
User Clustering Based on Keystroke Dynamics

Maximiliano Bertacchini1,2, Carlos E. Benitez1 and Pablo I. Fierens2,3

1 Si6 Labs - CITEFA - Inst. de Investigaciones Cient́ıficas y Técnicas para la Defensa
San J. B. de La Salle 4397 (B1603ALO),Villa Martelli, Buenos Aires, Argentina

Tel: (5411) 4709-8285, Fax: (5411) 4709-5363
{mbertacchini,cbenitez}@citefa.gov.ar

2 ITBA - Instituto Tecnológico Buenos Aires
Av. Eduardo Madero 399 (C1106ACD), Buenos Aires, Argentina

Tel: (5411) 6393-4822
pfierens@itba.edu.ar

3 CONICET - Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
Avda. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina

Tel: (5411) 5983-1420

Abstract. The PAM clustering algorithm is applied on the Si6 keystroke
dataset in order to identify sessions of the same users. A number of heuris-
tical outlier filters based on statistical properties of keystroke latencies
are proposed and run on the dataset. Different tests are performed vary-
ing the number of digraphs that compose each observation and its dimen-
sionality, in order to verify the assumption that more data gives a better
quality of clustering and to estimate the minimum required number of
dimensions. The number of clusters is estimated through the silhouette
algorithm. Resulting clustering accuracy is measured by means of the
F-measure, showing the viability of user identification through keystroke
analysis.

1 Introduction

Keystroke dynamics are a set of biometric techniques that allow to identify a per-
son according to her keystroke pattern, that is, her typing rythm on a computer
keyboard. These techniques are based on the detailed timing that describes when
each key was depressed and when it was released. This biometric information is
supposedly as unique for each individual as the handwritten signature.

This technique has been mostly used in improving user authentication mecha-
nisms (e.g. in the computer login process) or in anomaly detection. Nevertheless,
in this paper we describe a clustering analysis performed on our own keystroke
dataset in order to verify whether it is possible to identify users, and under which
conditions, based on their keystroke patterns, and under which conditions. The
ultimate goal is the identification of computer intruders.

This paper is structured as follows: Section 2 lists some of the previous work
this paper is based on; Section 3 describes the dataset as well as the outlier
elimination process; Section 4 explains the clustering algorithm applied in order
to group same user data in clusters; results are shown in Section 5. Finally,
conclusions and possible future work are presented in Section 6
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2 Related Work

2.1 Keystroke Analysis

A large number of articles have been published in the past 20 years related to
keystroke dynamics techniques. Most of them focus on user authentication re-
inforcement or in anomaly detection in user behavior. Starting in 1990, a num-
ber of articles describe several techniques for user authentication reinforcement
based on measuring the distance between the user keystroke pattern and the
already enrolled user keystroke profile [1,2,3,4,5,6,7]. On the other hand, other
group of investigators analyzed and studied free text user authentication meth-
ods [8,9,10,11,12].

Almost every published article related to keystroke dynamics is analyzed and
compared by Killourhy and Maxion in [13].

2.2 Data Clustering

Clustering algorithms group a set of elements into subsets or clusters, so that
similar elements are assigned to the same cluster [14]. This requires the defini-
tion of a distance measure, the most common of which is the Euclidean distance.
Clustering is a method of unsupervised learning, meaning that no human expert
is involved in the process. Partitional or flat clustering algorithms, as opossed to
hierarchical clustering, define no structure or relation among clusters [15]. The
most popular flat clustering algorithm is k-means[15], which assigns observations
to the cluster with the nearest mean. The k-medoids algorithm is similar to k-
means, except that it chooses data points as cluster centers, which are called
medoids. A medoid is the element of a cluster with the minimum average dis-
similarity to all the objects in the same cluster; it is the most centrally located
point in that cluster. The Partitioning Around Medoids (PAM) algorithm is an
implementation of k-medoids, first proposed by Kaufman and Rousseeuw [16].
It has the advantage over k-means that it does not need a definition of mean, as
it works on dissimilarities; for this reason, any arbitrary measure distance can
be used. It is also more robust to noise and outliers as compared to k-means be-
cause it minimizes a sum of dissimilarities instead of a sum of squared Euclidean
distances.

The PAM algorithm is as follows [17]:

1. Randomly select k of the n data points as the medoids.

2. Associate each data point to the closest medoid (using any valid distance metric).

3. For each medoid m:

(a) For each non-medoid data point o:

i. Swap m and o and compute the total cost of the configuration (i.e. the
summation of the distances from each data point to the medoid in its
cluster).

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 5 until there is no change in the medoid.
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3 The Si6 Dataset

The Si6 dataset [18] was collected by the Si6 Labs4 through a web application
named k-profiler5. It is publicly available at http://www.citefa.gov.ar/
si6/k-profiler/dataset/.This dataset contains anonymized keystroke data
of 66 labeled users. For this dataset texts were selected in order to obtain a large
number of common digraphs. In this way, the most frequent digraphs in Spanish
are typed many times by users in the selected texts.

The dataset contains a total of 66 files, one file per typing session, correspond-
ing to 62 different users. The filename corresponds to the user name prefixed by a
UNIX timestamp, e.g. 1266936532 user 000.finished. Completed sessions have
a .finished extension; incomplete sessions have a .unfinished extension.

Each typing session is composed by 15 sentences. Each sentence is identified
by an identifier ranging from ks 00 to ks 14. Invalid sentences are labeled with
prefix invalid-. Following is a sample fragment of a typing session file:
...
ks_00 1279288592438 up 9
ks_00 1279288592902 dn 69
ks_00 1279288592980 dn 78
ks_00 1279288592986 up 69

ks_01 1279288591988 dn 190
ks_01 1279288591995 up 68
ks_01 1279288592083 up 190
ks_01 1279288592326 dn 9
...

Columns correspond to: sentence identifier, UNIX timestamp with milliseconds,
keystroke event (released - up, or depressed - dn) and ASCII key code.

In order to eliminate outliers and make the clustering process as controlled
as possible, some preprocessing tasks have been performed to the original data.
Those tasks are described in the next subsections.

3.1 Data Preprocessing

We selected only those sessions which were complete (58 out of 66), i.e., sessions
with a .finished file extension. There are three users (user 000, user 001 and
user 103) who typed the sentences more than once. In these cases, we arbitrar-
ily chose a single session for each user. In all cases, only valid sentences were
considered, i.e. those sentences named ks 00 through ks 14. Invalid sentences
(named invalid-*) and UNIX commands (named cm *) were discarded. This
leaves a total of 54 users with 15 complete sentences each.

Then a set of digraphs is computed for each sentence of each session of each
user, taking the elapsed time between two consecutive down keystroke events
(dn) measured in milliseconds. Digraphs that contain at least one non-printable
ASCII character (e.g. tab, newline, carriage return, backspace, etc.) are dis-
carded. This leaves a total of 88946 digraph latency times corresponding to 411
unique digraphs.
4 http://www.citefa.gov.ar/si6/
5 http://www.citefa.gov.ar/si6/k-profiler
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3.2 Subsession Grouping

User sessions, each of which is composed of 15 sentences, were split into sub-
sessions in order to assess the clustering accuracy in function of the subsession
size. The idea here is that the larger the subsession size, the better the clustering
accuracy. For this purpose, the subsession schemes show in Table 1 were used,
grouping sentences arbitrarily by their ordering number.

Description Distribution of Avg. No. of digraphs
Sentences per subsession

3 groups of ks 00-ks 04, ks 05-ks 09, 24554
5 sentences per user ks 10-ks 14

5 groups of ks 00-ks 02, ks 03-ks 05, 14732
3 sentences per user ks 06-ks 08, ks 09-ks 11, ks 12-ks 14

15 groups of No grouping 4910
1 sentence per user (all 15 sentences taken alone)

Table 1. Sentence grouping schemes

3.3 Outlier Filtering

Outliers are observations that are distant from the rest of the data [19]. Filtering
outliers is often the single most important step in clustering data.

Too short digraph times may be the result of measurement errors in the
user’s Internet browser. Too long digraph times may be due to user hesitation or
distraction, and should not be taken into account as they are not representative
of the user’s typing behavior. This gives place to the following proposed digraph
filters. These filters are essentially heuristics based on intuitive or expected sta-
tistical properties of the typing behavior of a person and as such, are subject to
further discussion and improvement.

Coarse Outlier Filtering As a first crude filter, digraphs with times lesser
than 10ms or greater than 750ms are discarded. A second step filters out digraphs
whose times are outside the range that comprises the median of the times of
all remaining digraphs plus-minus the standard deviation of the times of all
remaining digraphs, which is 140ms ± 113ms ≈ (25ms, 250ms). The median is
used instead of the mean because it is less sensitive to outliers.

Filter1(di) : discard di if time(di) < 10ms

or time(di) > 750ms

Filter2(di) : discard di if time(di) < (mD − σD = 25ms)

or time(di) > (mD + σD = 250ms)

where di is any digraph, time(di) is the elapsed time between both keystrokes,
mD is the median of the time of all digraphs, and σD is the standard deviation
of the time of all digraphs.

Both filters discard 15284 digraphs out of 88946 (17.18%).
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Fine Outlier Filtering The remaining digraphs are run through another set
of filters based on specific statistical properties of each subsession.

Filter3 discards the “lonely” digraphs, i.e. those with only one appearance
in each subsession. This is based on the assumption that digraphs with only one
appearance possess little statistical support and as such are treated as outliers.

Filter4 discards digraphs whose standard deviation of their times is greater
than some certain threshold. This threshold was defined as twice the mean of the
standard deviations of the times of all digraphs in that subsession. The idea here
is to discard digraphs whose times deviate too much from the average deviation
of the particular subsession.

Finally digraphs whose times are outside the range comprised by the median
of that digraph for the particular subsession plus-minus twice its standard devia-
tion in the same subsession are filtered out by Filter5. This limits the possibility
of confusing one user with another by discarding digraphs whose times deviate
too much from the “average” behavior of that user. Again, the median is used
instead of the mean because it is less sensitive to outliers.

Filter3(di, Sj) : discard di if count(d, Sj) = 1

Filter4(di, Sj) : discard di if σd,Sj > σ̄Sj × 2

Filter5(di, Sj) : discard di if time(di) < (md,Sj − σd,Sj × 2)

or time(di) > (md,Sj + σd,Sj × 2)

where di is an occurrence of digraph d in subsession Sj , count(d, Sj) counts
the number of occurrences of digraph d in that subsession, σd,Sj is the standard
deviation of the times of all occurrences of digraph d in that subsession, md,Sj

is the median of the times of all occurrences of that digraph in that subsession,
and σ̄Sj

is the mean of the standard deviations of the times of all digraphs in
subsession Sj .

4 Clustering

4.1 Feature Selection

The selection of relevant features or variables that represent the variability of
the whole dimensionality of elements is a crucial step in clustering data. The
idea is to build an n-dimensional vector for every element that will be fed into
the clustering algorithm, which in this case are typing subsessions. The most
prominent feature is, of course, the timing data of each digraph, which should
uniquely characterize the user. The feature vector of each subsession was built
from the mean of each digraph time, as in [1]. As a result, each subsession is
represented by a vector of length 411 (the number of distinct digraphs in the
dataset), with one dimension per digraph, each cell containing the mean of all
appearances of that digraph in that subsession.

Digraphs are ordered decreasingly by the number of appearances among all
users. Therefore, the values of the first dimensions in the feature vectors, which

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN                                                 836



correspond to the most frequent digraphs, represent the mean of a larger popula-
tion of observations, and intuitively should be more relevant during the clustering
process than the last dimensions, which correspond to seldom typed digraphs.
This rises the question of how many digraphs, and which, are necessary to cor-
rectly identify the user of a subsession. The most convenient number of digraphs
will be assessed based on the clustering quality by varying the feature vector
size.

4.2 Cluster Cardinality

The k-means family of clustering algorithms, including PAM, requires a param-
eter commonly referred to as k that specifies the number of clusters to detect.
Though in this paper the number of users is already known, a real-world scenario
would require the calculation of the approximate number of expected clusters.
Several algorithms exist that allow to estimate the value of k, such as the “elbow”
method and the Akaike information criterion (AIC) (see, e.g. [15]). A straight-
forward method is called Silhouette[20]. Silhouette is a method of interpretation
and validation of clusters of data, and provides a graphical representation of how
well each element lies within its cluster. The silhouette of an element measures
how close it is to the other elements of its cluster and how far it is from the
neighboring cluster. The silhouette of element i, s(i), is defined as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(−1 ≤ s(i) ≤ 1) (1)

where a(i) is the average dissimilarity of i with all other data within the same
cluster, and b(i) is the lowest average dissimilarity from i to any other cluster. A
silhouette value of 1 implies an element appears to be appropriately clustered;
a value of -1 means it appears to be in the wrong cluster.

The average silhouette width, i.e. the mean of s(i) for all elements i in a
particular cluster distribution, can be used to measure the overall quality of
clustering. The optimum number of clusters can be determined by calculating
the silhouette average for an increasing number of clusters and taking the one
that yielded the highest value.

Figure 1 shows the average silhouette widths for a varying number of clusters,
taking user subsessions in groups of 5 sentences. The highest value corresponds
to 49 clusters, which is close to that of 54, the real number of users. For the sake
of clarity, a fixed cardinality of 54 clusters was used in the tests.

4.3 Algorithm Implementation And Configuration

R[21] is a popular open-source programming language for statistical computing
and graphics, based on the S programming language. The implementation of
PAM provided by the cluster library[22] of the R language was used for the task
of clustering the abovementioned data vectors. All default parameters of the pam
function were used. Particularly, the distance used for calculating dissimilarities
between observations is the Euclidean metric.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN                                                 837



0 10 20 30 40 50 60 70 80 90 10
0

0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190

Number of clusters

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Fig. 1. Average silhouette width vs number of clusters. The highest value cor-
responds to 49 clusters, which is close to that of 54, the real number of users.

5 Evaluation

The process of clustering can be thought of as a series of decisions, one for each
pair of elements [15]. A true positive (TP ) decision assigns two similar elements
(i.e. two subsessions belonging to the same user) to the same cluster; a true
negative (TN) assigns two dissimilar elements (i.e. two subsessions belonging to
different users) to different clusters. A false positive (FP ) assigns two dissimilar
elements to the same cluster; a false negative (FN) assigns two similar elements
to different clusters. This results in the contingency table shown in Table 2.

Same cluster Different clusters

Same class TP FN �Recall

Different classes FP TN

_

Precision

Table 2. Classification contingency table

A number of statistical measures can be drawn from these values to measure
the classification accuracy. Precision (see Eq. 2) measures the fraction of correct
positive decisions (TP ) among all the positive decisions (TP +FP ). Recall (see
Eq. 3) measures the fraction of correct positive decisions (TP ) over decisions
that should have been positive (TP + FN).
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There is usually an inverse relationship between Precision and Recall, so
that increasing one has the cost of reducing the other. F-measure (see Eq. 4)
is a combination of both of them. An F-measure score of 1 means a perfect
clustering, whereas the worst case is a score of 0.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F = 2× Precision×Recall

Precision+Recall
(4)

A set of tests were run using an increasing number of digraphs (ordered de-
creasingly by their frequency among all users), for different grouping schemes.
Figure 2 shows the resulting F-measure scores. As expected, the larger the sub-
session size, the better the quality of clustering. The scores start to stabilize
at around 50 digraphs (i.e. the feature vector dimensionality), which is approx-
imately 1/8th of the complete digraph space, suggesting that only the most
frequent digraphs are sufficient for an accurate classification.

The case with no subsession grouping is special in that the PAM algorithm
was unable to successfuly clusterize the input data. A closer analysis revealed
that the cause of this anomaly is the “lonely” digraph filter (Filter3), which is
too aggressive on small datasets, as in the case with no data grouping, where
many digraphs appear just once in each sentence. As a result, the previous tests
where run again, but with Filter3 deactivated.

Figure 3 shows the newly obtained results. As expected, the quality of clus-
tering data with no sentence grouping is improved, though results are still unsat-
isfactory. On the other hand, the other tests with grouped sentences give worse
results, due to the fact that the lack of Filter3 introduced too many “lonely”
digraphs with little statistical support, which hinders the ability of the clustering
algorithm to distinguish data from different users.

6 Conclusions and Future Work

We showed the feasibility of user identification by applying the PAM clustering
algorithm on the Si6 keystroke dataset. The amount of available data proved
to be paramount in that process. Which digraphs are most valuable and what
is the minimum amount of data necessary for an accurate clustering of users is
subject to further investigation. Outlier filters should be improved as well.

Though the Euclidean metric gave good results, other distances should also
be tried. The estimation of the number of clusters should be extended by apply-
ing other algorithms in order to improve its accuracy.
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