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Abstract. In the industrial technological field, running equipment or processes 
usually is monitored through automatic diagnosis systems. Within several Tech-
nologies for implementing such systems, the artificial neuronal networks are the 
most successful and widely spread. The data signals coming from the equipments 
or processes under supervision are interpreted by the neuronal networks so as to 
diagnose the presence of any fault. In this work three models of artificial neural 
networks and two methods of training are analyzed so as to establish, based on 
real experiences, the best combination of the neuronal model and the training 
method for recognizing in an efficient way the ambiguous patterns of faults. 

Keywords. Neural Networks. Diagnosis. Ambiguous Fault Signals. Optimized 
training. 

1 Introduction 

In the automatic diagnosis of faults in equipments or processes, especially industrial, 
several sensors associated to these, give data sequences which, precisely interpreted, 
can reveal the working status, normal or abnormal, of such equipments or processes. 
Such data are analyzed by a diagnosis system in order to determine the cause (fault) o 
fan eventual abnormality, so as to establish the necessary correcting actions. 

Formally the mission of a diagnosis system is to analyze the status of the process 
under supervision, so as to determine if any fault (detection stage) has appeared. In 
such case, the diagnosis system must analyze how is the evolution of the process 
status so as to identify the fault which originated the abnormal condition (diagnosis 
stage). This task is complicated since generally there isn’t a simple relation between 
the appearance of a fault and the evolution that it makes in the supervised process. 
Different faults can cause similar evolutions; on the other hand, the same fault can 
cause several types of evolutions. This situation is quite a critical problem for the tra-
ditional methods of diagnosis. 

The diagnosis systems of faults based on artificial neuronal networks (ANN) have 
achieved a wide level of development and spreading fundamentally because these struc-
tures, with architectures of high parallelism, association and fast answer times, make up 
a very efficient tool for developing in the field of recognizing patterns [4] [9]. 
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In the present work, a theoretical study is realized, based on practical experiences, 
of the diagnosis process of faults based on neuronal networks. From this study a 
model of neural network is obtained and a training method with an important modifi-
cation starting from standard configurations. The experimental results obtained show 
the superiority of one of the neuronal models proposed and trained with a variation of 
a classical backpropagation algorithm. 

2 Fault Diagnosis 

During the operation of a system under supervision (an equipment, a process, a sector 
of a plant, a complete plant, etc.), the values assumed by the most important variables 
of the process are captured by a set of sensors strategically put. When the normal 
status of the process corresponds to a static status, the variables adopt constant values; 
yet, due to the own noise of the process, it is considered the status as normal while the 
value evolution of each variable remains within a predefined interval of the original 
static value; this interval is called band or stripe of normality. 

When a fault occurs, the affected variables evolve following defined paths by the 
fault. At the time when they abandon their respective normality bands, the diagnosis 
system detects an abnormality and starts the analysis of the observed paths so as to try 
to identify the problem that originated them. 

So as to illustrate this situation, a study of the simplified process is proposed, having 
one only variable to supervise (for example X temperature), where in addition four po-
tential faults are established identified as f1, f2, f3 and f4, such as shown in Fig. 1.a. 
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Fig. 1. (a-left) Absolute position regarding path time of X (temperature) for four potential 
faults. (b-right) Typified deviation paths δX transformed by the detector module. 

The process operated in a static status, that is to say, while operating normally X 
adopts a constant predefined value, for example 80ªC. Each time that one of the faults 
is seen in the process, the X temperature will stop being constant and will evolve with 
some of the characteristics paths, where the paths have been generated with a simple 
interval Δt=8 s. 

The proposed diagnosis system of faults and associated to the previous process, 
uses a set of artificial neural networks (ANNs) specialized in the individual recogniz-
ing of each potential fault of the supervised process (Fig. 2). The ANNs, operating in 
real time and monitoring the evolution of the paths of all and each one of the meas-
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ured variables, analyze the data coming from the process looking for symptoms or 
tests for their respective faults. 
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Fig. 2. Diagram of a general system of process-detection-diagnosis. 

The result of this analysis is the certainty degree μF ∈ [0 , 1] that each fault sup-
ports. When one of the ANNs produces a null value (μF=0) it means that all the tests 
are against the fault that corresponds to it. On the contrary, an equal value to the unit 
(μF=1) implies that there are no proofs against the own fault of the network. Interme-
diate values represent intermediate supports for the own fault. As can be seen in Fig. 
1.a, the variable –temperature X–, remains in its normal value until one of the faults 
occurs in the activation time ta=48 s. 

Taking as reference fault f1, at the beginning the f2 is undistinguishable, but from 
the t=88s it starts to differentiate. On the other hand, the f3 path is at the beginning 
different from f1, but from t = 112 s it is mixed up with the reference fault. Finally, the 
f4 path is in every moment different from the rest of the faults. The two first cases 
raise a great difficulty to the diagnosis system because different faults originate paths 
which at some time they are identical. To overcome this problem an optimized 
method for training the ANNs was developed. 

2.1 The Detector Module 

For the example under study, a detector module has been used [7] as it is shown in 
Fig. 2, which converts the absolute paths of X (Fig. 1.a) in the typified deviation paths 
δX (Fig. 1.b). 

In order to comply with its function, the detector gets a data acquisition system –in 
each sample interval Δt–, the value of X; being the sample k taken in time tk=k⋅Δt. On 
the other hand, the detector also knows the normal value Xn and uses it to calculate 
the quantitative deviation ΔX=X-Xn. Alter the quantitative deviation is calculated, the 
detector uses the normal band ΔXn, which is also known, to calculate the typified de-
viation δX, as follows: 

k
k

ΔX
δX

ΔXn
= ⋅  (1) 
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Fig. 1.b shows the transformation of absolute paths of X in the typified deviation 
paths δX, where the regions that present data ambiguity are observed and which must 
be solved by the diagnosis system. 

2.2 The Diagnosis Module 

In the example analyzed, the diagnosis system estimates the degree of certainty F
fμ (k)  

which supports fault f in time tk with the following recursive formulae: 
F F X
f f f
F
f

μ (k) = μ (k -1)  μ (k) .

μ (-1) =1 .
 (2) 

where X
fμ  where μx represents the certainty which supports variable X supposing that 

fault f occurs, as is calculated as: 

( )X 0
f l fμ fd δX δX= , .  (3) 

being fd(δX, δX0) the evaluation function which is used to evaluate the difference be-
tween the observed value δX, originated by an unknown fault, and the expected value 
δX0 [7] [8]. 

Considering that ANN1 (Fig. 2) has been specialized in recognizing fault f1 and 
observing the exit of this network, Fig. 3 represents the paths of the μF that would 
generate the first neuronal network, –already trained–, of the diagnosis system, while 
comparing the paths δX of Fig. 1.b, originated by each potential fault of the process, 
with which it would originate if f1 were the fault that is really happening. The rest of 
the networks would produce similar answers when getting data of their respective 
faults of specialization. 
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Fig. 3. Paths of μF of the ANN1 that supports f1 facing each potential fault. 

As can be seen in Fig. 3, when to the first neuronal network (ANN1) enters the 
path originated by f1, μF it is kept in 1 backing up at every moment to such fault. On 
the other hand, when the path originated by f2 is entered, the system does not rule out 
that it be f1 since the paths of both faults are similar up to t=32 s. From t=40 s, the 
system rules out that fault f1 is decreasing μF. When all the paths of f3 or f4 are pre-
sented, the ANN1 immediately recognizes that they do not correspond to its speciali-
zation fault, and fault f1 is left aside very early. 
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3 Neural Networks 

The artificial neural networks (ANN) can be considered as mathematical models repre-
sentatives of the brain activity, with the capacity of learning, memorizing and generaliz-
ing the learnt information under a diagram of high tolerance to noise, which makes them 
powerful and versatile tools for the processing of basically numeric information [1] [2]. 

In this work, three different architectures of neural networks are analyzed: the clas-
sical feedforward architecture (Fig. 4) [2] [5], a feedforward architecture with delay 
windows (Fig. 6) [2] [5] and a feedback or recurrent architecture (Fig. 8) [2] [6], 
based on equation (2). In addition, two supervised training/learning methods are ap-
plied, the traditional method and an optimized method –both based on the backpropa-
gation algorithm–, with the aim of determining the configuration and learning method 
which are more efficient to solve the raised problem: to recognize the patterns that al-
low the identification of the fault that gave them rise. 

The difference between the two training methods is deep and determining. In the 
traditional method the output value μF for training is set up according to the fault that 
generated the δX path which is fed as an input to each ANN; that is, μF must assume 1 
when it enters the δX path of the fault that was assigned to ANN which is being 
trained, and must assume 0 when it enters the δX path of a different fault, without 
considering the shape of this path with the rest of them. The latter constitutes the main 
weakness of the method, originated in the ambiguity of the information that the coin-
ciding segments of the paths δX give caused by different faults (Fig. 1.b), as is the 
case of the example under analysis. This situation causes the network to try to adjust 
to contradictory orders. 

For the example, in the training of ANN1, specialized in fault f1, when the δX path 
is fed generated by f1, it is taught to make an output μF=1; on the contrary when the 
path δX generated by f2, ANN is taught to produce an output μF=0; yet, since the first 
32 s of both paths are indistinguishable, the network will not be able to decide if μF 
must be 0 or 1 during the time when both paths coincide. 

Such said problem is solved applying an optimization variant to the training algo-
rithm, when the μF value is set according to the coincidence between the observed δX 
path and the expected path for the network fault and not in the label of the path that cor-
responds to each fault, such as is done by the traditional method. For the example which 
is being studied, when the δX path is fed made by f1, ANN1 is taught to have an output 
μF=1 because the observed path is the same to the expected one; when the δX path is 
fed made by f2, ANN1 is taught to have an output μF=1 during the first 32 s since during 
that time the observed path is equal to the expected; but from that moment, the observed 
path starts to be different to the expected, and the μF value shows this fact decreasing 
proportionally its value, as shown in Fig. 3. In this way, the ANN1 has no conflict dur-
ing the learning since for similar inputs δX they must have similar outputs. 

Three ANNs models are presented configured with similar architectures and 
equivalent training conditions so as to be able to compare the results. In relation to 
practical experiences, only the results of the specialized ANN1 network in recogniz-
ing fault f1 are presented, since it is the one that supports the most unfavorable condi-
tions because of the special configuration of the fault paths. 

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN                                                 1013



 

In relation to the specific training data, each fault path has 13 samples, generated 
by simulation at intervals of Δt=8 s (Fig. 1.b). Then, the sequences were concatenated 
of the four faults, configuring a general sequence of 52 samples. 

So as to make the experimental check up the software MatLab® R.9 was used, exe-
cuted on PC Core 2 Duo equipment with 2 GB of RAM memory. All the ANNs mod-
els described in this work have been configured with the neural networks toolbox as-
sistance, available in the software. 

3.1 Classical feedforward ANN 

It is the typical model of neuronal network used widely for general processes of pat-
tern association. The architecture of each ANN is defined based on the data to be 
processed and considering the criterion of using an acceptable minimum structure 
(Fig. 4). According to the Universal Theorem of Function Approximation [2], just one 
hidden layer is enough for a uniform approximation given a set of training. Due to the 
dimension of the input and output data, one neuron (fictitious) is used in the input and 
one in the output. The definition of amount of hidden neurons was experimentally es-
tablished in four units. 

f g

f g

f g

f g

f g1
δX(k) μF(k)

bj
bk

wji wkj

 

Fig. 4. Classical feedforward ANN architecture. 

The exciting or net signal fj of each neuron is defined –according to a classical 
sketch–, by the pondered composition of the input signals to each processing unit, i.e.: 

N

j ji i j
i=1

= w x - b .f ∑  (4) 

where xi is the output of neuron i of the previous layer made up by N neurons, wji is 
the weight of the connection between the present neuron j and the one given by signal 
i, and bj is the adjustment weight (bias) of neuron j. For the output signal xj of each 
hidden neuron the bivalued sigmoid function was adopted, and the positive sigmoid 
function for the neuron of the output layer. 

3.1.1 Experimental data 
The behavior of the ANN1 for identifying the paths of Fig. 1.b was quite unfavorable, 
both when trained with the traditional method and when they were trained with the 
optimized method (Fig. 5.a and 5.b). 
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Fig. 5. (a-left) Required/generated output of the classical feedforward model of ANN1. Training: 
backpropagation standard. (b-right) Required/generated output of the classical feedforward model 
of ANN1. Training: optimized backpropagation. 

The training result analysis of the ANN1 network of the diagnosis system –which 
was trained for recognizing f1–, reported an μF near to 0,5 for the first three faults with 
both training methods, and a μF=0 for the fault f4. This behavior is incorrect but co-
herent, since the first three faults present ambiguities which the neuronal network 
cannot solve, while the fault f4, since it presents a totally different path than the previ-
ous, has been well solved. 

The inability of learning of this network is founded in its own structure. In effect, 
when having to decide the μF value (output) according to a unique δX value (input), 
the ANN1 does not have the necessary information for discriminating among the sev-
eral paths in which the coinciding segments commit. For example, the input value 
δX=10 is achieved at some moment by the f1, f2 and f3 paths; and both training meth-
ods demand at some moment output values μF different for such input, which con-
fuses the network. One way of solving this problem is to increase the amount of 
available information for the ANN; two alternatives are explored in this way below. 

3.2 ANN with delay windows 

For certain dynamic processes, having the information of the late past can improve 
the behavior of the system [3]. In our case, to increase the information sent to the 
ANN1, the architecture presented in the previous section was widened through the 
adding of two additional inputs. These new inputs are obtained by keeping, through 
delays, the last two observed values of δX, adding two temporal windows (Fig. 6). 

3.2.1 Experimental data 
At first, this differed time architecture is more appropriate than the direct feedfor-
ward; however, its performance –although a little better than the previous model–, has 
not been satisfactory. 

Considering once again the first network of the diagnostician (ANN1) –which was 
trained for recognizing f1–, generated some incorrect samples in recognizing its spe-
cialization fault with both training methods, but we can see, from Fig. 7.a and 7.b, a bet-
ter performance due to the delay windows which give more information of the paths. 
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Fig. 6. Feedforward ANN architecture of differed time with two delay windows. 

The f2 fault was better solved with optimized training method and with a bad result 
with the traditional method, because of contradictory data in the first ambiguous area 
(Fig. 1.b). The f3 fault was also recognized with mistakes and the f4 was well solved 
as in the previous case. 
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Fig. 7. (a-left) Required/generated output of the feedforward model with windows of the 
ANN1. Training: backpropagation standard. (b-right) Required/generated output of the feed-
forward model with windows of the ANN1. Training; backpropagation optimized. 

The poor behavior with the traditional method is due to its intrinsic weakness be-
cause of the overlapping of some segments of the δX paths, but the failure with the 
optimized method shows a limitation of the proposed structure. This limitation could 
be founded in the reduced amount of neurons of the inner layer or for the limited 
width of the temporal window. Yet, here the analysis of this type of network is halted 
in favor of keeping a similar structure for comparing the networks and while consider-
ing the architecture which is explained in the following section. 

3.3 Recurrent ANN 

The network shown in Fig. 8 corresponds with the Jordan recurrent model which back 
feeds the output towards a contextual layer of the input [2]. This structure is based in 
the equation (2), which gives the theoretical basis, and which was deducted when 
modeling the desired behavior for the proposed diagnosis system [7] [8]. 

When having a feedback of the output towards the input, the information which the 
ANN gets, combines the present status and the total history of the process through the 
successive product of the feedback outputs [6]. It may be considered that the potenti-
ality of the optimized training method is based on this strategy; once the system has 
detected that the sequence does not correspond to a fault in consideration, it begins to 
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feedback values of μF each time minor until they are cancelled and kept in that status, 
even when the sequence puts again ambiguous values (such as the case in the second 
ambiguous area of Fig. 1.b). 
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Fig. 8. Recurrent ANN architecture with a delay. 

The feedback model of Jordan has a great advantage on the non recurrent architec-
tures that can only see a part of the history of the process; the classical feedforward 
ANN only has the present simple and the differed time ANN just takes two samples 
of the inputs backwards. The recurrent model used keeps all the history of the process 
through a unique numerical additional input: the feedback μF. The latter is very im-
portant when working with a big number of variables. 

3.3.1 Experimental data 
To the structural simplicity of the recurrent ANN it is added an excellent behavior of the 
tests made with the optimized method of training. In effect, the ANN1 -corresponding 
to fault f1–, trained with the optimized method, was able to generate almost exactly the 
desired μF outputs, truly reproducing the curves of Fig. 3; yet, its behavior was not con-
sistent when it was trained with the traditional method due to the failures of the used 
method and not of the proposed structure, as can be seen in Fig. 9.a and 9.b. 
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Fig. 9. (a-left) Required/generated output of the recurrent model of the ANN1. Train-
ing: backpropagation standard. (b-right) Required/generated output of the recurrent 
model of the ANN1. Training: backpropagation optimized. 

 

The three models of artificial neural networks have experimentally shown their 
abilities in the recognizing process of patterns. For a better comparison, all the ob-
tained results are briefly shown in the comparison chart of table 1. 
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Table 1. Comparison chart of the behavior of three neural models and two training methods in 
the process of recognizing faults. 

Standard FF ANN Delayed FF ANN Recurrent ANN Models → 
Parameters ↓ direct μ optim. μ direct μ optim. μ direct μ optim. μ 
MSE of training 1,5x10-1 1,8x10-1 4,8x10-2 3,6x10-2 9,6x10-3 2,4x10-14 

Non recognized samples 39 37 14 10 27 2 

% of recognizing error 75% 71% 27% 19% 52% 3% 

Non recognized samples in fi 13 11 5 3 1 0 

Percentage error in fault 1 100% 85% 38% 23% 8% 0% 

5 CONCLUSIONS 

In this development the efficiency for making identification of paths of faults of three 
neuronal architectures and two training methods were evaluated. From the study it is 
deduced that a classical feedforward neural network is not able to assume ambiguous 
knowledge produced by contradictory information in its training stage. On the other 
hand, feedforward architecture with delay windows, of comparable complexity to the 
previous, is also inefficient to learn ambiguous patterns in its training stage, under the 
two proposed training methods: the Standard backpropagation and the optimized 
backpropagation. 

On the other hand, the combination of a recurrent ANN structure, also of compara-
ble complexity to the previous, and an optimized training method has given an excel-
lent behavior in recognizing fault paths that present coinciding or redundant seg-
ments. The feedback structure gave to the network enough information for learning 
and recognizing complex fault patterns. 

Starting from this work, two complementary studies can break down so as to com-
plete the activity of a diagnosis system with neural networks. On one hand, the appli-
cation of multidimensional fault sequence on models based on ARMA architectures. 
On the other hand, to improve the training method so that the ANN increases its toler-
ance related to noise, which could be achieved by adding paths with noise in the train-
ing stage, or adding normality bands during the learning stage. 
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