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Abstract: Reductive amination of formyl C-glycofuranosides, eas-
ily available from hexose-derived equatorial-2-OH-glycopyrano-
sides by DAST-promoted ring contraction, afforded N-substituted
1-C-aminomethyl glycofuranosides in most cases in high yields.
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The stereoselective synthesis of functionalized C-glyco-
sides has become an important area of carbohydrate re-
search, as many naturally occurring C-glycosides show
useful antibacterial, antiviral, and antitumoral properties.1

One significant type of C-glycoside derivatives are 1-C-
aminomethyl glycosides. These compounds are key inter-
mediates for glycoconjugate syntheses, and a number of
them have proved to be glycosidase inhibitors.2 Sugar
amino acids 23 and 3,4 which containing the substructure
1 (Figure 1), are dipeptide isosters and have been used as
secondary structure inducing elements for the generation
of peptide-based drugs. This kind of substructure is also
found in the naturally occurring alkaloid muscarine (4), a
rigid muscarinic agonist of acetylcholine,5 for which a
renewed interest is due, in part, to the suggestion that
various subtypes of muscarinic receptors seem to be
implicated6 in Alzheimer’s disease.

Syntheses of 1-C-aminomethyl glycosides so far de-
scribed rely on the introduction of a CH2NH2 equivalent
at the anomeric position: (a) as CH3NO2 via nucleophilic
aldol reaction,7 (b) by reducing the corresponding glyco-

syl cyanide8 or, (c) by degradation of a C-vinyl glycoside
and subsequent formation of the azidomethyl intermedi-
ate.3b Alternatively, rearrangement involving 5-exo SN2-
opening of a terminal aziridine ring, and transformation of
a primary hydroxyl function into the corresponding azide
gave access to the 2,5-anhydro derivatives 34 and 4,9 re-
spectively. These routes are rather complicated, and for
those involving an anomeric carbon–carbon bond-form-
ing reaction, chemical efficiency and stereocontrol remain
a difficult task. Moreover, for reaching an N-substituted
1-C-aminomethyl glycoside, additional N-alkylation pro-
cess would be still required.

Here we introduce a straightforward approach to N-sub-
stituted 1-C-aminomethyl glycofuranosides from hexose-
derived equatorial-2-OH-glycopyranosides (Scheme 1).
The strategy takes advantage of a diethylaminosulfur
trifluoride (DAST)-promoted ring contraction that, under
remarkably mild conditions, leads to formyl C-glyco-
furanosides.10 The use of these compounds in standard
coupling reactions with nucleophiles should provide a
ready access to hydrolytically stable C-glycofuranoside-
based molecules (C-oligosaccharides and C-glycocon-
jugates). With this aim, our first goal has been to explore
their coupling with biologically relevant amines as nitro-
gen-containing nucleophiles.

Scheme 1

We describe herein the synthesis of enantiopure orthogo-
nally protected C-glycofuranosyl diamines by reductive
amination of formyl C-glycofuranosides, easily obtained
as their synthetic equivalents 6 and 12 from the methyl
equatorial-2-OH-glycohexopyranosides 5 and 11, respec-
tively, by DAST methodology.10,11

Treatment of the crude aldehyde obtained in situ by hy-
drolysis (9:1 TFA–H2O, r.t., 1 h) of the dimethyl acetal 6,
with diverse primary or secondary amines (1.4 mol equiv)
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in dry 1,2-dichloroethane, and subsequent reduction of the
respective, not isolated, imine using sodium triacetoxy-
borohydride (1.4 mol equiv), afforded the respective com-
pounds 7a–h in moderate to high yields (Scheme 2,
Table 1).12 Their deprotection with 1 M NaMeO–MeOH
gave the corresponding products 8a–h.13

As shown in Table 1, primary and secondary aliphatic
amines (benzylamine, piperidine, benzyloxycarbonyl pip-
erazine, and morpholine, entries 1–4), as well as the aro-
matic amine 4-hydroxymethyl aniline (entry 6), gave the

corresponding reductive amination compounds 7a–e as
the sole product. In the case of the other aniline deriva-
tives (2-biphenylamino, ethyl 4-aminobenzoate and 4-
aminobenzonitrile, entries 8–10), however, reductive
amination products 7f–h were obtained together with the
primary alcohol 10.

Starting from N-aminomorpholine as the amine (entry 5),
the only isolated product was the hydrazone 9, which
could not be reduced by the reagent employed. When us-
ing imidazole as the starting amine (entry 7), the expected

Scheme 2
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Table 1 Reductive Amination Products 7 of the Formyl Azido-C-glycofuranoside Synthetic Equivalent 6 with Various Amines, and Their 
Deacetylated Products 8a

Entry Amines R1R2NH Reaction time (h) Products 712 (yield after purification, %) Products 813 (yield, %)

1 3 7a (55) 8a (75)

2 5 7b (65) 8b (92)

3 2.5 7c (80) 8c (95)

4 6 7d (67) 8d (87)

5 1.5

9 (88)

–b

6 2 7e (77) 8e (90)

7 20

1011 (56)

–

8 18 7f (63) + 10 (19) 8f (85)

9 18 7g11 (47) + 10 (34) 8g (86)

10 18 7h (35) + 10 (48) 8h (89)

a All products were fully characterized by their IR, 1H NMR, 13C NMR, and HRMS spectral data.14

b Complex mixture of products.
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2,5-anhydro-1-(imidazol-1-yl)-D-altritol derivative was
not obtained, only 10 was obtained. The reason of this be-
havior of imidazole may be its weak nucleophilic charac-
ter, much lower than those of the remainder amines used.
In the same way, formation of the primary alcohol 10 as
accompanying product of 7f–h, arise from the lack of
nucleophilicity provoked by the electron-withdrawing
substituent at the para position of the anilines.

A shorter experimental protocol, in which a 2,5-anhydro-
1-fluoro-1-O-methylhexitol (a formyl C-glycofuranoside
synthetic equivalent directly formed in the ring-contrac-
tion reaction promoted by DAST) is subjected to hydro-
lysis and subsequent in situ reductive amination process,
can be applied. Adopting this one-pot procedure, fluoro
aldehyde 13 obtained in situ by hydrolysis (9:1 TFA–
H2O, r.t., 1 h) of (1R,1S)-2,5-anhydro-3,6-di-O-benzyl-4-
deoxy-1,4-difluoro-1-O-methyl-D-talitol (12),10a was
made react with diamine 14,15 furnishing fluoro-C-glyco-
furanosyl aminomethylpyrrolidine derivative 15 in good
yield (Scheme 3).16

In conclusion, this work provides a simple approach to the
synthesis of functionalized N-substituted aminomethyl C-
glycofuranosides by reductive amination of formyl C-gly-
cofuranosides, readily available by DAST methodology
from hexose-derived equatorial-2-OH-glycopyranosides.
The method works well with good nucleophilic amines
and allows complete stereocontrol at the anomeric center.
Stereo- and functional diversity on the furanoid ring could
be achieved on starting from different equatorial-2-OH-
glycohexopyranosides. Extension of this work to other
substrates as well as studies with other nucleophiles is
currently under investigation.
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