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Abstract. We propose a new support vector machine (SVM) based
method that improves the time series classification in magnetic resonance
imaging (fMRI). We exploit the robust anisotropic diffusion (RAD) tech-
nique to increase the classification performance of the one class support
vector machine by taking into account the hypothesis of spatial relation-
ship between active voxels. The proposed method was called Diffuse One
Class Support Vector Machine (DOCSVM). DOCSVM method treats ac-
tivated voxels as outliers and applies one class support vector machine
to generate an activation map and RAD to include the neighborhood
hypothesis, improving the classification and reducing the iteration steps
with respect to RADSPM. We give a brief review of the main methods,
present receiver operating characteristic (ROC) results and conclude sug-
gesting further research alternatives.

Keywords: Time Series, Functional Magnetic Resonance Imaging, clas-
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1 Introduction

The purpose of fMRI is to map areas of increased neuronal activity of the human
brain associated with cognitive or motor tasks. The hemoglobin in the blood is
a natural contrast agent, because it has different magnetic properties depending
of its state of oxygenation. These differences affect the voxel intensity in the
magnetic resonance images [1]. Baseline images are scanned periodically while
the subject is at rest (or in other baseline condition) and activation images are
acquired when the subject is performing a specific task or receiving a stimu-
lus. A fMRI image can be seen as a set of time series where each time series
corresponds to one voxel in the structural image. Classification of time series
is the main subject of brain fMRI data analysis. A number of different tech-
niques have been developed for fMRI data analysis, and can be classified in
two main categories, model driven [2][3][4] and data driven methods [5][6]. Data
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driven methods use a method in machine learning or statistics to analyze fMRI
time series while model driven methods assume a model related to the structure
and function of the brain. Support vector machine (SVM) being a data driven
method has been applied to the supervised classification of cognitive states [7]
by optimizing a margin and using the kernel trick [8]. One class SVM (OCSVM)
[9][10] has been applied to fMRI unsupervised classification [11][12]. Brain fMRI
time series on most voxels are independent of the experimental stimulus and time
series on only few voxels are related to the experimental stimulus. Time series
related to the stimulus can be considered as outliers and time series not related
to the experimental stimulus as normal data points, satisfying the hypothesis
necessary to apply the OCSVM methods. In order to include the spatial rela-
tionship between activated voxels, that assumes that time series on close voxels
have similar state activation correlative or irrelative to the experimental stimu-
lus, new alternatives have been proposed [13][14][15][16]. In this work we present
preliminary results of a new technique, DOCSVM, that combines the one class
support vector machine and the RAD to improve the classification of fMRI time
series by considering the neighborhood spatial relationship.

The paper is organized as follows, section 2 to 4 cover the fundamental ideas be-
hind OCSVM, RAD and DOCSVM. Section 5 and 6 show experimental results,
conclusions and propose future research work.

2 One-class SVM

There are two main one class classification algorithms based on SVM, support
vector data description [9] and one-class SVM [10]. A typical example of interest
of one class classification is the outlier detection that attempts to detect unchar-
acteristic objects from a data set. The one-class SVM estimates a function f that
is positive for a subset of the sample space and negative for the complement.
The algorithm maps the data into a feature space corresponding to the kernel
and separates them from the origin with maximum margin. Different types of
kernels can be used corresponding to nonlinear estimators in the input space.
Consider a given data set

X1,...,X] € X,

where | € N is the number of observations and X is a compact subset of RV,
Let & : X — F be a feature map, that is, a map into an inner product space F
such that the inner product in the image of @ can be computed by evaluating a
simple kernel.

k(x,2) = (2(x) - #(2))

It can be formulated as an optimization problem.

. 1 ) )
min Hiwll2+ LS ¢ —
weF,£€R!, peER 2|| H vl Zz 51 P

s.t. (w-d(x;)) > p—&;,& >0,
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where v € (0,1] is a parameter controlling the penalized term and &; are slack
variables. By solving the optimization problem (1) we obtain w and p and the
decision function is -1 for outliers in the data set and +1 for the rest of the
samples in the data set.

f(x) = sgn(w - &(x)) - p) (2)

Introducing Lagrangian multipliers a;, 3; > 0, we obtain
L(w, & p, e, B) = lIwl[> + 57 32, & — X0, Bi&i — p

= > ai(w-P(x) —p+&)

Setting the derivatives with respect to the primal variables w, £, p equal to zero
yields

w =, 0;P(x;),
=5 —Bi < o,
Yoo =1
The decision function can be written as
f(x) = sgn(z aik(xi,X) — p)
i
The multipliers «; can be solved from the dual problem:
main 3 i ik (xi, %)

1
s.t. 020[12 Pk Ziaiil.

The parameter p can be recovered by exploiting that for any such «; and the
corresponding pattern x; satisfies

p=(w-P(x)) = Zaik(xiaxg‘)- 3)

3 Robust Anisotropic Diffusion

Perona and Malik [17] defined the anisotropic diffusion as

oI(x,y,t)

22 = div(g (VL (e, y,0)) VI y.8)] 4)

using the original image I(z,y,0) : R> — R as the initial condition, where t
is an artificial time parameter and ¢ is an “edge-stopping” function. The right
choice of g can greatly affect the extent to which discontinuities are preserved.
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Perona and Malik suggested two possible edge-stopping functions in their paper
[17]. Black et al. [18] used the robust estimation theory to choose a better edge-
stopping function, called Tukey’s biweight:

g(a:):{[l—?;r»fﬁf’Z 5)

0, otherwise

The function g above is the dilated and scaled version of the original Tukey’s
function, where g(0) = 1 and the local maxima of its “influence function” ¢ (z) =
xg(x) is situated at & = o. The diffusion that uses the Tukey’s function is
called robust anisotropic diffusion (RAD) and this is the edge-stopping function
adopted in this paper.

Perona and Malik [17] discretized spatio-temporally their anisotropic diffusion
equation (4) as:

It +1) = ) 27 32 VI (0D VI 0 (6)

PENs

where I(s,t) is a discretely sampled image, s denotes the pixel position in a
discrete 2-D or 3-D grid, t > 0 now denotes discrete time steps, the constant A
determines the rate of diffusion (usually, A = 1), and 7, represents the set of spa-
tial neighbors of pixel s. For 2-D images, usually four neighbors are considered:
north, south, west and east, except at the image boundaries. For 3-D images, six
voxels are usually considered: the above-mentioned four plus “up” and “down”
voxels. The gradient magnitude of a voxel in a particular direction at iteration
t is approximated by:

VI, (t) =I(p,t) — I(s,t), p € ns. (7)

Black et al. [18] suggested to use the “robust scale” defined by:

0. = 1.4826 MAD(VI) = 1.4826 mediany [|||VI| — median; (||VI]))]], (8)

where MAD is the Median Absolute Deviation.

4 Diffuse One-class SVM

By combining OCSVM and RAD we proposed a new technique that improves
the classification of fMRI temporal series under the validity of the spatial neigh-
borhood hypothesis.

Let I’ be an fMRI data. First of all, the mean value is removed from I,
yielding the mean-removed fMRI I:

I=I-T (9)
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This pre-processing is very important, because structural and functional regions
of the brain do not necessarily match. No structural information should be dif-
fused, but only the activation information. Note that the activation information
is not affected at all by the mean-correction.

Time series on each voxel is taken as a data point. The x; ; 5, is the data point
corresponding to the ith row, jth file and kth slice identifying one particular
time series or data point. The x; ; ;. are directly the input into the optimization
problem (1). The optimal solutions w and p can be obtained by solving the dual
problem and (3). Then for each x; ;, a primal decision value y; ;  is obtained,

Yigk = (W (X k) — p (10)
that represents the distance between a point $(x; ;) and a hyperplane in the
high-dimensional kernel space (w - #(x)) — p = 0.

Let us denote the fMRI data at iteration ¢ > 0 of the diffusion process as
I(s,n,t), where I(s,n,0) is the initial mean-corrected fMRI at spatial voxel
position s and volume n, and T'(s,t) the activation map form by y; ;iVi,j, k
where s is particular position i, j, k.

1. Let t + 0.

2. Calculate the activation map 7T'(s,0) by using OCSVM (10).

3. Compute the diffusion coefficients. The diffusion coefficient between a voxel
s and its neighboring voxel p at instant ¢ is:

9(|VTs (1)), where VT, ,(t) = T(p,t) — T(s,t). (11)

4. Use these coeflicients to perform the diffusion in I(s,n,t), yielding the dif-
fused IMRI, I(s,n,t + 1), at iteration t + 1:

I(s,n,t+1) — I(s,n,t) + ﬁ > g(VTa (1)) VI (8), (12)
3! pens

where VI, ,(n,t) = I(p,n,t) — I(s,n,t).

5. Let t « t + 1 and repeat steps 2 to 5 some predefined number of times or
until the average of diffused values (second term of equation (12)) is below
some predefined threshold.

6. Classify each voxel applying the decision function of equation (2).

The anisotropic diffusion is controlled by the number of iterations and the scale
parameter of the edge stopping function (5), o.

5 Experimental Results

In order to test and develop classification models in fMRI three main data sets
are commonly used. The first model is a completely synthetic one, carefully de-
signed to reproduce real fMRI conditions like signal to noise ratio (SNR), type
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of noise and spatial distribution of activated voxels. The second alternative is to
generate artificial foci of activated voxels in real fMRI data. The third possible
data set involves working with real fMRI time series. We present comparative
results on synthetic data sets known also as synthetic time series, artificial im-
ages or phantoms. These types of experiments provide controlled conditions and
knowledge of the exact activated region location, namely a gold standard. In
order to test and compare results of the proposed method we generate two ar-
tificial images, based on the phantom proposed in [19], with different activation
levels. The 4D fMRI model is formed by 10 x 10 x 3 voxels per volume and 84
volumes. Voxels values were 16000 corrupted by zero-mean Gaussian noise with
standard deviation ¢ = 4000. Active voxels had their values increased by 1000
for phantom I and 1500 for phantom II. The fMRI experiment had alternating
blocks of 6 non-active and 6 active volumes, beginning with non-active volumes.
Activated volumes had a 6 x 6 x 3 activated region in the center of the vol-
ume, with two non-activated regions of 2 x 2 x 3 voxels each. Fig. 1 depicts one
activated slice of phantom II, the gold standard and the DOCSVM activation
map.

(a) (b) (c)

Fig. 1. (a) Simulated fMRI slice, (b) Reference image (gold standard), (c¢) Activation
map produced by DOCSVM (v = 0.7,0 = 2,t = 6)

In the experiments on the two synthetic datasets, the principal parameters
of the algorithms were set as follows. The radial basis function was chosen as
the kernel function for the OCSVM and v = 0.7. RADSPM and DOCSVM are
sensible to the scale parameter selection [20], beginning with o = o, we adjust
o using ROC curves as a gauging procedure as suggested in [21].

We have obtained comparative results of four different methods by using the
the well-known Receiver Operating Characteristics (ROC) analysis [21][22][23].
Let TP, FN, FP and TN be respectively the number of true positives, false
negatives, false positives and true negatives obtained by comparing the ideal
classification (gold standard) and the results obtained by each of the evaluated
methods. Then, the True Positive Fraction (TPF) and the False Positive Fraction
(FPF) are defined as:
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TP FP

TPF=—-——" FPF=_""
TP + FN’ FP + TN

(13)

Figure 2 depicts correlation’s SPM, OCSVM’s, RADSPM’s and DOCSVM’s
ROC curves. Each point of a ROC curve is obtained by solving equation (13) for
a specific threshold value. Table 1 presents some performance metrics of the four
ROC curves, all of them demonstrating the improved performance of DOCSVM
and RADSPM compared to the non-spatial oriented methods considered in the
experiments. The area under the curve and the distance d,p, from the principal
diagonal to the optimal operating point (OOP)(the point of the curve most dis-
tant from the principal diagonal), are superior for DOCSVM with less diffusion
iteration steps with respect to the results of RADSPM.

——— DOCEM
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Fig. 2. ROC curves
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[ Method | Area [ dpo [TPFyo|FPF,|
Correlation-SPM  [0.7863[0.3063[0.7619]0.3287

RADSPM,—1.8+=10 |0.9645/0.5687|0.9524|0.1481
Phantom-I
OCSVM,—or 0.8081{0.3591|0.7348 | 0.2269

DOCSV My—1.8,t=8,,=0.7|0.9716/0.5993| 0.9624 | 0.1148
Correlation-SPM 0.8798(0.4373|0.8452|0.2269

RADSPMy—2:=10 0.9958(0.6594| 0.9881 | 0.0556
Phantom-II
OCSVMy—o.7 0.9166]0.5080|0.8619|0.1415

DOCSV Ms—3,t—6,u—0.7 |0.9975|0.6685|0.9686 | 0.0231

Table 1. Performance metrics

6 Conclusions and Future Work

In this paper we have presented a new SVM based technique named DOCSVM
taking into account the spatial relationship activation hypothesis. This technique
improves fMRI time series classification. We compared this method to OCSVM,
correlation analysis and RADSPM. Experimental results using ROC curves on
synthetic data sets have shown promising results for DOCSVM. The proposed
method treats activated voxels as outliers and applies OCSVM to generate an
activation map and RAD to include the neighborhood hypothesis, improving
the classification and reducing the iteration steps with respect to RADSPM.
The obtained results of DOCSVM are preliminary. Further research involves
improving the probabilistic model used to create the artificial images considering
the noise distribution and the signal to noise ratio in order to approximate the
complex and noisy fMRI signal structure. Extensive tests on real fMRI and
artificial data must be done in order to adjust parameters and extend our results
to different real experiment paradigms.
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