
Membrane Systems and Time Petri Nets

Bogdan Aman1, Péter Battyányi2, Gabriel Ciobanu1, György Vaszil2

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I no. 8, 700505 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

2 Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
battyanyi.peter@inf.unideb.hu, vaszil.gyorgy@inf.unideb.hu

Summary. We investigate the relationship of time Petri nets and different variants of
membrane systems. First we show that the added feature of “time” in time Petri nets
makes it possible to simulate the maximal parallel rule application of membrane systems
without introducing maximal parallelism to the Petri net semantics, then we define local
time P systems and explore how time Petri nets and the computations of local time P
systems can be related.

1 Introduction

There has been several models applied for describing concurrency, communication
and synchronization. Two of them are the graph-based model, known later as Petri
nets, developed by C. A. Petri [11] and the tree-like model of embedded membranes
called membrane or P systems invented by Gh. Păun [9].

Petri nets are state/transition systems: places are often used to contain infor-
mation representing conditions in the system being modeled while transitions are
used to represent events that can occur to modify the conditions. Some of the
information, the input of the transition, is required for an event to happen, while
some other information, the output of the transition, provides the result of the ex-
ecuted transition: they are the output of the transition. A Petri net is a bipartite
graph: arcs point from input places to transitions and from transitions to places
storing their outputs.

There may be some situations where the modelling of a system by conditions
and events is not completely satisfactory, for example, when the assumption that
all the transitions can take place in an arbitrary order does not describe the system
correctly. To model the situation when time delay must be taken into account
time Petri nets (TPN) were developed. Concerning time Peri nets, several models
were elaborated: time was associated with transitions, places or arcs, etc. We
consider the approach adopted by Merlin [8] rendering time to transitions. By this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157761976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

72 B. Aman et al.

model, to every transition t we associate a closed interval [at, bt] such that at,
bt ∈ Q≥0. The transition can fire, if it is enabled and its local time h(t) is such
that at ≤ h(t) ≤ bt. We adopt the strong semantics, which means that a transition
which is enabled either must be fired at some point of the associated interval or it
becomes non enabled by firing of another transition. In general, time Petri nets are
more powerful than ordinary Petri nets, since time Petri nets are able to simulate
Turing machines while, for ordinary Petri nets, this is not possible.

Membrane systems are parallel, distributed, synchronized models of computa-
tion where embedded membranes are organized in a tree like structure and com-
putation takes place simultaneously in the different membranes in the forms of
applications of rewriting rules. The rules evolve in a distributed manner: the ap-
plication of a rule yields elements with labels, so called messages, which prescribe
the exact place where the result of the rule application should move to. An element
obtained by a rule application can either remain in the actual membrane, perme-
ate to the parent membrane, or enter into one of its child membranes indicated by
the rule. We consider here the basic model, that is, a membrane structure without
dissolution rules. In addition we associate to each rule a time interval which gives a
lower and an upper values for the time instance when the rule can be executed. We
found technically simpler to consider every compartment as if a local stopwatch
would operate in that compartment, though the same results could be obtained
when we defined a global clock for synchronizing computational steps in the whole
membrane system. We call our membrane systems local time membrane systems.

In this paper we relate local time membrane systems to time Petri nets such
that the image Petri net of a membrane system by this mapping is suitable for
answering questions in connection with the membrane system. For example, we
can heavily lean on results in the area of time Petri nets concerning questions of
reachability, which asks whether a certain configuration of the membrane system
can be achieved, or threshold problems, where the question is whether a state
can be reached from another in a certain time, or simply finding the paths re-
quiring minimum/ maximum time between any two reachable states (see Popova-
Zeugmann [14]).

There are several timed models for P systems in the literature (see [3], [4], [1]).
The attempts for the simulation, up to the present, seem to take the approach
similar to timed Petri nets ([6], [1], [2]), where certain values, the delay values,
are assigned to rules. This means that the result of a rule application can appear
only after that delay assuming a global clock synchronizes the computation of
the system. Our model resembles much to that of time Petri nets: an interval is
assigned to every rule and a clock local to each compartment synchronizes when
the rule can be executed. A computational step is governed by a global clock: only
when all membranes finish their action can a new step take place.

Membrane Systems and Time Petri Nets 73

2 Membrane systems

First of all, we discuss some terminology used in the sequel. A finite multiset over
an alphabet V is a mapping M : V → N where N is the set of non-negative integers,
and M(a) for a ∈ V is said to be the multiplicity of a in V . We say that M1 ⊆M2

if for all a ∈ V , M1(a) ≤ M2(a). The union or sum of two multisets over V is
defined as (M1 +M2)(a) = M1(a) +M2(a), the difference is defined for M2 ⊆M1

as (M1 −M2)(a) = M1(a) −M2(a) for all a ∈ V . The multiset M can also be

represented by any permutation of a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗,

where if M(x) 6= 0, then there exists j, 1 ≤ j ≤ n, such that x = aj . The set of
all finite multisets over an alphabet V is denoted byM(V), the empty multiset is
denoted by ∅ as in the case of the empty set.

A membrane system, or P system, is a tree-like structure of hierarchically
arranged membranes embedded in the skin membrane as the outermost part of
the system. Each region is delimited by a surrounding membrane, they can be
arranged in a tree (cell-like [9]) structure or in a graph form (tissue-like [7] or
neural-like [5]). In this paper we use the so-called symbol-object P systems [9]
without dissolution, that is, each membrane has a label and enclosing a region
containing a multiset of objects and rules and possibly some other membranes.
The unique outer-most membrane is called the skin membrane. We assume the
membranes are labelled by natural numbers {1, . . . , n}, and we use the notation mi

for the membrane with label i. Each membrane mi, except for the skin membrane,
has its parent membrane, which we denote by µ(mi). As an abuse of notation
we use µ both for the parent function and both for denoting the structure of the
membrane system itself.

The contents of the regions of a P system evolve through rules associated with
the regions. The computation of a P system is a locally asynchronous globally
synchronous process: each multiset of objects in a region is formed locally by the
rules attached to the regions, while a computational step of the whole system is
a macro step: it finishes when all of the regions have finished their actions. In the
variant we consider in this paper, the rules are multiset rewriting rules given in
the form of u → v where u, v are multisets, and they are applied in a maximal
parallel manner, that is, a region finishes its computation when no more rules
can be applied in that computational step. In fact, the computational steps in
the regions consist of two parts: first the rule application part and then comes a
communication part where all the objects with labels find their correct places. The
end of the computation of the system is defined by the following halting condition:
a P system halts when no more rules can be applied in any of the regions; the
result is a number, or a tuple of natural numbers- the number of certain objects
in a membrane labelled as output.

Definition 1. A P system of degree n ≥ 1 is Π = (O,µ,w1, . . . , wn, R1, . . . , Rn)
where

- O is an alphabet of objects,

74 B. Aman et al.

- µ is a membrane structure of n membranes,
- wi ∈M(O), 1 ≤ i ≤ n, are the initial contents of the n regions,
- Ri, 1 ≤ i ≤ n, are the sets of evolution rules associated with the regions;

they are of the form u → v where u ∈ M(O) and v ∈ M(O × tar) where
tar = {here, out} ∪ {inj | 1 ≤ j ≤ n}.

Unless otherwise stated we consider the n-th membrane as the output mem-
brane. A configuration is the sequence W = (w1, . . . , wn) where wk are the multi-
set contents of membrane mk (1 ≤ k ≤ n). Let R = R1 ∪ R2 ∪ · · · ∪ Rn, where
Ri = {ri1, . . . , riki} is the set of rules corresponding to membrane mi. The ap-
plication of u → v ∈ Ri in the region i means to remove the objects of u from
wi and to add the new objects specified by v to the system. The rule application
in each region takes place in a non-deterministic and maximally parallel manner.
This means that the rule application phase finishes, if no rule can be applied any-
more in any region. As a result, each region where rule applications took place, is
possibly supplied with elements of the set O × tar. We call a configuration which
is a multiset over O ∪ O × tar an intermediate configuration. If we want to em-
phasize that W = (w1, . . . , wn) consists of multisets over O, we say that W is a
proper configuration. Rule applications can be preceded by priority check, if pri-
ority relations are present. Let ρi ⊆ Ri × Ri 1 ≤ i ≤ n be the (possibly empty)
priority relations. Then r ∈ Ri is applicable only if no r′ ∈ Ri can be applied
with (r′, r) ∈ ρi. We may also denote the relation (r′, r) ∈ ρi by r′ > r. Priority
relations will be mentioned only in Remark 2.

In the next phase the elements coming from the right hand sides of the rules
of region i should be added to the regions as specified by the target indicators
associated with them. If rhs(r) contains a pair (a, here) ∈ V × tar, then a remains
in region i, this is the region where the rule is applied. If rhs(r) contains (a, out) ∈
V × tar, then a is added to the parent region of region i. In our membrane systems
we assume that the results are formed in a designated membrane, the output
membrane, of the system. Unless otherwise stated, we consider mn as the output
membrane of the system. If rhs(r) contains (a, inj) ∈ V × tar for some region j,
then a is added to the contents of region j. In the latter case µ(mj) = mi holds.

3 The Petri net model

By defining a time dependent Petri net model we followed the definition proposed
by Popova-Zeugmann [12] and chose a model rendering time intervals to transitions
along the original concept of Merlin [8]. First of all, we define the notion of untimed
Petri net and then extend this concept to the timed version.

Definition 2. A Petri net is a tuple U = (P, T, F, V,m0) such that

1. P , T , F are finite, where P ∩ T = ∅, P ∪ T 6= ∅ and F ⊆ (P × T) ∪ (T × P),
2. V : F → N>0,
3. m0 : P → N.

Membrane Systems and Time Petri Nets 75

The elements of P are called places and the elements of T are called transitions.
The elements of F are the arcs and F is the flow relation of U . The function
V is the multiplicity (weight) of the arcs and m0 is the initial marking. We may
occasionally omit the initial marking and simply refer to a Petri net as the tuple
U = (P, T, F, V). We stipulate that, for every transition t, there is a place p such
that V (p, t) 6= 0.

In general, a marking is a function m : P → N. Let x ∈ P or x ∈ T . The
pre- and postsets of x, denoted by •x and x•, respectively, are defined as •x =
{y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. Each arc has an incoming and
outcoming multiplicity denoted as follows:

Definition 3. Let t be a transition. We define below two markings, t− and t+,
as multisets of places, which govern when a transition can be fired and how many
tokens are added to the place p upon firing the transition, respectively.

t−(p) =

{
V (p, t), if (p, t) ∈ F,
0 otherwise ,

t+(p) =

{
V (t, p), if (t, p) ∈ F,
0 otherwise .

A transition is said to be enabled, if t−(p) ≤ m(p) for all p ∈ P . Applying
the notation M t = t+ − t−, we are able to define a firing of the Petri net U =
(P, T, F, V).

Definition 4. Let U = (P, T, F, V,m0) be a Petri net and let m be a marking in
U . A transition t ∈ T can fire in m (notation: m −→t), if t is enabled in m. After
the firing of t, the Petri net will obtain the new marking m′, where

m′ = m+ M t.

Notation: m −→t m′.

We obtain time Petri nets, if we add to the Petri net model information about
time attached to transitions. Intuitively, the time associated to a transition will
denote the last time when the transition or a transition with common preplace
was fired. Though the definitions could be extended to unbounded time intervals
also, we are concerned with bounded time intervals this time.

Definition 5. A time Petri net (TPN) is a 6-tuple N = (P, T, F, V,m0, I) such
that

1. the 5-tuple S(N) = (P, T, F, V,m0) is a Petri net,
2. I : T → Q≥0 × Q≥0 and, for each t ∈ T , I(t)1 ≤ I(t)2 holds, where I(t) =

[I(t)1, I(t)2].

We call I(t)1 and I(t)2 earliest and latest firing times belonging to t, respectively.
Notation: eft(t), lft(t).

A function m : P → N is called a p-marking of N . Observe that talking about
a p-marking of N is the same as talking about a marking of S(N), where S(N) is
called the skeleton of N and, roughly speaking, it is the untimed Petri net obtained
from N by omitting every reference to time.

76 B. Aman et al.

Definition 6. 1. A transition marking (or t-marking) is a function h : T →
R≥0 ∪ {#}.

2. Let N = (P, T, F, V,mo, I) be a time Petri net, m a p-marking and h a t-
marking in N . A state in N is a pair u := (m,h) such that
a) (∀t ∈ T)(t− � m→ h(t) = #),
b) (∀t ∈ T)(t− ≤ m→ h(t) ∈ R≥0 ∧ h(t) ≤ lft(t)).

The initial state is the pair u0 = (m0, h0), where m0 is the initial marking and

h0(t) =

{
0, if t− ≤ m0,
otherwise .

Definition 7. A transition t is ready to fire in state u = (m,h) (in notation:
u −→t), if t is enabled and eft(t) ≤ h(t).

We define the result of the firing of a transition that is ready to fire.

Definition 8. Let t be a transition and u = (m,h) be a state such that u −→t.
Then the result of the firing of t is a new state u′ = (m′, h′), such that m′ = m+4t
and

h′(t̂) =

h(t̂), if (t̂− ≤ m, t̂− ≤ m′ and •t̂ ∩ •t = ∅) or t = t̂,
if t̂− � m′,
0 otherwise .

In words, the firing of a transition has multiple effects. First of all, it changes
the t-marking of the system as it is customary by simple Petri nets. Moreover, the
time values attached to the transitions may also change. If t̂ was enabled before
the firing of transition t and t̂ remains enabled after the firing, moreover t̂ has
no common preplace with the transition which has just been fired, then the value
h(t̂) for t̂ remains unchanged. The value h(t̂) remains the same even if t̂ = t. If t̂ is
newly enabled with the firing of transition t or t̂ has common preplace with t and
t̂ differs from t, then we have h(t̂) = 0. If t̂ is not enabled after firing of transition
t, then h(t̂) = #.
Observe that we adopt a stronger condition for h to preserve the value for a
transition t̂ upon firing with transition t. We are not content with the fact that t̂
should be newly enabled in order to have h(t̂) = 0 in the subsequent computational
step, but we also demand that t and t̂ should not have common preplaces. To ensure
multiple executions of the same transition, if t̂ = t, then h(t̂) retains its value after
the firing step.

Besides the firing of a transition there is another possibility for a state to alter,
and this is the time delay step.

Definition 9. Let t be a transition and u = (m,h) be a state and τ ∈ R+. Then
elapsing of time with τ is possible for the state u (in notation: u −→τ), if for all
t ∈ T , h(t) 6= # implies h(t) + τ ≤ lft(t). Then the result of the elapsing of time
by τ is defined as follows: u −→τ u′ = (m′, h′), where m = m′ and

h′(t̂) =

{
h(t̂) + τ, if t̂− ≤ m′ for an arbitrary t̂ ∈ T,
otherwise.

Membrane Systems and Time Petri Nets 77

Observe that the definition of the result of a time elapse ensures that we are
not able to skip a transition when it is enabled: a transition cannot be made not
enabled by a time jump. Finally, we define the notion of a feasible run in a time
Petri net.

Definition 10. Let N = (P, T, F, V,mo, I) be a time Petri net, assume σ =
t1 . . . tn is a sequence of transitions and τ = τ0τ1 . . . τn (τi ∈ R≥0) be a sequence
of times. Then σ(τ)τ0t1τ1 . . . tnτn is called a run. σ(τ) is a feasible run, if there
are states s = (m,h) and s′ = (m′, h′) such that s −→∗σ(τ) s

′. We may omit the

argument τ from σ(τ) if it is clear from the context.

Obviously, classic Petri nets can be obtained when h(t) = [0, 0] for every tran-
sition and no time delay step is ever made.

4 Relating the Petri net model to the membrane system

First, we show how to establish a correspondence between the P system model
without time and the model of time Petri nets. As the first step we give the
underlying structure of the Petri net associated to a membrane system. The cor-
respondence described below seems to have appeared first by Kleijn, Koutny and
Rozenberg [6]. They define the correspondence by limiting the results of the Petri
net computations only to those which can be obtained by a sequence of maximal
parallel or maximally enabled transition steps. A step is a multiset of transitions
and a transition is maximally enabled, if it is enabled and is not a proper subset
of an enabled step. They establish a close correspondence between Petri nets with
maximally enabled (max enabled) steps and membrane systems. Moreover, other
semantics like locally enabled steps or minimal enabled steps could be considered.

In this case we preserve the original semantics for Petri nets: the fireable tran-
sitions can be executed in any order. This involves that we have to make essential
use of the timed model, since ordinary Petri net model is not Turing complete in
contrast to the general membrane system.

Definition 11. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system.
Then we define the following places and transitions for the Petri net.

1. P = P0 ∪ P ∗0 ∪ {sto, ste, sem}, where P0 = V × {1, . . . , k} and P ∗0 = V ∗ ×
{1, . . . , k}. We set m0(p) = wj(a) for every place p = (a, j). Intuitively, the
places V × {1, . . . , k} correspond to the objects of V labelled by the indexes
of the membranes and the places in V ∗ × {1, . . . , k} correspond to the objects
on the right hand sides of Ri (1 ≤ i ≤ n) labelled by messages. The places
ste, sto, sem are additional places which serve for the synchronization of the
Petri net model.

2. T = T0 ∪ T ∗0 ∪ {to, te, t1sem, t2sem}, where the sets of transitions T0 and T ∗0 are
detailed in the subsequent parts of the definition and {to, te, t1sem, t2sem} are
auxiliary transitions to be specified later. Let rl ∈ Ri, where l ∈ {1, . . . , nki}.

78 B. Aman et al.

Then let til denote the transition corresponding to rl and T0 = {til | 1 ≤ i ≤
n, 1 ≤ l ≤ ki}. A transition til connects elements of P0 to P ∗0 : if p = (a, j),
then V (p, til) = lhs(rl)(a), if i = j, and V (p, til) = 0 otherwise. Furthermore,
if p∗ = (a∗, j), V (til, p

∗) = rhs(rl)(a), if i = j, V (til, p
∗) = rhs(rl)(a, out), if

j = parent(i) and V (til, p
∗) = rhs(rl)(a, inj), if i = parent(j) and V (til, p

∗) =
0 otherwise. Likewise, T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} are such that

{•(sij) | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P ∗0 , {(sij)• | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P0 and,

if ai ∈ O and 1 ≤ j ≤ n, then p∗ = (ai, j)
∗ and V (p∗, sij) = V (sij , (ai, j)) = 1

and all the other values are 0. The transitions t1sem and t2sem, belonging to the
semaphore, will be treated in the section.

3. The intervals belonging to the elements of T = T0∪T ∗0 are [0, 0], the transitions
aiming for the synchronization have various time intervals to be specified later.

In words, we simulate the rule rl ∈ Ri with transition til such that the weights
of the arcs reflect the multiplicities of the elements in compartment i, and the
transitions skj ensure the correct reordering of the elements with messages when
the rewriting phase is finished. If we term the rule application phase as the odd and
the communication phase as the even part of the operation, we obtain two Petri
nets for the subsequent phases of the simulation, which are illustrated in Figures 1
and 2. A little more detailed, the complete Petri net acts as follows. The two main
sets for the places correspond to the objects of the membrane system. If ai ∈ V
has ki occurrences in mj , then, for p = (ai, j), m(p) = ki. Likewise, assume at the
end of a rule application phase we have k′i occurrences of (ai, here) in mj , and
k′′i occurrences of (ai, out) in ml, where j = parent(l) and k′′′i copies of (ai, inj)
for l = parent(j), then m(p∗) = k′i + k′′i + k′′′i , where p∗ = (ai, j)

∗. At the rule
application phase the element sto controls the process: if there are any transitions
that are enabled, then they are executed. Otherwise a time elapse is applied and
a token from sto is passed over to sem at time 1. The situation is similar with the
communication phase: if every element has found its correct place, then no more
transition sji is possible and ste gives control to sem by passing a token to sem at
time instance 1.

We ensure the globally asynchronous locally synchronous character of the mem-
brane system for the Petri net by defining a semaphore which governs the distinct
groups of membrane transitions, like rewriting phase, where objects are replaced in
accordance with rewriting rules, or communication phase, where objects labelled
with tags inj, here, out find their correct places.

In what follows we define the timed part of the Petri net that provides the
synchronization.

Assume the semaphore is denoted by the tuple Sem = ({sem}, R, Fsem, Vsem, I).
In some sense the semaphore divides the rule application and communication parts
of the operation of the P system. The place sem of the semaphore is the place
where this choice takes place. The place sem obtains either one or two tokens.

Membrane Systems and Time Petri Nets 79

sto p1 p2

to[1,1] t1[0,0]

sem p∗1 p∗2

2

Fig. 1. The Petri net simulating the rule application part of a membrane computational
step.

sem p1 p2

te[1,1]

1

t∗1[0,0] t∗2[0,0]

ste p∗1 p∗2

Fig. 2. The Petri net simulating the communication part of a membrane computational
step.

80 B. Aman et al.

If the odd phase is finished, then the semaphore obtains 2 tokens and otherwise,
from the even phase, it obtains 1. One of the transitions require 2 tokens with
time interval [0, 0]- this transitions leads to ste, and the other one requires 1 token
with time interval [0, 0]. The latter transition points to sto. This means that two
tokens enable the semaphore to activate the even phase, on the other hand, if at
the end of the even phase it receives back only one token, then, after a time jump
of 1, only the odd phase can be activated. We illustrate the semaphore in Figure
3.

sem

[1,1] t1sem [0,0] t2sem

sto ste

1
2

Fig. 3. The semaphore for the Petri nets.

By this, we have simulated a membrane system with a time Petri net such
that in the Petri net model no restriction on the transitions is made: every tran-
sition which is ready to fire can be fired in any order. We summarize the above
considerations in the following theorem.

Theorem 1. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system. Then
there exists a time Petri net N = (P, T, F, V,m0, I) defined as in Definition 11 such
that, for any computational sequence W of Π yielding an output, there exists a
feasible run of N yielding the same output as W .

We remark that, by keeping the core construction, it is not difficult to adjust
the Petri net model so that it is able to simulate membrane systems defined with
semantics other than the maximal parallel semantics. As a short remark, we con-
sider lmax-parallelism (or locally max-enabledness) that was treated by Koutny
and Kleijn and Rozenberg [6]. A computational step is lmax-parallel in a mem-
brane system, if, for every membrane, the rules of the compartment are executed in
a maximally parallel manner, or no rule of that membrane is executed at all in that
computational step. To handle lmax-parallelism, Koutny and Kleijn and Rozen-
berg introduced localities for a Petri net. We define the notion of Petri nets with
localities in accordance with the definition of Koutny and Kleijn and Rozenberg
[6].

Membrane Systems and Time Petri Nets 81

Definition 12. A Petri net with localities (in short PNL) is a tuple
NL = (P, T, V,D,m0), where P , T , V and m0 are as defined by the base model
and D : T → N is a locality mapping. As in the original model, we assume that,
for every transition t there is a place p such that V (p, t) 6= 0.

The reason for introducing localities in [6] was the intention of simulating
computation distributed to compartments in a membrane system. In the language
of Petri nets with localities this is achieved when we define a computational step
U as a multiset of transitions so that l ∈ D(U) implies that U is maximal with
respect to the transitions with D(t) = l. In our timed model we achieve lmax
parallelism by inserting a nondeterministic choice at the beginning of every odd
round: either a maximal parallel computational step is simulated concerning region
l, or no computation takes place with respect to that region in the underlying
computational step. We omit the details.

As a final remark, we stress out that our simulating Petri net works in a one-
step manner in contrast to the model defined by Kleijn, Koutny and Rozenberg
[6]. This means that exploring the state space seems to be an easier task by this
model- there is no need to maintain a huge stack for keeping track of the possible
successors of the present state obtained by a maximal parallel step. Hence, from
the practical point of view using a time Petri net model for a membrane system
seems to be promising.

5 Local time membrane systems

In this section we associate time to the rules of P systems and present a translation
from local time P systems into time Petri nets such that the durations of the
membrane computational steps can be estimated with the elapsed time in the
computation of the time Petri net. This allows us to formulate several properties
of local time membrane systems based on the well developed theory of time Petri
nets. In the first part of the section we formulate the necessary definitions what we
mean by local time membrane systems and elapsed time in a local time membrane
system, then we present the simulation of membrane systems by Petri nets.

Definition 13. We define the notion of a local time P system as a P system
together with functions I : R → IntQ and T : {1, . . . , n} → R≥0 (1 ≤ i ≤ n),
where R is the set of all rules and IntQ is the set of all closed intervals with
nonnegative rational endpoints and there are n compartments of Π. The value
T (i) is called the local time for the i-th membrane. A configuration of a local time
P system is a pair (W, T), where W is the configuration as a multiset of objects
and messages as before and T is stands for the local time function. We may write
Ti for T (i) in the sequel.

Observe that, since IntQ denotes the intervals with rational endpoints, we
may assume that the endpoints of the intervals belonging to the rules are integers.

82 B. Aman et al.

We have to multiply with the least common multiplier of the nominators of the
endpoints in any other case. Likewise for the case of the time Petri nets. Next we
define a computational step in a local time P system.

Definition 14. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time P system.
A run is a tuple σ = (σ1, . . . , σn), where σi = τ i1r

i
1 . . . τ

i
ki
rikiτ

i
ki+1 such that τ ij ∈

R≥0 and rij ∈ Ri for 1 ≤ j ≤ ki and 1 ≤ i ≤ n. We call the element σi the
i-th selection. Moreover, we stipulate that the rules in σi form a maximal parallel
multiset of rules. The elapsed time for σi is the sum of the τ -s in the selection.

Remark 1. It seems to us that instead of defining local times for each compartment
separately we could have chosen to give a global clock for the whole membrane
system when talking about a computational step. The definition with a global
clock could be given in such a way that not only the evolving of the system
but every quantitative property, like elapsed time during a computational step,
minimal/maximal time between two configurations, would remain the same. Tech-
nically, it seems to be a clearer formulation to introduce a local clock in each
membrane, though.

Next we describe how the system can evolve during a selection belonging to
a membrane. To facilitate the treatment we shall talk about the configuration of
membrane i, as well, not only about a configuration of the whole system.

Definition 15. Let mi be a compartment with (possible) intermediate configura-
tion wi. Then (wi, Ti) is the (timed) configuration of mi.

In what follows, when we talk about a configuration of a local time membrane
system, we mean a timed configuration of the system, unless otherwise stated. If we
want to emphasize that we talk about configurations without the time component,
then we will use the term object configuration. The computation in a compartment
can evolve through two steps when we consider a selection.

Definition 16. 1. rule execution: Assume r ∈ Ri, for some 1 ≤ i ≤ n, is en-
abled, that is, lhs(r) ≤ wi, where (wi, Ti) is the configuration for mi. More-
over, assume r is ready to be executed, which means r is enabled and Ti ∈
[I(r)−, I(r)+]. Then (wi, Ti) −→r (w′i, Ti), where w′i = wi − lhs(r) + rsh(r).

2. time elapse: Let τ ∈ R≥0. Then we distinguish two types of semantics:
a) weak semantics: (wi, Ti) −→r (wi, T ′i) and T ′i = Ti + τ ,
b) strong semantics: (wi, Ti) −→r (wi, T ′i) and T ′i = Ti + τ only if, for every
r ∈ Ri, lhs(r) ≤ wi and Ti ≤ I(r)+ implies Ti + τ ≤ I(r)+.

A configuration (w, T) can evolve in two ways. If a rule r ∈ Ri is enabled and,
furthermore, the local time for mi is such that Ti lies in the interval [I(r)−, I(r)+],
then r can be executed. Rule execution in a membrane does not change the time
part of a configuration, it changes only the multiset of objects in the underlying
membrane. The second possibility is time elapse. If we adopt the weak semantics,

Membrane Systems and Time Petri Nets 83

then the time elapse step can take place at any time instance. This may involve
that a rule which was ready to be executed before the time elapse step can be no
more executed after that step. When we adopt the strong semantics this situation
is impossible. In other words, the strong semantics does not allow us to skip rules
that are enabled and their time interval makes their application possible by a time
jump. The weak semantics permits us to apply an arbitrary choice of the rules.
As usual, computations in the membranes evolve by a maximal parallel manner.
When every membrane has finished its operation, the communication phase of
the computational step begins, as by the non-timed case. The new computational
step starts with a configuration (W, T0), where T0(i) = 0 (1 ≤ i ≤ n). By a
computation, we understand a sequence of subsequent proper configurations, that
is, configurations with no objects labelled by messages. When the computation
halts, the result is stored in the output membrane, as before.

6 Local time P systems and time Petri nets

Next we give simulations for local time membrane systems where the elapsed time
is the sum of the time jumps in a selection and the elapsed time for a run or a
computational step is the maximum of these sums when we consider the different
compartments. We perform the simulation for both the weak and strong semantics
of local time membrane systems.

First of all, we deal with the case of a membrane system with the weak seman-
tics. The underlying model is the same as in Definition 11, and we try to simulate
membrane systems of the weak semantics by time Peri nets equipped with the
strong semantics. We identify rule applications with transitions as before. In order
to keep the local nature of the Petri net, we split our model into subnets corre-
sponding to the execution in the various compartments. The main idea is that we
divide the possible time duration of the computation in a membrane membrane
into time intervals of length 1, and, concerning these time intervals, a nondetermin-
istic choice of the transitions which are ready to fire is considered. The transitions
in the same group are assumed to take place in the time interval [0, 0], [0, 1] or
[1, 1], a group of transitions is initiated by a place qij as illustrated in Figure 4.
When operating with a group of transitions, we may apply time elapse between
firing steps up to the point when we fall into the next group of transitions. The
passage is provided by transitions nij in Figure 4. Let us apply the following nota-
tion in the definition below. Assume B is the least integer greater than the right
hand sides of the intervals I(r). Let mi be a membrane. Let

Rij = {r ∈ Ri | j ∈ [eft(r), lft(r)]}

for 0 ≤ j ≤ B − 1, j ∈ N and 1 ≤ i ≤ n. Then ∪ni=1 ∪
B−1
j=0 Rij = R. Observe that

the distinct sets Rij may overlap for different j-s.

84 B. Aman et al.

Definition 17. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system with the weak semantics. Assume B is the least integer greater than
the right hand sides of the intervals I(r). We define the associated time Petri net
as follows.

1. The main constituents of P are the sets P0, P ∗0 , Qi (1 ≤ i ≤ n), where P0 =
V×{1, . . . , n}, P ∗0 = V ∗×{1, . . . , n} are as in Definition 11. The computational
step is governed by the set of places Qi = {qij | 0 ≤ j ≤ B, 1 ≤ i ≤ n}. There
are some additional places including the places for the semaphore, places to
mark the end of the computation in the simulated compartment, and places
which lead to nonterminating computations. The semaphore is the same as
in the previous models. Moreover, since the computational process in every
compartment evolves separately, this is modelled by the Petri net: there are sub
Petri nets the computations in which are triggered in a distributive manner.
The operation of the sub Petri net corresponding to membrane mi is initiated
by transferring a token to the places qi0. At the end of the operation of the sub
Petri net the place fini obtains a token and waits for the rest of the sub nets
simulating the other compartments to finish computing. As usual, P0 represents
the actual configuration of the membrane system. We set m0(p) = wj(a) for
every place p = (a, j). As before, the places in V × {1, . . . , n} correspond to
the objects on the left hand sides of Ri (1 ≤ i ≤ n) of the membrane rules,
while the elements of V ∗ × {1, . . . , n} correspond to the objects on the right
hand sides of the membrane rules labelled by messages.

2. As before, T0 correspond to the membrane rules, while the transitions of T ∗0
ensure the simulation of the communication phase of a membrane compu-
tational step. Let rl ∈ Ri, where l ∈ {1, . . . , nki}. Then T0 formed by til
(1 ≤ i ≤ n, 1 ≤ l ≤ ki) and T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} are defined as

in Definition 11 with the slight modification as follows. Let r ∈ Rij, assume t

is the transition associated with r in T0. Then (qij , t) ∈ F , V (qij , t) = 1 and

(t, qij) ∈ F , V (t, qij) = 1 (1 ≤ j ≤ B − 1, 1 ≤ i ≤ n). Moreover, for each each

qij (1 ≤ j ≤ B − 1) we have transitions nij and tiBj such that (qij , n
i
j) ∈ F ,

(nij , q
i
j+1) ∈ F and (qij , t

i
Bj) ∈ F , (tiBj , q

i
B) ∈ F with multiplicities 1. Further-

more, every transition in t ∈ T0 corresponding to some r ∈ Ri has a second
copy T̃0, which is connected to qiB by (qiB , t̃) ∈ F and, for every p ∈ P0, we have
an arrow pointing to t̃ if and only if (p, t) ∈ F with the same multiplicity as that
of (p, t). There is a state perpt̃ for every t̃ which induces an infinitely working
sub Petri-net. Finally, there is an arrow from qiB pointing to fini through tran-
sition tfini

. The places fini lead to sem through a transition fino. When we
consider the case of T ∗0 , it is enough to apply one auxiliary place, say fine, to
check whether every transition in T ∗0 has finished its operation: (fine, t̃) ∈ F ,
(t̃, f ine) ∈ F and (fine, tfine) ∈ F , (tfine , sem) ∈ F .

3. As to the timings, let r ∈ Rij, assume t corresponds to r in the Petri net.
If j = lft(r) then let I(t) = [0, 0], and if [j, j + 1] ⊆ [eft(r), lft(r)], then
I(t) = [0, 1], else, if j = eft(r), then I(t) = [1, 1]. Let the members of T ∗0

Membrane Systems and Time Petri Nets 85

have intervals [0, 0]. For the other transitions: I(nij) = [0, 1], I(t̃j) = [0, 0] and
I(tfini

) = [1, 1]. The semaphore is the same as in the core model.

Figure 4 presents a snapshot of the model: it illustrates the Petri net assigned
to membrane mi.

Fact 2 Let r ∈ Rijmin
, . . ., r ∈ Rijmax

, let jmin ≤ j ≤ jmax, assume [i−t , i
+
t] is

the interval belonging to t in the sense of Definition 17 when considering r ∈ Rij,
where t is assigned to r. Then I(r)− ≤ i−t + j ≤ i+t + j ≤ I(r)+. Moreover,
i−t + jmin ≤ I(r)− and I(r)+ ≤ i+t + jmax.

qi0
[0,1]

ni
1

qi1
[0,1]

ni
2

qiB−1

tib1[0,1] tib2[0,1] tibB−1[0,1]

qiB

p1 p2

t̃1[0,0] t1[0,0]

perpt̃1

p∗1 p∗2

Fig. 4. The Petri net for a local time membrane system with the weak semantics

As a continuation of Figure 4 we show the role qiB plays in deciding whether
the simulation of the computational step can be continued or not. When the Petri
net finishes the simulation of a rule application phase it must check whether the

86 B. Aman et al.

rules corresponding to the chosen transitions form a maximal parallel set of rules.
If at the end of the rule application phase at least one rule remains that could be
applied, then our choice is obviously not a maximal parallel set of rules. In order to
ensure the correct simulation, in this case the Petri net enters into an infinite loop
of transitions when reaching state perpt̃ provided t̃ could be applied. Otherwise,
control is given back to the semaphore. Figure 5 details the Petri net which is in
fact a sub net of the one in Figure 4.

qiB p1 p2

tfini[1,1] t̄[0,0]

fini
perpt̄

2

[0,0]

Fig. 5. The Petri net deciding whether a maximal parallel set of rules is reached.

Finally, Figure 6 gives an overall picture of the odd part of the simulating
Petri net. The place sto stimulates the odd phase and tokens are immediately
distributed among the places qi0, which initiate the simulations of the computations
in membranes mi (1 ≤ i ≤ n). When the computation in mi is over, in the
simulating Petri net the place fini obtains a token. If all the places fini (1 ≤
i ≤ n) have collected their tokens, then a token is passed over to sem and a new
computational phase begins.

We remark that the construction above gives a general method for simulating
any time Petri net defined with the weak semantics by a time Petri net understood
with the strong semantics.

The case for the membrane system with the strong semantics is possibly a bit
simpler, since it is closer to the original semantics of the Petri net model. We define
in the next definition the simulating Petri net for a local time membrane system
with the strong semantics. The construction is very similar to the ones of the pre-
vious subsection, probably it is a little bit easier this time. The only difficulty is
to tell when a maximal parallel step is finished. For this purpose, before choosing

Membrane Systems and Time Petri Nets 87

st0

[0,0] [0,0]
. . .

[0,0]

q1
0 q2

0

. . .

qn0

. . .

fin1 fin2

. . .

finn

[0,0]

sem

Fig. 6. The overall structure of the Petri net for the weak semantics

the next transition, we implement a test whether there are transitions that could
be executed. This involves creating a new copy of the Petri net simulating the
left hand sides of the membrane system rules. Moreover, to keep ourselves to the
interpretation of the membrane computational step by distinguishing the compu-
tational sequences in the different compartments, we assume that there are n sub
Petri nets modelling the computations in the different membranes. We detach, as
usual, the odd and even phases of the computation. In the odd phase, the token in
sto is immediately distributed to the places stio hence initializing the computation
in the sub Petri nets corresponding to membranes mi.

Definition 18. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system with the strong semantics.

88 B. Aman et al.

1. P contains P0 and P ∗0 , where P0 = V × {1, . . . , n}, P ∗0 = V ∗ × {1, . . . , n},
where a ∈ V and (1 ≤ j ≤ n) are in Definition 11. As usual, P0 represents
the actual configuration of the membrane system. We set m0(p) = wj(a) for
every place p = (a, j). As before, the places in V ×{1, . . . , n} correspond to the
objects on the left hand sides of Ri (1 ≤ i ≤ n) of the membrane rules, while
the elements of V ∗ × {1, . . . , n} correspond to the objects on the right hand
sides of the membrane rules labelled by messages. There are auxiliary places,
namely those of the semaphore and ste, st

i
o, cati: they govern the simulation

of the rule application and communication phases.
2. T consists of T0, T ∗0 , T̃0 and some auxiliary transitions. As before, let rl ∈ Ri,

where l ∈ {1, . . . , nki}. Then let til denote the transition corresponding to rl
and T0 = {til | 1 ≤ i ≤ n, 1 ≤ l ≤ ki}. A transition til connects elements of
P0 to P ∗0 : if p = (a, j), then V (p, til) = lhs(rl)(a), if i = j, and V (p, til) = 0
otherwise. Furthermore, if p∗ = (ai, j)

∗, then V (til, p
∗) = rhs(rl)(a), if i = j,

V (til, p
∗) = rhs(rl)(a, out), if i = parent(j) and V (til, p

∗) = rhs(rl)(a, inj),
if j = parent(i) and V (til, p

∗) = 0 otherwise. Moreover, (cati, t
i
l), (til, st

i
o),

(stio, tcati), (tcati , cati) ∈ F .
T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} is defined as before: we let {•(sij)1 ≤
i ≤ k, 1 ≤ j ≤ n} | = P ∗0 , {(sij)• | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P0 and

V ((p∗i , j), s
i
j) = V (sij , (ai, j)) = 1, where p∗i = (ai, j)

∗, and all the other values
be 0.
As to the auxiliary places and transitions, stio and ste have to check whether
there are transitions left to fire. For ste this is easy: ste connects to each transi-
tion in T ∗0 , that is, (ste, s

i
l), (sil, ste) ∈ F and ste connects to sem by (ste, tre),

(tre, sem) ∈ F . The places stio need to make a similar check concerning max-
imal parallel execution: (stio, t̃

i
l) ∈ F , (t̃il, cati) ∈ F and t̃il are such that the

connections with the elements of P0 are the same as in the case of P0 and T0
with the same multiplicities, as well. However, t̃il do not point to P ∗0 , they give
back all the tokens to P0 after any of the transitions t̃il has been fired. When no
transition t̃il is able to fire, stio forwards a token to fini and, when each fini
(1 ≤ i ≤ n) possesses a token, they give control back to sem by (fini,mono),
(mono, sem) ∈ F . That is, mono fires only if every sub Petri net assigned to
membrane mi finishes its computation.

3. Concerning the intervals: the intervals belonging to the elements of T ∗0 are
[0, 0]. If til ∈ T0, then I(til) = I(ril). Furthermore, I(fini) = I(fine) = [1, 1].
All the remaining intervals are [0, 0]. The semaphore is the same as by the case
of the core model.

We illustrate the sub Petri net corresponding to mi in Figure 7.
Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be a local time membrane system.

If Π is considered with the weak semantics, then let Nw(Π) denote the time
Petri net associated to Π according to Definition 17. If Π is understood with
the strong semantics, then let Ns(Π) denote the Petri net assigned to Π in
accordance with Definition 18. Furthermore, if (w, T) is a proper configura-
tion of Π, let (ν(w), ν(T)) be the configuration of Nw(Π) or of Ns(Π), where

Membrane Systems and Time Petri Nets 89

stio cati p1 p2

fini[1,1] t]1[0,0] t1 [I(t1)−,I(t1)+]

sem

p∗1 p∗2

2

Fig. 7. The Petri net for a local time membrane system with the strong semantics

ν(w)(ai, j) = w(j)(i) and ν(T)(til) = T (rl), where rl ∈ Ri. In addition, if
p∗ = (a∗i , j), let ν(w)(p∗) = 0, as (w, T) is a proper configuration. Moreover,
if W = (w0, T 0) ⇒ (w1, T 1) ⇒ . . . ⇒ (wk, T k) is a configuration sequence of Π,
then ν(W) = (ν(w0), ν(T 0)) −→ (ν(w1), ν(T 1)) −→ . . . −→ (ν(wk), ν(T k)) is the
corresponding sequence of configurations of Nw(Π) or Ns(Π). If W is a sequence
of proper configurations, then we omit the values Ti and ν(Ti) from the configu-
rations (w, T) and (ν(w), ν(T)i), respectively, since, in this case T j = T0, where
T0(r) = 0 for every r ∈ R.

Theorem 3. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be a local time membrane
system.

1. Let W = w0 ⇒ w1 ⇒ . . . ⇒ wk be a computational sequence with the weak
semantics. Then

w0 ⇒∗W wk ⇔ Nw(w0) −→∗ν(W) Nw(wk).

Moreover, τ(ν(W)) = τ(W) + 3k, where τ(W) and τ(ν(W)) are the total time
for W and ν(W), respectively.

2. Let W = w0 ⇒ w1 ⇒ . . . ⇒ wk be a computational sequence with the strong
semantics. Then

w0 ⇒∗W wk ⇔ Ns(w
0) −→∗ν(W) Ns(w

k).

Moreover, τ(ν(W)) = τ(W) + 3k, where τ(W) and τ(ν(W)) are the total time
for W and ν(W), respectively.

90 B. Aman et al.

Proof. We treat the case of the weak semantics: we give a sketch for the proof of
the correctness of our simulation. Assume Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) is
a local time membrane system, let W = w0 ⇒ w1 ⇒ . . .⇒ wk be a computational
sequence with the weak semantics. We prove the theorem by induction on k.

- k = 0: there is nothing to prove.
- k = l + 1: Assume we have the statement for l, that is, for the computa-

tional sequence Wl = w0 ⇒σ1 w1 ⇒σ2 . . . ⇒σl wl there exists ξl = m0 ⇒
m1 ⇒ . . . ⇒ ml such that µl = ν(wl) and τ(ν(ξl)) = τ(Wl) + 3 · l, where,
for any proper configuration w of Π, ν(w) is defined as above. If q is any
place not in P0, then ν(q) = 0, except for sem, where ν(w)(sem) = 1.
By the construction of the Petri net h(til) = I(ril) also holds. We extend
the correspondence ν to the intermediate configurations, as well. The val-
ues for the elements of P0 are defined as before. As to the values of P ∗0 :
ν(w)(a∗i , j) = w(j)(ai, here) + w(µ(j))(ai, inj) +

∑
j=µ(l)(ai, out). Let σ(i,s) =

τ0r1τ1r2 . . . rsτs+1, where r1, . . ., rs ∈ Ri, be a segment of the selection of mi

of length s with the corresponding configurations ((w1, T1), . . . , (ws, Ts)). Then
ξ(i,s) = ν(σ(i,s)) = τ01 . . . τ0k0t1τ11 . . . τ1k1t2 . . . tsτ(s+1)1 . . . τ(s+1)ks+1

, where tj
correspond to rj in Nw(Π) and τj = τj1+. . .+τjkj , is a computation in Nw(Π).
Assume ((m1, h1), . . . , (ms, hs)) is the sequence of states corresponding to ξi,s,
then we claim that ν(w1), . . . , ν(ws) define exactly the same t-markings. For
the correspondence of the configurations and t-markings it is enough to prove
that, if r can be executed, then t is ready to fire provided t is assigned to r.
By Fact 2, it is enough to observe that Ti(r) = j + a for some j ∈ N such
that r ∈ Rij and 0 ≤ a ≤ 1, and i−t ≤ a ≤ i+t , where [i−t , i

+
t] is the interval

corresponding to t as the image of r ∈ Rij in accordance with Definition 17.
The statement can be proved by examining the various cases for the next step
in σi,s.

�

The converse of the theorem holds, too. We state it in a proposition.

Proposition 1. Let N = (P, T, F, V,m0, I) be a time Petri net. Then the following
statements are valid.

1. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be be a local time membrane system,
assume N = Nw(Π). Then, for any proper computational sequence ξ of N ,
there exists computational sequence W of Π with respect to the weak semantics
such that ξ provides exactly the same output as W . Moreover, τ(ξ) = τ(W) +
3k, where τ(W) and τ(ξ) are the total time for W and ξ, respectively.

2. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be be a local time membrane sys-
tem, assume N = Nw(Π). Then, for any proper computational sequence ξ of
N , there exists computational sequence W of Π with respect to the strong
semantics such that ξ provides exactly the same output as W . Moreover,
τ(ξ) = τ(W) + 3k, where τ(W) and τ(ξ) are the total time for W and ξ,
respectively.

Membrane Systems and Time Petri Nets 91

Remark 2. We remark that local time weak semantics does not appear to add
anything to the computational power of the membrane system, however local time
with the strong semantics seems to increase the computational strength of the P
system. We conjecture that, by a modification of a proof of Păun [10] showing that
membrane systems with catalytic rules together with priority define recursively
enumerable sets of numbers even with two membranes, it might not be difficult to
prove that local time membrane systems with catalytic rules and with the strong
semantics define recursively enumerable sets of numbers with two membranes. It is
not clear to us, however, how the exact strength of a local time membrane system
with the strong semantics could be depicted.

7 Applications

The constructions of the previous section makes us possible to apply the results
elaborated for time Petri nets for the case of local time membrane systems.

Notation 4 Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time membrane
system. We apply the notation Π = Π?, where ? ∈ {w, s} stands for either the
weak semantics or the strong semantics, respectively.

Definition 19. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system.

1. A (possibly intermediate) configuration (w, T) is integer valued, if T (r) ∈ N
for every r ∈ R.

2. Let mi be a membrane of Π? for some 1 ≤ i ≤ n. Let σi be a run for mi. Then
σi is integer valued if all of its intermediate configurations are integer valued.

3. Let W = w0 ⇒ . . . ⇒ wk be a computational sequence for Π?. Then W is
integer valued, if, for every wi, every run of wi is integer valued.

Observe that, given a membrane system Π? and a computational sequence W ,
the condition that W is integer valued is equivalent to the requirement that all
the time elapses in every run of W are integers.

Proposition 2. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system and let w′ be a configuration reachable from w. Then w′ is integer
reachable from w.

Proof. Follows from the main theorem together with the corresponding theorem
for time Petri nets presented by Popova-Zeugmann ([13], [14]). �

Definition 20. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system. Then Π? is bounded, if there exists K > 0 such that, for every
configuration w of Π?, |w(j)| < K (1 ≤ j ≤ n). In other words, K is an up-
per bound for the number of elements in every compartment with regard to any
configuration w.

92 B. Aman et al.

Proposition 3. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system, assume Π? is bounded. Then the reachability problem for Π? is
decidable.

Proof. Follows from Proposition 2. �

Proposition 4. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system, assume w′ is reachable from w. Then the minimum and maximum
distances between w and w′ are integers.

8 Conclusions

In this paper we examined the connections between two models of computations,
namely, the membrane systems introduced by Păun [9] and time Petri nets de-
fined along the lines of the papers of Popova-Zeugmann ([12],[13]). First of all,
we presented a simulation of membrane systems without dissolution by time Petri
nets. The novelty in our result is the fact that the simulating Petri nets manage
to retain the locality of firing: transitions can be fired one after the other without
structural control, like maximal parallelism, imposed on the order of their execu-
tion. Next, we defined local time membrane systems on the analogy of time Petri
nets, equipping the computational model with two types of semantics. We showed
that both kinds of local time membrane systems can be simulated by time Petri
nets with the strong semantics. Finally, we mentioned some statements concerning
local time membrane systems that are straightforward consequences of the similar
results for time Petri nets by reason of the simulations.

References

1. B. Aman, G. Ciobanu, Adding Lifetime to Objects and Membranes in P Systems.
International Journal of Computers, Communications and Control, 5(3) (2010) 268–
279.

2. B. Aman, G. Ciobanu, Verification of membrane systems with delays via Petri nets
with delays. Theoretical Computer Science, 598(C) (2015) 87–101.

3. M. Cavaliere, D. Sburlan, Time and Synchronization in Membrane Systems. Funda-
menta Informaticae, 64(1) (2005) 65–77.

4. M. Cavaliere, D. Sburlan, Timeindependent P Systems Towards a Petri Net Se-
mantics for Membrane Systems. Lecture Notes in Computer Science, volume 3365,
International Workshop on Membrane Computing, WMC 2004, 239–258, Springer
Verlag, Berlin, 2005.

5. M. Ionescu, Gh. Păun, T. Yokomori. Spiking Neural P Systems. Fundamenta Infor-
maticae, 71 (2006) 279–308.

6. J. H. C. M. Kleijn and M. Koutny and G. Rozenberg, Towards a Petri Net Semantics
for Membrane Systems. Lecture Notes in Computer Science, volume 3850, Interna-
tional Workshop on Membrane Computing, WMC 2005, 292–309, Springer Verlag,
Berlin, 2005.

Membrane Systems and Time Petri Nets 93

7. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón. Tissue P Systems. Theo-
retical Computer Science, 296 (2003) 295–326.

8. P. M. Merlin, A Study of the Recoverability of Computing Systems. PhD thesis,
University of California, Irvine, CA, 1974

9. G. Păun, Computing with Membranes. Journal of Computer and System Sciences,
61(1) (2000) 108–143.

10. G. Păun, Membrane Computing - An Introduction, Springer Verlag, Berlin, 2002.
11. C. A. Petri, Kommunikation mit Automaten. Dissertation, Universität Hamburg,

Hamburg, 1962.
12. L. Popova, On time Petri nets. Journal of Information Processing and Cybernetics,

EIK, 27(4) (1991) 227–244.
13. L. Popova-Zeugmann, Essential States in time Petri nets, Informatik- Berichte der

HUB, Nr. 96, 1998.
14. L. Popova-Zeugmann, Time and Petri Nets, Springer Verlag, Berlin, 2013.

