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ABSTRACT 
 
A procedure for the singularity characterization of anisotropic multimaterial corners 
which typically appear in adhesively bonded lap joints between metals and composites 
is presented and implemented in the present work. The characterization in terms of 
characteristic exponents (stress singularities), characteristic functions and generalized 
stress intensity factors allows the definition of an oriented test program in order to 
analyze the suitability of a singularity based failure criterion for structures of this type. 
 
Keywords: A) Adhesive joints, C) Interfacial strength, C) Failure criterion, C) Stress 
singularity. 
 
 
1. INTRODUCTION 
 
Adhesively bonded joints between metallic sheets and composite laminas generate 
critical points, where the Linear Theory of Elasticity predicts unbounded stresses. 
These singularity stress fields are due to abrupt changes in geometry and/or abrupt 
changes in the elastic properties between the different materials, Sinclair [1]. In the 
particular case of adhesively bonded single (or double) lap joints between an 
aluminium sheet and a CFRP laminate, these critical points can be easily identified in 
Fig. 1a. 

 
Fig 1 

 
With a polar coordinate system (r,θ) located at the multimaterial corner tip (Fig. 1b), 
where θi-1 and θi are the angles of the i-th material wedge (N wedges), the asymptotic 
singularity stress field in the vicinity of the corner can be assumed to have the 
following series expansion structure with separation of variables (some particular 
corner configurations, which will not be considered here, do not admit the separation of 
variables, see for example Joseph and Zhang [2]). 
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where n is the number of terms considered in the series expansion, λk are the 
characteristic exponents, leading to singular terms when 0< λk<1 and regular terms if 
λk�1, fijk(θ) and gik(θ) are the characteristic functions: smooth functions inside each 
material wedge which contain the angular dependency of the stress and displacement 
components respectively associated to the singularity mode λk and Kk are the 
Generalized Stress Intensity Factors (GSIFs) which represent the weight of each term in 
the asymptotic series expansion. 
 
The characterization of the singular stress field is fundamental if the initiation of failure 
(an initial crack or localized damage whose propagation implies the complete failure of 
the joint) can be assumed to occur due to that singular stress field. 
 
In the same way as Linear Elastic Fracture Mechanics (LEFM) accurately predicts the 
propagation of a crack when the SIF (Kk) reaches a certain allowable value (the fracture 
toughness of the material), it seems reasonable to consider the possibility of a GSIF 
based failure criterion (see Gradin & Groth [3], Groth [4], Hattori [5], Reedy [6], 
Reedy & Guess [7], Akisanya [8], Yang & Munz [9], Lefebvre & Dillard [10], Ishii et 
al [11], Wang & Rose [12], Dunn et al. [13], Penado [14], Lazzarin et al [15], 
Leguillon & Yosibash [16] and Quaresimin & Ricotta [17] among others). To analyze 
the suitability of such an approach using the concepts of the LEFM, it is necessary to 
have the tools to evaluate λk, fijk(θ), gik(θ) and Kk. Only after this careful 
characterization can experimental tests be carried out in an oriented way, changing in a 
controlled manner the values of the singularity parameters, in order to observe their 
influence (if it occurs) in a failure initiation. 
 
In successive sections we will introduce the analytical procedure to determine the 
characteristic exponents and characteristic functions (Section 2), and the numerical 
models (in BEM) as well as the implemented procedure based on a least squares 
determination of the GSIFs (Section 3). The accuracy of the method is checked with 
some benchmark problems, and some examples regarding the characterization of 
adhesively bonded lap joints between metal and composites are presented (Section 4). 
With these tools, a preliminary experimental test program can be specifically designed 
to investigate the influence of the singularity parameters on failure initiation. 
 
 
2. CHARACTERIZATION OF THE SINGULARITY MODES 
 
The characteristic exponents λk and the characteristic functions fijk(θ) and gik(θ) only 
depend on material elastic properties, local geometry and local boundary conditions. 
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Considering homogeneous linear elastic materials, perfect adhesion between the 
material wedges, homogeneous boundary conditions (at external faces) and plane states 
(plane stress, plane strain or generalized plane strain), at the present moment there is 
enough information and efficient analytical and computational tools for the evaluation 
of accurate values of λk, see Dempsey and Sinclair [18,19], Pageau et al. [20], Ting 
[21], Manti� et al. [22] and Poonsawat et al. [23,24] among others. In this work a semi-
analytical tool, developed by the authors, Barroso et al. [25], is employed. 
 
Some of the main characteristics and improvements of the present tool in comparison 
with the previous works are explained briefly in the following. 
 
All linear elastic material behaviour laws (from isotropic to fully anisotropic) can be 
included simultaneously in the analysis. Depending on the approach, it has often been 
observed in previous works that only material behaviour laws of one kind (only 
isotropic, or only orthotropic) have been considered in the analysis. When considering 
anisotropic materials and using the powerful and elegant Lekhnitskii-Eshelby-Stroh 
formalism for anisotropic elasticity: Lekhnitskii [26], Eshelby et al. [27] and Stroh 
[28,29], or simply, Stroh formalism in what follows, these limitations were usually 
associated to the fact that isotropic materials are, in the framework of the Stroh 
formalism, mathematically degenerate materials and the formalism becomes much 
more cumbersome, see Ting and Hwu [30] and Wang and Ting [31]. 
 
A particular effort has been focused on obtaining explicit expressions of the Stroh 
matrices (A and B) for transversely isotropic materials, a material behaviour which can 
be assumed to represent the unidirectional long fibre composite laminas. These 
expressions have also been properly orthogonalized and normalized for the powerful 
orthogonality and closure relationships of the formalism to be fulfilled. These 
expressions, Barroso et al. [32], will help to develop further application of the Stroh 
formalism to transversely isotropic materials. It is of major importance to notice that 
mathematically degenerate cases can appear when considering transversely isotropic 
materials (see Tanuma [33]) irrespective of the value of the elastic constants of the 
material and only depending on the relative orientation of the material, a fact that has 
also been considered in the program implementation. 
 
All typical orthogonal homogeneous boundary conditions can be imposed at the 
external faces of the multimaterial corner (see Table 1), and closed corners (called also 
cross points, all materials bonded, no external faces) can also be analyzed. The 
matrices in Table 1 are defined in terms of the outward normal (n) and tangential 
vectors (sr,s3) (see Fig. 2) at the external faces (θ0,θN) with 0 and I being respectively 
the null and identity matrices. 
 

Fig 2 
 

Table 1 
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Following an original idea by Ting [21], the concept of transfer matrix has been further 
applied to degenerate and extraordinary degenerate materials, so that independently of 
the number and type of materials in the corner, the characteristic equation from which 
the characteristic exponents are obtained is derived in a simple manner, always given 
by the vanishing condition of a 3×3 determinant in the case of open corners (or 6×6 
determinant for closed corners). The characteristic equation written as: 
 
 0K =)(ˆ )2( λN , (2) 
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where )( e

au θD  and )( e
aθϕD  are defined in Table 1 and )(i

NK are the submatrices of NK  
which is the transfer matrix of the entire corner and is obtained as the product of the 
transfer matrices of the material wedges EN (N being the number of material wedges in 
the corner): 
 
 121 ··...·· EEEEK −= NNN . (4) 
 
The structure of a transfer matrix Ei is detailed in Ting [21] for non-degenerate cases 
and in Barroso et al. [25] for all cases of mathematical degeneracy. 
 
The characteristic functions fijk(θ), gik(θ) associated to λk can also be numerically 
evaluated, always bearing in mind that GSIFs have to be defined together with these 
characteristic functions for the stress field to be completely and coherently defined, see 
Yosibash & Szabo [34] and also Pageau et al. [35]. 
 
In short, the tool presented in this section permits an analytical knowledge of the 
characteristic exponents and functions, which will be considered to be known in the 
next section. 
 
 
3. GENERALIZED STRES INTENSITY FACTORS 
 
In the evaluation of the GSIFs, the global geometry and far field loading are now 
necessary, thus numerical models or experimental tests (e.g. using photoelasticity) have 
to be used. Additionally, in most cases, a post processing of the data is necessary, the 
accuracy of the results being finally dependent on the “quality” of both processes. For 
example, due to the asymptotic character of the elastic representation in (1), GSIFs 
obtained from the solution far from the corner tip can not be representative of the real 
elastic solution, while GSIFs obtained extremely near the corner tip can be affected by 
numerical errors associated to the model discretization. 
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There exist techniques which overcome these difficulties by means of path-independent 
integrals evaluated in the neighbourhood of the corners, see for example Qian and 
Akisanya [36], Wu [37], Banks-Sills and Sherer [38] and Cisilino & Ortiz [39] among 
others. Further information on these different techniques can be found in Helsing and 
Jonsson [40] and Sinclair [1]. 
 
Unlike the typically high accuracy found in the literature regarding the evaluation of 
characteristic exponents, the accuracy in the evaluation of GSIFs is substantially worse. 
More reliable results for benchmark problems are needed which could be used as 
reference values in new evaluation methods. Some interesting comments regarding the 
validity of published numerical results in the literature can be found in Helsing and 
Jonsson [41]. 
 
In the present work, with the previous knowledge of accurate values of the 
characteristic exponents and characteristic functions, a simple procedure has been 
implemented based on a least squares method in terms of displacements and/or stresses. 
The numerical models have been performed using a BEM code developed by Graciani 
[42]. BEM models are more suitable (when compared with FEM models) due to their 
higher accuracy in solving problems involving singular stresses. 
 
Extending the approach developed by Munz and Yang [43] using FEM, the present 
work uses a least squares method to evaluate the GSIF values. An error function J (5a) 
is defined as summing squares of differences between the displacements, Ju (5b), 
and/or tractions, Jt (5c), obtained from the numerical model (uBEM and TBEM) and the 
corresponding values obtained from the asymptotic series expansion in (1) (useries and 
Tseries). The function J depends on the values of a and b, the usual choices being 
(a,b)=(0,1), (a,b)=(1,0) or (a,b)=(l-2,σ-2) where l and σ are some characteristic length 
and stress values. 
 
 ( ) )0,(,,..., 01 ≥+= babJaJKKKJ tuqn  (5a) 
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The only unknowns in J are the GSIFs, Kk (k=1,...,n) and the rigid body translations K0q 
(if necessary). In the J expression three summatories are considered: Α represents the 
number of displacement components (A=1 for ur, uθ or uz only, A=2 for ur and uθ, ur 
and uz or uθ and uz and A=3 for ur, uθ and uz) B defines the number of edges used in the 
evaluation of the error (with N material wedges, there exist N+1 edges where the BEM 
model gives direct results, without internal points) and finally M indicates the number 
of nodes along an edge used in the evaluation of J. An approximation for Kk (and K0q) 
is obtained from the solution of the following linear equation system: 
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The authors have successfully checked the procedure, defined by (5) and (6), using 
displacements and stresses as well. In the next section the benchmark problems present 
corners with free-free boundary conditions, where only displacements have been used 
in the evaluation of the GSIFs, and, for comparison purposes, the rest of the problems 
analyzed have been evaluated using only displacements (a,b)=(1,0). 
 
 
4. BENCHMARK PROBLEMS AND APPLICATIONS 
 
To analyze the accuracy of the implemented method, two simple problems have been 
selected, a 90º notch with tensile loadings and an isotropic free-free bimaterial corner. 
 
Although the method is independent of the complexity of the problem (number and 
type of materials, boundary conditions, etc.), it seemed reasonable to check it at least in 
these two problems. Nevertheless, the lack of benchmark problems in the literature to 
check with is evident. As mentioned before, the values of the GSIFs depend on of the 
definition of the characteristic functions (Yosibash and Szabo [34]), and many authors 
do not present both of them, the difficulty of such comparisons also being due to the 
lack of uniformity and information in the normalization/standardization of the 
presented results as indicated by Pageau et al [35]. 
 
4.1 Single-edge 90º notched specimen subjected to tensile loading. 
 
This simple problem (Fig. 3) has been analyzed with a/w=0.5 and h/w=1, with a=5cm. 
The BEM model has 709 nodes and 709 linear elements, with a size along the outer 
edges of 0.1 cm. Along the edges converging at the corner the element adjacent to the 
tip has a size of 10-7 cm, growing with a factor of 1.5 until a size of 0.1 cm is reached, 
with a total of 100 elements along these faces. 
 

Fig 3 
 
This symmetric load configuration, which generates a mode I (opening) in the 
neighbourhood of the corner, has been analyzed in detail by Helsing and Jonsson [40] 
from where the reference value of KI=4.295886967699 has been taken. 
 
Using ur and uθ (A=2) and both edges (N=2) for the evaluation of the error J in (5), Fig. 
4 represents the absolute value of the relative error (up to 5%) between the obtained 
solution and the reference considering: a) three and b) seven terms in the asymptotic 
series expansion in (1). It is important to notice that horizontal axes do not represent 
distances to the notch tip but only node numbers, and although element length far from 
the tip is constant, element lengths near to the notch tip change gradually. 
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All possible combinations resulting from a consecutive group of nodes have been 
considered, the right hand side axis being the initial node number and the left hand side 
axis the final node number (the bottom half part of plots in Fig.4 then being 
meaningless). It is clear that major errors are associated to: 

• A small group of nodes far away from the notch tip (the peak at the left hand 
side of Fig. 4) where the more regular terms of the asymptotic expansion and 
also possibly the external boundary obviously affect the solution. 

• A small group of nodes very close to the notch tip (the peak at the right hand 
side of Fig. 4), where numerical errors associated to the discretization affect the 
solution. 

 
Fig 4 

 
 
The more terms of the asymptotic expansion are considered in the analysis, the lower 
the errors associated to the far group of nodes are achieved. The previous consideration 
is clear when comparing Fig. 4a) and 4b). In both cases, it can be observed that, from 
an engineering point of view, for most of the “reasonable” group of nodes (avoiding 
small groups of nodes far away and very close to the notch tip) results are accurate 
enough (<3%). 
 
For the same configuration, and using a path-independent technique, Ortiz et al. [44], 
the errors obtained are always below 1%. 
 
 
4.2 Isotropic bimaterial corner. 
 
The tools developed in Sections 2 and 3 have also been used to analyze the bimaterial 
corner in Fig. 5, (with h=1) from Qian and Akisanya [36]. 
 

Fig 5 
 
The reference solution reported by Qian and Akisanya was obtained for Dundurs 
parameters given by α=0.8 and β=0.2 which indicate that the material in the top part of 
Fig. 5 is about ten times stiffer than the material in the bottom part.  
 
Using a FEM model and path-independent integrals, finally transformed into domain 
integrals, Qian and Akisanya obtained for the first three terms (only the first one being 
singular) the following values for λk and ak (ak being a dimensionless Kk): λ1=0.6747 
(a1=0.6301), λ2=1.1637 (a2=-0.3671) and λ3=1.5938 (a2=0.5443). 
 
The BEM model used in the present work has linear elements with a size of 0.025h far 
away from the corner and 10-8h at the corner tip. The characteristic exponents obtained 
using the semi-analytical tool developed in Barroso et al. [25] were λ1=0.673473, 
λ2=1.167477, λ3=1.589147, very similar to those obtained by Qian and Akisanya. The 
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evaluation of the GSIFs was also performed using (5) and (6) with ur and uθ (A=2), the 
three edges which converge at the corner (N=3) and an average value from the flattest 
part of reasonable groups of nodes (the central top part of the corresponding 
representation, similar to Fig 4b), avoiding far and close nodes to the corner tip. 
 
Considering the first three terms of the asymptotic representation, the obtained value 
was a1=0.673688, which differs 6.92% from the result by Qian and Akisanya. Ortiz et 
al. [44] for the same problem and a path-independent technique reported an average 
value of a1=0.67829, which differs 7.65% from Qian and Akisanya and 0.68% from the 
present results. 
 
The good agreement reported by Qian and Akisanya (using FEM) in the range 10-4h 
and 10-1h is improved by the present results, see Fig. 6 (for internal points at r=0.1h) 
with a BEM model. The range used with the least squares method in the present work 
is 5.818585·10-6h<r<0.6224868h, which leads to a closer agreement between numerical 
and analytical results. 
 

Fig 6 
 
Once the tool has been demonstrated to be accurate in these particular problems, it will 
be used to characterize the multimaterial corners which typically appear in adhesively 
bonded joints between metals and composites. 
 
Note that only stresses (a,b)=(0,1) have also been used in a least squares expression (5), 
instead of only displacements (a,b)=(1,0), obtaining similar results with differences 
below 2%. In this particular case, as the corner faces are stress free boundaries, only 
the common interface (at 0º) could be used to evaluate Kk by the least squares using 
σθθ. 
 
 
4.3 Adhesively bonded joint between a metal and a composite. 
 
Different test configurations can be specifically designed to analyze the suitability of a 
singularity based failure initiation criterion by means of previous knowledge of the 
singularity parameters. For example, as GSIF dimensions depend on the associated 
characteristic exponents λk, only GSIFs associated to the same value of λk can be 
strictly compared. Accordingly, the following four different joint configurations (Fig. 7, 
where Lo is the overlap length and the numbers between brackets at the caption are the 
thicknesses in mm) with the same local corner configuration can be analyzed (only the 
overlap zone is detailed) in which the inner adherent is the metallic sheet and the first 
outer material of the composite adherent is a 0º layer: 
 
To show the capabilities of the previously introduced tools, the numerical analysis of 
configuration in Fig. 7a) is presented. The bonded double-lap joint is loaded in shear by 
means of a tensile force (see Fig. 8, where the units of the axes are the dimensions of 
the model in mm). The symmetry of the double-lap joint configuration is used to model 
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half of the geometry. Both the undeformed and the deformed geometry (x20) are shown 
in Fig. 8. Linear elements have been used and a progressive refinement towards the 
inner corner has been applied up to a final size of 10-8 mm at the corner tip, a total of 
1484 nodes having been used in the BEM model. 
 

Fig 7 
 
The effect of curing residual stresses due to the polymerization temperature of the 
adhesive (115ºC) and the different thermal expansion coefficients (CFRP, adhesive and 
aluminium) has also been taken into account in the BEM model. The 
thermomechanical properties of the three materials used in the analysis are 
respectively: CFRP (x1 being the fiber direction, E11=141.3 GPa, E22=E33=9.58 GPa 
ν12= ν13=0.3, ν23=0.32, G12=5.0 GPa, α1=-1·10-6 ºC-1, α2= α3=26·10-6 ºC-1), aluminium 
(E=68.67 GPa, ν=0.33, α=24.5·10-6 ºC-1), epoxy adhesive (3.0 GPa, ν=0.35, α=45·10-6 
ºC-1). The applied tensile load is 400 N (200 N at each laminate at the right hand side). 
 

Fig 8 
 
Using the semi-analytical tool previously introduced (Barroso et al. [25]) the 
characteristic exponents (λk) and functions (f(θ) and g(θ)) have been obtained. The 
GSIFs associated to both mechanical and thermal loads have been evaluated using 
expressions (5) and (6) once the BEM model has been solved. 
 
Results for the inner closed corner (corner "b" in Fig. 8 with 90º wedge of [0º] CFRP 
and 270º wedge of adhesive) and the outer corner at the left hand side of the adhesive 
spew fillet (corner "a" in Fig. 8 with 180º aluminium wedge and 23º adhesive wedge) 
are shown in Table 2 (Kg associated to the characteristic exponent λk=1 representing 
the rigid body rotation). 
 

Table 2 
 
The values of Kk are standardized following Pageau et al. [35] in such a way that 
σθθ|θ=0º=K/(2πr)1-λ. In the particular case of the closed corner, and due to the low 
thickness of the adhesive layer (≈0.1 mm), the least squares adjustment has been 
performed between r=10-6 and r=0.03 mm (measured from the corner tip) to avoid the 
nearest nodes to the corner tip (between 10-8 and 10-6 mm) and those which could be far 
away from the asymptotic representation (>1/3 of the adhesive thickness). 
 
The results for r=0.0194 mm are plotted in Fig. 9, where circles are the BEM solution 
(at internal points) and the angle is measured from the horizontal interface between the 
CFRP laminate and the adhesive. Separate contributions of each term (K1, K2 and K3) 
are plotted separately, together with results considering two and three terms. 
 

Fig 9 
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It can be seen in Fig. 9 that three terms (the two singular and the first regular terms) are 
enough to accurately fit BEM results. It also has to be pointed out that the Kk used for 
this representation have been obtained from the nodes at the interfaces and the 
comparison performed in Fig. 9 is with internal points not used for the least squares 
adjustment, which is an additional verification of the correctness and accuracy of the 
whole procedure. 
 
The representation using the series expansion approach also gives useful information 
regarding the behaviour of each stress and displacement component of each term 
included in the representation. For example, in Fig. 10 we have the angular behaviour 
of σθθ stress component around the “90º sector of [0º] CFRP - 270º sector of adhesive” 
corner, where the dashed circle indicates the zero value, with tractions outside the 
circle and compressions inside it. 
 

Fig 10 
 
With this information we can observe the maximum tractions around the adhesive-
CFRP interface at 90º for term 1 while term 2 has the highest values inside the adhesive 
layer in the fourth quadrant around the 0º interface. 
 
With the present procedure, all configurations in Fig. 7 can be analyzed in detail, the 
values for each Kk at each corner being comparable as they are associated to the same 
characteristic exponent. With this singularity characterization, the definition of an 
experimental test program has a higher added value as particular configurations can be 
found in which, for example, the value of K1 (or K2) changes in a controlled manner. 
 
 
5. CONCLUSIONS AND FUTURE DEVELOPMENTS 
 
In the present work a procedure for the calculation of Generalized Stress Intensity 
Factors (GSIFs) has been implemented based on a least squares procedure using the 
numerical results of BEM models. 
 
Asymptotic stress and displacement representation by means of a series expansion 
allows the shape angular functions associated to each one of the terms of the series 
expansion to be determined. This gives a general validity to the representation, as the 
presence of an analyzed corner in another geometry configuration, or subjected to other 
load conditions, will only change the values of the associated GSIFs (the characteristic 
exponents and functions will be the same for the same local corner configuration). 
Thus, although the final stress or displacement fields will change, they will be obtained 
by means of the known shape angular functions multiplied by different weights 
(GSIFs). 
 
The procedure described in this paper, together with a previous work by the same 
authors, Barroso et al. [25], has allowed the singularity characterization of several 
problems to be carried out. First, the method has proved to be robust and very accurate 
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when applied to well known benchmark problems existing in the literature. Second, the 
procedure has been applied to study anisotropic multimaterial corners which typically 
appear in adhesively bonded lap joints between metals and composites. In particular the 
corners appearing in a double lap joint between aluminum and a CFRP laminate have 
been fully characterized, the local fields of displacements and stresses having been 
obtained. 
 
The tool developed allows the definition of an oriented experimental test program to 
analyze the suitability of a GSIF based failure criterion in this kind of structural 
configuration. Different joints having locally the same corner configurations will allow 
the analysis of the role of the GSIFs in failure to be performed. In any case, it has to be 
stressed that GSIFs associated to different characteristic exponents have different 
dimensions and can therefore not be directly compared. 
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Fig. 1 - Multimaterial corners in an Al-CFRP adhesively bonded single-lap joint. 
 
 
 

sr(θ0)

n(θ0)
s3(θ0)

sr(θN)

n(θN)
s3(θN)

x2

x3
x1

mat. 1

mat. N

mat. i

θ0
θ1

θN

θN-1

θi

θi-1

sr(θ0)

n(θ0)
s3(θ0)

sr(θN)

n(θN)
s3(θN)

x2

x3
x1

mat. 1

mat. N

mat. i

θ0
θ1

θN

θN-1

θi

θi-1

 
Fig. 2 - Unit outward normal for the definition of boundary conditions. 

 
 
 
 

 Matrix definition 
Boundary conditions )( e

au θD  )( e
aθϕD  

Free 0 I 
Fixed I 0 
Symmetry (only uθ fixed) [ 00n ,),( e

aθ ]T [ )(),(, 3
e
a

e
ar θθ ss0 ]

T 
Antisymmetry (only uθ 
allowed) 

[ 0ss ),(),( 3
e
a

e
ar θθ ]T [ )(,, e

aθn00 ]T 

Only ur fixed [ 00s ,),( e
ar θ ]T [ )(),(, 3

e
a

e
a θθ sn0 ]T 

Only ur allowed [ 0sn ),(),( 3
e
a

e
a θθ ]T [ )(,, e

ar θs00 ]T 
Only u3 fixed [ 00s ,),(3

e
aθ ]T [ )(),(, e

a
e
ar θθ ns0 ]T 

Only u3 allowed [ 0ns ),(),( e
a

e
ar θθ ]T [ )(,, 3

e
aθs00 ]T    

Table 1.- Boundary condition matrices )( e
au θD  and )( e

aθϕD , where e
aθ  (a=0,1) are 

defined as 00 θθ =e  and N
e θθ =1 . 
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Fig. 3- Single-edge notched specimen. 
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Fig. 4- Relative errors (in %) considering: a) 3 terms and b) 7 terms. 
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Fig. 5- Bimaterial corner configuration and BEM solution. 
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Fig. 6- Comparison of stresses in the bimaterial problem. 
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Fig. 7- a) Al (3.2)-[0º]8 (1.6) Lo=12.5mm, b) Al (3.2)-[0º]16 (2.9) Lo=12.5mm, c) Al 

(3.2)-[0º]12 (2.2) Lo=20mm, d) Al (3.2)-[0º2,90º2]s (2.2) Lo=12.5mm. 
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Fig. 8- Geometry (top) and detail of the BEM model (bottom). 
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Table 2.- Values of λλλλ and K for the analyzed corners. 
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Fig. 10- σσσσθθθθθθθθ for each term in the “90º [0º] CFRP - 270º adhesive” corner. 
 


