New Advances in the Study of Gröbner Bases and the

Number of Latin Squares Related to Autotopisms

Jorge Martín-Morales
Department of Mathematics-I.U.M.A
University of Zaragoza (Spain)
jorge@unizar.es
Raúl M. Falcón
Department of Applied Mathematic I University of Seville (Spain) rafalgan@us.es

Abstract

 permutations of rows, columns and symbols corresponding to the given autotopism of L. Using this method we could obtain the number of some Latin squares of order 8 having an isotopism in their autotpism group.

Introduction and notation

- A Latin square L of order n is an $n \times n$ array with elements chosen from a set of n distinct symbols $\left\{x_{1}, \ldots, x_{n}\right\}$, such that each symbol occurs precisely once in each row and each column. The set of Latin squares of order n is denoted by $\mathbf{L S}(\mathbf{n})$. A partial Latin square, P, of order n, is a $n \times n$ array with elements chosen from a set of n symbols, such that each symbol occurs at most once in each row and in each column. The set of partial Latin squares of order n is denoted as $\operatorname{PLS}(\mathbf{n})$.
- For any given $n \in \mathbb{N}$, we denote by $[\mathbf{n}]$ the set $\{1,2, \ldots, n\}$ and we assume that the set of symbols of any Latin square of order n is $[n]$. The symmetric group on $[n]$ is denoted by $\mathbf{S}_{\mathbf{n}}$. Given a permutation $\delta \in S_{n}$, it is defined the set of its fixed points $\operatorname{Fix}(\delta)=\{i \in[n] \mid \delta(i)=i\}$. The cycle structure of a permutation δ is the sequence $\mathbf{l}_{\delta}=\left(\mathbf{l}_{1}^{\delta}, \mathbf{1}_{2}^{\delta}, \ldots, \mathbf{l}_{\mathbf{n}}^{\delta}\right)$, where \mathbf{l}_{i}^{δ} is the number of cycles of length i in δ, for all $i \in\{1,2, \ldots, n\}$. On the other hand, given $L=\left(l_{i, j}\right) \in L S(n)$, the orthogonal array representation of L is the set of n^{2} triples $\left\{\left(i, j, l_{i, j}\right) \mid i, j \in[n]\right\}$. The previous set is identified with L and then, it is written $\left(i, j, l_{i, j}\right) \in L$, for all $i, j \in[n]$. - An isotopism of a Latin square $L \in L S(n)$ is a triple $\Theta=(\alpha, \beta, \gamma) \in$
$\mathcal{I}_{\mathrm{n}}=S_{n} \times S_{n} \times S_{n}$. In this way α, β and γ are permutations of rows,
columns and symbols of L, respectively. The resulting square \mathbf{L}^{Θ} is also a Latin square and it is said to be isotopic to L. If $L=\left(l_{i, j}\right)$, then $L^{\Theta}=\left\{\left(\alpha(i), \beta(j), \gamma\left(l_{i, j}\right)\right) \mid i, j \in[n]\right\}$. The cycle structure of an isotopism $\Theta=(\alpha, \beta, \gamma) \in \mathcal{I}_{n}$ is the triple $\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)$, where \mathbf{l}_{δ} is the cycle structure of δ, for all $\delta \in\{\alpha, \beta, \gamma\}$. An isotopism which maps L to itself is an autotopism. The possible cycle structures of the set of non-trivial autotopisms of Latin squares of order up to 11 were obtained in [3].
- The stabilizer subgroup of L in \mathcal{I}_{n} is its autotopism group, $\mathfrak{A}(\mathbf{L})=$ $\left\{\Theta \in \mathcal{I}_{n} \mid L^{\Theta}=L\right\}$. Given $\Theta \in \mathcal{I}_{n}$, the set of all Latin squares L such that $\Theta \in \mathfrak{A}(L)$ is denoted by $\mathbf{L S}(\boldsymbol{\Theta})$ and the cardinality of $L S(\Theta)$ is denoted by $\boldsymbol{\Delta}(\boldsymbol{\Theta})$. If Θ_{1} and Θ_{2} are two autotopisms with the same cycle structure, then $\Delta\left(\Theta_{1}\right)=\Delta\left(\Theta_{2}\right)$. Now, given $P \in P L S(n)$, the number $\mathbf{c}_{\mathbf{P}}=\Delta(\Theta) /\left|L S_{P}(\Theta)\right|$ is called P-coefficient of symmetry of Θ, where $\mathbf{L S}_{\mathbf{P}}(\boldsymbol{\Theta})=\{L \in L S(\Theta) \mid P \subseteq L\}$.
- Gröbner bases were used in [4] to describe an algorithm that allows one to obtain the number $\Delta(\Theta)$ in a computational way. This algorithm was implemented in Singular [6] to get the number of Latin squares of order \leq related to any autotopism of a given cycle structure [5]. The authors have seen that, in order to improve the time of computation, it is convenient to combine Gröbner bases with some combinatorial tools.

Cycle structures of Latin square autotopisms

Every permutation $\delta \in S_{n}$ can be uniquely written as a composition of pairwise disjoint cycles, $\delta=C_{1}^{\delta} \circ C_{2}^{\delta} \circ \ldots \circ C_{k_{\delta}}^{\delta}$, where: i) $\forall i \in\left[k_{\delta}\right], C_{i}^{\delta}=\left(c_{i, 1}^{\delta} c_{i, 2}^{\delta} \ldots c_{i, \lambda_{i}^{\delta}}^{\delta}\right)$, with $\lambda_{i}^{\delta} \leq n$ and $c_{i, 1}^{\delta}=\min _{j}\left\{c_{i, j}^{\delta}\right\}$ ii) $\sum_{i} \lambda_{i}^{\delta}=n$.
ii) For all $i, j \in\left[k_{\delta}\right]$, one has $\lambda_{i}^{\delta} \geq \lambda_{j}^{\delta}$, whenever i

Proposition 1. Let $\Theta=(\alpha, \beta, \gamma) \in \mathcal{I}_{n}$ be with $\Delta(\Theta)>0$. Let $L=\left(l_{i, j} \in L S(\Theta)\right.$ be such that all
Latin subrectangle of L are known:
$R_{L}=\left\{\left(c_{r, 1}^{\alpha}, c_{s, v}^{\beta}, l_{c_{r, 1}^{\alpha}, c_{s, v}^{\beta}}\right) \mid r \in\left[k_{\alpha}\right], s \in\left[k_{\beta}\right]\right.$ and $v \in\left\{\begin{array}{l}{\left[\lambda_{s}^{\beta}\right], \text { if } \lambda_{r}^{\alpha}>1,} \\ {[1], \text { if } \lambda_{r}^{\alpha}=1 .}\end{array}\right\}$.
Then, all the triples of L are known.

Gröbner bases and Latin square autotopisms

Gröbner bases on block design

We have just seen that Algorithm 1 allows one to obtain all the elements of the Latin rectangle R_{L} of Proposition 1. Now, let us observe that R_{L} is indeed the union of $k_{\alpha} \cdot k_{\beta}$ Latin rectangles:

$$
R_{L}=\bigcup_{r \in\left[k_{\alpha}\right], s \in\left[k_{\beta}\right]} R_{L}^{r, s} \quad \text { where } \quad R_{L}^{r, s}=\left\{\left(c_{r, 1}^{\alpha}, c_{s, v}^{\beta}, l_{c_{r, 1}^{\alpha}, c_{s, v}^{\beta}}\right) \left\lvert\, v \in\left\{\begin{array}{l}
{\left[\lambda_{s}^{\beta}\right], \text { if } \lambda_{r}^{\alpha}>1,} \\
{[1], \text { if } \lambda_{r}^{\alpha}=1 .}
\end{array}\right\}\right.\right.
$$

Each of these rectangles can be obtained by using an algorithm similar to Algorithm 1. Specifically, given $r \in\left[k_{\alpha}\right]$ and $s \in\left[k_{\beta}\right]$, it is enough to consider λ_{s}^{β} variables, $x_{r c^{\beta}}, \ldots, x_{r, c^{\beta}}$, corresponding to the elements $l_{r, c^{\beta}}, \ldots, l_{r, c^{\beta}}$ of the partial Latin square $R_{L}^{r, s} \in P L S(\Theta)$. Next, let us consider the set: $L S_{r, s}(\Theta)=\left\{P=\left(p_{i, j}\right) \in P L S(\Theta)| | P \mid=\lambda_{r}^{\alpha} \cdot \lambda_{s}^{\beta}\right.$ and $p_{i, j}=\emptyset$, whenever $\left.(i, j) \notin C_{r}^{\alpha} \times C_{s}^{\beta}\right\}$. The following result holds:
Theorem 3. The set of zeros of the following ideal of $\mathbb{Q}[\mathbf{x}]=\mathbb{Q}\left[x_{\left.r, c_{s, 1}^{\beta}, \ldots, x_{r, c_{s, \lambda_{s}^{\beta}}^{\beta}}\right] \text { corre- }} \begin{array}{l}\text { sponds to the set } L S_{r, s}(\Theta) \text { : } \\ \left.\quad I_{r, s}^{\prime}=\left\langle G\left(x_{r, j}, x_{r, j^{\prime}}\right)\right| j, j^{\prime} \in C_{s}^{\beta} \text { and } j \neq j^{\prime}\right\rangle+\left\langle P\left(x_{i, j}\right)-x_{\alpha(i), \beta(j)} \mid(i, j) \in C_{r}^{\alpha} \times C_{s}^{\beta}\right\rangle_{\square}\end{array}\right.$,

- In this way, it is possible to decompose Algorithm 1 into $k_{\alpha} \cdot k_{\beta}$ similar algorithms. However, it must be observed that, in general, $\bigcup_{r \in\left[k_{\alpha}\right], s \in\left[k_{B}\right]} L S_{r, s}(\Theta) \neq L S(\Theta)$, because, given $r^{\prime} \in\left[k_{\alpha}\right], s^{\prime} \in\left[k_{\beta}\right]$ such that $\left(r^{\prime}, s^{\prime}\right) \neq(r, s)$, we can find $P \in L S_{r, s}(\Theta)$ and $P^{\prime} \in L S_{r^{\prime}, s^{\prime}}(\Theta)$ such that $P \cup P^{\prime} \notin P L S(\Theta)$.

 Latin square $P \in L S_{r}(\Theta)$, we can include, as we did in Algorithm 1 the triples of P in the corresponding ide $I_{r^{\prime}, s^{\prime}}^{\prime}$. The set of zeros of the resulting ideal is the set of partial Latin squares P^{\prime} of $L S_{r^{\prime}, s^{\prime}}(\Theta)$, such that $P \cup P^{\prime} \in$ $P L S(\Theta)$.
- Now, given $r^{\prime \prime} \in\left[k_{\alpha}\right], s^{\prime \prime} \in\left[k_{\beta}\right]$ such that $\left(r^{\prime \prime}, s^{\prime \prime}\right) \notin\left\{(r, s),\left(r^{\prime}, s^{\prime}\right)\right\}$, we can include the triples of $P \cup P^{\prime}$ in the ideal $I_{r^{\prime \prime}, s^{\prime \prime}}^{\prime}$ in such a way that its set of zeros is the set of partial Latin squares $P^{\prime \prime}$ of $L S_{r^{\prime}, s^{\prime}}(\Theta)$, such that $P \cup P^{\prime} \cup P^{\prime \prime} \in$ $P L S(\Theta)$.
- This process can be repeated, by taking for example the natural order in the rectangles $R_{L}^{r, s}$ obtain the set $L S(\Theta)$. We have implemented this algorithm in Singular to obtain the number $\Delta(\Theta)$ corresponding to Latin squares of order 8 , as we can see in the above table

Also, we have detected two erros in the following cycle structures of [4]:

References

[1] Adams, W. and Loustaunau, P., 1994. An introduction to Gröbner bases. Volume 3 of Graduate Studies in Mathematics. American Math ematical Society, Providence, RI
2] Bayer, D., 1982. The division algorithm and the Hilbert scheme. Ph D. Thesis. Harvard University
[3] Falcón, R. M. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combinatoria (in press). http://arxiv.org/ abs/0709. 2973
[4] Falcón, R. M. and Martín-Morales, J. Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7. Journal of Symbolic Computation 42 (2007), pp. 1142-1154.
[http://www. personal.us.es/raufalgan/LS/latinSquare.lib
[6] Greuel, G.-M., Pfister, G. and Schönemann, H., 2005. Singular 3.0. A Computer Algebra System for Polynomial Computations. Cen tre for Computer Algebra, University of Kaiserlautern. http://www singular.uni-kl.de.
[7] Laywine, C. F. and Mullen, G. L., 1998. Discrete mathematics using Latin Squares. Wiley-Interscience. Series in discrete mathematics and optimization. ISBN 0-471-24064-8.

