), wj〉
a(l(vn(t)))

a.e. t ∈ (0, αn(T )),

(vn(0), wj) = (uτ , wj), j = 1, . . . , n.
(14)
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Now, consider ϕ ∈ D(0,m(T − τ)) and w ∈ Vn. Then, making use of (14), we obtain

−
∫ m(T−τ)

0

(vn(t), w)ϕ′(t)dt+

∫ m(T−τ)

0

(|∇vn(t)|p−2∇vn(t),∇w)ϕ(t)dt

=

∫ m(T−τ)

0

(
f(vn(t))

a(l(vn(t)))
, w

)
ϕ(t)dt+

∫ m(T−τ)

0

〈h(α−1
n (t)), w〉

a(l(vn(t)))
ϕ(t)dt,

since 0 < m(T − τ) ≤ αn(T ).
Then, taking limit when n→∞, from (11), we deduce

v′(t) + ξ̂(t) =
f(v(t))

a(l(v(t)))
+
h(α−1(t))

a(l(v(t)))
a.e. t ∈ (0,m(T − τ)), (15)

where
ξ̂(x, α(t)) = ξ(x, t) a.e. t ∈ (τ, α−1(m(T − τ))). (16)

Observe that in order to pass to the limit with the non-autonomous term, we have taken into
account that ∫ m(T−τ)

0

〈h(α−1
n (t)), w〉

a(l(vn(t)))
ϕ(t)dt =

∫ αn(T )

0

〈h(α−1
n (t)), w〉

a(l(vn(t)))
ϕ(t)dt,

→
∫ α(T )

0

〈h(α−1(t)), w〉
a(l(v(t)))

ϕ(t)dt,

=

∫ m(T−τ)

0

〈h(α−1(t)), w〉
a(l(v(t)))

ϕ(t)dt.

To prove that ξ̂ = −∆pv, we first check

lim inf
n→∞

‖vn(m(T − τ))‖2 ≥ ‖v(m(T − τ))‖2. (17)

On the one hand, considering (15) in (0,m(T − τ)), we have that∫ m(T−τ)

0

〈ξ̂(t), w〉dt

=

∫ m(T−τ)

0

(
f(v(t))

a(l(v(t)))
, w

)
dt+

∫ m(T−τ)

0

〈h(α−1(t)), w〉
a(l(v(t)))

dt+ (v(0), w)− (v(m(T − τ)), w)

for all w ∈ Vn.
On the other hand, from (14), we deduce∫ m(T−τ)

0

〈−∆pvn(t), w〉dt

=

∫ m(T−τ)

0

(
f(vn(t))

a(l(vn(t)))
, w

)
dt+

∫ m(T−τ)

0

〈h(α−1
n (t)), w〉

a(l(vn(t)))
dt+ (vn(0), w)− (vn(m(T − τ)), w)

for all w ∈ Vn. Then, taking limit when n→∞ in the above expression, using (11) and the fact that
v(0) = uτ , (17) holds.
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Now, we are ready to prove ξ̂ = −∆pv. From (14), making use of (11) and (17), we have

lim sup
n→∞

∫ m(T−τ)

0

‖∇vn(t)‖ppdt

≤
∫ m(T−τ)

0

(
f(v(t))

a(l(v(t)))
, v(t)

)
dt+

∫ m(T−τ)

0

〈h(α−1(t)), v(t)〉
a(l(v(t)))

dt+
‖uτ‖22

2
− ‖v(m(T − τ))‖22

2
. (18)

Consider w ∈ Lp(0,m(T − τ);W 1,p
0 (Ω)). Then, thanks to the inequality∫ m(T−τ)

0

(|∇vn(t)|p−2∇vn(t)− |∇w(t)|p−2∇w(t),∇(vn(t)− w(t)))dt ≥ 0,

taking limit superior and bearing in mind (11), (16) and (18), we have∫ m(T−τ)

0

(
f(v(t))

a(l(v(t)))
, v(t)

)
dt+

∫ m(T−τ))

0

〈h(α−1(t)), v(t)〉
a(l(v(t)))

dt+
‖uτ‖22

2
− ‖v(m(T − τ))‖22

2

−
∫ m(T−τ)

0

〈ξ̂(t), w(t)〉dt−
∫ m(T−τ)

0

(|∇w(t)|p−2∇w(t),∇(v(t)− w(t)))dt ≥ 0. (19)

Then, combining (15) and (19), we obtain∫ m(T−τ)

0

〈ξ̂(t) +∇ · |∇w(t)|p−2∇w(t), v(t)− w(t)〉dt ≥ 0,

for all w ∈ Lp(0,m(T − τ);W 1,p
0 (Ω)).

Now, considering w = v − δz with δ > 0 and z ∈ Lp(0,m(T − τ);W 1,p
0 (Ω)), we have∫ m(T−τ)

0

〈ξ̂(t) +∇ · |∇(v(t)− δz(t))|p−2∇(v(t)− δz(t)), z(t)〉dt ≥ 0.

As a consequence, the equality ξ̂(x, t) = −∆pv(x, t) a.e. t ∈ (0,m(T − τ)) holds. Then, using

(16) and the fact that u(x, t) = v(x, α(t)) for all t ∈ [τ, T̂ ], we deduce that ξ(x, t) = −∆pu(x, t) a.e.

t ∈ (τ, T̂ ). Finally, to obtain a global-in-time solution just simply reproduce (and concatenate) the

previous arguments in intervals of the form [kT̂ , (k + 1)T̂ ] with k ∈ N.

Theorem 4. Under the assumptions of Theorem 3, if f also fulfils (5) and h ∈ L2
loc(R;L2(Ω)), then any

weak solution u to (1) belongs to Cw((τ, T ];W 1,p
0 (Ω)). Moreover, if the initial condition uτ ∈W 1,p

0 (Ω),
then u ∈ Cw([τ, T ];W 1,p

0 (Ω)).

Proof. Consider T > τ and a solution u(·; τ, uτ ) to (1), for short denoted by u. Observe that problem

(Pu)


∂y

∂t
− a(l(u))∆py = f(y) + h(t) in Ω× (τ, T ),

y = 0 on ∂Ω× (τ, T ),
y(x, τ) = uτ (x) in Ω,

possesses a unique solution because of the monotonicity of the p-Laplacian (cf. [22, Chapitre II]).
Therefore, more regular (a posteriori) estimates as well as using the Galerkin approximations make
complete sense. Furthermore, by the uniqueness of solution to (Pu) and the fact that u is a solution
to (1), it follows that y = u.
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Then, we consider the Galerkin formulation associated to problem (Pu)
d

dt
(ûn(t), wj) + a(l(u))(|∇ûn(t)|p−2∇ûn(t),∇wj) = (f(ûn(t)), wj) + (h(t), wj) a.e. t ∈ (τ, T ),

(ûn(τ), wj) = (uτ , wj), j = 1, . . . , n,
(20)

with ûn(t; τ, uτ ) =
∑n
j=1 ϕ̂nj(t)wj , which is denoted by ûn(t) in what follows.

Multiplying (20) by ϕ̂nj(t), summing from j = 1 until n and making use of (2), we have

1

2

d

dt
‖ûn(t)‖22 +m‖∇ûn(t)‖pp ≤ (f(ûn(t)), ûn(t)) + (h(t), ûn(t)) a.e. t ∈ (τ, T ).

Applying the Young inequality and (3) in the previous inequality, analogously as in Theorem 3, we
obtain

d

dt
‖ûn(t)‖22 +m‖∇ûn(t)‖pp + 2α2‖ûn(t)‖qq ≤ 2κ|Ω|+ 2

p′

(
2

mp

)p′/p
‖h(t)‖p

′

∗ a.e. t ∈ (τ, T ).

Integrating between τ and T , we deduce the analogous uniform estimates for ûn (as in Theorem 3)
and in particular

m

∫ T

τ

‖∇ûn(t)‖ppdt ≤ ‖uτ‖22 + 2κ|Ω|(T − τ) +
2

p′

(
2

mp

)p′/p
‖h‖p

′

Lp′ (τ,T ;W−1,p′ (Ω))
. (21)

Now, multiplying (20) by ϕ̂′nj(t)/a(l(u(t))) and summing from j = 1 to n, we have

‖û′n(t)‖22
a(l(u(t)))

+
1

p

d

dt
‖∇ûn(t)‖pp =

(f(ûn(t)), û′n(t))

a(l(u(t)))
+

(h(t), û′n(t))

a(l(u(t)))
a.e. t ∈ (τ, T ).

Then, the Cauchy inequality and (2) imply

1

p

d

dt
‖∇ûn(t)‖pp ≤

‖f(ûn(t))‖22
2m

+
‖h(t)‖22

2m
a.e. t ∈ (τ, T ).

Now, integrating between s and t, with τ < s ≤ t ≤ T , and bearing in mind that f(ûn) ∈
L2(τ, T ;L2(Ω)) thanks to the regularity of ûn (recall after (5) we have (6)), we obtain

‖∇ûn(t)‖pp ≤ ‖∇ûn(s)‖pp +
p

2m

∫ T

τ

‖f(ûn(t))‖22dt+
p

2m

∫ T

τ

‖h(t)‖22dt.

Then, integrating w.r.t. s between τ and t, and using (6), we deduce

‖∇ûn(t)‖pp

≤1

ε

∫ T

τ

‖∇ûn(s)‖ppds+
C2p(T − τ)

εm

[
|Ω|+ (CI(N))2θ(γ+1)‖ûn‖2(1−θ)(γ+1)

L∞(τ,T ;L2(Ω))‖ûn‖
2θ(γ+1)

Lp(τ,T ;W 1,p
0 (Ω))

]
+
p(T − τ)

2εm

∫ T

τ

‖h(t)‖22dt,

for all t ∈ [τ + ε, T ] with ε ∈ (0, T − τ). From this, taking into account (21), we deduce that the
sequence {ûn} is bounded in L∞(τ + ε, T ;W 1,p

0 (Ω)). By the uniqueness of solution to (Pu), the whole
sequence

ûn
∗
⇀ u weakly-star in L∞(τ + ε, T ;W 1,p

0 (Ω)).

In addition, since u ∈ C([τ, T ];L2(Ω)), it holds that u ∈ Cw((τ, T ];W 1,p
0 (Ω)) (cf. [31, Theorem 2.1, p.

544] or [32, Lemma 3.3, p. 74]).
The case in which the initial datum uτ belongs to W 1,p

0 (Ω) allows to simplify the above estimates
in a standard way and the solution u belongs in fact to Cw([τ, T ];W 1,p

0 (Ω)).
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3 Existence of minimal pullback attractors in L2(Ω)

The main goal of this section is to study the asymptotic behaviour of the solutions to (1) analysing
the existence of the minimal pullback attractors in theL2(Ω) norm for different universes. A brief
recall of the main definitions and abstract results required in order to achieve our aim in a set-valued
framework can be found, e.g., in [4, Section 3].

The most difficult part about proving the existence of these families is to check the pullback asymp-
totic compactness. To do this, we build a pullback absorbing family in W 1,p

0 (Ω) and make use of the
compact embedding W 1,p

0 (Ω) ⊂⊂ L2(Ω). Once the existence of the minimal pullback attractors is
established, some relationships between these families are analysed.

In what follows, we denote by Φ(τ, uτ ) the set of solutions to (1) in [τ,∞) with initial datum
uτ ∈ L2(Ω).

Now, thanks to Theorem 3 we can define a multi-valued map U : R2
d × L2(Ω) → P(L2(Ω)) (e.g.,

cf. [4, Definition 2]) as

U(t, τ)uτ = {u(t) : u ∈ Φ(τ, uτ )}, τ ≤ t, uτ ∈ L2(Ω), (22)

where R2
d = {(t, s) ∈ R2 : t ≥ s}.

Lemma 5. Assume that (2)-(3) hold and h ∈ Lp
′

loc(R;W−1,p′(Ω)). Then, the multi-valued map U
defined in (22) is a strict multi-valued process in L2(Ω).

Now, to study more properties of the multi-valued process U , we need the following result.

Lemma 6. Under the assumptions of Lemma 5, given a convergent sequence of initial data {unτ } ⊂
L2(Ω), i.e. unτ → uτ strongly in L2(Ω), it fulfils that for any sequence {un}, where un ∈ Φ(τ, unτ ) for
all n, there exist a subsequence of {un} (relabeled the same) and u ∈ Φ(τ, uτ ), such that

un(s)→ u(s) strongly in L2(Ω) ∀s ≥ τ. (23)

Proof. Consider fixed τ > T . Arguing similarly to Theorem 3, making use of the energy equality, (2),
(3) and the Young inequality we can deduce

d

dt
‖un(t)‖22 +m‖∇un(t)‖pp + 2α2‖un(t)‖qq ≤ 2κ|Ω|+ 2

p′

(
2

mp

)p′/p
‖h(t)‖p

′

∗ a.e. t ∈ (τ, T ).

Thus, {un} is bounded in L∞(τ, T ;L2(Ω)) ∩ Lp(τ, T ;W 1,p
0 (Ω)) ∩ Lq(τ, T ;Lq(Ω)). Bearing this in

mind, together with the facts that a ∈ C(R;R+) and l ∈ L2(Ω), we deduce that there exists a positive
constant MC∞ > 0 such that

a(l(un(t))) ≤MC∞ ∀t ∈ [τ, T ] ∀n ∈ N.

Then, the sequence {−a(l(un))∆pu
n} is bounded in Lp

′
(τ, T ;W−1,p′(Ω)). In addition, {f(un)} is

bounded in Lq
′
(τ, T ;Lq

′
(Ω)) thanks to (4) and the boundedness of {un} in Lq(τ, T ;Lq(Ω)).

As a consequence, the sequence {(un)′} is bounded in Lp
′
(τ, T ;W−1,p′(Ω)) + Lq

′
(τ, T ;Lq

′
(Ω)).

Now, applying the Aubin-Lions lemma, there exist a subsequence of {un} (relabeled the same) and u ∈
L∞(τ, T ;L2(Ω))∩Lp(τ, T ;W 1,p

0 (Ω))∩Lq(τ, T ;Lq(Ω)) with u′ ∈ Lp′(τ, T ;W−1,p′(Ω)) + Lq
′
(τ, T ;Lq

′
(Ω))
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such that 

un
∗
⇀ u weakly-star in L∞(τ, T ;L2(Ω)),

un ⇀ u weakly in Lp(τ, T ;W 1,p
0 (Ω)),

un ⇀ u weakly in Lq(τ, T ;Lq(Ω)),

un → u strongly in Lp(τ, T ;Lp(Ω)),

un(t)→ u(t) strongly in Lp(Ω) a.e. t ∈ (τ, T ),

(un)′ ⇀ u′ weakly in Lp
′
(τ, T ;W−1,p′(Ω)) + Lq

′
(τ, T ;Lq

′
(Ω)),

f(un) ⇀ f(u) weakly in Lq
′
(τ, T ;Lq

′
(Ω)),

−a(l(un))∆pu
n ⇀ −a(l(u))∆pu weakly in Lp

′
(τ, T ;W−1,p′(Ω)),

(24)

where the limit of the sequence {f(un)} has been obtained using [22, Lemme 1.3, p. 12] and the last
one, the limit of the sequence {−a(l(un))∆pu

n}, has been obtained applying the change of variable
(12) used to prove the existence of solution in Theorem 3.

Now we are ready to prove (23). Observe that

un(s) ⇀ u(s) weakly in L2(Ω) ∀s ∈ [τ, T ], (25)

just simply applying the Ascoli-Arzelà theorem and the fact that the sequence {un} is bounded in
C([τ, T ];L2(Ω)). Namely, since the sequence {un} is equicontinuous in W−1,p′(Ω) + Lq

′
(Ω) on [τ, T ],

bounded in C([τ, T ];L2(Ω)) and the embedding L2(Ω) ⊂⊂ W−1,p′(Ω) + Lq
′
(Ω) is compact, by the

Ascoli-Arzelà theorem, it fulfils

un → u strongly in C([τ, T ];W−1,p′(Ω) + Lq
′
(Ω)).

From this, bearing in mind the boundedness of {un} in C([τ, T ];L2(Ω)), (25) holds.
Now, to prove (23), we only need to check

lim sup
n→∞

‖un(s)‖2 ≤ ‖u(s)‖2 ∀s ∈ [τ, T ]. (26)

To do that, we use an energy method which relies on the continuity of the solutions (see [20, 23, 19]
for more details).

Observe that from the energy equality (8), we deduce

‖z(s)‖22 ≤ ‖z(r)‖22 + 2κ|Ω|(s− r) +
2

p′

(
1

mp

)p′/p ∫ s

r

‖h(ξ)‖p
′

∗ dξ ∀τ ≤ r ≤ s ≤ T,

where z is replaced by u or any un.
Now, we define the following continuous and non-increasing functions on [τ, T ]

Jn(s) = ‖un(s)‖22 − 2κ|Ω|(s− τ)− 2

p′

(
1

mp

)p′/p ∫ s

τ

‖h(ξ)‖p
′

∗ dξ,

J(s) = ‖u(s)‖22 − 2κ|Ω|(s− τ)− 2

p′

(
1

mp

)p′/p ∫ s

τ

‖h(ξ)‖p
′

∗ dξ.

Observe that from (24), the continuity of the functional J on [τ, T ] and the non-increasing character
of the function Jn on [τ, T ], we deduce

Jn(s)→ J(s) ∀s ∈ (τ, T ).

As a consequence, (26) holds. A diagonal argument in increasing intervals yield (23) for all s ≥ τ .
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Now we are ready to prove that the multi-valued process U is upper-semicontinuous with closed
values.

Proposition 7. Under the assumptions of Lemma 5, the multi-valued process U is upper-semiconti-
nuous with closed values.

Proof. To prove that the multi-valued process U is upper-semicontinuous, we argue by contradiction.
Suppose that there exist (t, τ) ∈ R2

d, a neighbourhood N (U(t, τ)uτ ) and a sequence {yn} which fulfils
that each yn ∈ U(t, τ)unτ , where unτ → uτ strongly in L2(Ω), but for all n ∈ N yn 6∈ N (U(t, τ)uτ ).

Since each yn ∈ U(t, τ)unτ , there exists un ∈ Φ(τ, unτ ) such that yn = un(t). Now, applying Lemma
6, we deduce that there exists a subsequence of {un(t)} (relabeled the same) which converges to a
function u(t) ∈ U(t, τ)uτ . This is contradictory because yn 6∈ N (U(t, τ)uτ ) for all n.

Finally, Lemma 6 implies again that U has closed values.

Now, to define a suitable tempered universe we introduce the following estimate.

Proposition 8. Under the assumptions of Lemma 5, given uτ ∈ L2(Ω), for any µ ∈ (0, 2m), any
solution to (1) fulfils

‖u(t)‖22 ≤ e−µ(t−τ)‖uτ‖22 + C1(µ) + C2(µ)e−µt
∫ t

τ

eµs‖h(s)‖p
′

∗ ds (27)

for all t ≥ τ , where CI is the constant of the continuous embedding W 1,p
0 (Ω) ⊂ L2(Ω), and C1(µ) and

C2(µ) are positive constants depending on µ.

Proof. Bearing in mind the energy equality (8), (2) and (3), we obtain

d

dt
‖u(t)‖22 + 2m‖∇u(t)‖pp + 2α2‖u(t)‖qq ≤ 2κ|Ω|+ 2〈h(t), un(t)〉 a.e. t ≥ τ.

Now, adding µ‖u(t)‖22 in both sides in the above expression, using the Young inequality suitably
in order to cancel the 2m‖∇u(t)‖pp term and making use of

‖u(t)‖22 ≤
p− 2

p

(
2CpI
p

)2/(p−2)

+ ‖∇u(t)‖pp,

after multiplying by eµt we deduce

d

dt
(eµt‖u(t)‖22) ≤ µC1(µ)eµt + C2(µ)eµt‖h(t)‖p

′

∗ a.e. t ≥ τ ,

where

C1(µ) =
2κ|Ω|
µ

+
(p− 2)

p

(
2CpI
p

)2/(p−2)

and C2(µ) =
1

p′

(
2p

2mp− µp

)p′/p
.

Then, integrating between τ and t we obtain (27).

Now, we are ready to define an adequate tempered universe in P(L2(Ω)).

Definition 9. For each µ > 0, DL2

µ denotes the class of all families of nonempty subsets D̂ = {D(t) :
t ∈ R} ⊂ P(L2(Ω)) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

‖v‖22

)
= 0.
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Remark 10. Observe that DL2

F ⊂ DL
2

µ and the universe DL2

µ is inclusion-closed.

After Proposition 8 and Definition 9, it is possible to ensure the existence of a pullback DL2

µ -
absorbing family under a suitable weighted assumption on h. Namely, for some µ ∈ (0, 2m)∫ 0

−∞
eµs‖h(s)‖p

′

∗ ds <∞. (28)

Corollary 11. Under the assumptions of Lemma 5, if for some µ ∈ (0, 2m) the function h fulfils (28),

then the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) = BL2(0, RL2(t)), the closed ball in L2(Ω) of
center zero and radius RL2(t), where

(RL2(t))2 = 1 + C1(µ) + e−µtC2(µ)

∫ t

−∞
eµs‖h(s)‖p

′

∗ ds,

is pullback DL2

µ -absorbing for the multi-valued process U . In addition, D̂0 ∈ DL
2

µ .

Now, to prove the existence of pullback attractors, it suffices to check the pullback D̂0-asymptotic
compactness. To that end, let us firstly establish some useful estimates. To do this, rather than (28),
we assume the stronger assumption ∫ 0

−∞
eµs‖h(s)‖22ds <∞ (29)

for some µ ∈ (0, 2m).

Lemma 12. Under the assumptions of Lemma 5, if (5) holds and h ∈ L2
loc(R;L2(Ω)) fulfils (29) for

some µ ∈ (0, 2m), then for any t ∈ R and D̂ ∈ DL2

µ , there exists τ1(D̂, t) < t − 2 such that for any

τ ≤ τ1(D̂, t), uτ ∈ D(τ) and u ∈ Φ(τ, uτ ), it holds

‖u(r; τ, uτ )‖22 ≤ ρ1(t) ∀r ∈ [t− 2, t],∫ r

r−1

‖∇u(ξ; τ, uτ )‖ppdξ ≤ ρ2(t) ∀r ∈ [t− 1, t],

‖∇u(r; τ, uτ )‖pp ≤ ρ3(t) ∀r ∈ [t− 1, t],

(30)

where

ρ1(t) = 1 +
2κ|Ω|
µ

+
p− 2

p

(
2CpI
p

)2/(p−2)

+

(
2p

2mp− µp

)p′/p
e−µ(t−2)

p′

∫ t

−∞
eµξ‖h(ξ)‖p

′

∗ dξ,

ρ2(t) =
ρ1(t)

m
+

2κ|Ω|
m

+
1

mp′

(
2p

mp

)p′/p
max

r∈[t−1,t]

∫ r

r−1

‖h(ξ)‖p
′

∗ dξ,

ρ3(t) = ρ2(t) +
p

2m
max

r∈[t−1,t]

∫ r

r−1

‖h(ξ)‖22dξ +
C2p

m

{
|Ω|+ (ρ1(t))(1−θ)(γ+1)[(CI(N))2ρ2(t)]θ(γ+1)

}
.

Proof. Consider fixed t and D̂ ∈ DL2

µ . Analogously as in Corollary 11, from the energy equality (8),

we deduce that there exists τ1(D̂, t) < t− 2 such that

‖u(r; τ, uτ )‖22 ≤ ρ1(t) ∀r ∈ [t− 2, t] ∀uτ ∈ D(τ) ∀τ ≤ τ1(D̂, t),
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where ρ1(t) is given in the statement.
On the other hand, from (8) in [r − 1, r], making use of (2), we have

‖u(r)‖22 + 2m

∫ r

r−1

‖∇u(ξ)‖ppdξ ≤ ‖u(r − 1)‖22 + 2

∫ r−1

r

(f(u(ξ)), u(ξ))dξ + 2

∫ r

r−1

〈h(ξ), u(ξ)〉dξ.

Since h ∈ L2
loc(R;L2(Ω)) ⊂ Lqloc(R;Lq(Ω)),

(f(u(ξ)), u(ξ)) ≤ κ|Ω| − α2‖u(ξ)‖qq,

2〈h(ξ), u(ξ)〉 ≤ 1

p′

(
2p

mp

)p′/p
‖h(ξ)‖p

′

∗ +m‖∇u(ξ)‖pp,

we obtain

‖u(r)‖22+m

∫ r

r−1

‖∇u(ξ)‖ppdξ+2α2

∫ r

r−1

‖u(ξ)‖qqdξ ≤ ‖u(r−1)‖22+2κ|Ω|+ 1

p′

(
2p

mp

)p′/p ∫ r

r−1

‖h(ξ)‖p
′

∗ dξ.

Therefore, ∫ r

r−1

‖∇u(ξ; τ, uτ )‖ppdξ ≤ ρ2(t) ∀r ∈ [t− 1, t] ∀uτ ∈ D(τ) τ ≤ τ1(D̂, t),

where ρ2(t) is given in the statement.
Finally, to prove the last estimate of (30), we argue as in Theorem 4, making use of an a posteriori

regularity argument combined with the Galerkin approximations for the problem (Pu) and compactness
arguments. Namely, multiplying (20) by ϕ̂′nj(ξ)/a(l(u(ξ))), summing from j = 1 to n, and using the
Cauchy inequality and (2), we have

1

p

d

dξ
‖∇ûn(ξ)‖pp ≤

‖f(ûn(ξ))‖22
2m

+
‖h(ξ)‖22

2m
a.e. ξ > τ .

Now, integrating between r and s, with τ < r − 1 ≤ s ≤ r,

‖∇ûn(r)‖pp ≤ ‖∇ûn(s)‖pp +
p

2m

∫ r

r−1

‖f(ûn(ξ))‖22dξ +
p

2m

∫ r

r−1

‖h(ξ)‖22dξ.

Then, taking into account (6) and integrating w.r.t. s between r − 1 and r, we have

‖∇ûn(r)‖pp

≤
∫ r

r−1

‖∇ûn(s)‖ppds+
C2p

m

[
|Ω|+ (CI(N))2θ(γ+1)‖ûn‖2(1−θ)(γ+1)

L∞(r−1,r;L2(Ω))‖ûn‖
2θ(γ+1)

Lp(r−1,r;W 1,p
0 (Ω))

]
+

p

2m

∫ r

r−1

‖h(ξ)‖22dξ.

Therefore, as the sequence {ûn} also fulfils the first two inequalities appearing in (30), we deduce

‖∇ûn(r)‖pp ≤ ρ2(t) +
C2p

m

{
|Ω|+ (ρ1(t))(1−θ)(γ+1)[(CI(N))2ρ2(t)]θ(γ+1)

}
+

p

2m

∫ r

r−1

‖h(ξ)‖22dξ,

for all r ∈ [t− 1, t], τ ≤ τ1(D̂, t) and uτ ∈ D(τ).

From this, taking into account that ûn
∗
⇀ u weakly-star in L∞(t − 1, t;W 1,p

0 (Ω)) (cf. Theorem 4)
and the fact that u ∈ C([t− 1, t];L2(Ω)), the last estimate in (30) holds.
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After the previous result we have a better absorbing property, namely a family whose time sections
are bounded in W 1,p

0 (Ω) (by ρ3(t)). Then the following result follows immediately, taking into account
the compact embedding W 1,p

0 (Ω) ⊂⊂ L2(Ω).

Proposition 13. Under the assumptions and notation of Lemma 12, the multi-valued process U
possesses a pullback DL2

µ -absorbing family, namely {BW 1,p
0

(0, ρ3(t)1/p) : t ∈ R}. In particular U is

pullback DL2

µ -asymptotically compact.

From the above results, we deduce the existence of the minimal pullback attractors in L2(Ω), which
is the main result of this section.

Theorem 14. Assume (2)-(3) and (5) hold and h ∈ L2
loc(R;L2(Ω)) satisfies condition (29) for some

µ ∈ (0, 2m). Then, there exist the minimal pullback DL2

F -attractor ADL2
F

= {ADL2
F

(t) : t ∈ R} and the

minimal pullback DL2

µ -attractor ADL2
µ

= {ADL2
µ

(t) : t ∈ R} for the process U : R2
d×L2(Ω)→ P(L2(Ω)).

The minimal pullback DL2

µ -attractor ADL2
µ

belongs to DL2

µ and the following relationships hold

ADL2
F

(t) ⊂ ADL2
µ

(t) ⊂ D0(t) = BL2(0, RL2(t)) ∀t ∈ R. (31)

In addition, if the function h fulfils

sup
s≤0

(
e−µs

∫ s

−∞
eµθ‖h(θ)‖p

′

∗ dθ

)
<∞, (32)

then ADL2
F

(t) = ADL2
µ

(t) for all t ∈ R.

Proof. The existence of ADL2
µ

and ADL2
F

, together with the first relationship established in (31) are a

consequence of [4, Corollary 1], since the strict multi-valued process U is upper-semicontinuous with
closed values (cf. Proposition 7), there is an adequate relationship between the universes (cf. Remark

10), there exists a pullback DL2

µ -absorbing family (cf. Corollary 11) and the multi-valued process U is

pullback DL2

µ -asymptotically compact (cf. Proposition 13).

The second relationship established in (31) between the family ADL2
µ

and D̂0 together with the fact

that ADL2
µ

belongs to DL2

µ are a direct consequence of [4, Theorem 2], Remark 10 and Corollary 11.

Finally, under the stronger assumption (32), it fulfils that the set ∪t≤TRL2(t) is bounded for each
T ∈ R, where the expression of RL2(t) has been provided in Corollary 11. Therefore, from [4, Corollary
2], we deduce that both attractors, ADL2

F
and ADL2

µ
, coincide.

4 Attraction in more regular spaces

In the spirit of the bi-space attractor theory (e.g. cf. [2, 34, 35]) we expect here better results concerning
the pullback attractors obtained in the previous section. Indeed, in the stronger setting established in
Theorem 14, we will first ensure the existence of the minimal pullback attractor in Lp(Ω) (as usual in
the literature related to the p-Laplacian operator), since the sections of the absorbing family belongs
to W 1,p

0 (Ω). Actually, we do this just for the sake of simplicity in the exposition, since the main result
is stronger, as shown in Corollary 19.

Consider the class Φp of weak solutions to (1) where the initial datum belongs to Lp(Ω). It is
immediate to deduce that Φp ≡ Φ|R×Lp(Ω). Thanks to the regularity property of the problem (cf.
Theorem 4) we have that the (possibly multi-valued) solution operator Up : R2

d × Lp(Ω)→ P(Lp(Ω)),
given analogously to (22), is well-defined. Indeed, since the phase-spaces will be explicited in the
results, we keep the usual notation U for both processes, the one in L2(Ω) and Lp(Ω).

Now we introduce the universes which involve more regularity.
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Definition 15. DL2,Lp

µ denotes the class of all families of nonempty subsets D̂Lp = {D(t) ∩ Lp(Ω) :

t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DL2

µ .

The upper-semicontinuity of U in Lp(Ω) follows from the next result.

Proposition 16. Assume (2)-(3) and (5) hold, and h ∈ L2
loc(R;L2(Ω)). Then, the multi-valued process

U is upper-semicontinuous in Lp(Ω) with closed values.

Proof. We proceed analogously to Proposition 7, using the additional regularity result obtained in The-
orem 4. Namely, given (t, τ) ∈ R2

d, suppose by contradiction that U(t, τ) is not upper-semicontinuous
in Lp(Ω). Then, there exist uτ and {unτ } in Lp(Ω) with unτ → uτ (in Lp(Ω)) and yn = un(t) ∈ U(t, τ)unτ
such that yn 6∈ N (U(t, τ)uτ ) for all n.

It is already known from Lemma 6 that there exist a subsequence (relabeled the same) and a weak
solution u ∈ Φ(τ, uτ ) such that un(s)→ u(s) strongly in L2(Ω) for any s ≥ τ . Moreover, from Theorem
4 we have that {un} is (uniformly) bounded in L∞(τ +ε, t;W 1,p

0 (Ω)). This, combined with (24), allows
to apply again [26, Lemma 11.2] or [19, Lemma 4.9] and to deduce that {un(t)} is bounded in W 1,p

0 (Ω).
As far as W 1,p

0 (Ω) is compactly embedded into Lp(Ω), we conclude that un(t) → u(t) in Lp(Ω),
which is a contradiction. The fact that U has closed values in P(Lp(Ω)) follows immediately with the
same arguments.

Now, as a consequence of the regularizing effect of the equation (cf. Theorem 4) and the existence

of an absorbing family in DL2

µ (cf. Corollary 11), it is immediate to deduce the existence of a pullback

DL2,Lp

µ -absorbing family.

Corollary 17. Assume that (2)-(3) hold, f fulfils (5), h ∈ L2
loc(R;L2(Ω)) and there exists µ ∈ (0, 2m)

such that h satisfies (28). Then, the family D̂0,Lp = {D0,Lp(t) : t ∈ R} defined by D0,Lp(t) =

D0(t) ∩ Lp(Ω) is pullback DL2,Lp

µ -absorbing for the multi-valued process U .

The existence of attractor in Lp(Ω) is now established.

Theorem 18. Assume (2)-(3) and (5) hold and h ∈ L2
loc(R;L2(Ω)) satisfies the condition (29) for

some µ ∈ (0, 2m). Then, there exist the minimal pullback DLpF -attractor ADLpF = {ADLpF (t) : t ∈
R} and the minimal pullback DL2,Lp

µ -attractor ADL2,Lp
µ

= {ADL2,Lp
µ

(t) : t ∈ R} for the process U :

R2
d × Lp(Ω) → P(Lp(Ω)). The minimal pullback DL2,Lp

µ -attractor ADL2,Lp
µ

belongs to DL2,Lp

µ and the

following relationships hold

ADLpF (t) ⊂ ADL2
F

(t) ⊂ ADL2
µ

(t) = ADL2,Lp
µ

(t) ∀t ∈ R. (33)

In addition, if the function h fulfils

sup
s≤0

(
e−µs

∫ s

−∞
eµθ‖h(θ)‖22dθ

)
<∞, (34)

then all attractors in (33) coincide.

Proof. Observe that all the necessary ingredients to apply [4, Theorem 2] in Lp(Ω) have already
been established. Namely, in Proposition 16 we ensured that U : R2

d × Lp(Ω) → P(Lp(Ω)) is upper-

semicontinuous with closed values. Corollary 17 showed the existence of an absorbing family in DL2,Lp

µ .

The final key is the pullback D̂0,Lp -asymptotic compactness of U. Indeed, this is again a straightforward
consequence of Lemma 13. Particularly, the third inequality in (30) provides the absorbing family in
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W 1,p
0 (Ω), constituted by balls of center zero and radii ρ3(t)1/p. Therefore, the existence of ADLpF and
ADL2,Lp

µ
follows.

The relations in (33) are consequence of a slight variation of [19, Theorem 3.15], adapted to the
multivalued framework, and Corollary 11.

Finally, the equality of these families of attractors can be deduced using again [4, Corollary 2] since
all the radii ρi(·) (i = 1, 2, 3) in (12) are bounded for t ≤ T , thanks to the assumption (34).

The arguments of this section can be generalised replacing the space Lp(Ω) by a general Banach
space X such that the chain of embeddings (compact and continuous, respectively) hold

W 1,p
0 (Ω) ⊂⊂ X ⊂ L2(Ω). (35)

Corollary 19. Under the assumptions of Theorem 18, all its theses remain valid for a phase space X
fulfilling (35).

Remark 20.

(i) For instance, one can take X = Lp
∗−ε(Ω) for all ε ∈ (0, p∗ − 2] if p < N, improving the norm of

attraction of the attractor.

(ii) All results are valid in the autonomous case (when h is time independent). In particular, Theorem
18 and Corollary 19 improve the main results given in [5].

(iii) Observe that the values of γ provided for the assumption (5) can be improved if the interpolation
result is applied not only to L∞(τ, T ;L2(Ω))∩Lp(τ, T ;W 1,p

0 (Ω)), but also to Lp(τ, T ;W 1,p
0 (Ω))∩

Lq(τ, T ;Lq(Ω)). Namely, the largest values of γ would be

γ :



= max

{
p

2
,
q − 2

2

}
if p > N,


=
q − 2

2
if N − q + 2 ≤ 0

<
N

2
if N − q + 2 > 0

if p = N,

= max

{
2p+ pN − 2N

2N
,
q − 2

2

}
if p < N.

However, for the sake of clarity in the presentation (e.g. see (6) which depends on the interpol-
ation spaces) and taking into account that the proofs of the results are completely analogous but
changing the spaces, we have chosen to use just L∞(τ, T ;L2(Ω)) ∩ Lp(τ, T ;W 1,p

0 (Ω)) in order to
provide a clearer idea about how to tackle the problem.
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