
An analysis of RESTful APIs offerings in the
industry

Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes

Universidad de Sevilla?

{agamez2,pablofm,aruiz}@us.es

Abstract. As distribution models of information systems are moving to
XaaS paradigms, microservices architectures are rapidly emerging, hav-
ing the RESTful principles as the API model of choice. In this context,
the term of API Economy is being used to describe the increasing move-
ment of the industries in order to take advantage of exposing their APIs
as part of their service offering and expand its business model.
Currently, the industry is adopting standard specifications such as Ope-
nAPI to model the APIs in a standard way following the RESTful princi-
ples; this shift has supported the proliferation of API execution platforms
(API Gateways) that allow the XaaS to optimize their costs. However,
from a business point of view, modeling offering plans of those APIs
is mainly done ad-hoc (or in a platform-dependent way) since no stan-
dard model has been proposed. This lack of standardization hinders the
creation of API governance tools in order to provide and automate the
management of business models in the XaaS industry.
This work presents a systematic analysis of 69 XaaS in the industry
that offer RESTful APIs as part of their business model. Specifically, we
review in detail the plans that are part of the XaaS offerings that could
be used as a first step to identify the requirements for the creation of
an expressive governance model of realistic RESTful APIs. Additionally,
we provide an open dataset in order to enable further analysis in this
research line.

1 Introduction

In the last decade, distribution models of information systems are evolving into
XaaS [10] paradigms where customers no longer need to buy a perpetual li-
cense, host the software or maintain the infrastructure [5]. As part of this trend,
the microservices architectures are rapidly emerging as they provide a flexible
evolution model [7]. In particular, this architectural model proposes a division
of the information system into a set of small services deployed independently

? This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI) and
P12–TIC-1867 (COPAS)) and the FPU scholarship program, granted by the Spanish
Ministry of Education, Culture and Sports (FPU15/02980).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157762651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which communicate each other using Web APIs that adhere typically to REST
principles [6].

In this context, the term of API Economy is being increasingly used to de-
scribe the movement of the industries to share their internal business assets as
APIs [21] not only across internal organizational units but also to external third
parties; in doing so, this trend has the potential of unlocking additional busi-
ness value through the creation of new assets [3]. In fact, we can find a number
of XaaS examples in the industry that are deployed solely as APIs (such as
Meaningcloud1, Flightstats2 or Twilio3).

In order to be competitive in this such a growing market of APIs, at least
two key aspects can be identified: i) ease of use for its potential developers; ii)
a flexible usage plan that fits their customer’s demands.

Regarding the ease of use perspective, third party developers need to under-
stand how to use the exposed APIs so it becomes necessary to provide a good
training material but, unfortunately, several API providers do not often write
a good documentation of their products [8]. Alternatively, in the last year, we
found the promising proposal of the Open API Initiative4 (OAI) whose aim is
to support the creation, evolution and promotion of a vendor neutral descrip-
tion format for RESTful APIs and that is currently being backed by a growing
number of leading industrial stakeholders.

Conversely, from the usage plans perspective, to the best of our knowledge,
do not exists a widely accepted model to describe usage plans including elements
such as cost, functionality restrictions or limits. In this context, we can find some
example of API management platforms in the industry (commonly known as API
Gateways), which have tried to address the problem of usage plans modeling but
they are typically constrained by their platform architecture and no interoperable
usage plan specification is provided. For instance, Mashape presents a limited
governance ecosystem, since it only allows users to define quotas and not rates.

Figure 1 illustrates a real plan extracted from FullContact5, a real-world
SaaS offering which includes an API that manages and organizes contacts in a
collaborative way, it also matches emails addresses and tries to find as much
information as available on the Internet to complete the profiles. Note that in
this work, we focus on XaaS offering a RESTful API in order to access either
fully or partially to the functionality they offer. In traditional XaaS, these actions
are accessed using the graphic user interface.

This example is composed of three plans, one of them is free whereas the re-
maining are paid. Focusing on paid ones, they have a fixed price that is monthly
billed. Regarding the limits, for each resource, a quota is being applied; for in-
stance, in the starter plan, only 6000 matches over Person are available. Nev-
ertheless, an overage is defined, that is, it is possible to overcome the limit by

1 https://www.meaningcloud.com/products/pricing
2 https://developer.flightstats.com/getting-started/pricing
3 https://www.twilio.com/sms/pricing
4 https://www.openapis.org/
5 https://www.fullcontact.com/developer/

https://www.meaningcloud.com/products/pricing
https://developer.flightstats.com/getting-started/pricing
https://www.twilio.com/sms/pricing
https://www.openapis.org/
https://www.fullcontact.com/developer/

Fig. 1. Example of an API plan.

paying a certain amount of money; in this case, $0.006 per each request. Re-
gardless of the accessed resources, a common rate of 300 queries per minute is
being applied. In this plan, there are not any functionality limitation, even the
free plan has the same functionality that paid ones have. In this case, the free
tier is regulated by limits such as quotas and rates.

The main aim of this paper is to develop the first step towards an expres-
sive, platform neutral, usage plan model that could be used to create open API
governance tools. Specifically, this work presents a systematic analysis of the
usage plans identified in a wide spectrum of real-world APIs; in doing so, the
main contributions of this paper are: i) present a systematic method to analyze
XaaS offerings in the industry including RESTful APIs; ii) undertake a compara-
tive analysis of 69 industrial APIs selected from two widely used API directories,
identifying the common trends related to the modeling of usage plans; iii) provide
an open dataset that can be used to replicate our analysis and to be extended
in further researches.

This paper is organized as follows: Section 2 shows the methodology that we
use in our study as well as the characteristics we analyze. Next, in Section 3, we
discuss the results of the analysis. In addition, Section 4 shows the existing work
related to this paper. Finally, Section 5 shows some remarks and conclusions.

2 Research method and conduct

The study6 presented herein was entirely conducted during the 2017 first quarter
and it is a primary study in which we analyze real-world APIs. Whereas primary
research data are collected from, for instance, research subjects or experiments,
6 Data used in this study is publicly available at https://goo.gl/gQPDxz

https://goo.gl/gQPDxz

secondary studies involve the synthesis of existing research. Specifically, our work
is based on the guidelines provided by Kitchenham and Charters in [12], adapting
these guides about how to carry out secondary studies to a primary study. We
consider that using these guidelines helps to systematize the research we are
doing since they define a workflow directly applicable to primary research and
give recommendations with the aim of avoiding undesired bias.

In our work, we systematically analyze a set of characteristics in real-world
APIs following the steps depicted in Figure 2.

Fig. 2. BPMN representation of the research process.

– SP01-Research questions definition. We start our systematic analysis
with a series of motivating questions which will drive the investigation. We
consider that these questions can pave the way for future research activities.
Specifically, we define the following questions:
• RQ01. What are the most common business models in the context of

XaaS that offer a RESTful API?
• RQ02. How are the plans, in terms of the characteristics that they have,

used in XaaS that provide a RESTful API?
• RQ03. Which regulations do XaaS offerings state over the RESTful

APIs?
– SP02-Sources identification. Based on the literature and the analysis of

the industry that we have conducted, 10 API repositories were collected.
Nevertheless, we have considered those ones which included more than 5000
APIs and whose last update date was in the year 2017, remaining 2 valid

sources: S01-ProgrammableWeb7 : with 17511 APIs distributed in 478
categories and S02-Mashape8 with 7500 APIs distributed in 28 categories.
Note that Mashape directory has been recently moved to RapidAPI9 catalog,
so subsequent analysis should be made over RapidAPI rather than Mashape.

– SP03-Preliminary study. After a preliminary examination of API direc-
tories S01 and S02, the more popular categories in each one were identified.
We did a percentile study over the categories and the number of users in
each one. Particularly, we fixed P97 for S01 and P50 for S02. Additionally,
we included some handpicked APIs, looking for these ones with complex
plans.

– SP04-Data extraction. We designed two different forms since the quality
criteria have to be used to identify inclusion/exclusion criteria, according to
the Kitchenham guidelines [12]. The first one10 tried to identify basic infor-
mation about the analyzed API as well as information regarding the plans.
The second one11 went in depth into the overage and both functionality and
quota/rate limitations, including the API characteristics showed in Section
2.1. 30 students were given S01 and S02 API directories so that they chose
two XaaS offerings following the eligibility criteria. They collected manually
the required information in a session guided by the authors and they filled
out the forms. In order to have a broader vision of the APIs offered in the
industry, we defined an incremental process composed of three rounds. We
started from defining strict eligibility criteria and the number of developers
that the API has. Then we relaxed some criterion so that a new set of APIs
was included.

In the first round (R01) we limited the APIs selected from S01, consid-
ering only a certain set of categories12, according to its popularity (see
SP03). In addition, we set a threshold of 50 registered developers in S01
and limited the APIs selected from S02 having, at least, 100 users and
being in categories either paid or premium.

In the second round (R02) we were informed by some students about
they did not found any API according to the established search restric-
tions. At this moment, we determined to relax the criteria in S01, re-
moving the 50 developers’ threshold. After finishing this round, we have
collected 62 APIs.

In the third round (R03) we started the guided session in class to fill
out the form. Nevertheless, we noticed that there was a number of APIs
without a clear plan, and students found quite difficult to find all the
information that we asked for. At this point, we decided to start a new

7 https://www.programmableweb.com
8 https://www.mashape.com
9 https://rapidapi.com

10 Available at https://goo.gl/rqwvH7.
11 Available at https://goo.gl/sbzXEh.
12 Mapping, social, e-commerce, mobile, search, tools, messaging, API, video, financial,

cloud, payments, enterprise, analytics, data.

https://www.programmableweb.com
https://www.mashape.com
https://rapidapi.com
https://goo.gl/rqwvH7
https://goo.gl/sbzXEh

API gathering session with the help of the instructors. After finishing
this round, we harvested extra 28 APIs.

– SP05-Subsequent analysis. We did a subsequent analysis in two different
steps: i) manual data validation and classification: giving a result a set of
69 analyzed XaaS offerings with more than one plan. We detected some
inconsistencies in some points that were manually reviewed and corrected;
ii) ulterior results classification: in which we separated the data gathered
regarding the source, obtaining 42 APIs from S01 and 27 from S02.

2.1 Analyzed attributes

We developed a comparative framework based on 60 attributes grouped in 7 areas
illustrating the traceability between the research questions and the gathered
characteristics. Following, we describe each group of attributes.

General information (see Table 1). We collected information about the
API itself, including the name (GI01) and the source (GI02) where these
APIs was selected from (i.e. Mashape or ProgrammableWeb); and the plans URL
(GI03).

API characterization (see Table 1). We distinguished two attributes, API
type (AC01) and API maturity level (AC02), in terms of giving a more precise
classification of APIs. Specifically, we propose a classification of four types for the
API type: T01 if the XaaS offering does not provide any API at all; T02 when
the XaaS offering does provide a non-RESTful API; T03 if the XaaS offering
does provide as part of its offer a RESTful API, (e.g., a SaaS which allows
customers to access their data in a RESTful way, but the primary access way is
a GUI); and T04 if the XaaS offering is, actually, a RESTful API (e.g., an API
to send emails or SMS). For API type T03 or T04, we identify a set of three API
maturity levels: ML01 if the API does not define any limitations nor explicit
Service Level Agreement (SLA);ML02 when the API defines limitations and/or
explicit SLAs but they are not in the plans (i.e., the limitations are applied
regardless of the selected plan); and ML03 if the API defines limitations and/or
explicit SLAs depending on the selected plan.

Pricing (see Table 1). We identify economic information of the API pricing
including the currency (P01) in which clients are billed, the billing cycle (P02)
and a set of statistics of the plan cost (P03, P04, P05).

Business model (see Table 1). We consider the main primary business
model (BM05) in the API, inspired by a number of works in the literature, as
shown in section 4. Namely: free (FR), when no payment is needed; pay-as-you-
go simple (PG-S), when you pay just for the usage you do (e.g., you pay per
each request made); pay-as-you-go with intervals (PG-I), when the payment
for each unit depends on the usage volume (e.g., the first 1K request cost $0.1
each, but the subsequent $0.05 each); tiered with fixed prices (TO1), when each
plan has a non-variable price; tiered with overage (TO2), when existing plans
with a certain price and limitations you can overcome the limits by paying an
extra amount. We also gathered the number of plans (BM06) and discover the

existence of discounts per annual upfronts (BM01), the existence of customs
plans (BM03), the main limitation of the free plan (BM04); or the existence
of a free plan (BM02).

General information. RQ01 RQ02 RQ03

GI01-Name of the API.
GI02-Source. X X X
GI03-Plans URL.

API characterization.

AC01-API type. X X
AC02-API maturity. X X

Pricing.

P01-Currency used. X X
P02-Billing cycle. X X
P03/P04/P05-Plan cost(max/min/avg). X X

Business model.

BM01-Existence of discounts per annual upfront. X X
BM02-Existence of a free plan. X X
BM03-Existence of custom plans. X X
BM04-Main limitation of the free plan. X X
BM05-Main business model. X X
BM06-Number of plans. X X

Table 1. First set of API analyzed attributes.

Overage (see Table 2). We define overage as the extra cost in which a
customer incurs when a certain limitation or set of limitations is exceeded (O01).
The overage scope (O02) depends over what item the limitation is made (e.g.,
requests, the number of resources, etc.). Moreover, we collected data about the
overage cost (maximum -O09-, minimum -O10- and average -O11- across the
different plans) and the overage limit (maximum -O03-, minimum -O07- and
average -O08- across the different plans), i.e., the amount of scoped data allowed
per each overage payment. Furthermore, we consider the existence of an overage
in every paid plan (O04) and we analyze whether in the same paid plan all the
resources have an overage (O05) and all the resources have the same overage
value(O06).

Functionality limitations (see Table 2). We identify the limitations over
the API functionality (FL01) and study the granularity: resource access gran-
ularity (FL02), if the limitation is applied to the resource endpoint (e.g. it is
not possible to access some parts of the resource in some plans); HTTP method
granularity (FL03), if the limitation is applied to a certain HTTP verb (e.g., it
is not possible to make a POST in some plans) request body granularity (FL04),
when the limitation is based on the specific payload sent to an endpoint. Further-
more, we identify the existence of a functionality limitation in every paid plan

(FL05) and we analyze whether in the same paid plan all the resources have a
functionality limitation (FL06) and all the resources have the same functionality
limitations (FL07).

Overage. RQ01 RQ02 RQ03
O01-Existence of an overage. X X X
O02-Overage scope. X X
O04-Existence of an overage in every paid plan. X X
O05-In the same paid plan all the res. have an overage. X X
O06-In the same paid plan all the res. have the same overage value. X X
O03/O07/O08-Overage limit value(max/min/avg). X X
O09/O10/O11-Overage cost (max/min/avg). X X
Functionality limitations.
FL01-Existence of functionality limitations. X X X
FL02-Limitation granularity: resource access. X
FL03-Limitation granularity: HTTP methods. X
FL04-Limitation granularity: request body. X
FL05-Existence of functionality limitations in every paid plan. X
FL06-In different paid plans each one has the same func. lim. X
FL07-In the same paid plan all the resources have a func. lim. X

Table 2. Second set of API analyzed attributes.

Quotas/Rates (see Table 3). We analyze two time-based limitations in the
API, commonly known as quotas and rates. The main difference is the sliding
window that rates have: whereas with quotas it is possible to define limits such
as up to 1000 requests per day, with rates it is possible to express limits with
a relative period of time, such as up to 100 requests in the last minute. Specif-
ically, we identify the scope of these limitations: i) requests scope (Q02/R02)
, ii) storage scope (Q03/R03); iii) resource scope (Q04/R04); iv) transaction
size scope (Q05/R05) and other scopes not explicitly mentioned (Q06/R06).
Moreover, we collected the value of the limitation (maximum -Q12/R12-, min-
imum -Q13/R13- and average -Q14/R14- across the plans) and periodicity.
Furthermore, we consider the existence of a functionality limitation in every
paid plan (Q07/R07), we analyze if in different plans each one has the same
quotas/rates. (Q08/R08), whether in the same paid plan all the resources have
a quotas/rates (Q09/R09) and, finally, if all the resources have the same quo-
ta/rate value. (Q10/R10).

Quotas and rates. RQ01 RQ02 RQ03
Q01/R01-Existence of quotas/rates. X X X
Q02/R02-Quotas/Rates over requests. X
Q03/R03-Quotas/Rates over storage. X
Q04/R04-Quotas/Rates over resources. X
Q05/R05-Quotas/Rates over transaction size. X
Q06/R06-Quotas/Rates over another scope. X
Q07/R07-Quotas/Rates in every paid plan. X
Q08/R08-Quota/Rates in all resources of different plans X
Q09/R09-Quota/Rates in all resources of the same plan. X
Q10/R10-Same quota/rate value for a given plan & resource X
Q11/R11-Quota/rate periodicity. X
Q12/R12/Q13/R13/Q14/R14-Quota/Rate value (max/min/avg). X

Table 3. Third set of API analyzed attributes.

3 SP06-Results

In this section, we present the results of the study grouped in three different
blocks: i) attributes regarding the business model and pricing; ii) aspects related
to limitations and overage application; iii) quotas and rates limitations. Due to
the fact that there exist notable differences between the APIs and their gover-
nance models, we decided to perform a separate analysis regarding the source of
the API: Mashape and ProgrammableWeb.

In Figure 3 we observe that most of the APIs analyzed are, indeed, the XaaS
offering (AC01). In the case of Mashape, all the APIs are T04. Regarding the
maturity (AC02), in both cases, we observe that the defined limitations depend
on the plan that the client selects. Note we have established a search protocol
that picked primarily popular APIs from popular categories, a fact that explains
this polarization in AC01 and AC02. A small number of APIs offer a discount per
an anticipated payment or upfront (BM01), but the vast majority define a free
tier with some specific limitations (B02). In addition, it is frequent to have a way
to define custom plans by talking directly to the company (BM03). Regarding
the business models (BM05), it is very likely for APIs from Mashape to have
a tiered plan with an overage, in contrast to the ones from ProgrammableWeb,
in which is common to have a tiered plan with fixed prices. It is remarkable
that the more common billing cycle (P02) is monthly and the number of plans
(BM06) oscillates between two and four.

Figure 4 depicts the most interesting attribute analysis about how limitations
are being applied in APIs. First, we observe that a high number limits the oper-
ations, rather than functionality or time (BM04). Secondly, from the providers
that apply an overage if a certain limit is reached (O01), it is frequent that all
the resources have an overage (O05), but it has not to be the same (O06). The
most common scope (O02) is requests. On the other hand, some APIs apply
limitations over the functionality (FL01), being more frequent in the APIs cho-
sen from ProgrammableWeb. Most of the limitations are applied to the resource

Fig. 3. Business model and pricing analysis.

Fig. 4. Limitations and overage analysis.

itself (FL2). Furthermore, functionality limitations use to be present in every
plan (FL05), but they neither are the same across the plans (FL06) nor have the
same values (FL07).

Fig. 5. Quotas and Rates analysis.

In Figure 5 we observe some charts regarding the limitations using quotas
and rates. Whereas both quotas and rates are very frequent (Q01/R01), we
have noticed that Mashape does not allow users to define rates. Quotas are
usually defined using monthly periods, whereas rates are more common to be
secondly or minutely (Q11/R11). Furthermore, most of quotas and rates are de-
fined over requests (Q02/R02), rather than over resources (Q04/R04) or storage
(Q03/R03). It is also remarkable that most of quotas and rates have the same
values within a plan (Q10/R10), but in different plans they usually have different
values (Q08/R08).

Each of these attributes paves the way to give an answer to the stated re-
search questions. Specifically, i) regarding the most common business models
(RQ01), as depicted in Figure 3, BM05 attribute points out that the more com-
mon business models are the tiered ones with or without overage; ii) regarding
the plans (RQ02), as shown in Figure 3, most APIs define between two or four
plans, with a monthly billing cycle; iii) regarding the regulations (RQ03), as
illustrated in Figure 4 and 5 most XaaS providers apply limitations in some-
how. They limit the free tier by restricting the operations allowed and, for paid
plans, they define both quotas and rates. These limitations unusually are scoped
over the number of requests, and the periodicity intervals range from minutely
for quotas, to secondly for rates. This situation may be caused by the lack of
versatility and expressivity existent in current modeling tools.

In our analysis, we identify two different threats to the validity of the results
herein presented: i) the size of the sample may not be statistically representative

regarding the total population of APIs in the real world. Nevertheless, we have
tried to prioritize the more popular categories in each repository so that we can
maximize the API usage; ii) despite the fact that we have tried to do our best
when validating data, there may be some errors since the process is manual.
Apart from offering the open dataset we plan, as future work, to revisit it and
undertake a comprehensive examination.

4 Related work

A number of analyses of web services in the industry and, especially, of RESTful
APIs, have been presented. They usually focus on characteristics inherent to the
API design. This work presents a new research direction by developing a system-
atic study of RESTful APIs focusing on how providers deal with non-functional
properties in plans by establishing limitations, such as rates and quotas. We
emphasize our work in providing an open and machine-readable dataset to other
researchers.

The more relevant literature we have revised is summarized in the following:
A first set of studies is focused on traditional web services (WSDL/XML/-

SOAP). On the one hand, Li et al. show a study on Web services [13] in order to
get the diversity of the specification of key elements in the industry. Specifically,
they focus on statistics based on the number of defined operations, WSDL doc-
ument size, average words used in the description fields and function diversity.
They crawled some web services catalogs and collected information about 570
WSDL documents from active services, nevertheless, they focus only on a single
search engine. On the other hand, Al-Masri et al. present a broader study [1]
in which the authors have developed a crawler for collecting information about
5077 WSDL references available in different sources, such as Google, Yahoo,
Alltheweb and Baidu. They determine statistics about object sizes, technology
and function among others. They also point out the disconnection between UDDI
registries and the current web, since these registries are incapable of providing
Quality of Service (QoS) measurements for registered Web services and they do
not clearly define how service providers can advertise business models.

Coinciding with the progressive increase of RESTful APIs, a second set of
works are focused on these services. In [14], Maleshkova et al. analyze a set
of randomly chosen 222 APIs of ProgrammableWeb, not just RESTful APIs
but RPC and hybrid style also. They analyze six API characteristics: general
information, types, input parameters, output formats, invocation details and
complementary documentation. They found that a lack of a standard format to
document APIs. In particular, it shows that APIs suffer from under-specification
because some important information (e.g., data type and HTTP methods) are
missing. Furthermore, in [18], Renzel et al. show a study over the 20 most pop-
ular RESTful Web Services from ProgrammableWeb against 17 RESTful design
criteria found in the literature. The point out that hardly any of the services
claiming to be RESTful is truly RESTful. This study also offers the full dataset
showing the values for each analyzed characteristic. Finally, in [4], Bülthoff et

al. analyze a dataset which comprises 45 Web APIs in total, primarily chosen
from ProgrammableWeb directory, and provide conclusions about common de-
scription forms, output types, usage of API parameters, invocation support, the
level of reusability, API granularity and authentication details. In this study, the
authors show that an 89% of APIs state and implement rate limitations, either
written down as part of the documentation or included with the general terms
and conditions.

In a third set of studies in the last years, authors are moving to conduct-
ing other analysis to determine how the APIs are evolving and whether best
practices are being followed. For instance, in [20], Sohan et al. conduct a case
study of 9 evolving APIs to investigate what changes are made between ver-
sions and how the changes are documented and communicated to the API users.
Furthermore, they extract some recommendations, such as the use of semantic
versioning, separate releases for bug fixes and new features, auto-generated API
documentation cross-linked with changelogs and providing live API explorers.
Next, Palma et al. in [15] and [16], present a framework to undertake API anal-
ysis, specifically, in the first work, they analyze 12 APIs in order to recognize
some patterns and anti-patterns for RESTful APIs; in the second work, analo-
gously, they study 15 APIs to detect some linguistic patterns and anti-patterns
in URL paths. Furthermore, in [17], Petrillo et al. present a study evaluating
and comparing the design of the RESTful APIs of 3 cloud providers in terms of
the fulfillment of a catalog of 73 best practices. They show that APIs reach an
acceptable level of maturity when they consider best practices related to under-
standability and reusability. Moreover, in [19], Rodriguez et al. evaluate some
good and bad practices in RESTful APIs. In particular, they analyze data logs
of HTTP calls collected from the Internet traffic, identify usage patterns from
logs and compare these patterns with design best practices.

Furthermore, from an industrial perspective some studies have been carried
out; Musser, VP of ProgrammableWeb, highlights in a conference13 what are
the more common business models nowadays. In this sense, Yu et al. carried
out a study [25] that analyzes structure and dynamics of ProgrammableWeb,
determining that cumulative API use follows a power law distribution: a large
number of APIs is used in a few mashups and a small number of APIs is used
by many mashups. Furthermore, Haupt et al. present a study [11] of some API
properties over 286 Swagger descriptions using a custom framework to analyze
these Swagger documents.

In a pricing model perspective, we found initial works such as [2] in which
Andrikopoulos et al. present a cost calculator for cloud ecosystems. More specifi-
cally, Vukovic et al. have presented some relevant works in the sense API ecosys-
tems analysis and formal representations of service licenses. In [24] they pre-
sented a graph-based data model for API ecosystem built on an RDF data store.
It stores temporal information about when entities and relationships were cre-
ated and possibly deleted, allowing insights into the evolution of API ecosystems.
On the other hand, in [22] they present a data model for API terms of service

13 Available at https://goo.gl/8eZwwv

https://goo.gl/8eZwwv

that captures a set of non-functional properties of APIs and allows for terms and
conditions to be automatically assessed and composed. Later, in [23] they define
a formal representation of service license description that facilitates automated
license generation and composition. They also care about some QoS parameters
and its relationship between the agreed SLA. Nevertheless, they do not identify
any limitation that actually exists in real API plans, such as quotas and rates.
Moreover, they restrict the concept of Service Level Agreements (SLAs) to two
components: condition and action, whereas our approach pretends to go further.

To the best of our knowledge, our work differs from the one presented herein
in three specific points: i) Any of the analyzed works present a study over a
number of RESTful APIs in terms of non-functional aspects and limitations (e.g.,
quotas and rates), plans and business models. ii) We have carried out our analysis
systematically, defining a specific set of objectives and research questions, rules
to select the APIs and a specific methodology to analyze the gathered data. iii)
None of the works provides an open dataset in a machine-readable format so
that researchers could improve and use the data gathered by authors in further
studies. The only one that presents a dataset is [18], nevertheless, they do not
offer it in a machine-readable way.

5 Conclusions and future work

In this paper, we have systematically studied 69 RESTful APIs of XaaS offer-
ings; after identifying the research questions, we selected two valid sources to
extract APIs from: Mashape and ProgrammableWeb. Next, we analyzed a set of
characteristics regarding the type of the API, pricing, business models used in
the XaaS offering, functionality limitations, overage and quotas and rates. We
found that there exists a wider expressibility in terms of API limitations when
the API is not explicitly regulated by an API Gateway, such as Mashape.

As an additional value, we believe the results of this study can also be use-
ful for practitioners who plan to design a new plan for an API. Finally, as a
future work, we plan to identify: i) a correlation between the price plan offered
and the types of limits; ii) a specific set of requirements to define a formal gover-
nance model that supports a realistic usage plan specification for RESTful APIs,
including temporality elements such as scheduling restrictions as defined in [9].

References

1. Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. WWW 2008, 32(3):795, 8 2008.

2. Vasilios Andrikopoulos, Zhe Song, and Frank Leymann. Supporting the Migration
of Applications to the Cloud through a Decision Support System. In ICSOC 2013,
pages 565–572. IEEE, 6 2013.

3. Michele Bonardi, Maurizio Brioschi, and Alfonso Fuggetta. Fostering collaboration
through API economy. In SER&IP 2016, pages 32–38, 2016.

4. Frederik Bülthoff and Maria Maleshkova. RESTful or RESTless – Current State
of Today’s Top Web APIs. In LNCS, volume 8798, pages 64–74. Springer, Cham,
2014.

5. Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. Cloud Computing Patterns. Springer, 2014.

6. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Building, 54:162, 2000.

7. Martin Flower. Microservices. pages 1–14, 2014.
8. Forrester. API Management Solutions , Q3 2014. Technical report, 2015.
9. José María García, Octavio Martín-Díaz, Pablo Fernandez, Antonio Ruiz-Cortés,

and Miguel Toro. Automated analysis of cloud offerings for optimal service provi-
sioning. In ICSOC 2017. Springer, 2017.

10. Jeremy Geelan. Twenty-One Experts Define Cloud Computing. Cloud Computing
Journal, page 5, 2009.

11. Florian Haupt, Frank Leymann, Anton Scherer, and Karolina Vukojevic-Haupt. A
Framework for the Structural Analysis of REST APIs. In ICSA 2017, 4.

12. Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic
Literature reviews in Software Engineering Version 2.3. Engineering, 45(4ve):1051,
2007.

13. Yan Li, Yao Liu, Liangjie Zhang, Ge Li, Bing Xie, and Jiasu Sun. An Exploratory
Study of Web Services on the Internet. In ICWS 2007, pages 380–387. IEEE, 2007.

14. Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web APIs
on the world wide Web. In ECOWS 2010, pages 107–114. IEEE, 12 2010.

15. Francis Palma, Johann Dubois, and Naouel Moha. Detection of REST Patterns
and Antipatterns: A Heuristics-Based Approach. ICSOC 2014, 8831:230–244, 2014.

16. Francis Palma, Javier Gonzalez-Huerta, and Naouel Moha. Are RESTful APIs
well-designed? Detection of their linguistic (Anti)patterns. In LNCS, 11 2015.

17. Fabio Petrillo, Philippe Merle, Naouel Moha, and Yann-Gaël Guéhéneuc. Are
REST APIs for Cloud Computing Well-Designed? An Exploratory Study. In
LNCS, volume 9936 LNCS, pages 157–170. Springer, Cham, 2016.

18. Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s Top “RESTful”
Services and Why They Are Not RESTful. In LNCS, volume 7651 LNCS, pages
354–367. Springer, Berlin, Heidelberg, 2012.

19. Carlos Rodríguez, Marcos Baez, and Florian Daniel. REST APIs: A Large-Scale
Analysis of Compliance with Principles and Best Practices. In LNCS, volume 9671,
pages 21–39. Springer, Cham, 6 2016.

20. S. M. Sohan, Craig Anslow, and Frank Maurer. A Case Study of Web API Evolu-
tion. In SERVICES 2015, pages 245–252. IEEE, 6 2015.

21. Wei Tan, Yushun Fan, Ahmed Ghoneim, M. Anwar Hossain, and Schahram Dust-
dar. From the Service-Oriented Architecture to the Web API Economy. IEEE
Internet Computing, 20(4):64–68, 7 2016.

22. Maja Vukovic, Jim Laredo, and Sriram Rajagopal. API terms and conditions as a
service. In ISCC 2014, pages 386–393. IEEE, 6 2014.

23. Maja Vukovic, LiangZhao Zhao Zeng, and Sriram Rajagopal. Model for Service
License in API Ecosystems. In LNCS, volume 8831, pages 590–597. Springer,
Berlin, Heidelberg, 2014.

24. Erik Wittern, Jim Laredo, Maja Vukovic, Vinod Muthusamy, and Aleksander
Slominski. A graph-based data model for API ecosystem insights. In ICWS 2014,
pages 41–48. IEEE, 6 2014.

25. Shuli Yu and C. Jason Woodard. Innovation in the programmable web: Charac-
terizing the mashup ecosystem. In LNCS, 2009.

	An analysis of RESTful APIs offerings in the industry
	Introduction
	Research method and conduct
	Analyzed attributes

	SP06-Results
	Related work
	Conclusions and future work

