
Mosto: Generating SPARQL Executable

Mappings between Ontologies

Carlos R. Rivero, Inma Hernández, David Ruiz, and Rafael Corchuelo

University of Sevilla, Spain

{carlosrivero,inmahernandez,druiz,corchu}@us.es

Abstract. Data translation is an integration task that aims at pop-
ulating a target model with data of a source model, which is usually
performed by means of mappings. To reduce costs, there are some tech-
niques to automatically generate executable mappings in a given query
language, which are executed using a query engine to perform the data
translation task. Unfortunately, current approaches to automatically gen-
erate executable mappings are based on nested relational models, which
cannot be straightforwardly applied to semantic-web ontologies due to
some differences between both models. In this paper, we present Mosto,
a tool to perform the data translation using automatically generated
SPARQL executable mappings. In this demo, ER attendees will have an
opportunity to test this automatic generation when performing the data
translation task between two different versions of the DBpedia ontology.

Keywords: Information Integration, Data Translation, Semantic-web
Ontologies, SPARQL executable mappings.

1 Introduction

Data translation is an integration task that aims at populating a target model
with data of a source model, which is becoming a major research task in the
semantic-web context [5,12]. Mediators are pieces of software that help perform
this task, which rely on mappings that relate source and target models [4].

To reduce integration costs, some techniques automatically generate a set of
uninterpreted mappings, a.k.a. correspondences, which must be interpreted to
perform the data translation task [4]. They are hints that usually relate a source
entity with a target entity, although they may be more complex [4]. The main
issue regarding correspondences is that there is not a unique interpretation of
them, i.e., different approaches interpret correspondences in different ways [2].

� Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E).

�� An implementation and examples regarding this paper are available at:
http://tdg-seville.info/carlosrivero/Mosto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157762612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Executable mappings encode an interpretation of correspondences in a given
query language [6,11]. These mappings are executed by means of a query engine
to perform the data translation task. The main benefit of using these mappings
is that, instead of relying on ad-hoc programs that are difficult to create and
maintain, a query engine performs the data translation task [6].

In the bibliography, Ressler et al. [10] devised a visual tool to specify hand-
crafted SPARQL executable mappings. However, it is well-known that hand-
crafted executable mappings increase integration costs [8]. Furthermore, there
are a number of visual tools to specify correspondences between source and tar-
get models, such as Clio, Muse, or Clip [1,6,9]. After specifying the correspon-
dences, these tools automatically generate a set of executable mappings based
on them. Unfortunately, these tools focus on nested relational models, and they
are not straightforwardly applicable to semantic-web ontologies due to a number
of inherent differences between them [7,11].

In this paper, we present Mosto, a tool to perform the data translation task
between OWL ontologies using automatically generated SPARQL executable
mappings. To the best of our knowledge, this is the first tool to automatically
generate executable mappings in the semantic-web context. To describe it, we use
a demo scenario integrating two different versions of the DBpedia ontology [3].

This paper is organised as follows: Section 2 describes the system, and Sec-
tion 3 deals with the demo that ER attendees will have the opportunity to test.

2 Mosto

In this section, we present Mosto, our tool to perform the data translation task
between two OWL ontologies by means of SPARQL executable mappings. Per-
forming this task in our tool comprises four steps, namely: 1) Selecting source
and target ontologies; 2) Specifying restrictions and correspondences; 3) Gen-
erating SPARQL executable mappings; and 4) Executing SPARQL executable
mappings. These steps are described in the rest of the section.

The first step deals with the selection of source and target ontologies to be
integrated. In our demo scenario (cf. Figure 1), we integrate DBpedia ontol-
ogy v3.2 with DBpedia ontology v3.6, which are shown in a tree-based notation
in which classes, data properties and object properties are represented by cir-
cles, squares and pentagons, respectively. Note that subclasses are represented
between brackets, e.g., dbp:Artist is subclass of dbp:Person is represented as
“dbp:Artist [dbp:Person]”. In addition, the domain of a property is represented
by nesting the property in a class, and the range is represented between ‘<’ and
‘>’, e.g., the domain of dbp:director is dbp:Film and its range is dbp:Person.
After selecting the ontologies, Mosto extracts a number of implicit restrictions,
which are restrictions that are due to the modelling language of source and target
ontologies, in our case, the OWL ontology language.

In the second step, the user specifies explicit restrictions in the source and
target ontologies, and correspondences between them. Explicit restrictions are
necessary to adapt existing ontologies to the requirements of a specific scenario,



dbp:imdbId <xsd:string>

dbp:Person

dbp:academyAward <dbp:Award>

dbp:starring <dbp:Person>

dbp:director <dbp:Person>

dbp:Actor [dbp:Artist]

dbp:Film [dbp:Work]

dbp:Artist [dbp:Person]

dbp:Person

Source (version 3.2) Target (version 3.6)

dbp:academyawards <xsd:anyURI>

dbp:Work

V1

dbp:Artist [dbp:Person]

R1
dbp:Award

V2

V4

dbp:Actor [dbp:Artist ]
V3

dbp:Work

dbp:starring <dbp:Person>

V5

V8

dbp:Film [dbp:Work]

dbp:director <dbp:Person>

V6

V9

dbp:imdbId <xsd:string>

V7

M1 // Correspondence V1

CONSTRUCT {

?p rdf:type dbp :Person .
} WHERE {
?p rdf:type dbp :Person .

}

M2 // Correspondence V4
CONSTRUCT {

?w rdf:type dbp :Award .
?a rdf:type dbp :Person .

?a rdf:type dbp :Artist .
?a rdf:type dbp :Actor .
?w dbp:academyAward ?w .

} WHERE {
?a dbp:academyawards ?w .

?a rdf:type dbp :Person .
?a rdf:type dbp :Artist .
?a rdf:type dbp :Actor .

}

Resulting SPARQL executable mappings

M3 // Correspondence V8

CONSTRUCT {

?w rdf :type dbp :Work .
?p rdf :type dbp :Person .

?w dbp :starring ?p .
} WHERE {
?w dbp :starring ?p.

?w rdf :type dbp :Work .
?w rdf :type dbp :Film .

?p rdf :type dbp :Person .
}

Fig. 1. Evolution in DBpedia (demo scenario)

e.g., R1 is an explicit restriction by which dbp:academyAward has a minimal
cardinality of one with respect to dbp:Award. Correspondences are represented
as arrows in Figure 1, e.g., V8 is a class correspondence that relates dbp:starring
object property in both source and target ontology versions. Note that Mosto al-
lows to load previously defined restrictions and/or correspondences, or to visually
generate new restrictions and/or correspondences according to user preferences.

In the third step, Mosto generates a set of SPARQL executable mappings
using (implicit and explicit) restrictions and correspondences. The technique to
automatically generate these mappings is described in [11], which is based on
clustering those source restrictions, target restrictions and other correspondences
that we must take into account to produce coherent target data when performing
the data translation task. Note that, if we use each correspondence in isolation
to translate data, we may produce incoherent target data, e.g., correspondence
V8 cannot be used in isolation since we do not know how to translate the do-
main and range of dbp:starring. Therefore, our technique clusters V1, V5 and V8,
which translate the domain and range of dbp:starring, respectively. In addition,
every cluster is transformed into a SPARQL executable mapping that encode an
interpretation of correspondences. Figure 1 shows three examples of SPARQL
executable mappings generated with our tool: M1, M2 and M3 are the resulting
executable mappings of correspondences V1, V4 and V8, respectively.



Finally, in the fourth step, Mosto is able to perform the data translation task
by executing the previously generated SPARQL executable mappings over the
source ontology to produce instances of the target ontology. Note that, thanks
to our SPARQL executable mappings, we are able to automatically translate the
data from a previous version of an ontology to a new version.

3 The Demo

In this demo, ER attendees will have an opportunity to use Mosto to test the
automatic generation of SPARQL executable mappings using our demo scenario,
which integrates different versions of the DBpedia ontology. We will show how
the addition or removal of correspondences and restrictions affect the resulting
executable mappings. Furthermore, we will perform the data translation task
using these mappings, and check whether resulting target data are as expected.

Expected evidences in our demo scenario are the following, namely: 1) the time
to generate executable mappings is less than one second; 2) Mosto facilitates the
specification of restrictions and correspondences in complex scenarios; and 3)
the resulting target data are coherent with expected results.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding
and design by example. In: ICDE, pp. 10–19 (2008)

2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD, pp. 1–12 (2007)

3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann,
S.: DBpedia - a crystallization point for the web of data. J. Web Sem. (2009)

4. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and

query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)
6. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from

research prototype to industrial tool. In: SIGMOD, pp. 805–810 (2005)
7. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational

databases. J. Web Sem. 7(2), 74–89 (2009)
8. Petropoulos, M., Deutsch, A., Papakonstantinou, Y., Katsis, Y.: Exporting and in-

teractively querying web service-accessed sources: The CLIDE system. ACM Trans.
Database Syst. 32(4) (2007)

9. Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernández, M.A.: Clip: a tool for map-
ping hierarchical schemas. In: SIGMOD, pp. 1271–1274 (2008)

10. Ressler, J., Dean, M., Benson, E., Dorner, E., Morris, C.: Application of ontology
translation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 830–842.
Springer, Heidelberg (2007)

11. Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: Generating SPARQL exe-
cutable mappings to integrate ontologies. In: Jeusfeld, M., et al. (eds.) ER 2011.
LNCS, vol. 6998, pp. 118–131. Springer, Heidelberg (2011)

12. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Int.
Sys. 21(3), 96–101 (2006)


	Mosto: Generating SPARQL Executable Mappings between Ontologies

	Introduction
	Mosto
	The Demo
	References





