
Real time multiple objects tracking based on a bio-

inspired processing cascade architecture

F. Gómez- Rodríguez, L. Miró-Amarante, F. Diaz-del-Rio, A. Linares-Barranco, G. Jimenez.

Robotics and Computer’s Technology Group

University of Seville

Seville, Spain

gomezroz@us.es

Abstract— This paper presents a cascade architecture for bio-

inspired information processing. We use AER (Address Event

Representation) for transmitting and processing visual

information provided by an asynchronous temporal contrast

silicon retina. Using this architecture, we also present a multiple

objects tracking algorithm; this algorithm is described in VHDL

and implemented in a FPGA (Spartan II), which is part of the

USB-AER platform developed by some of the authors.

I. INTRODUCTION

This paper presents a cascade architecture for bio-inspired
information processing; and an object tracking algorithm
using this architecture. For visual information, provided by a
silicon retina, processing and transmitting Address Event
Representation is used; this use of events makes the system
bio-inspired.

This object tracking algorithm has some differences from
previous works in the field of objects tracking based on event
processing. In [8], Delbruck et al. present an hybrid
neuromorphic-procedural system for objects tracking, where a
computer is used for events processing. In [9], Litzenberger et
al. present an objects tracking system too, but now, a DSP is
used for events processing. These two approaches need to
collect events and render them like a video frame. Here only
two events are needed to obtain the object center of mass, and
only eight centers of mass are needed to obtain the object
velocity. The algorithm is described in VHDL and
implemented in a FPGA, so it is a fully hardware system.

Following we present the needed elements for developing
and implementing the architecture and the object tracking
algorithm: a) the Address Event Representation (AER)
communication protocol[1][2]; b) the sensor, an asynchronous
temporal contrast silicon retina, developed by the Institute of
Neuroinformatics (INI) of the University of Zurich[3][4]; and
c) the USB-AER Board [5][6][7], developed by the Robotics
and Computer’s Architecture Research Group.

A. The AER communication protocol

The AER protocol was proposed for neuro-inspired
information transmitting from one neuro-inspired chip to

another. The basics of AER consist of assigning an address to
each cell (neuron) in a chip. Each cell transmits its activity
showing its address in a common bus; two flow control signals
are commonly needed (REQ and ACK), to start and stop the
transmission.

As a result, the activity of every cell will appear in the
common bus. Usually the activity is frequency coded. In this
way, if cell’s activity is high, its address will appear in the bus
more frequently than other with lower activity. Each address
occurrence, in the bus, is known as an event. So, we can say
that the activity of each cell is coded in events frequency. Due
to AER bus multiplexes all the events in a common bus, an
arbiter is needed in the transmitter. Fig. 1 shows the
organization of AER communication.

To transmit each event, a simple handshake protocol is
normally used (see Fig. 2).

Figure 1. AER transmission organization. An address is asigned to each

cell. The cell activity is transmited showing its address in a common bus.
Each address ocurrence in the bus is known as an event. The cell activity is

coded in event frequency.

REQ

ACK

DATA

1

2

3

4

Figure 2. AER Handshake protocol

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. The asynchronous temporal contrast silicon retina

The sensor used in this work is a TMPDIFF128 silicon
retina developed by Tobias Delbruck and his group at INI of
University of Zurich [4]. Concretely, is an asynchronous
temporal contrast silicon retina, with an AER interface.

Retina output consists of the pixels activity that
corresponds to the scene movement. Fig. 3 shows how the
retina output is. On the right a 2D histogram of the collected
events for a period of time is showed. Events are signed to
distinguish between positive or negative contrast changes in
the pixel. Those pixels without changes in time do not produce
events, so they don’t appear in the histogram.

a) b)

Figure 3. Retina functionality: a) Scene, b) Retina Output (These pictures

have been extracted from [3])

C. USB-AER Board

The USB-AER board was developed by the Robotic and
Computer’s Technology Research Group of University of
Seville, for giving support to the AER based systems
developers. The first idea was to develop a board for AER-
based systems testing and debugging, this board implements
several modules for AER stream sequencing, monitoring,
mapping (to change on the fly the address space), depending
on the FPGA firmware.

Figure 4. USB-AER Board

But the flexibility of USB-AER board’s design makes
possible to implement on it any other functionalities such as
the presented one in this paper.

A picture of the USB-AER board is shown in Fig. 4. USB-
AER board is based around a Spartan-II 200 Xilinx FPGA,
with a 12ns, 512K by 32 bits SRAM memory bank. The board
uses a Silicon Laboratories C8051F320 microcontroller to
implement the USB and the MMC/SD interface.

II. CASCADE ARCHITECTURE FOR BIO-INSPIRED

INFORMATION PROCESSING

The proposed architecture consists of several cells, which
extract, collect and process events from the AER stream, as
soon as they are received. Each cell extracts and collects
events depending on the application. Each one only retains the
necessary events; the rest of events will pass through to the
next cell.

The key point of this architecture is that events are
processed as soon as they are received, without frame
integration. Therefore the respond time of each cell is very
short, in fact it is the delay time (order of ns).

Each cell computes the collected events and gives an
output, which is an AER stream too. So, each cell has one
AER input and two AER outputs, the first output gives the
result of events computation and the second one resends the
refused events. Fig. 5 shows the architecture overview.

Cell 0

Sensor

Cell 1

Sensor Events A
E

R
A

E
R

A
E

R

AER

AER
Cell Output

Cell Output

Cell n

A
E

R
A

E
R

AER

Cell Output

Refused Events

Refused Events

Refused Events

Figure 5. Architecture for bio-inspired information processing overview:
Depending on the application, each cell only extracts and collects the

necessary events from an AER stream, and the rest of the events are refused

and resent to the next cell.

With this cascade architecture, the AER stream complexity
is reduced from one cell to the next, because each cell does not
resend the events used for computing its output. Furthermore,
the cell output is also transmitted using AER. So, it can be
used for feeding other computing layers. As a result, a bio-
inspired parallel and multi-layer computing system could be
obtained.

III. MULTIPLE OBJECTS TRACKING ALGORITHM

In this section, we present an application using the
architecture explained above. The application computes the
position and velocity of several moving object in a scene.
Obviously, objects have to be in movement, because the
sensor (silicon retina) only sees the movement. So, the
system’s input is an AER stream that corresponds to the
scene’s movement.

For this application, each cell (of the architecture) consists
of two sub-cells. One is programmed to compute the object
center of mass, called CMCell; and its output is connected to
other sub-cell that calculates the object velocity, called VCell
(See Fig. 6)

CMCell collects events and calculates the object’s center
of mass. After a reset, CMCell is empty and takes the first
event that it receives; after this first event CMcell reduces its
field of view to a few pixels around center of mass, which
coincides at the first with this initial event. If after a
configurable time CMCell does not receive any event (in its
field of view), CMCell will reset, and then it is supposed that
the object is not moving any more. In opposite, if CMCell
receives a second event (in itself field of view), CMCell
computes the center of mass as the mean between both events
position and the center of the field of view is updated with the
new center of mass to track the object efficiently. Fig. 7 shows
the CMCell state machine diagram.

Input Events A
E

R
A

E
R

VCellAER AER Cell OutputCMCell

Refused Events

Figure 6. Cells for multiple objects tracking: CMCell calculates the

object’s center of mass, while VCell computes the object’s velocity,

eventually transmitted using AER.

RESET

IDLE

1st Event

received

Resending

event

Mean

Computation

Event out of

field of view

Event out of

field of view

Event in of

field of view

No Events

received in

field of view

During a

along time

Event

received

Event in of

field of view

No Events

received in

field of view

During a

along time

Figure 7. CMCell state machine diagram

Using the center of mass obtained by CMCell, VCell
calculates the velocity. For doing this, VCell stores a number
of consecutives centers of mass, periodically distributed. We
have determinate that with 8 values of center of mass is
accurate enough. Moreover, the time between two center of
mass values is configurable to adapt it to the velocity of the
objects. The velocity is measured in the image plane, so it is
necessary to know the distance between objects and the retina
to calculate the real velocity.

As a result, the output of the system is an AER stream with
the velocity of the objects.

This system has been described in VHDL and synthesized
to configure the FGPA of the USB-AER board. Due to the
reduce amount of gates of Spartan 2 (which is the USB-AER
board’s FPGA) only 6 objects can be tracked in parallel.

IV. EXPERIMENTS

The experiments consist of a silicon retina connected to an
USB-AER board, and this last one connected to a computer.

In order to visualize the system output, every data from the
VCell are stored in an internal memory, and then this data are
downloaded to a PC and drawn using the Matlab function
quiver.

 In the following sections, we present two experiments.

A. Four moving objects

In this experiment the stimulus is a scene where there are 4
moving objects with different trajectories, but with constant
velocities. Fig. 8 shows the experiment stimulus and the
silicon retina output.

a) b)

Figure 8. First experiment: four moving objects experiment. a) shows the

stimulus composed by 4 objects (a cross, a circle, a triangle and a square)

moving at the same velocity but with different trajectories; And b) shows a

64x64snapshot subsampled silicon retina output.

Figure 9. First experiment system output fused with silicon retina output.

Arrows respresent the apparent object’s velocity on the image’s plane.

Fig. 9 shows the silicon retina output and the velocity
vector for each moving objects. Velocity is expressed in unit
of pixel per 20 milliseconds (which was the period of the
VCells for collecting input events). In order to improve the

quality of the result visualization, the retina output is drawn in
negative. It can be observed that the system output (arrows) is
quite similar to the objects trajectories. All velocity vectors
modulus are similar, thus it is correct because the object’s
velocity is constant during the experiment (except for the
circle and triangle objects, which velocity vectors modulus
changes at the end of their trajectories, of course).

B. One object moving at different velocities

In this experiment the stimulus consists of one circle
moving in the scene at different velocities. Circle starts
moving slowly from the right bottom corner to left bottom
corner, then moves faster to left up corner, then much faster to
right up corner and then fastest to right bottom corner again.
Fig. 10 shows the scene and the moving objects.

Figure 10. Second experiment: a) one circle moving at different velocity.

Circle starts moving slowly from the right bottom corner to left bottom

corner, then moves faster to left up corner, then much faster to right up

corner and then fastest to right bottom corner again; And b) shows a
64x64snapshot subsampled silicon retina output

Figure 11. Second experiment system output fused with silicon retina output.

Rows respresent the apparent object’s velocity on the image’s plane.

Fig. 11 shows the result of this second experiment; the
retina output is again in negative to improve the quality of the
visualization. It can be observed that the system can detect
different velocities of the object. In this experiment the
velocity computation has some limitation, for example, in the
second part of the slowest trajectory (left part of the figure).
This is because the system tries to give a respond as soon as
possible; and because the period of VCell is very small related
to the object’s velocity.

V. CONCLUSION

This paper presents a bio-inspired processing cascade
architecture, which is successfully used for implementing a
multiple objects tracking algorithm. The system is fully
hardware implemented, described in VHDL; each
CMCell+VCell block only requires 161+182 slices of a
Spartan-II 200 Xilinx FPGA.

Results show that it is possible to estimate several objects’
velocities on the fly, that is, as soon as events are received;
without frame integration. Therefore obviously, estimation has
some limitations mainly when the object’s velocity is less the
respond time, but this can be improved by increasing the
system respond time (only 20 ms in these experiments). It is
fully scalable to track an arbitrary number of objects.

To enlarge the velocity interval range where the system
velocity estimation is poor, it is necessary a higher level layer
devoted to detect and correct errors in the velocity estimation.
Nevertheless the required quality of the velocity estimation
depends on the high level application that will use the
velocities.

ACKNOWLEDGMENT

Authors would like to thank to Tobias Delbruck and his
group for their silicon retina. Authors also thank to Spanish
grants Andalusian Government Excellence Research project
P06-TIC-02298, VULCANO (TEC2009-10639-C04-02) and
BrainSystems (P06-TIC-01417) for supporting this work.

REFERENCES

[1] M. Sivilotti, Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks, Ph.D. Thesis, California
Institute of Technology, Pasadena CA, 1991.

[2] Kwabena A. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[3] P. Lichtsteiner, et al., "A 128×128 120dB 30mW Asynchronous Vision
Sensor that Responds to Relative Intensity Change," ISSCC Dig. of
Tech. Papers, San Francisco, 2006, pp. 508-509 (27.9).

[4] Lichtsteiner, Delbruck, Posch: "A 128x128 120 dB 15 µs Latency
Asynchronous Temporal Contrast Vision Sensor". , Solid-State
Circuits, IEEE Journal of, ISSN 0018-9200; vol.43, no.2, Feb. 2008, p.
566-576

[5] F. Gómez-Rodríguez, R. Paz, A. Linares-Barranco, M. Rivas, L. Miró,
G. Jiménez, A. Civit. “AER tools for Communications and
Debugging”. Proc. IEEE ISCAS06. Kos, Greece, May 2006.

[6] M. Rivas, F. Gomez-Rodriguez, R.Paz, A. Linares-Barranco, S. Diaz,
D. Cascado. “Tools for Address-Event-Representation Comunication
Systems and Debugging”. Lecture Notes in Computer Science. Vol.
696. 2005. Pag. 289-296

[7] R. Paz, F .Gomez-Rodriguez, M.A. Rodriguez, A.Linares-Barranco,
G.Jimenez, A. Civit. “Test Infrastructure for Address-Event-
Representation Communications”. Lecture Notes in Computer Science.
Vol. 3512. 2005. Pag. 518-526

[8] T. Delbruck, T. and P. Lichtsteiner . “Fast sensory motor control based
on event-based hybrid neuromorphic-procedural system”. ISCAS 2007,
New Orleans, 27-30 May 2007 Pag:845 - 848.

[9] Litzenberger, M.; Bauer, D.; Belbachir, A.N.; Garn, H.; Kohn, B.;
Posch, C.; Schön, P.; “Embedded Vision System for Real-Time Object
Tracking Using an Asynchronous Transient Vision Sensor”; 12th IEEE
Workshop on Digital Signal Processing and Signal Processing
Education DSP/SPE 2006; Wyoming, USA;; ISBN: 1-4244-0535-1; p.
173-178; September, 24-27, 2006.

a) b)

