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Abstract

Vector autoregressive (VAR) models constitute a powerful and well stud-
ied tool to analyze multivariate time series. Since sparseness, crucial to
identify and visualize joint dependencies and relevant causalities, is not ex-
pected to happen in the standard VAR model, several sparse variants have
been introduced in the literature. However, in some cases it might be of
interest to control some dimensions of the sparsity, as e.g. the number of
causal features allowed in the prediction. To authors extent none of the ex-
istent methods endows the user with full control over the different aspects of
the sparsity of the solution. In this paper we propose a sparsity-controlled
VAR model which allows to control different dimensions of the sparsity, en-
abling a proper visualization of potential causalities and dependencies. The
model coefficients are found as the solution to a mathematical optimization
problem, solvable by standard numerical optimization routines. The tests
performed on both simulated and real-life multivariate time series show that
our approach may outperform both the standard and Group Lasso in terms
of prediction errors specially when highly sparse graphs are sought, while
avoiding the VAR’s overfitting for more dense graphs. Causality; Mixed
Integer Non Linear Programming; multivariate time series; sparse models;
Vector autoregressive process.

1Corresponding author: Alba V. Olivares-Nadal, Departamento de Estad́ıstica e Investigación
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1 Introduction

A plethora of real world data, such as e.g. air pollution measures or brain func-
tional connections, involve multivariate time series, i.e., different and inter-related
features, evolving in time, are simultaneously measured and are to be forecasted.
Since the components of such multivariate time series are not independent, inac-
curate predictions are expected if the series are analyzed separately by repeatedly
using one-dimensional time series forecasting tools. In order to properly address
such dependencies, vector autoregressive models (VAR) are frequently applied.
However, although capturing features dependencies, there is no reason to expect
the so-obtained VAR to be sparse. In other words, the output may be too complex
when, on top of obtaining sharp forecasts, visualization of relevant causalities is
sought, (Eichler, 2012; Shojaie and Michailidis, 2010; Lozano et al., 2009; Arnold
et al., 2007; Valdés-Sosa et al., 2005).

Visualization is a trending topic nowadays, and it is being widely studied to
unravel potential causalities in biological systems. In particular, graphical models
have been developed to deal with genetic networks (Abegaz and Wit, 2013; Shojaie
and Michailidis, 2010; Lozano et al., 2009; Hu and Hu, 2009; Dobra et al., 2004),
which includes E. coli and Arabidopsis thaliana regulatory networks, or human
cancer cell data. Moreover, Gorrostieta et al. (2013); Valdés-Sosa et al. (2005)
develop sparse autoregressive models to enhance visualization of brain functional
connectivity. Also, understanding relevant causalities has played an important role
in evaluating the effect of air pollution and exposure over human health (Dominici
et al., 2000).

Due to its wide range of applications, several attempts have been proposed in
the literature to obtain VAR models in which sparsity, as a potential for easy visu-
alization of complex causal relations, is pursued. This is the case, for instance, of
Stochastic Search Variable Selection (George, 2000; George and McCulloch, 1997),
Bayesian approaches (Doan et al., 1984) and the Lasso (Tibshirani, 1996). Mini-
mizing the forecasting errors plus an `1-penalty regularization term has not led to
a unique Lasso method, but it has evolved into a full class of Lasso approaches,
such as the so-called Adaptative Lasso, (Zou, 2006), the Group Lasso, (Song and
Bickel, 2011; Haufe et al., 2010; Zhao et al., 2009; Yuan and Lin, 2006), the Max-
imum Likelihood Estimated Lasso (Davis et al., 2012; Hsu et al., 2008), or Lasso
Granger methods, (Arnold et al., 2007). Such VAR models attempt to gain overall
sparsity, without an explicit analysis of its different aspects.

Nevertheless, it might be of interest in certain real life situations to control not
only the overall number of depicted dependencies but also other levels of sparsity.
For example, the number of causal features might be wanted to be limited when
acceding to the historical records of the features incurs into a cost. Consider a
patient who is under surveillance and several tests need to be undertaken to control
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her health periodically. Those tests may not only be costly but also invasive for
the patient end therefore it may be desirable to reduce their application without
affecting much the quality of the diagnose. As an example, Griffin et al. (2005)
suggest heart rate to predict neonatal sepsis, instead of obtaining blood from the
infants for laboratory tests. This is also useful for the companies shares prices,
whose time series are to be paid but, once done, all the historical records are
available to use. In all these cases the number of causal features and the number
of dependencies from each causal feature are valued differently: as we might seek
to limit the first one, we might not be that strict with the second.

This subject was previously noted by Lozano et al. (2009), who stated that “as
a method of Granger graphical modeling, the relevant variable selection question is
not wether an individual lagged variable is to be included in regression, but wether
the lagged variables for a given time series as a group (i.e. the feature), are to
be included”. To address this issue they proposed to use Group Lasso, in which
all the lagged variables of a feature were assigned to the same group. Although
this approach reinforces to choose all the past values of a feature once one of them
has already been selected for the prediction, it still does not grant control over
the exact level of sparsity of the outcome, like none of the other Lasso methods.
Moreover, the Lasso approaches perform a shrinkage over the coefficients which,
as will be seen in Section 4, might not be advisable when highly sparse graphs are
sought.

In contrast we propose a novel sparse approach, formulated as a mathematical
optimization problem, which endows the user with the power to control different
aspects of the sparsity of the solution. Sparsity is meant here in some of its many
different dimensions, as the total number of nonzero coefficients, the total number
of features used for the forecast, or the number of past observations of each feature
used by the model to make predictions. The performance of this sparsity-controlled
VAR method (SC-VAR henceforth) will be compared with three benchmark ap-
proaches, namely, the VAR and both the standard and Group Lasso, on simulated
and real-life multivariate time series. The results show that the proposed ap-
proach outperforms the benchmark Lasso methods in terms of prediction errors
when highly sparse graphs are sought, while avoiding the VAR’s overfitting for
more dense graphs.

The paper is structured as follows. Next section introduces mathematically
the three benchmark methods, the VAR, the classic Lasso and the Group Lasso,
and motivates our approach. In Section 3 the SC-VAR model is introduced and
expressed as a mixed integer non-linear optimization program, solvable by standard
optimization software. Also, a discussion about the choice of the parameters of
the model is included. Competing approaches are compared against the proposed
method in Section 4 in both simulated and real datasets. Finally, conclusions and
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future extensions are collected in Section 5.

2 Preliminaries

Let {Xt}t≥0 be an N -dimensional vector autoregressive process of order p, VAR(p),
i.e., each series i, i = 1, ..., N , can be expressed as

Xi,t = ci +
N∑
j=1

p∑
k=1

αi
jkXj,t−k + eit t ≥ 0

where {eit}t≥0 denotes the series of contemporaneous shocks that affect feature i,
and ci and αi

jk are real numbers. The usual estimation procedures for the coef-
ficients ci and αi

jk are Maximum Likelihood (which implies making distributional
assumptions on the errors eit ) or, without imposing any statistical assumption,
the Ordinary Least Squares method:

min
c,A

N∑
i=1

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

(1)

where c = (ci)i ∈ R1×N and A = (A1|...|AN) ∈ RN×Np stand for all unknown
coefficients of the process to be estimated. Here Ai = (αi

jk)j,k represents the N ×p
matrix of coefficients used to model series i.

There is no reason to expect sparsity in the estimates obtained by maximum
likelihood estimation or by solving the nonlinear program (1), and therefore, it may
be difficult to visualize causalities while leading to overfitting (Kalli and Griffin,
2014; Li, 2012; Kojima et al., 2009). Among the different procedures proposed in
the literature with the aim of obtaining more sparse solutions, a prominent role
is given to the Lasso-VAR (Lasso thereafter), in which an `1 regularization term
is added to the objective function (1), and thus estimates are obtained by solving
the following nonlinear nonsmooth optimization program:

min
c,A

N∑
i=1

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

+
N∑
i=1

λi

(
N∑
j=1

p∑
k=1

|αi
jk|

)
. (2)

As previously mentioned, when features are presented as time series, the use
of Group Lasso is encouraged in the literature if more than one-lagged values are
considered; see, for instance, Lozano et al. (2009). Such a method groups lagged
variables of the same feature, giving more importance to the number of causal
features rather than to the overall number of dependencies depicted. This is done
by adding an `2-penalty separately for each group (Yuan and Lin, 2006):
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min
c,A

N∑
i=1

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

+
N∑
i=1

λi

(
R∑

r=1

‖αi
j(r)αi
j(r)αi
j(r)‖2

)
(3)

where αi
j(r)αi
j(r)αi
j(r) =

(
αi
j1, α

i
j2, ..., α

i
jp

)
.

Infinitely many solutions may be obtained for the Lasso approaches when vary-
ing the parameter λi ∈ R+, where more sparse solutions are attained when in-
creasing the value of this penalty (in fact, note that all αi

jk = 0 when λi → +∞).
However, although one may think that these popular Lasso approaches already
cope with sparsity-controlled graphs, there is no way to discern the exact level of
sparsity of the outcome when values for the penalties λi are given a priori, call-
ing for a (multidimensional) parameter tuning which, at the end, show solutions
with different levels of sparsity, but there is no guarantee that sparsity is fulfilled.
Moreover, these methods perform a shrinkage over the coefficients, which may
deteriorate their prediction power when highly sparse graphs are sought. Even
although these methods often provide reasonable sparse solutions, according to
some authors (Bertsimas and Copenhaver, 2014; Caramanis et al., 2012) adding
an `1 or `2 penalty is a robust approach rather than a sparse method. In con-
trast, Bertsimas and Copenhaver (2014) present Mixed Integer Programming as
a useful tool to attain sparsity. This recommendation is supported by the recent
improvement on integer optimization solvers, which can attain considerably good
solutions at a reasonable computational cost. In this paper a sparsity controlled
VAR is formulated as a Mixed Integer Non-Linear Problem (MINLP), in which we
manage to control different aspects of the sparsity of the outcome.

When control over sparsity is sought, a natural approach is as follows: start
with a standard VAR and then, in a naive way, select the largest estimated co-
efficients (in absolute value) and set to zero the remaining (smaller) coefficients.
This naive approach is easy to implement, quick to execute and sounds reasonable.
However, its performance may be poor, as we show next. Consider the top left
panel of Figure 1, where a simulated VAR of order p = 3 is graphically represented.
The multivariate time series is represented as a directed graph; nodes correspond
to the different features, i.e., the different one-dimensional time series composing
the multivariate time series; edges in the graph visualize causality: an arrow from
node j to node i means that the model uses feature j in the forecast of feature
i; the thickness of the edges is proportional to the magnitude (in absolute value)
of the coefficient relating the features, and therefore it measures the causality’s
strength when the series are normalized. The color of the edges is related to the
lag: the arrow is plotted in black if the present (t) value of a feature is related
with a data one period behind (t − 1), red for two periods (t − 2) and green for
three (t − 3). Here node 1 receives arrows from nodes 2 and 3, meaning that, in
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order to forecast feature 1, past values of features 2 and 3 are used. Note also that
node 1 receives here three arrows from node 3, so the present value t of feature 1
is caused by the previous three values (t− 1), (t− 2) and (t− 3) of series 3.

Assume that only one observation of one single feature is allowed to be used
to explain a feature. Then the naive approach, illustrated in the top right panel
of Figure 1, underestimates strong persistence in favor of just one significant co-
efficient. This undesired phenomenon is a consequence of the nature of the naive
approach: arrows are considered to be kept or removed one by one, and thus the
overall picture may be lost. For this reason, instead of using the above-described
naive approach, we suggest to express the problem of arrows selection as a mathe-
matical optimization model, solvable by current standard numerical optimization
routines. In particular, when applied to the time series of the example, the output
of our procedure is visualized through the directed graph in Figure 1 (bottom right
panel). It can be observed that the MSE obtained by the SC-VAR solution is con-
siderably smaller than that of the naive approach. In order to illustrate the effect
of the shrinkage of Lasso methods over the forecasting power we depict the solu-
tion under the standard Lasso in the bottom left panel. This effect is clear since
the arrow is thinner, which could be detrimental when highly sparse solutions are
sought. This phenomenon, also observed in the results of the experiments carried
out in Section 4, will be discussed in more detail. Also it is interesting to note that
the chosen causal feature differs for each method: as variable 1 is considered to
cause itself for the Group Lasso, feature 3 is considered for our approach instead.
This is not surprising since it is known that the VAR might not be identifiable
(Lütkepohl, 2005).

3 The SC-VAR.

In this section we will first discuss the sparsity parameters in the SC-VAR model
(Section 3.1), which will be later written as a mathematical optimization problem
(Section 3.2). In Section 3.3 we will briefly discuss the choice of parameters of our
model.

3.1 Different aspects of the sparsity

To the best of our knowledge the existent sparse VAR models attempt to gain
overall sparsity, without an explicit analysis of the different aspects of sparsity.
The Lasso approaches do not grant the user with the ability to manage the sparsity
of the solution in some desirable dimensions either. Indeed, the number of features
allowed to be used by the model to explain feature i (V i

S) or the overall number of
nonzero coefficients (VA), are different measures usually masked under the generic
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term of sparsity. Other aspects of the sparsity, that will be also under the user’s
control in our proposed sparse VAR, are the number of non-zeroes used to explain
feature i (V i

T ) or the number of observations per each causal feature of variable
i (V i

Sa). Moreover, when series are normalized then the strength of a potential
causality might be related with the magnitude of its associated coefficient. Hence,
in order to avoid spurious dependencies, clear cut-offs εij will be introduced, so that
only coefficients with an absolute value greater than or equal to εij are allowed when
relating feature i with feature j. All these parameters, included in our SC-VAR,
allow the user to obtain an output with the desired level and structure of sparsity.

3.2 Mathematical Programming formulation

The objective of the SC-VAR approach if twofold: control the sparsity of the solu-
tion while not damaging much the forecasting capacity. Therefore, in our SC-VAR
model, the VAR estimates are obtained by solving the optimization problem (1)
imposing on the coefficients of A the bounds represented by the sparsity param-
eters VA, V

i
T , V

i
S, V

i
Sa and εij above. They can be expressed as linear constraints

by adding logical (binary) variables. Indeed, define the variables δijk to indicate
whether a coefficient αi

jk is zero or not, and variables γij to indicate if feature j is
meant to cause variable i (i.e., if αi

jk 6= 0 for some k).
Now the SC-VAR model is formulated as the optimization problem (4)-(11),

whose outputs are the estimates of the sparse coefficients ci and αi
jk, as well as the
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solution for the indicator variables δijk and γij.

min
c,A,∆,Γ,

N∑
i=1

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

(4)

s.t

δijk ≤ γij ∀k ∈ K, j, i ∈ I (5)

N∑
j=1

γij ≤ V i
S ∀i ∈ I (6)

p∑
k=1

γijδ
i
jk ≤ V i

Sa ∀j, i ∈ I (7)

N∑
i=1

N∑
j=1

p∑
k=1

δijk ≤ VA (8)

N∑
j=1

p∑
k=1

δijk ≤ V i
T ∀i ∈ I (9)

Mδijk ≥ |αi
jk| ≥ εijδ

i
jk ∀k ∈ K, j, i ∈ I (10)

δijk, γ
i
j ∈ {0, 1} ∀k ∈ K, j, i ∈ I (11)

where K = {1, ..., p}, I = {1, ..., N}, ∆ = (δijk)i,j,k, Γ = (γij)i,j and M is a large
constant.

Let us briefly discuss the correctness of the formulation above. The objective
function (4) minimizes the sum of squared errors. Constraint (5) forces the variable
γij to take the value 1 when some δijk takes the value 1, i.e., as soon as some αi

jk is
non-zero. The remaining constraints model different aspects of the sparsity of the
process. Indeed, constraints (6) and (7) bound the number of features that are said
to cause variable i and the number of non-zero coefficients per each of the chosen
causal features of variable i, respectively, for i = 1, .., N . Constraints (8) and (9)
bound respectively the total number of non-zero entries in matrix A and the total
number of non-zero coefficients for each variable i. The shrinking parameter εij is
included in the model via constraint (10), which assigns zero to any coefficient that
is not allowed to appear on the model, but otherwise it requires |αi

jk| to belong to
the interval [εij,M ]. Here M is assumed to be a large fixed number, and thus this
constraint does not exclude reasonable values of the parameters αi

jk.
Problem (4)-(11) is a Mixed Integer Non Linear Program (Burer and Letchford,

2012; Lee and Leyffer, 2012), called MINLP henceforth, with convex quadratic
objective function. See e.g. Bertsimas and Copenhaver (2014); Bertsimas and
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Mazumder (2014) for other statistical problems recently addressed via optimization
in integer numbers. All constraints are linear, except for (10). However, this can be
rewritten by introducing new auxiliary variables νi+jk , νi−jk , allowing to reformulate
Problem (4)-(11) as:

min
c,A,∆,Γ,

N∑
i=1

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

s.t

(5)-(9), (11)

αi
jk ≥ εijν

i+
jk − (1− νi+jk )M ∀k ∈ K, j, i ∈ I

αi
jk ≤ −εijνi−jk + (1− νi−jk )M ∀k ∈ K, j, i ∈ I
δijk ≤ νi+jk + νi−jk ≤ 1 ∀k ∈ K, j, i ∈ I
νi+jk , ν

i−
jk ∈ {0, 1} ∀k ∈ K, j, i ∈ I

(P)

Note that the new constraints require that either −M ≤ αi
jk ≤ −εij or εij ≤

αi
jk ≤M if coefficient αi

jk is chosen to appear in the model (i.e., if δijk = 1). Now,
Problem (P) is a MINLP with quadratic convex objective function and linear
constraints. Hence, it can be solved using standard solvers, such as CPLEX or
Gurobi, and it can be easily written using a simple algebraic language such as
AMPL (Fourer et al., 2002). The lines of the AMPL code are included in Appendix
A of the Supplementary Material.

Note that (8) is the only constraint of Problem (P) linking the count of the non-
zeroes of all features. Hence, if constraint (8) were redundant, the separability of
the objective function (4) would allow to solve Problem (P) by solving separately
the problem for each feature i :

min
ci,Ai

T∑
t=p

(
Xi,t+1 − ci −

N∑
j=1

p∑
k=1

αi
jkXj,t+1−k

)2

.

Since such problems are of much smaller dimension, we see that removing con-
straint (8) would allow one to cope with databases with a larger number of time
series.

3.3 Choice of paramenters

Compared with other methods seeking sparsity, our approach has many more
parameters, which may be, at first glance, discouraging. Some comments are in
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order to treat this issue. First note that, as opposed to the Lasso approaches, the
parameters which are to be determined in Problem (P) have a precise meaning
in terms of the sparsity, and therefore can be fixed by the user a priori without
carrying out any tuning if a determined level of sparsity is sought. In other words,
they are not parameters to tune but decisions to make with respect to the sparsity
desired. Second, although apparently the proposed methodology consists of four
parameters per series (V i

T , V i
S, V i

Sa and εij) and one global parameter (VA), not
all of them need to be fixed to address the problem. Indeed, it suffices to fix the
parameters that are significant for the user and choose the rest of them so that the
remaining constraints are redundant. For instance, if the user only cares about
the number of causal features, it suffices to fix only V i

S. As an illustration consider
Figure 1, discussed in Section 2, where the SC-VAR approach was solved fixing
nothing but V 1

T = 1.
Finally, Problem (P) can be solved by fixing solely VA, which represents the

overall sparsity of the whole graph. This means that the SC-VAR can be solved
for all features simultaneously, while the Lasso approaches are always solved sep-
arately for each feature. This provides our model with more flexibility than Lasso
methods to obtain a graph with a specified level of overall sparsity, placing pools
of non-zeroes where necessary, as will be seen in Figure 2. Summarizing, the more
thorough the user wants to be with the structure of the solution, the more param-
eters she has to fix. This is the price to pay to control sparsity, if sought, in many
of its dimensions.

4 Numerical illustrations

In this section the SC-VAR is compared with three benchmark approaches, the
VAR, the Lasso and the Group Lasso, on simulated as well as real datasets. Table 1
summarizes the methods under comparison. Further descriptions on such methods
and the choice of the parameters used are provided below.

4.1 Comparison methodology

For the proposed numerical examples, the Lasso coefficients were obtained via the
Least Angle Regression algorithm, LAR. This algorithm solves the Lasso for each
variable i separately. Since at each step the LAR incorporates a new predictor for
variable i, it provides a set of solutions with different levels of sparsity (i.e. different
number of non-zeroes per node, V i

T ). The Lasso set of solutions was obtained by
using the lars() function of R-cran package lars (Hastie and Efron, 2013).

Solutions for the Group Lasso were obtained by using the functions of the
R-cran package gglasso (Yang and Zou, 2015). In particular, the function cv.gglasso

10



was used to perform a 5-fold cross-validation over the fits obtained for each value
of the penalties λi and calculate their mean cross-validated errors. Recall that
the Group Lasso understands sparsity in terms of the number of causal features,
rather than the overall number of non-zero coefficients per node. As the sparsity
of the output cannot be discerned in advance, we had to tune its parameters: we
solved the Group Lasso for a grid of λi large enough, so solutions for all possible
values of V i

S were obtained.
The SC-VAR solution was obtained by solving Problem (P) using Gurobi ver-

sion 6.0.0. As previously commented, the Lasso approaches are solved indepen-
dently for each node. Hence, in order to fairly compare against these methods,
the SC-VAR parameter VA was fixed so as the constraint (8) was redundant. In
this way, Problem (P) could be solved separately for each feature. To test the per-
formance of our approach under different requirements of sparsity, the SC-VAR
was solved for all possible combinations of parameters V i

T , V i
S and V i

Sa. In order
to test the influence of the shrinking parameter of constraint (10), εij = ε for all
i, j and the sparse problem was solved for ε = 0 and ε = 0.2. However, the ob-
tained MSEs were mainly equivalent and thus we only report here the results for
ε = 0.2 to conserve space We found interesting that considering ε = 0.2 not only
leads to a neater graph, but it may also yield different solutions to those obtained
for the case ε = 0. This might often be caused by the non-identifiability of the
process. Therefore it can be concluded that when no small non-zero coefficients
are wanted, then it is not optimal to simply delete or increase such coefficients,
as a better solution can be obtained by dismissing old links and adding new ones
between other features. In contrast to the VAR, constraint (10) of the SC-VAR
bounds the sparse coefficients by a constant M . In our experiments M was fixed
to 2, although other values were tested, with similar performance. Observe that,
as customary in the literature, the choice of such M is problematic, since a very
small value may exclude reasonable values of the coefficients αi

jk, whilst a very
large value of M is to cause severe numerical troubles (Camm et al. (1990)).

Two criteria are used to compare the methods, namely, the MSE and the
sparsity. Each time series is divided in train and test sets with cardinality Ttrain
and Ttest, respectively. The solutions for each method are obtained using only the
data of the train set, and the MSE for such solutions is calculated in the test set.
All the results presented now are normalized by dividing by the VAR solution;
that is to say, when the SC-VAR or the Lasso approaches attain a MSE greater
than 1 their prediction capacity is estimated to be worse than that of the VAR,
while for smaller values the forecasting power is expected to improve. For VAR(1)
processes, the SC-VAR was compared against the Lasso, since no grouping effects
amongst lagged variables were necessary for these cases. For VAR(p) processes
with p > 1 the SC-VAR was also compared against the Group Lasso when it was
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sought to test the influence of the number of causal features over the MSE.

4.2 Simulation study

In order to test the performance of all the approaches we generate synthetic data
following VAR(1) and VAR(2) processes of 10 nodes with i.i.d. errors drawn from
a standard Normal distribution. To generate the coefficients of such multivariate
time series we roughly follow the experiments conducted in Arnold et al. (2007);
Lozano et al. (2009), in which an affinity parameter is fixed. Such a parameter
is the probability that an edge is included in the graph. For example, if we want
a graph to have a 20% density we fix the affinity parameter to 0.2. Then, we
randomly generate all the coefficients of the process matrix A and decide whether
each off-diagonal element is included by simulating a Binomial distribution with
success probability 0.2.

So as to test the performance of the sparse approaches under graphs with
different levels of sparsity, VAR processes with densities 0%, 10%, 20%,...,100%
have been generated. A 0% density means that each feature follows an independent
autoregressive process (diagonal matrix) and a 100% density implies that there
exists correlation amongst all nodes. For each level of density 100 instances of
VAR processes were generated. Each time series has 1000 observations, whose
first 500 were assigned to the train set and the remaining to the test set. Although
the VAR, Lasso, Group Lasso and SC-VAR were solved for all levels of density,
the results were mainly equivalent and thus only the results for simulations with
a 10%, 50% and 90% density are included here. Table 3 reports the median of the
normalized MSEs for such densities for Lasso and SC-VAR for VAR(1) processes,
while Table 4 reports them for Group Lasso and SC-VAR for VAR(2) processes.

4.2.1 p = 1.

From Table 3 it can be observed that the SC-VAR outperforms the Lasso in terms
of MSE when highly sparse graphs are sought (that is, for small values of VT ). This
outperformance over the Lasso increases as the density of the process does. Indeed,
the difference between the Lasso and the SC-VAR is at least a 5% deterioration
over the VAR MSE when the maximum number of non-zeroes required is less than
2, 4 or 6 for processes with densities 10%, 50% and 90%, respectively. While the
sparsity-controlled approach can sometimes attain an MSE 9% better than the
Lasso (VT = 2, 90% density), the Lasso outperforms it for highly dense graphs
(VT ≥ 8, 90% density). In order to illustrate more in depth the results, randomly
selected instances are depicted in Figure 2, together with their VAR solutions. For
the sake of abbreviation, only the most extreme solutions of the SC-VAR and the
Lasso (VT = 1 and VT = 10) have been depicted.
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From Figure 2 some observations arise. First, the VAR leads to overfitting.
This is clearer as more sparse the real graph is. Second, the Lasso is equivalent
to the VAR for VT = 10. However, the SC-VAR attains a much more sparse
solution while providing a similar MSE. It seems that requiring the absolute value
of the non-zero coefficients to be larger than a threshold (ε = 0.2 in constraint
(10)) helps avoiding overfitting in these particular cases, leading to graphs that
are more similar to the original ones. Observe that this idea of defining a clear
cut between non-zero and zero coefficients is rather different to the behaviour of
the Lasso, which shrinks coefficients towards zero. Third, although the two sparse
approaches under comparison attain equally sparse graphs for VT = 1, the SC-
VAR yields better MSEs. Note that the chosen causal features are different for
the two approaches. Moreover, as noted in Section 2, larger penalties for the Lasso
imply more sparsity but stronger shrinkage, entailing a loss in its prediction power.
Finally, as an illustration results for the SC-VAR fixing nothing but parameter VA
have been also depicted. We required a total of 10 non-zero coefficients for the
whole graph, obtaining the same number of arrows as when requiring a maximum
of 1 non-zero per feature. Observe that the obtained graphs for processes with
50 and 90% density are similar to the outputs of SC-VAR solved fixing VT = 1
for each node. However, for the process with 10% density the MSE is improved
by encouraging extra-diagonal elements. Note that some features receive more
than one arrow, although the level of sparsity of the whole graph is the same.
In conclusion, the forecasting power can be improved while maintaining the same
level of sparsity by allowing a pooling effect on the non-zeroes (i.e., by solving the
SC-VAR with binding (8) constraint).

4.2.2 p = 2.

In Table 4 it can be observed that the SC-VAR usually helps avoiding VAR over-
fitting. Note that the SC-VAR outperformance over the VAR is clearer for p = 2
than for p = 1, which is reasonable since the number of parameters of the VAR
increases with p. As solving the SC-VAR with fixing nothing but VS = 10 is equiv-
alent to the standard VAR, the improvement over its MSE is thanks to the choice
ε = 0.2.

In Table 4 it can be observed that the SC-VAR always outperforms the Group
Lasso in terms of MSE, the outperformance being clearer as the sparsity of the
output decreases. Moreover, it seems that the SC-VAR performs equivalently with
respect to the VAR no matter the density of the original graph, but the Group
Lasso performs worse for large VS in truly dense processes. For instance, while the
SC-VAR improves the VAR’s forecasting error in a 13% for VS = 10 and processes
with 90% density, the Group Lasso attains a 48% of worsening.
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4.2.3 Computational times.

Although it would be interesting to study how data parameters (N , p and T ) and
chosen parameters (such as VT , VS, VSa...etc.) affect computational times when
solving the MINLP (P), carrying out such costly experiments are out of the scope
of this paper. However, some intuitions arise from our numerical experience. As
the VAR consists of N2p+N coefficients, the computational times are expected to
increase specially with N and p, and we have experienced so in our experiments.
On the other hand, we found that the SC-VAR is not that sensitive to the length
of the time series T .

In order to illustrate the effect of the sparsity requirements of the SC-VAR
over the computational cost, consider Figure 3, where the median elapsed time in
seconds has been depicted against the sparsity of the output, measured in terms
of VS. For the sake of clarity, only the times obtained for VAR(1) and VAR(2)
processes with 10, 50 and 90% densities are depicted. Some comments are in order
here. First, Figure 3 supports the intuition about computational times increasing
with p. Second, although there is no much difference in the computational times
for VAR(1) processes, it seems that for VAR(2) processes the computational times
increase with the density of the true graph. Third, for p = 2 it is clear that the
SC-VAR computational burden is consistently lower when either highly sparse or
dense graphs are sought. To conclude, for p = 1 the SC-VAR takes to solve around
0.6 seconds on a PC Intelr CoreTM Quad CPU 4GB RAM, while for p = 2 the
behavior is less consistent, but it usually obtains highly sparse graphs (VS ≤ 2) in
less than 1 second.

4.3 Real data sets

In this section the performance of the three competing approaches is compared
in two real databases, whose main features are summarized in Table 2. The se-
ries have not only been normalized but they have also undergone the Augmented
Dickey-Fuller test for stationarity, implemented in the function adf.test() of the
R-cran’s package tseries. The order p in the autoregressive model was unknown
and hence chosen from p = {1, 2, ..., 7} by the Schwartz criterion, implemented on
the function VARselect(), available in the R-cran’s package vars.

4.3.1 Google flu database.

This database is derived by the 45 Google user search terms that are considered
to be indicative of influenza activity in the U.S. The sample is measured weekly
from the beginning of the year 2006 until the week of June 6, 2014. According
to the Centers for Disease Control and Surveillance (CDC) the probability that a
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patient query is related to influenza-like-illnes is closely related to the data in the
Google flu database. From the 51 considered regions (50 states and the District of
Columbia), North and South Dakota as well as Wyoming have been removed due
to missing data.

Figure 4 shows the results obtained for Lasso and SC-VAR in terms of MSE
normalized with respect to the VAR, which is represented against the upper-bound
on the number of causal features per node (or, equivalently for p = 1 cases, the
upper-bound on the number of non-zero entries per node VT ).

From Figure 4 some conclusions arise. First, the SC-VAR can considerably
reduce the density of the matrix A, containing the coefficients of the VAR, with
an improvement of the MSE. Although one may think that fewer non-zero entries
in A would lead to better MSE, increasing the freedom of the model may lead
to overfitting. For instance, see that the SC-VAR solutions for VT ≤ 15 or Lasso
solutions for VT ≥ 3 report a MSE smaller than 1; i.e., the prediction power of those
sparse graphs is better than that of the solution provided by the VAR. Finally, it
can be observed that although Lasso outperforms the SC-VAR for VT ≥ 6, it can
attain extremely worse MSE when highly sparse graphs are sought.

Together with the MSE plots, Figure 5 depicts heatmaps of the VAR, Lasso
and SC-VAR solutions for the Google flu data set. For the sake of abbreviation,
only the most sparse solutions of the SC-VAR and Lasso are included. The color
represents the sign of the coefficients αi

jk (blue for negative, red for positive) and
the intensity is related to the magnitude of such coefficients. The names of the
states have been replaced by their abbreviations.

Although Lasso provides a much more sparse solution than the VAR and en-
hance the visualization of potential causalities of the flu for the different regions
of the US, the price of gaining such a level of sparsity is a 192% deterioration over
its MSE. Nevertheless, the SC-VAR solution for VT = 1 considerably improves
the VAR’s forecasting capacity (it attains a MSE with a 38% improvement over
the VAR) while also allowing for an easier interpretation thanks to its sparsity.
Also note that, since the absolute value of the coefficients must be larger than the
threshold 0.2, the obtained heat map is sharper than that of the Lasso. It is also
interesting to note that SC-VAR approach tends to strengthen diagonal elements;
i.e., with the SC-VAR in most cases the chosen causal feature for a node is itself
when only one non-zero is allowed. This behavior is not as evident with the Lasso.

4.3.2 Air pollution database.

The data consists of hourly records of the solar radiation intensity (R) and the
levels of four air pollutants, namely CO, NO, NO2 and O3, measured in Azusa,
California during the year 2006. Figure 6 depicts the normalized MSEs for the
Lasso and the SC-VAR against two different measures of the sparsity: the upper-

15



bound on the total number for non-zeroes per feature (VT , left panel), and the
upper-bound on the number of causal features (VS, right panel). Note that for
this second case the SC-VAR is compared against the more suitable Group Lasso
instead.

In the left panel of Figure 6 we observe that there exists a clear difference in the
impact of the parameters VS and VSa over the MSE: increasing the parameter VSa
seems more efficient to reduce the prediction error than increasing VS. Therefore
it is advisable to treat both parameters separately, since they clearly represent
different aspects of the sparsity. This is done in a natural way with our approach,
but not with the Lasso. Furthermore, note that our approach seems to stabilize
for VT ≥ 6, whatever the values of VS and VSa are. The constant MSE seems to
denote that no further coefficients are being added to the model. Also, some of
these constant lines explain that the constraint involving VT is redundant, as the
VS · VSa ≤ VT .

The behaviour observed from both plots of Figure 6 is analogous to that of
the previous results: when highly sparse graphs are sought, the SC-VAR seems
to be more appropriate as it attains a better MSE. We point out that when only
one non-zero is allowed (VT = 1), the SC-VAR yields a 16% worsening over the
VAR, while the Lasso reports a 49% deterioration. Moreover, when the number of
causal features wants to be limited, the differences between the prediction errors
of the SC-VAR and Group Lasso approaches are roughly a 200% and 50% for one
and two causal features, respectively. Note also that the MSE deterioration of the
SC-VAR over the VAR is less than a 2% for VS ≥ 2.

Figure 7 depicts, through directed graphs, the solutions of the VAR, and a
couple of solutions for the Group Lasso and the SC-VAR for the air pollution data
set. In such graphs color blue is associated with a 4-lag dependency. From Figure 7
some comments arise. First, note that although the chosen relevant causal features
are the same for the Group Lasso and SC-VAR when VS = 1, the Group Lasso
implies a 191% worsening over the VAR’s prediction error, while the SC-VAR
deteriorates it in a 8%. Second, the unraveled potential causal features obtained
for each method are different when VS = 2. The choice of the SC-VAR provides
a much more sparse graph than the VAR while obtaining 26% less deterioration
than its sparse counterpart.

5 Concluding remarks and extensions

In this paper a sparse vector autoregressive model, the SC-VAR, that allows the
user to control the sparsity of the output from various perspectives has been in-
troduced. The model’s sparsity is expressed in terms of different parameters, such
as the number of total non-zero entries per series, the number of features involved
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or the number of periods chosen per feature. The method is expressed as an
optimization problem, solvable by standard numerical optimization software.

The ability of the proposed approach to unravel potential causalities and, in
many cases, to improve the fit, has been tested in simulated multivariate time
series as well as in two real data bases, referred in the existent literature. It is
concluded from the experiments that (i) the proposed approach is able to yield
very sparse solutions either improving or without significantly increasing the VAR’s
forecasting error, (ii) the SC-VAR usually yields better MSEs than both the classic
and Group Lasso when highly sparse graphs are sought, leading to a much better
visualization of the process dependencies, as e.g. depicted in Figure 2, and (iii) the
parameters considered to measure the sparsity play different roles, thus it might
not be advisable to aggregate them into one single measure, as done by other
sparse methods.

Although the computational times were often negligible for the simulations,
where ten nodes were considered, they are expected to increase dramatically within
the dimensionality of the data sets. Hence, the authors are planning to develop in
the future heuristics enabling to cope with very large data sets.
6 Supplementary Material

Supplementary material is available online at (to appear)
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Abbreviation Method Expression

VAR Classic vector autoregressive approach (1)

Lasso-VAR Vector autoregression + Lasso (2)

Group Lasso Vector autoregression + Group Lasso + 5-fold cross-validation (3)

SC-VAR Sparsity-controlled vector autoregressive method (P)

Table 1: Summary of methods under comparison in the computational illustrations

Abbreviation Name N Ttrain Ttest p Reference

Google flu Google Flu Trends 48 221 220 1 Davis et al. (2012)

Air pollution Concentration levels of air pollutants 5 4185 4185 4 Davis et al. (2012)

Table 2: Summary of real databases used for numerical illustrations
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Figure 1: Graphical representation of a simulated VAR and its sparse counterparts.
Naive algorithm (center) versus the proposed SC-VAR method (right).
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Density 10% Density 50% Density 90%

Lasso SC-VAR Lasso SC-VAR Lasso SC-VAR

VT = 1 1.09 1.04 1.23 1.15 1.23 1.17

VT = 2 1.03 1.00 1.15 1.07 1.20 1.11

VT = 3 1.01 0.99 1.09 1.03 1.15 1.08

VT = 4 0.99 0.99 1.05 1.02 1.12 1.05

VT = 5 0.99 0.99 1.03 1.01 1.09 1.04

VT = 6 1.00 0.99 1.01 1.01 1.06 1.04

VT = 7 1.00 0.99 1.00 1.01 1.03 1.03

VT = 8 1.00 0.99 1.00 1.01 1.02 1.03

VT = 9 1.00 0.99 1.00 1.01 1.00 1.03

VT = 10 1.00 0.99 1.00 1.01 1.00 1.03

Table 3: Normalized median MSE under the Lasso and the SC-VAR for VAR(1)
processes generated with a 10, 50 and 90% density, for different requirements of
sparsity (VT=1,...,10)
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Density 10% 50% 90%

Real

VAR

 MSE = 1  MSE = 1  MSE = 1

VA = 10 SC-VAR

 MSE = 1.19  MSE = 1.32  MSE = 1.78

VT = 1

Lasso

 MSE = 1.54  MSE = 1.9  MSE = 2.4

SC-VAR

 MSE = 1.34  MSE = 1.35  MSE = 1.8

VT = 10

Lasso

 MSE = 1  MSE = 1  MSE = 1

SC-VAR

 MSE = 0.99  MSE = 1  MSE = 1.03

Figure 2: Real graphs of randomly selected instances of processes with different densities,
represented along with their VAR solutions. SC-VAR and Lasso solutions are represented
for a couple of levels of sparsity, VT = 1 and VT = 10, and the SC-VAR is also depicted
fixing solely V A=10.
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Density 10% Density 50% Density 90%

Group Lasso SC-VAR Group Lasso SC-VAR Group Lasso SC-VAR

VS = 1 1.13 0.95 1.11 1.01 1.12 1.02

VS = 2 1.15 0.90 1.11 0.96 1.13 0.99

VS = 3 1.16 0.90 1.14 0.90 1.14 0.94

VS = 4 1.17 0.90 1.17 0.89 1.15 0.91

VS = 5 1.18 0.90 1.20 0.87 1.18 0.89

VS = 6 1.19 0.90 1.24 0.87 1.21 0.88

VS = 7 1.20 0.90 1.28 0.87 1.25 0.87

VS = 8 1.20 0.90 1.30 0.87 1.31 0.87

VS = 9 1.21 0.90 1.33 0.87 1.40 0.87

VS = 10 1.24 0.90 1.36 0.87 1.48 0.87

Table 4: Normalized median MSE under the Group Lasso and the SC-VAR for
VAR(2) processes generated with a 10, 50 and 90% density, for different require-
ments of sparsity in terms of number of causal features (VS=1,...,10)
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Figure 3: Median elapsed times in seconds taken by the SC-VAR to be solved
for different requirements of the sparsity in VAR(1) and VAR(2) processes with
various levels of density.
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Figure 5: Heat maps representing the solutions of the VAR, and the SC-VAR and
Lasso (for VT = 1) for the Google flu database.
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Figure 6: Normalized MSEs for the SC-VAR and Lasso approaches under different
aspects of sparsity for the air pollution database. In the left panel, the x axis
represents the upper bound on the total number of arrows received by a node
(VT ), while in the right panel it represents the upper bound on the total number
of causal features (VS).
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Figure 7: VAR solution (top-left panel) together with the SC-VAR (right) and
Group Lasso (central) outputs when allowing one (VS = 1) or two (VS = 2) causal
features for the airpollution database.
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