View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by idUS. Depésito de Investigacion Universidad de Sevilla

Towards Systematic Mutations for and with ATL
Model Transformations

Javier Troya*, Alexander Bergmayr*, Loli Burguefiof, and Manuel Wimmer*
*Business Informatics Group, Vienna University of Technology, Austria
Email: {troya,bergmayr,wimmer} @big.tuwien.ac.at
TGISUM/Atenea Research Group, Universidad de Malaga, Spain
Email: loli@Ilcc.uma.es

Abstract—Model transformation is a key technique to auto-
mate software engineering tasks, such as generating implemen-
tations of software systems from higher-level models. To enable
this automation, transformation engines are used to synthesize
various types of software artifacts from models, where the rules
according to which these artifacts are generated are implemented
by means of dedicated model transformation languages. Hence,
the quality of the generated software artifacts depends on the
quality of the transformation rules applied to generate them.
Thus, there is the need for approaches to certify their behavior
for a selected set of test models. As mutation analysis has proven
useful as a practical testing approach, we propose a set of
mutation operators for the ATLAS Transformation Language
(ATL) derived by a comprehensive language-centric synthesis
approach. We describe the rationale behind each of the mutation
operators and propose an automated process to generate mutants
for ATL transformations based on a combination of generic
mutation operators and higher-order transformations. Finally,
we describe a cost-effective solution for executing the obtained
mutants.

Keywords—Mutation, Model Transformations, ATL, Higher-
Order Transformations

1. INTRODUCTION

Model transformation is a key technique to automate
software engineering tasks in Model-Driven Engineering
(MDE) [1], [2]. To enable this automation, transformation
engines are available which are able to synthesize various types
of software artifacts from models, where the rules according
to which these artifacts are generated are implemented by
means of dedicated model transformation languages. Hence,
the quality of the generated software artifacts is highly affected
by the quality of the developed model transformations. As
a result, model transformations are subject to thorough tests
for correctness [3]-[6]. For this reason, several approaches
have been proposed that either verify the correct behavior of
the transformations using formal methods [7] or certify their
behavior for a selected set of test models mainly to identity
bugs in a cost-effective way [8], [9].

As mutation analysis has proven to be useful as a prac-
tical testing approach [10], it is also applied to test model
transformations mainly for the generation of (¢) test data in
terms of input models [11], [12] and (7¢) mutants of model

transformations [13]-[15]. Considering the latter approaches,
they propose generic mutation operators, i.e., independent of
a particular transformation language, and mutation operators
that are dedicated to a specific language, such as the ATLAS
Transformation Language (ATL) [16], [17]. As a result, the
focus of these approaches is mainly set on partially identi-
fying effective mutation operators while neglecting means to
automate the generation of mutated model transformations and
to efficiently execute them.

Problem. Due to the fact that mutation analysis requires
a complete set of mutation operators, and consequently, a
large number of mutated model transformations to be effective,
manually generating them appears infeasible [18]. Moreover,
their execution against the input models leads typically to high
computational costs [10], particularly if a mutant is considered
as a complete re-execution of the original transformation to
which a fault is injected. Hence, automation is required to
cope with the challenges of generating an effective set of
mutation operators as well as mutated model transformations.
Furthermore, to deal with the execution of mutants, techniques
are required to reduce the computational costs of executing the
model transformation mutants.

Contribution. Our contribution is threefold: (¢) we have de-
rived a systematic set of mutation operators dedicated to ATL
by proposing a general language-centric synthesis approach
for mutation operators, (ii) we have automated the generation
of model transformation mutants by realizing a framework
that exploits the concept of Higher-Order Transformations
(HOTs) [19], and (7i¢) we have studied the possibility to inte-
grate into our framework means to reduce the computational
costs of executing model transformation mutants by relying
on techniques for incremental model transformation execution,
which we have proposed in previous work [20].

Structure. In Section II, we give the background for our
work by introducing ATL by-example. We provide details
regarding our mutation operator synthesis approach and the
ATL mutation operators in particular in Section III. Then,
in Section IV, we present our framework for automating the
generation of mutated ATL model transformations and give
insights into how they can be executed in a cost-effective way.
In Section V, we introduce the prototypical implementation
of our proposed framework and apply it to the example
introduced in Section II. Finally, we discuss related work in
Section VI before we conclude with an outlook on future work
in Section VIIL.


https://core.ac.uk/display/157762594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I NamedElement |

| LocatedElement |

| name : String

location : String

arcg Arc

weight: Elnt
JAN

1.1

net PetriNet _[net
>
1.1 1.1

Place places
0.* .
1.1to 1.14@net

transitions,}, 0..*

0..*|incomingArc . .
incomingArc|
1.4

PlaceToTransition

outgoingArc|0..*

Fig. 1. PetriNet Metamodel.

II. MODEL TRANSFORMATIONS IN MDE

In this paper we focus on ATL, which is shortly introduced
in this section.

A. ATL

ATL is a hybrid model transformation language containing
a mixture of declarative and imperative constructs—in this
paper we focus only on its declarative part. Both out-place
and in-place transformations can be defined in ATL. In an out-
place transformation, a new output model is created from the
input one. The transformation specifies which concepts of the
output model are created from which ones of the input model.
The default mode of ATL is used for this. In-place rules are
defined using the refining mode of ATL. In the refining mode,
the input model evolves to obtain the output one. Consequently,
the transformation specifies how the input model has to change
in order to obtain the output one.

Listing 1 displays an excerpt of an out-place transformation
that generates a PNML (Petri Net Markup Language) model
from a PetriNet model. It has been taken from the ATL Zoo'
and will be referenced throughout the paper to explain our
approach. The PetriNet metamodel, to which input models for
this transformation conform, is displayed in Figure 1.

Figure 2(a) shows the structure of the declarative part of
an ATL Transformation, which is composed of declarative
MatchedRules (lines 4, 14 and 24 in Listing 1). It receives
Models as input and produces output Models, which conform
to a metamodel (cf. Figure 2(b) and line 2 in the listing). A
MatchedRule contains one InPattern (starting with the keyword
from, cf. line 5) and one OutPattern (starting with the keyword
to, cf. line 7). The former is a query on the input model and
gathers the set of InPatternElements (line 6 for instance) that
represent the input model elements of the rule. It can also
contain a Filter (none is specified in this transformation). If
the conditions of such a Filter are satisfied by the InPatter-
nElements, the respective rule is applied. Filters are specified
by means of OCL (Object Constraint Language) expressions.
OutPatterns describe the creation of elements in the output
model. Such elements are of type OutPatternElements (e.g., the
one defined in line 8). Each OutPatternElement is composed
of a set of Bindings (lines 9, 10 and 11). Their values are
expressed and computed by OCL expressions that are used to
initialize the features of output model elements.

ATL, as other transformation languages, has a feature that
we call inter-rule dependencies. In our example, the from
of the value expression e. “from” (line 36) is either of type

Thttp://www.eclipse.org/atl/atI Transformations/

condition [, 1..1

OCLEx;_!

1.1 Mvalue

i\'t'a:nents 0

varName : String

class
1.1

feature

conformsTo \, 1..1 1.1
classes

del j@—3 Class

?
[ 07 |

features
0.*

Feature

AN
Attribute
—

Fig. 2. Metamodel excerpts: (a) ATL transformation language and (b)
metamodeling language.

Transition or Place (cf. PetriNet metamodel in Figure 1),
depending on if e is an Arc of type TransitionToPlace or
PlaceToTransition, respectively. For that reason, when the
Binding is computed, source will reference those elements
created either in rule Transition or Place. To do so, ATL
performs a transparent lookup of output model elements for
given input model elements when executing Bindings. Hence,
it automatically retrieves the corresponding PNML!Transition
and PNML!Place elements for the queried PetriNet!Transition
and PetriNet!Place elements, respectively.

Listing 1. PetriNet2PNML ATL Transformation.
1 module PetriNet2PNML;

2 create OUT : PNML from IN : PetriNet;
3

4 rule Place {

5 from

6 e : PetriNet!Place

7 to

8 n : PNML!Place (

9 name <- name,

10 id <- e.name,

11 location <- e.location),

12 name : PNML!Name (labels <- label),
13 label : PNML!Label (text <- e.name)
14 }

15

16 rule Transition {

17 from

18 e : PetriNet!Transition

19 to

20 n : PNML!Transition (

21 name <- name,

22 id <- e.name,

23 location <- e.location),

24 name : PNML!Name (labels <- label),
25 label : PNML!Label (text <- e.name)
26 }

27

28 rule Arc {

29 from

30 e : PetriNet!Arc

31 to

32 n : PNML!Arc (

33 name <- name,

34 location <- e.location,

35 id <- e.name,

36 source <- e."from",

37 target <- e."to"),

38 name : PNML!Name (labels <- label),
39 label : PNML!Label (text <- e.name)
40 '}

B. Higher-Order Transformations

A Higher-Order Transformation (HOT) [19] is a model
transformation such that its input and/or output models are



ATL Metamodel
conforms to

| ATL Transformation Model |
abstract syntax
injector extractor textual
(T2M) (M2T) concrete syntax

| ATL Transformation File |

Fig. 3. Injections and Extractions of ATL Transformations.

themselves transformation models. A transformation model is
a model transformation that is represented as a model, instead
of being represented with its textual syntax. The metamodel to
which such models conform in our case is the ATL metamodel.
In order to obtain a model representation of a transformation
file, we apply a text-to-model transformation called injector
(cf. Fig 3). On the other hand, when we want to obtain a textual
representation of a transformation model, we apply a model-
to-text transformation called extractor. Please note that a HOT
may be also the input/output of another transformation, thus
there are second-order HOTs and so on. These concepts are
important for the explanation of our approach in Section IV.

III. MUTATIONS IN MODEL TRANSFORMATIONS

In order to define mutations for a language, we first need
to know which concepts of the language can be mutated. In
this work we have applied a systematic analysis based on
the concepts described in the ATL metamodel for identifying
mutation operators, what is presented in Section III-B. Each
of the mutations can influence in different ways the output
models generated by the mutants. For this reason, we first
analyze the different consequences that a mutation may have
in Section III-A. Finally, in Section III-C, we describe our
approach to obtain the dependencies among rules in an ATL
transformation, what can be useful in the testing process.

A. Consequences of a Mutation

When a transformation is mutated, it has an effect in the
output model that is generated for the same input model as with
the original transformation. The alterations that may take place
in the output model are graphically depicted in Figure 4. In
the explanation of the consequences that mutations involve, we
will be comparing the output model obtained by the original
transformation (such as the model in Figure 4(a)) with the
one obtained by a mutation of the transformation (such as the
model in Figure 4(b)).

To begin with, there can be completely new objects that
were not present before (OA: Object Addition). Likewise, some
objects may be deleted (OD: Object Deletion). There can also
be objects that are modified. This means that the object is the
same, but some of its properties (attributes and/or references)
have been modified. This happens for instance when a property
of the object that was set to null is now initialized (OPI: Object
Property Initialized), or, on the contrary, a property that had a
value is now set to null (OPN: Object Property set to Null). An
object can also be modified when the value of one property is
modified (OPM: Object Property Modified), think for instance
of the string attribute name of an object. It could also be the
case that an object of a certain type has replaced the object
of a different type (OR: Object Replacement), meaning that

Objects created with
original transformation

Objects created with
mutated transformation

s Objects modified with
mutated transformation

Relations created with
/]\ original transformation

Relations created with
mutated transformation

(a) Original output model (b) Output model with a mutated transformation

Fig. 4. Possible alterations in output model (an object in the same position
means it is the same object).

the latter keeps the incoming and outgoing relationships of the
former. In such a case, and in order to comply the conformance
relationship to the output metamodel, the classes to which both
objects conform must have an inheritance relationship in the
metamodel, so that they share the types of their input and
output relationships. Note that OR can also be seen as the
deletion and addition of an object.

Regarding relationships among objects, they can also be
added (RA: Relationship Added) or deleted (RD: Relationship
Deleted). For instance, the modification of an object may
imply the creation/deletion of one of its relationships. Another
example is when a new object is created and its relationships
are initialized. On the contrary, when an object is deleted, so
are the relationships that start from it or end in it.

B. Mutation Possibilities

According to the excerpt of the ATL metamodel shown in
Figure 2(a), we identify a set of possible mutations. We aim for
completeness of our approach by systematically considering
the addition and deletion of instances for any metaclass in the
transformation metamodel and modifications of their features.

Table I shows the set of mutations identified, and the
consequences they imply in the generated output model (cf.
Section III-A), where a consequence enclosed within square

TABLE 1. MUTATIONS IDENTIFIED FOR ATL TRANSFORMATIONS.
Concept | Mutation Operator | Consequence
Addition OA;[RA]
M;mlged Deletion OD;[RD]
u Name Change
Addition OA;[RA]
In Pattern Deletion OD;[RA]
Element Class Change OD;0A;[RD];[RA]
Name Change
Addition OD
Filter Deletion OA
Condition Change OA;OD
Out Addition OA;[RA]
Pal;m Deletion OD;[RD]
Class Change OR;[RA];[RD]
Element
Name Change
Addition OPL;[RA]
Bindin Deletion OPN;[RD]
2 Value Change OPM;[RAJ;[RD]
Feature Change




(a) Original transformation (Ral/hPs
n lemfgt?

Fig. 5. Effect of Adding InPatternElement.

brackets means that it may happen or
explanation, we compare the output mo
the original transformation with the one
by the transformation where the specific

MatchedRule. Adding or deleting a M
add or delete the objects that the rule cre
relationships among them.

InPatternElement. If an InPatternt
deleted, the matches of a rule for a gr
change as well. For instance, if we he
nElement in a rule and we add anoth
(ae@iigihabautptit theoctetesian produdix
so that more elements are created. Th
rule that has one InPatternElement to
(objects of type circle, Figure 5(a)), and
OutPatternElements and a relationship :
mutation consists of adding a new InP
square to the rule, so that now the matching is produced with
the cartesian products of circles and squares (Figure 5(b)),

producing more elements in the output model. Contrarily, if

we remove an InPatternElement, the number of matches for a
rule may decrease. Furthermore, the addition or deletion of an
InPatternElement may lead to a change of the OutPattern in the
rule provided that the variable referring to the new/old InPat-
ternElement is used in one or several Bindings. Similarly, when
the class feature of an InPatternElement changes, we consider
it as a deletion and an addition of an InPatternElement.

Filter. The effect of the addition, deletion and modification
of a Filter is connected to the number of objects that match the
rule. When we add a Filter, we make the rule application more
restrictive, since the objects matching the rule need to satisfy
a certain property. Consider for instance a rule that creates an
object from each object of type circle (cf. Figure 6(a)). Then,
we add a Filter to only transform those circles that are filled,
as shown in Figure 6(b), so that less elements are created.

The deletion of a Filter has the contrary effect. Finally, if

the condition of a Filter is changed, it implies the same as
deleting it and adding it again. This means that some objects
will be matched that previously were not, and the opposite.
Consequently, new objects are created in the output model and
some others are deleted.

OutPatternElement. If a new OutPatternElement is created
in a rule, then we have new objects in the output model, and
possibly new relationships. When one is deleted, then we have
less objects, where the relationships starting and ending in
these objects are also deleted. Changing the class attribute of
an OutPatternElement means that the previously created object

(b) Mutation consisting of Filter
added to rule

Fitaf orfifiartrsHerofation

is replaced by one of a different type, and so relationships can
also be created and deleted.

Binding. When a Binding is added, it means that the value
of a property is initialized. If such a property is a relationship,
then it is created. When a Binding is deleted, the value of the
property is set to null, since no value is given to it. When
its value is modified, it can mean two things depending on
what the property is. On the one hand, if it is an attribute,
then its value changes (think for instance of the modification
of a string value). On the other hand, if it is a relationship, it
means that the previous relationship is deleted and a new one

(ai)g(SFFé‘ﬁ%gl output model

C. Dependencies among Rules

When a certain rule is mutated in a model transformation,
it has a direct effect on the elements that are created by such a
rule. However, at the same time, mutations can also have con-
sequences on the elements produced by other rules, provided
these have inter-rule dependencies (cf. Section II-A) with the
mutated one. In can be interesting in the process of testing
model transformation to know if rules have dependencies with
mutated rules. For this reason, we propose an approach to
obtain the dependencies among ATL rules.

We compute the dependencies among rules with a HOT
that takes as input the transformation injected into a model-
based representation (cf. Section II-B) as well as the input
metamodel of the transformation, from where we can statically
infer information about types in the transformation. The HOT
adds information to the transformation by initializing derived
attributes that we have added to the MatchedRule class of the
ATL metamodel, as shown in Figure 7. The transformation
consists of two steps. First, the types of the rules are statically
extracted, i.e., the classes of the input metamodel that partici-
pate in the rules. Second, these types are used to compute the
dependencies.

Types Extraction. As explained in Section II-A, ATL per-
forms a transparent lookup when objects created in a rule need
to establish relationships with objects created in another rule.
More specifically, if the type retrieved by the OCL expression
of a Binding (value feature) in rule R1 is the same as the type

MatchedRule
rules /.bindingITypes [0..";] :- Sstri‘ng 0.%
] 1% /inPattEITypes [1..*] : String YdependsOn

Fig. 7.

ATL extension for considering dependencies.

(b) Output model with a mutate



of an InPatternElement in rule R2, then R1 depends on R2.
Since ATL does not offer any support nor API to statically
obtain the types of the elements appearing in the rules, the
process is not trivial when OCL expressions play part of it.

Obtaining the types of InPatternElements is rather straight-
forward, since we only need to access the class relationship
(Figure 2). The most challenging part is to extract the types
from the OCL expressions of the Bindings. OCL expressions
are textual expressions built conforming to the OCL package
of the ATL metamodel, and their types extraction is specially
challenging when they involve collection operators (collect,
select, reject, etc.). Let us recall that the purpose of an OCL
expression in a model transformation is to retrieve an object, or
a collection of objects, that need to be accessed by means of a
navigation through other elements in the model. In OCL, this is
expressed by navigating through the references in a metamodel
level. In order to extract the type of an OCL expression, we
extract the type of the eventual element that is reached through
the navigation.

Dependencies Computation. After we have extracted the
types of the InPatternElements of each rule as well as the
types appearing in the Bindings, we can easily calculate the
dependencies among them. Thus, we consider that a rule, R1,
depends on another rule, R2, if the intersection of the types
of the Bindings of R1 with the ones of the InPatternElements
of R2 is not empty. The generated model contains information
about the dependencies among rules (dependsOn relationship,
Fig. 7). As for the attributes, bindingTypes and inPattElTypes
contain sequences of the types present in the Bindings and
InPatternElements, respectively.

IV. APPROACH TO AUTOMATE MUTATIONS

We now present our approach for automating the generation
of model transformation mutants (Sections IV-A and IV-B)
and the means to reduce the computational costs of executing
mutants (Section IV-C).

A. Automation through HOTs

Our approach is summarized in Figure 8. It is based on the
use of HOTs. We focus for now on the lower part, Figure 8(b),
and describe its components in the following.

User Options

Third-Order HOT [ __
Metamodels of the

e
HOTs with
Generic Mutations Original Transformation
— input
— OUtpUt
----- optional

Second-Order HOT fensermeton

I (b)
Input and Output J i

model or
transformation
treated as model

Mutated i
Transformation | i

HOTs with
Specific Mutations ||

Original
;| Transformation

Fig. 8. Automating Mutations on Transformations.

1) HOTs with Generic Mutations: In order to automate the
mutation of model transformations, we need to come up with
an approach in which generic mutations are considered. We
say that a mutation is generic when it has not been defined in
the context of a specific transformation. The idea is that these
generic mutations can then be applied to mutate any model
transformation.

In order to identify which kind of mutations we can define,
we refer at this stage to Table I (more mutations, exploring
more deeply the ATL metamodel and its OCL package, are
to be identified, categorized and implemented as future work).
The idea is to have a set of HOTs with generic mutations (cf.
upper-left box in Figure 8(b)). In fact, this set is extensible in
the sense that new generic mutations can be implemented. As
an example, consider the transformation shown in Listing 2,
aimed at performing the mutation Addition of InPatternEle-
ment.

Listing 2. Gen Mutation Addition of InPatternElement.
1 -- @atlcompiler

2

emftvm

module AddInPatternElement;
create OUT : ATL refining IN : ATL;

3
4
5
6 helper def : varNames : Sequence (String) = Sequence({
7 ra’, raa’,’b’,’'bb’,’c’, cc’,'d’,'dd", " ..."};
8

9 rule AddInPatternElement {

10 from

11 s : ATL!InPattern

12 (ATL!Rule.alllInstances () ->first () = s."rule")
13 to

14 t : ATL!InPattern (

15 elements <- s.elements -> append(newIPE)),
16 newIPE : ATL!InPatternElement (

17 varName <- thisModule.varNames->any (n |

18 ATL!PatternElement.allInstances () ->

19 collect (pelpe.varName) —>excludes (n)),

20 type <- newOCLType),

21 newOCLType : ATL!OclModelElement (

22 model <- s.elements->first().type.model,
23 name <- ’Complete_IPE’ )

24 '}

Before explaining the transformation, let us recall that this
transformation will be the input of a second-order HOT (box in
the center of Figure 8(b)) that transforms it into a HOT with
a specific mutation for a specific ATL transformation. This
means that, later in the process, the transformation obtained
out of this one will be used to actually mutate an ATL
transformation.

This HOT with the generic mutation is, consequently, an
in-place transformation. It takes an ATL transformation as
input and modifies it. In particular, we can see in line 11
that the rule AddInPatternElement is taking an element of
type InPattern as input, which is going to be modified by
adding an InPatternElement to its elements and initializing its
features (such modification begins in line 14). In particular,
the rule matches the InPattern of the first rule defined in the
transformation given as input, as specified in the Filter in line
12. To better understand the following explanation, the reader
is referred to the excerpt of the ATL metamodel (combining
features of the ATL and OCL packages) shown in Figure 9.

Line 15 shows that a new object, identified as newlIPE, is
added to the elements of the InPattern. This new object is of
type InPatternElement, as we can see when it is created in



referredVariablerﬁ type,
T Var

OCLType

'
AN

varName : String
AN

model [ ociModel

bindings valu
I InPatter | I OutPatter Iﬂo Binding I?[ OCLExpression
] [ ] a ] ]

elements
VariableExp PrimitiveExp

AN

PatternElement
I
JAN

|
1.1 [Thame : String_|

elements 1.+ 1.

inPatternd@ 1..1

[[InPattern _
1

inPattern outPattern__1..1 @outPattern

OutPattern
L 1

.1
MatchedRule

stringSymbol : String

Fig. 9. Excerpt of ATL MM (with OCL Package).

line 16. Two features have to be defined for the newly created
InPatternElement: its varName and its type.

The former, varName, is an attribute that keeps the name
used to identify the InPatternElement, so it has to be unique.
For this reason, the transformation checks (lines 17-19) that
the variable name that is going to be given to it, which is
a name included in the sequence varNames defined in the
helper of line 6—please note that this sequence may contain as
many different strings as needed—, is not already used in the
transformation. For this reason, the transformation takes, using
the any operation, an element of the sequence varNames that is
not included in the names of the variables already associated to
the PatternElements of the transformation that this HOT takes
as input.

Listing 3. Gen Mutation Deletion of OutPatElement.
1 -- @atlcompiler emftvm
2
3 module DeleteOutPatternElement;
4 create OUT : ATL refining IN : ATL;
5
6 rule DeleteOutPatternElement {
7 from
8 ope : ATL!OutPatternElement
9 (ope.outPattern.elements->size() > 1 and
10 ope = ope.outPattern.elements -> last() and
11 ope.outPattern.rule =
12 ope.outPattern.rule.module.elements —> last())
13 to
14 )
15

16 rule DeleteAssociatedBinding {

17 from

18 b:ATL!Binding (b.value.oclIsTypeOf (ATL!VariableExp)
19 and b.value.referredVariable.oclIsUndefined())
20 to

21 }

As for the second feature of the InPatternElement, type, it
is a relationship pointing an object of type OclModelElement.
For this reason, a new object of this type, identified as
newOCLType, is created (line 21). Two features need to be
defined for the OclModelElement. One is a reference to the
model to which the created InPatternElement belongs, while
the other one is the name of the class that it represents. The
model reference (line 22) will point to the same model to which
the first already existing InPatternElement is pointing (this will
be materialized when the HOT with the specific mutation is
executed). As for the name attribute (line 23), since there is
no information at this point about the classes of the input
metamodel of the transformation that the user wants to mutate
(recall that we are defining the mutation in a generic way), we
simply write ’Complete_IPE’, indicating that the information

about the specific class for the InPatternElement needs to be
added when executing the second-order HOT.

Another example of a HOT with a generic mutation is
shown in Listing 3. Its purpose is to delete an OutPatter-
nElement and all the Bindings that point to it. The deletion
of the OutPatternElement is done in the first rule, namely
DeleteOutPatternElement. Due to the Filter, starting in line
9, the left-hand side of the rule matches the last OutPatter-
nElement (line 10) of the last rule of the transformation that is
the input for this HOT (line 11), provided that there are more
than one OutPatternElements (line 9). Then, there is nothing
in the right-hand side of the rule, producing the deletion of the
matched element, as explained in Section II-A.

There may be Bindings in different OutPatternElements of
a transformation that refer to an object that is created through
an QutPatternElement in the same rule. See for instance lines
38 and 39 in Listing 1. In this case, the value feature of the
Binding in line 38 is of type VariableExp (cf. Figure 9). For
this reason, in order to avoid having Bindings pointing null
in the mutated transformation, we also delete those Bindings
that were pointing to the deleted OutPatternElement. This is
done by rule DeleteAssociatedBinding, which matches those
Bindings (line 18) that should be pointing to an OutPatternEle-
ment but are actually pointing to null (the VariableExp class
mentioned before has a pointer, referredVariable, to the actual
OutPatternElement). The matched Bindings are then deleted
(line 20).

2) Second-Order HOT: The Second-Order HOT shown
in Figure 8(b) transforms the HOTs with Generic Mutations
into HOTs with Specific Mutations. In Listing 4 we show an
example rule that deals with making specific the generic rule
shown in Listing 2.

Listing 4. Second-Order HOT.

1 -- @atlcompiler emftvm

2

3 module SecondOrderHOT;

4 create OUT : ATL refining IN : ATL, IN_MM : IN_MM,

5 OUT_MM : OUT_MM;

6

7 helper def : random() : Real = "#native"!"java::util
8 ::Random" .newInstance () .nextDouble () ;

9
10 rule CompleteAddInPatternElement {
11 from
12 s : ATL!StringExp (s.stringSymbol = ’Complete_IPE’)
13 using {
14 classes : Sequence (IN_MM!EClass) = IN_MM!EClass.all
15 InstancesFrom(’/ IN_MM’)->select (c|not c.abstract);}
16 to
17 t : ATL!StringExp (
18 stringSymbol <- classes->at ( (thisModule.
19 random () xclasses->size()) .floor()+1) .name

To begin with, we can see that this in-place transformation
has more inputs other than the transformation that is to be
refined, IN : ATL. Thus, an in-place transformation may
contain inputs that are used only for navigation purposes,
but are not going to be modified. In this case, they are the
input and output metamodels of the transformation that will
be eventually mutated (represented by IN_MM and OUT_MM,
respectively). We also need to explain that when there is a
Binding of the form feature <- value, where value contains a
string, then such string is contained in an element of type
StringExp when the transformation is treated as a model



(cf. Figure 9). The specific text of the string is stored in
the stringSymbol attribute of the StringExp. For this reason,
the rule CompleteAddInPatternElement matches, in line 12,
those elements of type StringExp whose stringSymbol attribute
contains the text Complete_IPE. Consequently, it will match
the value of the binding name <- ’Complete_IPE’ defined in
line 23 of Listing 2.

The purpose of the rule we are describing is to modify
the StringExp element that has matched the rule by giving a
different value to its stringSymbol attribute, what is done from
line 16. A local variable defined in the using block (line 13),
classes, is used in the right-hand side of the rule. In contains
the set of classes of IN_MM that are not abstract. Please note as
well that the helper random() defined in line 7 is also needed. It
is specifically defined for the EMFTVM compiler of ATL [21],
[22] and returns a random number between O and 1 whenever
it is called. Consequently, the value assigned to stringSymbol
is the name of one of the classes of IN_MM randomly chosen.

B. Discussion

As explained, the approach we have presented for defining
HOTs with mutations comprises two steps. In the first place,
HOTs with generic mutations are defined, and then, they
are made specific by means of a second-order HOT. We
have exemplified this process with the AddInPatternElement
HOT with a generic mutation, which is then made specific
by assigning a specific class to the InPatternElement that is
created. However, there may be generic mutations that do
not need to be made specific for a concrete transformation,
i.e., they can be directly applied to any ATL transformation.
An example is the DeleteOutPatternElement transformation
shown in Listing 3. Since its purpose is to delete the last
OutPatternElement of the last rule of the transformation, such
deletion does not require any information about, for instance,
a specific class of the input or output metamodels of the trans-
formation to be mutated. However, if the user wants to remove
an element in a specific rule of a specific transformation, then
the DeleteOutPatternElement transformation should be made
specific for the concrete scenario.

Another remark we want to make has to do with the
behavior of the in-place mode of ATL, namely refining mode.
As explained in [23], such behavior is not purely in-place. In
a purely in-place mode, when a transformation rule is applied
in a model, the output model produced by the rule is the input
for matching the remaining rules (including the rule that has
just been applied, if another match is found). However, in
the refining mode of ATL, the model performing the matches
with the rules is always the model that is given as input, not
the evolved one. For this reason, if we try to execute the
DeleteOutPatternElement transformation shown in Listng 3,
we will realize that only the first rule is applied. This is because
no matching with the original input model is performed in the
second rule. For this reason, the two rules of the transformation
have to be actually split in two transformations, and apply one
after the other, so that the input model for the latter is the
output model obtained by the former.

Our final comment has to do with the use of this approach
for a final user interested in performing mutations to ATL
transformations. In its current state, our proof-of-concept pro-
totype (cf. Section V) with the artifacts shown in Figure 8(b)

is completely automatic. This means that, once HOTs with
generic mutations as well as the second-order HOT are defined,
the prototype runs and mutates an ATL transformation with the
mutations specified. However, it is also possible to develop a
user-driven mutation approach. In this sense, users could spec-
ify which of the mutations they want to apply, so that different
mutations and re-combinations of them are possible. This
consists of turning our approach into a parametric approach.
In fact, we envision the definition of a Third-Order HOT (cf.
Figure 8(a)) that aims to generate the rules for the HOTs with
Generic Mutations and the Second-Order HOT. In this way,
the user could specify parameters, User Options, which could
be defined in the form of a model according to the mutation
possibilities. Two types of parameters can be differentiated.
On the one hand, those related to which mutation operations
the user wants to apply; they do not need any information
about a specific transformation to be mutated. On the other
hand, parameters related to features of specific mutations,
such as in which rule an InPatternElement should be added;
these may need information about a specific transformation.
To show the feasibility of this approach, in Listing 5 we show
a transformation to create a generic DeteleOutPatternElement
rule that deletes an OutPatternElement of a rule—note that this
transformation has been defined as an in-place transformation
where the input would be a transformation with an empty mod-
ule. It is not specified which OutPatternElement of which rule
will be removed by the rule resulting from this transformation.
Those parameters could be given by the User Options, or could
be randomly chosen. The effect of parameterizing the rule that
is produced by the transformation shown on Listing 5 would
be the addition of a Filter in the produced rule. This Filter
would restrict the concrete OutPatternElement that is to be
deleted. Indeed, since transformations can be treated as models
(cf. Section II-B), the Filter could be generated automatically
by the ThirdOrderHOT transformation taken as input the user
options.

Listing 5. Third-Order HOT.
1 —— @atlcompiler emft

2

3 module ThirdOrderHOT;
4 create OUT : ATL refining IN : ATL;
5

6 rule CreateRuleDeleteOutPatternElement {
7 from s : ATL!Module

8 to
9 t : ATL!Module (elements <- Sequence{rulel}),
10 rulel : ATL!MatchedRule (
11 name <- ’'DeleteOutPatternElement’,
12 inPattern <- ip,
13 outPattern <- op ),
14 ip : ATL!InPattern(elements <- Sequence{ipe}),
15 op : ATL!OutPattern(elements <- Sequence{}),
16 ipe : ATL!InPatternElement (
17 varName <- ’ope’,
18 type <- ome),
19 ome : ATL!OclModelElement (
20 name <- ’SimpleOutPatternElement’,
21 model <- ATL!OclModel.alllInstances() —->
22 select (m | m.name=’'ATL’) —-> first())
23}

C. Cost-Effective Execution

As we have shown in this section, and as schematized in
Figure 8, the goal of our approach is to automate the genera-
tion of mutants for ATL model transformations. A mutated
transformation can be seen as an evolution of the original



transformation. Consequently, output models produced by the
transformation need to co-evolve. However, the re-execution
of the mutated transformations in order to obtain the evolved
models induces an unnecessary overhead, particularly when
computation-intensive transformations are marginally revised.
To tackle the challenge of co-evolving output models with
mutations in transformations, we have proposed to infer in-
place patch transformations from evolved out-place transfor-
mations for existing output models [20]. Such approach is
highly complementary to the one we have described in this
paper, and can be used for executing the obtained mutated
transformations for obtaining the new output models.

Our approach considers the original transformation and
the mutated one, and produces a so-called diff model [24]
that describes the differences between the two versions of
the transformation. Subsequently, a HOT takes this diff model
and the two versions of the transformation as input and
produces a new transformation called Patch Transformation.
It is an in-place transformation that defines the transformation
rules required to co-evolve the output model according to
the mutations in the transformation that has been executed to
produce the model. It takes as input the output model produced
from the original transformation and makes it co-evolve. The
input model of the original transformation may also be an
input for the patch transformation because it may need to be
partially queried. The co-evolved output model produced is
equal compared to the one gained from entirely re-executing
the mutated transformation.

V. PROTOTYPE AND EXPERIMENTS

We have implemented a first proof-of-concept prototype
with the implementation of the HOTSs in the ATL language that
we have shown in Section IV. The transformations are defined
and executed using the EMFTVM virtual machine [21], [22],
which offers advance features such as the possibility to call
Java libraries. Besides, we have orchestrated the process shown
in Figure 8 with a Java program that takes as input several
HOTs, the transformation to be mutated and its input and
output metamodels, and generates the mutated transformation?.
The orchestration also realizes several extractions and injec-
tions of model transformations (cf. Section II-B). The reason
is that if a transformation is to be the input of a HOT, it needs
to be represented as a model. However, it the transformation
is going to be executed, it needs to be represented in a file
with the ATL textual syntax.

Listing 6 displays the mutated transformation obtained
when applying the chain of transformations with the two
mutations defined in Section IV. Furthermore, thanks to the
program that computes the dependencies among rules de-
scribed in Section III-C, the interested user can have a look at
the dependencies graph. This can be useful for several reasons.
For instance, we can see if the behavior of a rule, even though
it has not been mutated, can influence the obtained output
model because it depends on a rule that has actually been
mutated. In our example, for instance, we can see that rule
Arc has been mutated, and it has also been mutated a rule
on which it depends (Figure 10(a)). It can also be useful to

2Tllis implementation is available on http://atenea.lcc.uma.es/index.php/
Main Page/Resources/Mutations

dependsOn

M
| Place

| Place |

dependsOn

| Transition | | Transition |

(a) Scenario 1 (b) Scenario 2

Fig. 10. Dependencies among rules.

check if the mutations performed in the transformation have
broken any of the rules dependencies. For instance, if we
have a mutation where the Bindings in lines 36 and 37 of
Listing 1 are removed, then rule Arc does not depend on the
other two rules anymore (Figure 10(b)). Please note that the
dependencies graphs obtained for this example are quite trivial.
However, they are more interesting and useful when dealing
with large transformations.

Listing 6. PetriNet2PNML ATL Trans Mutated.
module PetriNet2PNML;

create OUT : PNML from IN : PetriNet;
rule Place {
from
e : PetriNet!Place,
a : PetriNet!Place --InPatternElement Added
to —...

}
rule Transition —-...

rule Arc {
from
to
n : PNML!Arc (
name <- name,
location <- e.location,
id <- e.name,
source <- e."from",
target <- e."to")
PNML!Name --B

tternElement del

1g deleted
ed

The program that obtains the dependencies among rules
as explained in Section III-C is implemented as a HOT that
takes as input the ATL transformation plus its input and output
models, and produces as output a model conforming to the
metamodel shown in Figure 7.

As for the effects that the mutated transformation has on
the generated output models, we have used as test suite the
input model available in the ATL Zoo for the PetriNet2PNML
transformation. First of all, let us recall the mutation operators
we have applied: we have added an InPatternElement to the
rule Place and have deleted a Binding and an OutPatternEle-
ment from rule Arc (cf. Listing 6). In total, the mutant has 2 out
of 4 transformation rules mutated (for simplification purposes,
we have only shown 3 out of 4 rules of the PetriNet2PNML
transformation in Listings 1 and 6). This means that it is very
likely that an output model produced by the mutant is different
from an output model produced from the same input model by
the original transformation. In fact, by definition, a petri net
contains places (although, according to the metamodel shown
in Figure 1, we can have an object of type PetriNet without
any place). For this reason, the mutated transformation will
likely produce different output models than those obtained by
the original transformation for all input models.

With the input model obtained from the ATL Zoo, which



consists of a petri net with 6 places, 6 places are produced in
the PNML representation by the original transformation, what
is done by rule Place. However, the mutant produces 36 places
in the generated model. This is produced by the mutation of
rule Place with the mutation operator AddInPatternElement
explained in Section IV. The reason why so many places are
generated by this mutation was explained in Section III-B and
depicted in Figure 5. The mutant also has applied the mutation
DeleteOutPatternElement shown in Listing 3. In the output
produced by the original transformation, every place created
has an object of type Name, which in turn contains an object of
type Label. However, in the output produced by the mutant,
the objects of type Name do not contain any object of type
Label, as a result of the second mutation.

The mutated output models produced by the mutants can
consequently be killed for any input model (considering that a
petri net must contain at least one place). As future work, we
plan to, first of all, implement more mutation operators. Then,
we also plan to evaluate the mutants produced in different
transformation scenarios and study how many mutants can
be killed. For this, we will consider the application of single
mutation operators in order to produce mutants, as well as
the combination of several mutation operators for producing
a mutant. We also want to apply the approach described in
this paper and presented in our previous work [20] in order to
optimize the time to produce mutants and to execute tests.

VI. RELATED WORK

As mutation has shown to be useful in assessing the
adequacy of test suits, not surprisingly it is also applied in
the context of testing model transformations to generate test
data in terms of input models [11], [12] and mutants of model
transformations [13]-[15]. Considering the latter case, these
approaches produce generated mutants to be close to faults
that may occur in a model transformation. Thereby, these
approaches contribute new operators to the existing set of
mutation operators which are already available for a multitude
of languages [10].

Mottu et al. [13] propose generic mutation operators in the
sense that they are independent of a particular transformation
language. The mutation operators are classified into four main
phases that a transformation passes through during execution:
navigation, filtering, output model creation, and input model
modification, where the latter phase is only passed through
if the model transformation refines the input model. While
the authors believe that the operators identified are meaning-
ful since a large part of the errors in a transformation are
due to the manupulation of complex models regardless of
the concrete implementation language, we have preferred to
focus on ATL. One reason is that by focusing on a specific
language, we can specify and implement specific mutation
operators for such language. Another reason for choosing ATL
is that it is one of the most prominent hybrid transformation
languages currently used in academia and industry. Fraternali
and Tisi [14] also focus on ATL and demonstrate in their
work how a generic mutation operator can be implemented
for ATL by applying a HOT [19] that is also implemented
in ATL. They selected the Collection Filtering Change with
Deletion (CFCD) operator [13] and adopted it to ATL by
mutating the Filter, which is used in ATL to constrain the

possible matchings between elements of the input model and
the output model. In the same spirit, we have applied HOTs to
allow ATL model transformations to be mutated automatically
by dedicated operators. However, we applied a comprehensive
approach in identifying mutation operators for ATL by ana-
lyzing its metamodel according to how the application of the
main concepts can be varied from a developer’s perspective.

Closely related to our approach is the work of Khan
and Hassine [15], as they also propose mutation operators
specific to ATL and discuss the consequences when executing
a mutated model transformation. However, we identified a
more extensive set of mutation operators compared to their
set, mainly because of our systematic analysis of ATL’s meta-
model. To efficiently produce a useful set of mutated model
transformations, automation plays a key role, as also pointed
out in the work of Khan and Hassine [15]. They manually
applied some of their mutation operators in the context of a
case study and left the development of a tool to automate this
process for future work. In contrast, we set our focus on the
development of a framework that is dedicated to automatically
mutate ATL model transformations based on an extensive set
of effective operators. Our framework also provides means
for efficiently executing mutated transformations by exploit-
ing incremental transformation execution instead of forcing
a complete re-execution of the transformation. Thereby, only
the transformation rules affected by the mutation are executed,
which generally results in an improved runtime performance
of the mutated transformations, as shown in our previous
work [20].

Since in our approach, centered on the use of higher-order
transformations, ATL transformations are treated as models
when they are mutated, we consider that it is also worth
mentioning some related work in the field of model-based
mutation. For instance, Fabbri et al. [25] focus on the applica-
tion of mutation testing in finite state machines (FSMs). The
mutation operators they define are based on error classes and
on heuristics that the authors have devised about typical errors
made by designers during the creation of FSMs. Airchernig
et al. [26] also deal with the model-based mutation testing
for state machines, in this case those defined in UML. The
authors propose to apply mutation operators both on the level
of the specification to insert faults as well as to generate the
test cases that will reveal the faults inserted. Henard et al. [27]
focus on the ability of test suites to detect errors in software
product lines, and propose two mutation operators to derive the
mutants from an original feature model. Finally, Papadakis et
al. [28] use models to represent the input interactions and apply
mutation analysis on these models to select program test cases.
Therefore, several approaches already address the mutation of
models of different types. As mentioned, in our case we focus
on models conforming to the ATL metamodel, i.e. ATL model
transformations expressed as models, and use precisely models
of the same type (HOTs defined in ATL, which in turn can
also be seen as models conforming to the ATL metamodel)
to mutate them. We currently focus only on the generation of
mutants for the model transformations. However, for future
work, we also want to focus on the automatic generation
of test cases, for which we also plan to apply mutations.
In this case, the models to mutate would then conform to
different metamodels, so we would apply similar techniques
as presented in this paper in order to define systematically



mutation operators and to generate mutants for these models
through model transformations.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel approach to
produce mutants for ATL transformations. To this end, we
have identified an extensive set of mutation operators dedi-
cated to ATL by a systematic analysis of its metamodel and
described the effect they produce in the output model. We have
automated the generation of mutants by realizing a framework
that exploits the concept of HOTSs, and we have explained the
possibility to integrate into our framework means to reduce
the computational costs of executing model transformation
mutants.

We have demonstrated the feasibility of our approach
with a proof-of-concept prototype, with which we are able to
mutate any ATL model transformation following the approach
described in Figure 8(b). We have several ideas to realize next.
We want to investigate the tendency for individual operators to
produce either redundant or equivalent mutants. Other than the
mutation operators identified, we plan to study more mutations
in ATL by considering the imperative part of the language and
mutations within OCL expressions. In particular, we want to
study the effectiveness of the mutation operators, and specially
to identify different mutation operators for Filters, which are
defined with OCL expressions, as well as their consequences.
Furthermore, we want to study the realization of the approach
described in Figure 8(a), so that the selection of mutations
to perform can be driven by the user, who could specify
several options in the form of parameters not only for model
transformations but also for languages and models defined with
metamodels in general.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions. This work
is funded by the European Commission under ICT Policy
Support Programme, grant no. 317859 and by Spanish Project
TIN2011-23795.

REFERENCES

[1] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Software, vol. 20,
no. 5, pp. 4245, 2003.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan&Claypool, 2012.

[3] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-M.
Mottu, “Barriers to Systematic Model Transformation Testing,” CACM,
vol. 53, no. 6, pp. 139-143, 2010.

[4] E. Guerra, J. Lara, D. S. Kolovos, R. F. Paige, and O. M. Santos, “En-
gineering Model Transformations with transML,” Softw. Syst. Model.,
vol. 12, no. 3, pp. 555-577, 2013.

[5]1 1. Séanchez Cuadrado, E. Guerra, and J. de Lara, “Uncovering errors in
ATL model transformations using static analysis and constraint solving,”
in Proc. of ISSRE’14. 1EEE, 2014.

[6] L. Burgueiio, J. Troya, M. Wimmer, and A. Vallecillo, “Static Fault
Localization in Model Transformations,” IEEE Trans. Soft. Eng., 2015,
accepted for publication.

[71 M. Amrani, L. Lucio, G. M. K. Selim, B. Combemale, J. Dingel,
H. Vangheluwe, Y. L. Traon, and J. R. Cordy, “A tridimensional
approach for studying the formal verification of model transformations,”
in Proc. of ICST. 1EEE, 2012, pp. 921-928.

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

M. Gogolla and A. Vallecillo, “Tractable Model Transformation Test-
ing,” in ECMFA, ser. LNCS, vol. 6698. Springer, 2011, pp. 221-235.

A. Vallecillo, M. Gogolla, L. Burguefio, M. Wimmer, and L. Hamann,
“Formal specification and testing of model transformations,” in Proc.
of SFM, ser. LNCS, vol. 7320. Springer, 2012, pp. 399—437.

Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649-678,
2011.

F. Fleurey, J. Steel, and B. Baudry, “Validation in Model-Driven
Engineering: Testing Model transformations,” in SIVOES-MoDeVA @
ISSRE, 2004, pp. 29-40.

V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry, and J.-L.
Dekeyser, “Towards an Automation of the Mutation Analysis Dedicated
to Model Transformation,” Software Testing, Verification and Reliability,
2014.

J.-M. Mottu, B. Baudry, and Y. Le Traon, “Mutation Analysis Testing
for Model Transformations,” in ECMDA-FA, ser. LNCS, vol. 4066.
Springer, 2006, pp. 376-390.

P. Fraternali and M. Tisi, “Mutation Analysis for Model Transforma-
tions in ATL,” in MIATL @ LSM, 2009, pp. 145-149.

Y. Khan and J. Hassine, “Mutation Operators for the Atlas Transfor-
mation Language,” in ICSTW, 2013, pp. 43-52.

F. Jouault, “Loosely Coupled Traceability for ATL,” in Workshop
Proceedings of ECMDA, 2005.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” SCP, vol. 72, no. 1-2, pp. 31-39, 2008.

A. Simdo, J. C. Maldonado, and R. da Silva Bigonha, “A Transforma-
tional Language for Mutant Description,” Comput. Lang. Syst. Struct.,
vol. 35, no. 3, pp. 322-339, 2009.

M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the Use
of Higher-Order Model Transformations,” in ECMDA-FA, ser. LNCS.
Springer, 2009, vol. 5562, pp. 18-33.

A. Bergmayr, J. Troya, and M. Wimmer, “From Out-place Transforma-
tion Evolution to In-place Model Patching,” in ASE. ACM, 2014, pp.
647-652.

D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault, “Towards a General
Composition Semantics for Rule-Based Model Transformation,” in
MODELS, ser. LNCS, vol. 6981. Springer, 2011, pp. 623-637.

D. Wagelaar and F Jouault, “ATL/EMFTVM,”
https://wiki.eclipse.org/ ATL/EMFTVM.

J. Troya and A. Vallecillo, “A Rewriting Logic Semantics for ATL,”
Journal of Object Technology, vol. 10, pp. 5:1-29, 2011.

D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
models for model matching: An analysis of approaches to support model
differencing,” in CVSM @ ICSE, 2009, pp. 1-6.

S. C. P. E. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro,
“Proteum/FSM: A Tool to Support Finite State Machine Validation
Based on Mutation Testing,” in Proceedings of the 19th International
Conference of the Chilean Computer Science Society (SCCC’99), 1999,
p. 96.

B. K. Aichernig, H. Brandl, E. Jbstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Software Testing,
Verification and Reliability, pp. n/a—n/a, Feb. 2014.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Assessing Software Product Line Testing Via Model-Based Mutation:
An Application to Similarity Testing,” in Workshops Proceedings of the
IEEE Sixth International Conference on Software Testing, Verification
and Validation. 1EEE, 2013, pp. 188-197.

M. Papadakis, C. Henard, and Y. L. Traon, “Sampling Program Inputs
with Mutation Analysis: Going Beyond Combinatorial Interaction Test-
ing,” in IEEE Seventh International Conference on Software Testing,
Verification and Validation, ICST. 1EEE, 2014, pp. 1-10.

2014,



