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EXTENSION OF SANTILLI’S ISOTOPIES

TO NON-INJECTIVE ISOALGEBRAS

R. M. Falcón and J. Núñez

Dedicated to the memory of Professor Grigorios F. Tsagas in admiration

Abstract. Santilli’s isotopies constitute a new branch of mathematics charac-
terized by axiom-preserving isotopic lifting of units, products, numbers, fields,
topologies, geometries, algebras, groups, etc., with numerous novel applica-
tions in physics, chemistry and other quantitative sciences. The continuation
of these studies require deeper research on non-injective isotopies. The main
goal of this paper is to generalize the usual isotopic construction model to
obtain non-injective isoalgebras, by using so many new laws ∗ and isounities
in the general set associated with the Santilli’s isotopy, as laws has the initial
structure. In this way, the study of the properties of this general set are very
useful. In fact, this study constitutes the MCIM isotopic construction model,
which has been studied by the authors since 2001. In this model, there are a
main isounit and a main ∗-law, which determine the mathematical isostruc-
ture, and some secondaries ones, which determine the laws in this isostructure.
So, the study of all these elements can determine how to build a non-injective
isotopy, by taking into consideration the different factors on which the main
isounit depends.

1. Introduction

The mathematics generally used in quantitative sciences of the 20-th cen-
tury were based on ordinary fields with characteristic zero and trivial (left,
right) unit I = +1 and ordinary associative product a ∗ b between generic
quantities a, b of a given set, such as matrices, vector fields, etc. Such a math-
ematics is known to be linear, local differential (beginning from its topology),
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and Hamiltonian, thus solely representing a finite number of isolated point-
particles with action-at-a-distance forces derivable from a potential. Such a
mathematics was proved to provide an exact and invariant representation of
planetary and atomic systems as well as, more generally, of all the so-called
exterior dynamical systems in which all constituents can be well approximated
as being point-like.

By contrast, the great majority of systems in the physical reality are nonlin-
ear, nonlocal (of integral and other type) and not entirely representable with
a Hamiltonian in the coordinates of the experimenter. This is the case for all
systems historically called interior dynamical systems, such as the structure
of: planets; strongly interacting particles (such as protons and neutrons);
nuclei; molecules; stars; and other systems. The latter systems cannot be
consistently reduced to a finite number of isolated point-particles. There-
fore, the mathematics so effective for exterior systems is only approximate at
best for interior systems. Rather than adapting reality to pre-existing insuffi-
cient mathematics, in 1978 the Italian-American physicist R. M. Santilli [13]
proposed the construction of a new mathematics, today known as Santilli’s
isomathematics, specifically built for the invariant representation of nonlinear,
nonlocal and non-Hamiltonian systems. The proposal was essentially based
on the construction of axiom preserving isotopic liftings of all branches of
mathematics with trivial (left and right) unit I = +1.

Santilli’s fundamental isotopy was that of the basic unit that was lifted from
the trivial value I = +1 to a matrix or operator Î = Î(t, x, v, µ, τ, · · · ) = 1/T
that preserves the topological property of I in order to qualify as an iso-
topy (i.e., nowhere singular, Hermitean and positive-definite), but possesses
an otherwise unrestricted, generally nonlinear, nonlocal and non-Hamiltonian
functional depend on all needed local variables, such as time t, coordinates x,
velocities v, density µ, temperature τ, etc. Jointly, Santilli lifted the con-
ventional associative product a ∗ b with unit I = +I into the new form
a×̂b = a∗T ∗ b under which Î = 1/T is indeed the correct (left and right) unit
of the set considered. It is evident that the new product a×̂b remains asso-
ciative and, therefore, the lifting ∗ → ×̂ is an isotopy. Under these conditions
Î is called Santilli’s isounit, T is called the isotopic element, and ×̂ is called
the isoproduct.

According to these lines, the representation of interior systems via Santilli’s
isomathematics requires the knowledge of two quantities, the conventional;
Hamiltonian H for the representation of conventional linear, local and poten-
tial forces, and the isounit Î for the representation of all nonlinear, nonlocal
and non-Hamiltonian effects. Note that Santilli’s generalization of the unit
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is the unique choice for the invariant representation of the latter effects be-
cause, whether conventional or generalized, the unit is the basic invariant of
all mathematics.

The isotopies of the basic unit and product evidently require compatible
liftings of all branches of mathematics admitting the trivial unit I = +1 as the
left and right unit, with no possible exclusion to avoid intrinsic inconsistencies.
Therefore, Santilli’s isomathematics is characterized by mutually compatible
isotopic liftings of numbers and fields, vector and metric spaces, topology, dif-
ferential calculus, functional analysis, manifolds, geometries, algebras, groups,
etc.

To outline this significant scientific journey, we here recall the following
main advances. As it is well known, Lie’s theory has a fundamental role in
physics. Nevertheless, Lie’s theory also has clear limitations due to its lin-
ear, local-differential and Hamiltonian character. Therefore, already in the
original proposal of 1978 Santilli [13] proposed the isotopies of all branches of
Lie’s theory, including the isotopic lifting of universal enveloping associative
algebras, Lie algebras, Lie groups,and representation theory, resulting in a
generated theory applicable to nonlinear, nonlocal and non-Hamiltonian sys-
tems that is today called the Lie-Santilli isotheory. Santilli then continued
these studies in numerous works (see monographs [14], [15], [16] and papers
quoted therein).

To understand the literature, one should note that most of the results on
isotopies were presented by Santilli [loc. cit.] as a particular case of a broader
theory based on the notion of Lie-admissibility by A. A. Albert [1], and today
known as Lie-Santilli genotheory that will not be considered in this paper.

Due to its evident mathematical and physical relevance, the Lie-Santilli
isotheory has been studied in numerous papers by other mathematicians and
physicists. For brevity, we only quote here the monographs by: H. C. Myung
[12] of 1982; A. K. Aringazin. A. Jannussis, D. F./ Lopez, M. Nishioka and B.
Veljanovski [2] of 1991; Gr. Tsagas and D. S. Sourlas [21] of 1993;J. Lôhmus,
E. Paal and L. Sorgsepp [11] of 1994; J. V. Kadeisvili [8] of 1997; and R. M.
Falcón Ganfornina and J. Núñez Valdés [4] of 2001.

Another important advance by Santilli has been the isotopies of numbers
that he initiated also in 1978, but presented in mathematical form in memoir
[17] of 1993. Santilli’s isonumbers were also studied by various authors and
a comprehensive presentation of Santilli’s isonumber theory was provided by
C.-X. Jiang [7] in 2002. Yet another significant advance by Santilli has been
the isotopic lifting of the Euclidean and Minkowskian spaces and related ge-
ometries achieved by Santilli in the mid 1980’s (see the review in [15] and
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papers quoted therein). These studies too were continued by various authors,
among whom we quote J. V. Kadeisvili [10], Gr. Tsagas and D. S. Sourlas
[22], [23], and R. M. Falcón Ganfornina and J. Núñez Valdés [4], [5].

J. V. Kadeisvili [10] provided the first formulation of isocontinuity and
isofunctional analysis that were continued by various authors, subsequently
studied by A. K. Aringazin, D. A. Kirushin and R. M. Santilli [3] and various
other authors.

Gr. Tsagas and D. S. Sourlas [22], [23] provided the first formulation of the
isotopology on isospaces over ordinary fields, a formulation that was extended
by R. M. Santilli [20] to isospaces over isofields. Comprehensive studies of
the latter advances have been conducted by the authors in the above quoted
references, as outlined in this and in the next paper.

In 2001, Falcón and Núñez [4] generalized the isotopic model proposed by
Santilli in 1978 although this generalization put stress on the use of several ∗-
laws and isounits as operations existing in the initial mathematical structure.
Such a model, which from now on will be called MCIM (isoproduct construc-
tion model based on the multiplication), was later generalized in [5] and [6],
where Tsagas-Sourlas-Santilli isotopology was improved.

It should be finally indicated that all these mathematical advances have
permitted a structural generalization of quantum mechanics and chemistry
known under the name of hadronic mechanics and chemistry [18], [19] that
have achieved today numerous experimental verifications and have permitted
a number of new industrial applications, as expected from the novelty of the
used mathematics.

In this paper we extend Santilli’s isotopies to non-injective isoalgebras. It
should be noted that some results appearing in this paper will not be proved,
due to restrictions on length.

2. The MCIM isotopic model

In a schematic way, every isotopy can be described starting from the fol-
lowing diagram:

Conventional level −−−−−−−−−−−−−→
General level
(V, ∗, ?, · · · )

∪
(E, +,×, · · · ) (E, ∗, ?, · · · )

↓ ] ↓ I
Projection level π←−−−−−−−−−−−−− Isotopic level

(Ê, +̂, ×̂, · · · ) (Ê, +̂, ×̂, · · · )
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where, by construction:

a) The mapping I: (E, ?, ∗, · · · ) → (Ê, +̂, ×̂, · · · ) : X → X̂ is an isomor-
phism.

b) The isotopic projection is onto:

π : (Ê, +̂, ×̂, · · · ) → (Ê, +̂, ×̂, · · · ) : â → π(â) = â = a ∗ Î .

c) â+̂b̂ = â ? b; â×̂b̂ = â ∗ b; · · · .

d) â = a ∗ Î; α+̂β = ((α ∗ T ) ? (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; · · ·
By the other way, an isotopic lifting of the structure E will be injective if
a = b, for all a, b ∈ E such that â = b̂. It is equivalent, by construction, to say
that the projection π : Ê → Ê : â → π(â) = â is an injective mapping.

An isotopic lifting will be compatible with respect to a law ◦ on E if â◦̂b̂ =
â ◦ b for all a, b ∈ E.

Proposition 2.1. They are verified:

a) The isotopic projection associated with each injective isotopic lifting is
an isomorphism.

b) If the isotopic lifting used is compatible with respect to all of initial

operations, then the isostructure Ê is isomorphic to the initial E.
c) The relation of being isotopically equivalents is of equivalence.

d) Every isotopic projection π◦ I : (E, +,×, ◦, •, · · · )→(Ê, +̂, ×̂, ◦̂, •̂, · · · )
can be considered as an isotopic lifting which follows the MCIM, that
is, every mathematical isostructure is an isostructure with respect to
the multiplication.

e) The general set can be defined as:

V = E ∪ Ê ∪ ET ∪ {T}.
Where ET = {x̂T = x̂ ∗ T : x ∈ E} and it must be for all âT ∈ ET :

âT ∗ Î = a ∗ Î .
Besides, for all a, b ∈ E :

â×̂b̂ = [âT ∗ b̂T ] ∗ Î .
f) If the isotopic lifting is injective, then ET = E.

3. Isoalgebras

It has a perfect sense to considerer each one of the isostructures which
result of applying the MCIM to conventional structures. Particularly, we can
consider the construction of isoalgebras (as the isotopic lifting of each algebra,
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which is endowed with a structure of algebra) by using this isotopic model.
Let us see some results about it (see [4]).

Proposition 3.1. Let U be a K-algebra and let Û be a K̂-isovectorspace. If
a K(a, ?, ∗)-algebra (U, ¦,¤, ·) is used in the general level, then the isotopic
lifting Û corresponding to the isotopy of primary elements Î and ¤ and sec-
ondary ones Ŝ and ¦, when MCIM is used, has a structure of isoalgebra on
K̂, and it preserves the initial type of the algebra.

A particular type of isoalgebra is the Lie isoalgebra (see [13]), which is

the one that has a structure of Lie algebra. Particularly, if Û is the isotopic
projection of a Lie isoalgebra, Î = Î(x, dx, d2x, t, T, µ, τ, · · · ) is an isounit and

a basis Û , {ê1, . . . , ên} is fixed, where êî·êj =
∑

ĉh
ij •̂êh, ∀ 1 ≤ i, j ≤ n,

then coefficients ĉh
ij ∈ K̂ are the Maurer-Cartan coefficients of the isoalgebra,

which constitute a generalization of the conventional case, since they are not
constants in general, but functions dependent of the factors of Î .

In 1948, the American mathematician A. A. Albert gave the notion of Lie-
admissibility in [1], as a nonassociative algebra whose attached antisymmetric
algebra is a Lie algebra. In this way, another interesting isoalgebra is the
isoadmissible Lie algebra, by Santilli in [13], that is, the isoalgebra Û such
that endowed with the commutator bracket [., .]Û : [X̂, Ŷ ]Û = (X̂ ·̂Ŷ )− (Ŷ ·̂X̂)
is an isotopic Lie isoalgebra. The following result is then satisfied:

Proposition 3.2. Under conditions of Proposition 3.1, let us suppose that
the law ◦̂ of the isoalgebra Û is defined according X̂ ◦̂Ŷ = (X ◦ Y )¤Î , for all
X,Y ∈ U. If U is a Lie (admissible) algebra, then Û is an Lie (isoadmissible)
isoalgebra.

In this way, (isoadmissible) Lie isoalgebras inherit the usual properties of
conventional (admissible) Lie algebras. In the same way, usual structures
related with such algebras have also their analogue ones when isotopies are
used. For instance, an isoideal of a Lie isoalgebra Û is every isotopic lifting
of an ideal = of U, which is by itself an ideal. In particular, the center of an
Lie isoalgebra Û , {X̂ ∈ Û such that X̂ ·̂Ŷ = Ŝ ∀Ŷ ∈ Û}, is an isoideal of Û .
In fact, it is verified the following result:

Proposition 3.3. Let Û be an Lie isoalgebra associated with a Lie algebra
U and let = be an ideal of U. Then, the corresponding isotopic lifting =̂ is an
isoideal of Û .
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An isoideal =̂ of a Lie isoalgebra (Û , ◦̂, •̂, ·̂), is called isocommutative if
X̂ ·̂Ŷ = Ŝ, for all X̂ ∈ =̂ and for all Ŷ ∈ Û , being Û isocommutative if it is so
as an isoideal.

Proposition 3.4. Û is isocommutative if and only if U is commutative.

Lie-Santilli algebras [13], studied by Tsagas in [25], constitute a particular
example of Lie isoalgebras. Fixed an K̂-isoassociative isoalgebra (Û , ◦̂, •̂, ·̂),
the commutator in Û associated with ·̂ : [X̂, Ŷ ]S = (X̂ ·̂Ŷ ) − (Ŷ ·̂X̂), for all
X̂, Ŷ ∈ Û is called Lie-Santilli bracket product [., .]S with respect to ·̂. The
isoalgebra (Û , ◦̂, •̂, [., .]S) is then called Lie-Santilli algebra.

Proposition 3.5. Let Û be an K̂-isoassociative isoalgebra associated with a
K-algebra U, under conditions of Proposition 3.2. Then, the Lie-Santilli alge-
bra associated with Û is an Lie isoalgebra if the algebra U is either associative
or Lie admissible.

Apart from that, a Lie isoalgebra Û is said to be isosimple if, being an
isotopy of a simple Lie algebra, it is not isocommutative and the only isoideals
which contains are trivial ones. In an analogous way, Û is called isosemisimple
if, being an isotopy of a semisimple Lie algebra, it does not contain non
trivial isocommutative isoideals. Note that, this definition involves that every
isosemisimple Lie isoalgebra is also isosimple. Moreover, it is verified:

Proposition 3.6. Under conditions of Proposition 3.2, the isotopic lifting of
a (semi)simple Lie algebra is an iso(semi)simple Lie isoalgebra. Particularly,
every isosemisimple Lie isoalgebra is a direct sum of isosimple Lie isoalgebras.

A Lie isoalgebra (Û , ◦̂, •̂, ·̂) is said to be isosolvable [9] if, being an isotopy
of a solvable Lie algebra, in the isosolvability series:

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2̂·Û2, · · · , Ûi = Ûi−1̂·Ûi−1, · · ·
there exists a natural integer n such that Ûn = {Ŝ}. The minor of such integers
is called isosolvability index of the isoalgebra.

Proposition 3.7. Under conditions of Proposition 3.2, the isotopic lifting of
a solvable Lie algebra is an isosolvable Lie isoalgebra.

An easy example of isosolvable Lie isolgebras are the isocommutative iso-
topic Lie isoalgebras, since they verify, by definition, that Û ·̂Û = Û2 = {Ŝ}. It
implies that every nonzero isocommutative Lie isoalgebra has an isosolvability
index equals 2, being 1 the corresponding to the trivial isoalgebra {Ŝ}.
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Proposition 3.8. Let Û be a Lie isoalgebra associated with a Lie algebra U.
Under conditions of Proposition 3.1, they are verified:

1. Ûi is an isoideal of Û and of Ûi−1, for all i ∈ N.

2. If Û is isosolvable and U is solvable, then every isosubalgebra of Û es
isosolvable.

3. La intersection and the product of a finite number of isosolvable isoide-
als of Û are isosolvable isoideals. Moreover, under conditions of Propo-
sition 3.2, the sum of a finite number of isosolvable isoideals is also
an isosolvable isoideal.

By using this last result (3), it is deduced that the sum of all isosolvable
isoideals of Û is another isosolvable isoideal, which is called isoradical of Û .

Note that it is different from the radical of Û , which would be the sum of all
solvable ideals of Û . The isoradical is denoted by isorad Û , to not be confused
with rad Û , and it will always contain {Ŝ}, because this last one is a trivial
isosolvable isoideal of every isoalgebra. Note also that as every isosolvable
isoideal of Û is a solvable ideal of Û , then isorad Û ⊂ rad Û . So, if Û is
isosolvable, then Û = isorad Û = rad Û , due to Û is solvable in particular.

Proposition 3.9. If Û is a semisimple Lie isoalgebra over a field of zero
characteristic, then isorad Û = {Ŝ}.

A Lie isoalgebra (Û , ◦̂, •̂, ·̂) is called isonilpotent [9] if, being an isotopy of
a nilpotent Lie algebra, in the series:

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û 2̂·Û , · · · , Û i = Û i−1̂·Û , · · ·
(which is called isonilpotency series), there exists a natural integer n such
that Ûn = {Ŝ}. The minor of such integers is denominated nilpotency index
of the isoalgebra.

As a consequence immediate of this definition it is deduced that every
isonilpotent Lie isoalgebra is isosolvable and that every nonzero isocommu-
tative Lie isoalgebra has an isonilpotency index equals 2, being 1 the corre-
sponding of the isoalgebra {Ŝ}. Moreover, they are verified:

Proposition 3.10. Under conditions of Proposition 3.2, the isotopic lifting
of a nilpotent Lie algebra is an isonilpotent isotopic Lie isoalgebra.

Proposition 3.11. Let Û be a Lie isoalgebra associated with a Lie algebra
U. They are verified:
1. Under conditions of Proposition 3.2, the sum of a finite number of isonilpo-

tent isoideals of Û is another isonilpotent isoideal.
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2. If Û is also isonilpotent and U is nilpotent, then

(a) Every isosubalgebra of Û is isonilpotent.
(b) Under conditions of Proposition 3.2, if Û is nonzero isonilpotent, then

its center is non null.

In a similar way as the case isosolvable, the result (1) involves that the
sum of all isonilpotent isoideals of Û is another isonilpotent isoideal, which is
denoted by isonihil-radical of Û , to be distinguished from the nihil-radical of
Û , which is the sum of the radicals ideals. It will be represented by isonil-rad

Û , which allows to distinguish it from the nil- rad Û . It is immediate that
isonil-rad Û ⊂ nil-rad Û ∩ isorad Û ⊂ nil-rad Û ⊂ rad Û .

Apart from that, it is possible to relate an isosolvable isotopic Lie isoalgebra
with its derived Lie isoalgebra, by using the following:

Proposition 3.12. Under conditions of Proposition 3.2, an Lie isotopic isoal-
gebra is isosolvable if and only if its derived Lie isoalgebra is isonilpotent.

Finally, an isonilpotent Lie isoalgebra (Û , ◦̂, •̂, ·̂) is called isofiliform if, being
an isotopy of a filiform Lie algebra, it is verified that dim Û2 = n−2, · · · ,dim
Û i = n− i, · · · , dim Ûn = 0, where dim Û = n.

Note that the theory related with a filiform Lie algebra U is based on the
use of a basis of such an algebra. So, starting from a basis {e1, · · · , en} de U,
which is preferably an adapted basis, we can deal with lots of concepts of it,
such that dimensions of U and of elements of the nilpotency series, invariants
i and j of U and, in general, the resting properties, starting from its structure
coefficients, which are, in fact, responsible for the complete study of filiform
Lie algebras.

4. Non-injective isotopies

Two clases of non-injective isotopies can be considered:
I) The first type is that in which the isotopic projection can be inverted,

by using the corresponding isotopic element.
II) The second type is that in which the isotopic projection cannot be

inverted.
The first of them is dealt in [6], although it is only dealt the construction of
the corresponding isotopic set, not being considered the construction os the
isooperations. It appears when the isounits depends on more than one factor,
that is, it depends on a factor different from the factor coordinate. Such a
dependence allows earlier the use of the isotopic element to invert the isotopic
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projection, by giving concrete values to factors from which the isotopic lifting
given depends to obtain it.

So, if under usual notations, we have the isounit Î = Î(x, t, δ, · · · ) and we
consider an isotopic lifting of a mathematical structure E, such that there
exist x, y ∈ E verifying that:

α = x̂ = x ∗ Î(x, tx, δx, · · · ) = y ∗ Î(y, ty, δy, · · · ) = ŷ
where, at least, one of the values in {tx, δx, · · · } does not coincide with the
corresponding one in {ty, δy, · · · }, then we can assure the existence of the
isotopic element T = T (x, t, δ, · · · ), such that:

α ∗ T (α, tx, δx, · · · ) = x; α ∗ T (α, ty, δy, · · · ) = y
The second type of non-injective isotopic lifting is the one in which we can
assure the non existence of an isotopic element which allows to undo the
isotopic projection. It will occur when there exist two different elements x, y ∈
E, verifying that:

α = x̂ = x ∗ Î(x, tx, δx, · · · ) = y ∗ Î(y, ty, δy, · · · ) = ŷ
in the way that all of the values assigned to factors coincide, up to the factor
coordinate. That is, tx = ty, δx = δy, etc.

Note that by proceeding in a similar way as the previous case with respect
to the possible isotopic element T = T (x, t, δ, · · · ), we would obtain that:

α ∗ T (α, tx, δx, · · · ) = {x, y}
and thus, we cannot give an unique value, which it would be desirable, to
invert the isotopic projection.

We will now give some notations to be used later. F will denote the setof fac-
tors from which the isounit used in an isotopic, like factors coordinates, speed
or acceleration. That is, if we have the isounit Î = Î(x, x′, x′′, t, δ, T, D, · · · ),
then F = {t, δ, T, D, · · · }. So, to simplify the notation, we will write Î =
Î(x, x′, x′′, F ). Similarly, the corresponding isotopic element will be denoted
by T = T (x, x′, x′′, F ). Finally, a subindex will be adjoint to F, Fa, when
we wish to indicate that to the factors of F have been particularized with a
concrete values. So, when we denote by â an element in the corresponding
projection level Ê (where a ∈ E), we will suppose that these concrete values
are known. That is,

â = a ∗ Î(a, x′a, x′′a, Fa).
However, when we denote an element without the symbol ̂ overlined, we will
suppose that the values assigned to F, needed for obtaining that element are
not known. They will be only known when they are the unique possible ones,
that is, when there not exist Fa and Fb such that:

α = a ∗ Î(a, x′a, x′′a, Fa) = b ∗ Î(b, x′b, x
′′
b , Fb)
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Otherwise, such values will be assigned as we previously fix, according to the
conditions with which we wish work with the isotopic lifting used.

It is interesting to note the following result:

Proposition 4.1. Under usual notations, it is verified that:
a) Let F be an empty set. If the isotopic lifting is non-injective, then

such a lifting is of the type II. In particular, those of the type I must
verify that F is non empty.

b) If F is a non empty set, then a non-injective isotopic lifting is of
the type II if and only if there exist some concrete values assigned
to factors constituting F, F0, for which the restriction of the isotopic
projection π ◦ I|F=F0 : x → x̂ = x ∗ Î(x, x′, x′′, F0) is non-injective.

Proof. a) This result is immediate, because if we fix a, b ∈ E such that â =

b̂ = α, then:
α ∗ T = α ∗ T (α, x′α, x′′α) ⊇ {a, b}

And we cannot give explicitly an unique value. So, we have a non-injective
isotopic lifting of the type II. So, the assert is immediate.

b) To check the sufficient condition, we can use the same reasoning for
F = F0. So, there will exist a, b ∈ E such that a ∗ Î(a, x′a, x′′a, F0) = b ∗
Î(b, x′b, x

′′
b , F0) = α. Then:

α ∗ T = α ∗ T (α, x′α, x′′α, F0) ⊇ {a, b}
We have again a non-injective isotopic lifting of the type II:

Now, to check the necessary condition, we suppose the existence of an
element α in the projection level, such that there exist concrete values F0

to be assigned to factors from which the isotopic element depends, such that
α ∗ T (α, x′α, x′′α, F0) is not an unique value. Therefore, there exist al least two
elements in the initial structure E, a and b, such that a ∗ Î(a, x′a, x′′a, F0) =
b ∗ Î(b, x′b, x

′′
b , F0) = α. In particular, it is obtained that the map π ◦ I|F=F0 is

non-injective, which completes the proof. ¤
When defining the isooperations associated with the projection level ob-

tained from a non-injective isotopic lifting with F non empty, it is needed, for
each of such isooperations, a mapping of the type:

Φ : F × F → F : (Fα, Fβ) → Φ(Fα, Fβ)
So, fixed and given a mathematical structure (E, ◦), which is isotopically lifted
by using the main isotopic elements ∗ and Î , the isooperation ◦̂ will be defined,
for all a ∗ Î(a, Fa), b ∗ Î(b, Fb) ∈ Ê according to:

(a ∗ Î(a, Fa))◦̂(b ∗ Î(b, Fb)) = (a ∗ b) ∗ Î(a ∗ b, Φ◦(Fa, Fb)).
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If we take into consideration that x ∗ Î(x, Fx) = y ∗ Î(y, Fy) ∈ Ê, then, fixed

a ∗ Î(a, Fa) ∈ Ê, it must be verified that:

(x ∗ a) ∗ Î(x ∗ a,Φ◦(Fx, Fa)) = (y ∗ a) ∗ Î(y ∗ a,Φ◦(Fy, Fa))

5. Non-injective isoalgebras

We will begin this section by giving an example of a non-injective isotopic
lifting of the type II with F empty:

Example 5.1. Let us consider the (R, +,×)-Lie algebra (L, +,×, [., .]), with
basis β = {X,Y, Z} and Cartan coefficients [X,Y ] = X = [X, Z], and the
isofield (R̂, +̂, ×̂) obtained from the identity isotopy.

Let us now consider the L̂-isoalgebra (L̂, +̂, ×̂, [̂., .̂]), constructed from the
isotopic lifting associated with the main elements ♦ and Î ′ = Î ′(x) and sec-
ondary ones ¤ ≡ ×, ♦ ≡ +y Ŝ′ = 0 (the null vector in L), where, for all
x = aX + bY + cZ ∈ L, the element x♦Î ′(x) will be defined as:

x♦Î ′(x) = a× X̂ + b× Ŷ + c× Ẑ
where:

X̂ = X, Ŷ = Y = Ẑ

In this way we will get that a basis of L̂ is β̂ = {X, Y }, since, fixed aX + bY,

we have, for instance, that (aX + bY )♦Î ′(aX + bY ) = aX + bY.
It is easy to see that such a lifting is non-injective, due to, for instance,

Ŷ = Ẑ = Y, and it is also of the type II, for being F empty.
We will now define the isooperations associated with L̂. To do this, fixed

a, b, c, d, e ∈ R, it is verified that:

(aX + bY )+̂(cX + dY )=((a + c)X + beY + deZ)♦Î ′((a + c)X + beY + deZ)

= (a + c)X + (b + d)Y, where eY , eZ ∈ {Y, Z}

e×̂(aX + bY ) = ê×̂(aX + beY )♦Î ′(aX + beY )

=(eaX+ebeY)♦Î ′(eaX+ebeY)=eaX+ebY, where eY ∈{Y,Z}

[̂aX + bY, cX + dY ]̂

= [̂(aX + beY )♦Î ′(aX + beY ), (cX + de′Y )♦Î ′(cX + de′Y )̂]

= [aX + beY , cX + de′Y ] ∗ Î ([aX + beY , cX + de′Y ])

= (ad− bc)X♦Î ′((ad− bc)X) = (ad− bc)X, where eY ∈ {Y,Z}
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As a consequence, we have obtained that (L̂, +̂, ×̂, [̂., .̂]) is the subalgebra of
dimension 2 of L having a basis {X, Y } and Cartan coefficients [X, Y ] = X,
which implies that it has a structure of isoalgebra.

It is important to note that in this way the possibility of isotopically relate
between themselves Lie algebras of different dimension has been proved.

In the case of F is non empty it will be necessary to suppose the existence
of three maps of the type Φ to define the corresponding isooperations. So, to
isotopically lift a (K, +,×)-algebra (A, ◦, •, ·), if we suppose the use of some

external factors FK and FA to obtain the isofield K̂ and the isoalgebra Â

respectively, starting from an isotopic lifting of elements Î , Ŝ, Î ′, Ŝ′, ∗, ?, ♦, ¤
and ♦, we will impose the existence of the following three maps:

Φ◦ : FA × FA → FA

(Fα, Fβ) → Φ◦(Fα, Fβ)

Φ• : FK × FA → FA

(Fa, Fα) → Φ•(Fa, Fα)

Φ· : FA × FA → FA

(Fα, Fβ) → Φ·(Fα, Fβ)

in the way that, we define, for all α, β ∈ A y a ∈ K :

α◦̂β = (αT ′Fα
♦βT ′Fβ

)♦Î ′
(

αT ′Fα
♦βT ′Fβ

, x′αT ′
Fα

♦βT ′
Fβ

, x′′αT ′
Fα

♦βT ′
Fβ

, Φ◦(Fα, Fβ)
)

a•̂α = (aT ′Fa
¤αT ′Fα

)♦Î ′
(

aT ′Fa
¤αT ′Fα

, x′aT ′
Fa

¤αT ′
Fα

, x′′aT ′
Fa

¤αT ′
Fα

, Φ•(Fa, Fα))
)

α̂·β = (αT ′Fα
♦βT ′Fβ

)♦Î ′
(

αT ′Fα
♦βT ′Fβ

, x′αT ′
Fα
♦βT ′

Fβ

, x′′αT ′
Fα
♦βT ′

Fβ

, Φ·(Fα, Fβ))
)

As an example, we will now see a non-injective isotopic lifting of the type II,
with FA non empty:

Example 5.2. Let us consider the (R, +,×)-Lie algebra (L, +,×, [., .]), with
basis β = {X, Y, Z} and Cartan coefficients [X, Y ] = Z and the isofield
(R̂, +̂, ×̂) obtained from the identity isotopy.

Let us now consider the L̂-isoalgebra (L̂, +̂, ×̂, [̂., .̂]), constructed from the
isotopic lifting associated with the main elements ♦ e Î ′ = Î ′(x, t), where
t ∈ {0, 1} is the factor time, and the secondary ones ¤ ≡ ×, ♦ ≡ + and
Ŝ′ = 0 (the null vector in L), where for all x ∈ L and t ∈ {0, 1}, the element
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x♦Î ′(x, t) is obtained, by using a linear extension of the following database:

x \ t 0 1
X X 0
Y Y 0
Z 0 X

The linear extension above mentioned will be given by:

(a×X + b× Y )♦Î ′(a×X + b× Y, t) = a× (X♦Î ′(X, t)) + b× (Y♦Î ′(Y, t))
where a, b ∈ R. However, for this extension to be coherent, we must define in
a suitable way the isooperations associated with L̂, which would have the basis
β̂ = {X, Y }.

Moreover, in the above table can be checked that this lifting is non-injective.
Indeed, X♦Î ′(X, 0) = Z♦Î ′(Z, 1) = X. Besides, it is of the type II, because if
T ′ = T ′(x, t) was the associated isotopic element, we will have, for instance,
that 0♦T ′(0, 1) = {X, Y }.

We are now going to define the isooperations associated with L̂. To do this,
we will impose that in this isotopic lifting we cannot operate with elements
obtained in different instants of time. That is, if we wish to operate with
x♦Î ′(x, tx) and y♦Î ′(y, ty), then it must be verified that tx = ty.

By taking it into consideration, if F denotes the external factors associated
with the construction of L̂ (that is, the factor time) and F ′ = {(t, t) : t ∈
{0, 1}}, then we define the following maps:

Φ+ : F ′ → F

(t, t) → Φ+(t, t) = t

Φ× : F → F

t → Φ×(t) = t

Φ[.,.] : F ′ → F

(t, t) → Φ[.,.](t, t) = s 6= t

Now, by taking into consideration these maps we will look for the definition
of the isooperations associated with L̂. To do this, fix a, b, c, d, e ∈ R. Then,
when operating with vector aX + bY y cX + dY, if b o d is non null, then, by
construction, we can only operate with the value t = 0 for the factor time. In
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this case:

(aX + bY )+̂(cX + dY )

= (aX + bY )♦Î ′(aX + bY, 0)+̂(cX + dY )♦Î ′(cX + dY, 0)

= (aX + bY + cX + dY )♦Î ′(aX + bY + cX + dY, Φ+(0, 0))

= ((a + c)X + (b + d)Y )♦Î ′((a + c)X + (b + d)Y, 0)

= (a + c)×X♦Î ′(X, 0) + (c + d)× Y♦Î ′(Y, 0) = (a + c)X + (b + d)Y

If b = d = 0, then it is also possible that t = 1. However, in this case:

aX+̂cX = aZ♦Î ′(aZ, 1)+̂cZ♦Î ′(cZ, 1)

= (aZ + cZ)♦Î ′(aZ + cZ, Φ+(1, 1))

= (a + c)Z♦Î ′((a + c)Z, 1)

= (a + c)× Z♦Î ′(Z, 1) = (a + c)X

So, it is proved that +̂ ≡ +.
Apart from that, if b 6= 0 :

e×̂(aX + bY ) = ê×̂(aX + bY )♦Î ′(aX + bY, 0)

= (e× (aX + bY ))♦Î ′(e× (aX + bY ), Φ×(0))

= (eaX + ebY )♦Î ′(eaX + ebY, 0)

= ea×X♦Î ′(X, 0) + eb× Y♦Î ′(Y, 0) = eaX + ebY

If b = 0, then it could be t = 1 :

e×̂aX = ê×̂aZ♦Î ′(aZ, 1)(e× aZ)♦Î ′(e× aZ, Φ×(1))

= eaZ♦Î ′(eaZ, 1) = ea× Z♦Î ′(Z, 1) = eaZ

So, we obtain that ×̂ ≡ ×.
Finally, if b or d is non null, then:

[̂aX+bY, cX+dY ]̂ = [̂(aX+bY )♦Î ′(aX+bY, 0), (cX + dY )♦Î ′(cX + dY, 0)̂]

= [aX+bY, cX + dY ]♦Î ′([aX + bY, cX + dY ], Φ[.,.](0, 0))

= ((ad− bc)Z)♦Î ′((ad− bc)Z, 1)

= (ad− bc)× Z♦Î ′(Z, 1) = (ad− bc)X
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If b = d = 0, it could be t = 1 :

[̂aX, cX ]̂ = [̂aX♦Î ′(aX, 1), cX♦Î ′(cX, 1)̂]

= [aX, cX]♦Î ′([aX, cX], Φ[.,.](1, 1)) = 0♦Î ′(0, 0) = 0

So, we obtain that [̂., .̂] ≡ [., .].

As a consequence, it has been obtained that (L̂, +̂, ×̂, [̂., .̂]) is the subalgebra
of dimension 2 of L having a basis {X,Y } and Cartan coefficients [X, Y ] = X,
which implies that it has a structure of isoalgebra.

We note again that Lie algebras of different dimension have been isotopi-
cally related between themselves.

To finish the paper, we are going to show an example of a non-injective
isotopic lifting of the type I:

Example 5.3. Let us consider the (R, +,×)-Lie algebra (L, +,×, [., .]), with
basis β = {e1, e2, e3} and Cartan coefficients [e1, e3] = e2 and the isofield
(R̂, +̂, ×̂) obtained from the identity isotopy.

Let us now consider the L̂-isoalgebra (L̂, +̂, ×̂, [̂., .̂]), constructed from the
isotopy associated with the main elements ♦ and Î ′ = Î ′(x, t, s), being t ∈
{0, 1, 2} and s ∈ R, and secondary ones ¤ ≡ ×, ♦ ≡ + and Ŝ′ = 0 (the null
vector in L), where for all x = ae1 + be2 + ce3 ∈ L, t ∈ {0, 1, 2} and s ∈ R,

we will define the element x♦Î ′(x, t, s) as:

x♦Î ′(x, t, s) = a× ê1t + b× ê2t + c× ê3t + se3(t+1)

where the elements êit are determined in the way as it is shown in the following
table:

ei \ t 0 1 2
e1 e1 e1 e1

e2 e2 e2 e3

e3 e3 e4 e2

where e4 has to be a linearly independent vector with respect to {e1, e2, e3}.
In this way, with this definition we will get that L̂ has the basis β̂ =

{e1, e2, e3, e4}, because, fixed ae1 + be2 + ce3 + de4, we can take, for instance,
that (ae1 + be2 + ce3)♦Î ′(ae1 + be2 + ce3, 0, d) = ae1 + be2 + ce3 + de4.

Moreover, in the above table can be checked that this lifting is non-injective.
Indeed, e2♦Î ′(e2, 0, 0) = e3♦Î ′(e2, 2, 0) = e2.
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Besides, it is of the type I. To see it we will have to define an isotopic
element T ′ = T ′(x, t, s) such that, given x = ae1 + be2 + ce3 + de4 ∈ L̂, it is
verified:

x♦T (x, t, s)=





ae1 + be2 + ce3, if t = 0 (it must be s = d)

ae1 + (b− s)e2 + de3, if t = 1 (it must be c = 0)

ae1 + (c− s)e2 + be3, if t = 2 (it must be d = 0)





We will now define the isooperations associated with L̂. To do this, as we
already did in the previous example, we will impose some restrictions when
doing such operations, which are referred to the domain of the maps of the
type Φ which are needed to define such isooperations.

Let us consider then the following sets:

F = {(t, s) : t ∈ {{0, 1, 2}, s ∈ R}
F+ = {((t, s1), (t, s2)) : t ∈ {{0, 1, 2}, s1, s2 ∈ R}

F[.,.] = {((t, 0), (t, 0)) : t ∈ {{0, 1, 2}}

In this way, we define the following three maps:

Φ+ : F+ → F

((t, s1), (t, s2)) → Φ+((t, s1), (t, s2)) = (t, s1 + s2)
Φ× : R× F → F

(a, (t, s)) → Φ×(a, (t, s)) = (t, as)
Φ[.,.] : F[.,.] → F

((t, 0), (t, 0)) → Φ[.,.]((t, 0), (t, 0)) = (t + 1, 0)

Now, by taking into consideration these maps we will look for the definition
of the isooperations associated with L̂. To do this, fix a, b, c, d, e, f, g, h, i,∈ R.
To check the coherence of the definition searched we have to distinguish some
cases, according to the factor time:

By beginning with +̂ we have that:
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a) t = 0
(ae1 + be2 + ce3 + de4)+̂(ee1 + fe2 + ge3 + he4)

= (ae1 + be2 + ce3)♦Î ′(ae1 + be2 + ce3, 0, d)

+̂(ee1 + fe2 + ge3)♦Î ′(ee1 + fe2 + ge3, 0, h)

= ((a + e)e1 + (b + f)e2 + (c + g)e3)♦Î ′((a + e)e1

+ (b + f)e2 + (c + g)e3, 0, d + h)

= (a + e)e1 + (b + f)e2 + (c + g)e3 + (d + h)e4

b) t = 1

(ae1 + be2 + de4)+̂(ee1 + fe2 + he4)

= (ae1 + (b− s1)e2 + de3)♦Î ′(ae1 + (b− s1)e2 + de3, 1, s1)

+̂(ee1 + (f − s2)e2 + he3)♦Î ′(ee1 + (f − s2)e2 + he3, 1, s2)

= ((a + e)e1 + (b + f − s1 − s2)e2 + (d + h)e3)

♦Î ′((a + e)e1 + (b + f − s1 − s2)e2 + (d + h)e3, 0, s1 + s2)

= (a + e)e1 + (b + f)e2 + (d + h)e4

c) t = 2

(ae1 + be2 + ce3)+̂(ee1 + fe2 + ge3)

= (ae1 + (c− s1)e2 + be3)♦Î ′(ae1 + (c− s1)e2 + be3, 2, s1)

+̂(ee1 + (g − s2)e2 + fe3)♦Î ′(ee1 + (g − s2)e2 + fe3, 2, s2)

= ((a + e)e1 + (c + g − s1 − s2)e2 + (b + f)e3)

♦Î ′((a + e)e1 + (c + g − s1 − s2)e2 + (b + f)e3, 0, s1 + s2)

= (a + e)e1 + (b + f)e2 + (c + g)e3

So, +̂ ≡ +.

Apart from that we have, with respect to ×̂ that:
a) t = 0

i×̂(ae1 + be2 + ce3 + de4) = î× (ae1 + be2 + ce3)♦Î ′(ae1 + be2 + ce3, 0, d)
= (iae1 + ibe2 + ice3)♦Î ′(iae1 + ibe2 + ice3, 0, id)
= iae1 + ibe2 + ice3 + ide4
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b) t = 1

i×̂(ae1+be2+de4) = î×(ae1+(b− s)e2+de3)♦Î ′(ae1+(b− s)e2 + de3, 1, s)
= (iae1+ (ib−is)e2+ide3)♦Î ′(iae1+(ib−is)e2+ice3, 1, is)
= iae1 + ibe2 + ide4

c) t = 2

i×̂(ae1+be2+ce3) = î× (ae1+(c− s)e2+be3)♦Î ′(ae1 + (c− s)e2 + be3, 2, s)

= (iae1+(ic−is)e2+ice3)♦Î ′(iae1+(ib−is)e2+ice3, 2, is)
= iae1 + ibe2 + ice3

So, ×̂ ≡ ×.

Finally, to define [̂., .̂] we will impose to such an isooperation to be bilinear
so that it can originate a Lie algebra in the projection level. In this way and
as we have already proved that +̂ ≡ + y ×̂ ≡ ×, we finally have that:

[̂ae1 + be2 + ce3 + de4, ee1 + fe2 + ge3 + he4̂]

= [̂â×̂e1+̂b̂×̂e2+̂ĉ×̂e3+̂d̂×̂e4, ê×̂e1+̂f̂×̂e2+̂ĝ×̂e3+̂ĥ×̂e4̂]

= â×̂ê×̂̂[e1, e1̂]+̂ · · · +̂d̂×̂ĥ×̂̂[e4, e4̂] = aê[e1, e1̂]+̂ · · · +̂dĥ[e4, e4̂]
By taking into consideration the definition of Φ[.,.] and the table of the elements
ei♦Î ′(x, t, s), it is easy checked that the Cartan coefficients of the resulting

algebra in the projection level are [̂e1, e3̂] = e2 and [̂e1, e4̂] = e3. So, we finally
deduced that

[̂ae1 + be2 + ce3 + de4, ee1 + fe2 + ge3 + he4̂] = (ag − ce)e2 + (ah− de)e3

As a consequence, we have obtained that (L̂, +̂, ×̂, [̂., .̂]) is the superalgebra
of dimension 4 of L with basis and Cartan coefficients given, which has a
structure of isoalgebra.

As in the previous examples, in this one have been also isotopically related
between themselves two filiform Lie algebras of different dimensions.

Acknowledgement. Authors thank to Professor R. M. Santilli for the
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