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Dpto. de Informática, Universidad Nacional de San Luis,
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Abstract. Metric space searching is an emerging technique to address
the problem of efficient similarity searching in many applications, in-
cluding multimedia databases and other repositories handling complex
objects. Although promising, the metric space approach is still immature
in several aspects that are well established in traditional databases. In
particular, most indexing schemes are not dynamic. From the few dy-
namic indexes, even fewer work well in secondary memory. That is, most
of them need the index in main memory in order to operate efficiently.
In this paper we introduce a secondary-memory variant of the Dynamic
Spatial Approximation Tree with Clusters (DSACL-tree) which has shown
to be competitive in main memory. The resulting index handles well the
secondary memory scenario and is competitive with the state of the art.
The resulting index is a much more practical data structure that can be
useful in a wide range of database applications.

1 Introduction

As the growth of digital data accelerates in variety and extend, the contempo-
rary databases are bulkier and more complex in nature. To manage this bulk
and complexity increasing new techniques are employed, with the multimedia
data for example, the standard approach is to search not at the level of the
actual multimedia objects, but rather using characteristics extracted from these
objects. In such environments, an exact match has little meaning, a very use-
ful search paradigm is to quantify the proximity, similarity, or dissimilarity of
a query object versus the objects stored in a database to be searched. Simi-
larity or proximity searching have became a fundamental computational tasks
with application in many areas as non- traditional databases, data mining, ma-
chine learning, data compression; and so on. A useful abstraction for nearness is
provided by the mathematical notion of metric space.

In a metric space, there is a universe U of objects and a nonnegative function
d : U × U → R+ defined among them, that will denote a measure of “distance”
between objects. This distance function satisfies the three axioms that make
(U, d) a metric space: strict positiveness (d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x =
y), symmetry ((d(x, z) ≤ d(x, y) + d(y, z))), and triangle inequality ((d(x, y) =
d(y, x))). The smaller the distance between two objects, the more “similar” they
are. A finite subset X ⊆ U with size n =| X |, is called database and represents
the collection of objects. We are interested to answer similarity queries posed to
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this database. That is, given a new object from the universe (a query) q ∈ U ,
we must retrieve all the elements similar enough to the query in the database.
The database is preprocessed so as to build an index that reduces query time.
There are two typical queries of this kind:

Range query: Retrieve all elements within distance r to q in S. This is, the
set {x ∈ S, d(x, q) ≤ r}.

Nearest neighbor query (k-NN): Retrieve the k closest elements to q ∈ S.
That is, a set A ⊆ S : |A| = k and ∀ x ∈ A, y ∈ S −A, d(x, q) ≤ d(y, q).

In this paper we are devoted to range queries. Nearest neighbor queries can
be rewritten as range queries in an optimal way [5], so we can restrict our
attention to range queries. In order to answer queries efficiently the database
is preprocessed so as to build an index that reduces query time. This metric
space approach to similarity search is becoming widely popular [9, 10] and a
large number of indexing methods have flourished [3, 6, 9], but mature solutions
from the database viewpoint are a long way off.

Most of the existing indexes are static: Once they are built for a given dataset,
adding more elements, or removing an element from it, requires an expensive
updating of the index. Some indexes tolerate insertions in principle, but their
quality degrades and require periodic rebuildings. Others tolerate deletions with
the same quality degradation problem. Thus there are very few dynamic indexes.

There are also many interesting databases for similarity searching where the
objects are so large that they must stay on disk; or the objects are so many that
the index itself cannot fit in main memory. In this case, although the similarity
computation can be expensive (e.g., taking milliseconds of CPU time) we cannot
disregard disk costs.

From the few dynamic indexes, even fewer work well in secondary memory.
That is, most of them need the data structure in main memory in order to operate
efficiently. Although for some applications a static scheme may be acceptable,
many relevant ones do require dynamic capabilities. Actually, in many cases it is
sufficient to support insertions, such as in digital libraries and archival systems,
versioned and historical databases, and several other scenarios where objects are
never updated or deleted.

In this paper we introduce a dynamic index aimed at secondary memory.
We base our work on the Dynamic Spatial Approximation Tree with Clusters
(DSACL-tree) [2]. It has been shown that the DSACL-tree gives an attractive
tradeoff between memory usage, construction time, and search performance. Our
secondary memory version (DSACL*-tree) retains these good features, and in
addition perform well in secondary memory. We focus on handling insertions
and searches in this paper, leaving deletions for future work.

2 Previous Works

Algorithms to search in general metric spaces can be divided into two large areas:
pivot-based algorithms and compact partition-based ones. Pivot-based algorithms
are better suited for low dimensional metric spaces, while compact partitions
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ones deal better with high dimensional metric spaces. Although the former can
improve by using more memory, they need more and more memory to beat
the latter as dimension grows. On the other hand, indices based on compact
partitions use a fixed amount of memory and cannot be improved by giving
them more space. However, there are algorithms that combine ideas from both
areas. See [?,10, 3, 6] for more complete surveys.

Pivot-Based Algorithms The idea is to use a set of k distinguished elements
(“pivots”) p1 . . . pk ∈ S and storing, for each dataset element x, its distance
to the k pivots (d(x, p1) . . . d(x, pk)). Given the query q, its distance to the k
pivots is computed (d(q, p1) . . . d(q, pk)). Now, if for some pivot pi it holds that
|d(q, pi)− d(x, pi)| > r, then we know by the triangle inequality that d(q, x) > r
and therefore do not need to explicitly evaluate d(x, p). All the other elements
that cannot be discarded using this rule are directly compared with the query.

Clustering Algorithms This second trend consists of dividing the space into
zones as compact as possible, and storing a representative point (“center”) for
each zone plus a few extra data that permit quickly discarding the zone at query
time. Two criteria can be used to delimit a zone. The first one is the Voronoi
region, where we select a set of centers and put every other point inside the
zone of its closest center. The regions are bounded by hyperplanes and the zones
are analogous to Voronoi regions in vector spaces. Let {c1 . . . cm} be the set
of centers. At query time we evaluate (d(q, c1), . . . , d(q, cm)), choose the closest
center c and discard every zone whose center ci satisfies d(q, ci) > d(q, c) + 2r.
The second criterion is the covering radius cr(ci), which is the maximum distance
between ci and an element in its zone. If d(q, ci) − r > cr(ci), then there is no
need to consider zone i. The two criteria can be combined.

Combining Clustering with Pivots There are some indexes that combine
both ideas by dividing the space into compact zones and, at the same time,
storing distances to some distinguished elements (pivots) [1].

3 Dynamic Spatial Approximation Trees

In this section we will describe briefly the Dynamic Spatial Approximation Tree
(DSA-tree), in particular the version called timestamp with bounded arity (re-
ported in [7] as one of the better options for this dynamic tree), on top of which
DSACL-tree [2] was built. The DSA-tree is a data structure to answer similarity
queries in metric spaces based on the concept to approach the query spatially,
getting closer and closer to it, so when we look for an element from the uni-
verse (a query q ∈ U) and being in some element a belonging to the database
S (S ⊆ U), the goal is to move to another object of S spatially closer of q than
a. When is not longer possible do this move anymore, we are positioned on the
element closest to q from S.

The DSA-tree is built incrementally via insertions. The tree has a maximum
arity A. Each tree node a stores a timestamp of its insertion time, time(a), its
covering radius, R(a), and its set of children N(a) (the neighbors of a). To insert
a new element x, its point of insertion is sought starting at the tree root and
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moving to the neighbor closest to x, updating R(a) in the way. We finally insert
x as a new (leaf) child of a if (1) x is closer to a than to any b ∈ N(a), and
(2) the arity of a, |N(a)|, is not already maximal. In other case, we insert x in
the subtree of the closest element b ∈ N(a). Neighbors are stored left to right
in increasing timestamp order. Note that each element is older than its children
and than its next sibling.

The idea for range searching is to replicate the insertion process of relevant
elements. That is, we act as if we wanted to insert q but keep in mind that
relevant elements may be at distance up to r from q. So in each decision for
simulating the insertion of q we permit a tolerance of ±r, so that it may be that
relevant elements were inserted in different children of the current node, and
backtracking is necessary.

We have to consider two facts, at the time an element x was inserted. The first
is that, a node a in its path may not have been chosen as its parent because its
arity was already maximal. So, at query time, instead of choosing the closest to
x among {a}∪N(a), we may have chosen only among N(a). Hence, we perform
the minimization only among elements in N(a). The second fact is that, elements
with higher timestamp were not yet present in the tree, so x could choose its
closest neighbor only among elements older than itself.

Hence, we consider the neighbors {b1, . . . , bk} of a from oldest to newest, dis-
regarding a, and perform the minimization as we traverse the list. This means
that we enter into the subtree of bi if d(q, bi) ≤ min{d(q, b1), . . . , d(q, bi−1)}+2r.
Up to now we do not really need the exact timestamps but just to keep the
neighbors sorted by timestamp. We make better use of the timestamp informa-
tion in order to reduce the work done inside older neighbors. Say that d(q, bi) >
d(q, bi+j)+2r. We have to enter into the subtree of bi anyway because bi is older.
However, only the elements with timestamp smaller than that of bi+j should be
considered when searching inside bi; younger elements have seen bi+j and they
cannot be interesting for the search if they are inside bi. As parent nodes are
older than their descendants, as soon as we find a node inside the subtree of bi

with timestamp larger than that of bi+j we can stop the search in that branch,
because all its subtree is even younger.

4 Dynamic Spatial Approximation Trees between
Clusters

In this section we will describe briefly the Dynamic Spatial Approximation Trees
between Clusters (DSACL-tree) [2]. The DSACL-tree performs the spatial ap-
proximation on groups or clusters of objects that are very close to each other,
rather than individual objects. By this way it can reduce search costs, because it
have to do less backtracking. Therefore, in the DSACL–tree each node represents
a cluster of very similar objects, for short we refer to it simply as cluster. Thus,
we relate the clusters by their proximity in the metric space. So, each node of
the tree would be able to store multiple database objects, reducing the number
of nodes with respect to the original DSA–tree.
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As in the DSA-tree we build the tree incrementally, considering a maximum
arity and maintaining information of the timestamp (time of insertion of each
element). We also register the timestamp time(c) of each node c in the tree, that
is the time when this node was created. Each node c keeps an object center(c)
as the center of the cluster and the k nearest objects (cluster(c)) seen in its
subtree, and is connected with their clusters-neighbors N(c). The cluster also
have a cluster radius rc(c), that is considering the objects in increasing order to
the center(c) the distance of the k-th object in the cluster(c). Any object further
away from the center than rc(c) would become part of another tree node, which
could be a new neighbor in some cases, since the arity is bounded in the same
way as DSA-tree. Each node c also stores the maximum distance between the
center(c) and the farthest object in its subtree R(c) (as DSA-tree does), called
covering radius of the subtree of c.

Since each node c represents a cluster centered in center(c) with at most
k objects within cluster(c), we maintain the distances between center(c) and
all the objects in cluster(c) ordered by increasing distance to the center. At
search time, we can use these stored distances in order to minimize the number
of distance computations using the triangle inequality. Besides, if x1, . . . , xk are
the objects in cluster(c) sorted by distances, the covering radius of the cluster
will be rc(c) = d(center(c), xk). Therefore, for each object xi inside the cluster,
we stored its insertion moment time(xi) and the distance d(center(c), xi). It is
clear that it is not necessary to really register rc(c) because it can be obtained
from the stored distances inside the node. During searches, both radios rc(c) and
R(c) are used to rule out entire areas of space containing non relevant elements.

Because of the spatial approximation, to insert an new element x, we should
go down the tree until found the node c such that x is closer to center(c) than
the centers of neighbors in N(c). If in cluster(c) there is room for one more
element, then it will be inserted along with its distance. If there is not room, we
must choose the most distant element b among the k elements in cluster(c) and
x (k + 1th in distance order from center(c)). We have two possible cases:

1. if b is x, then x must be added like center of a new neighbor node of c, if the
arity allows it, otherwise it must choose the node among all the neighbors
in N(c) whose center is the nearest and keep the insertion from there.

2. If b is not x, then b must choose the nearest center a among center(c) and
the center of all nodes neighbors in N(c) that are newer than b because when
b was inserted, it wasn’t compared with them. Later, if a is center(c), the
process followed is the same as when b is x; otherwise, if a is not center(c),
then continues with the insertion of b from the node with center a.

Algorithm 1 illustrates the whole insertion process. The function is invoked as
InsertCl(a, x), where a is the root node and x is the element to be inserted.

When performing a range query, we proceed in a similar way as DSA-tree,
that is we perform the spatial approximation to the query via the centers of
nodes. As we mentioned previously, the idea for range searching is to replicate
the insertion process of the relevant elements to the query. That is, we act as
if we wanted to insert q but keeping in mind that relevant elements may be
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Algorithm 1 Insertion algorithm of a new element x in a DSACL-tree with
root node a.

InsertCl (Node a, Element x)
1. R(a)← max(R(a), d(center(a), x))
2. If ((|cluster(a)| < k) ∨ (d(center(a), x) < rc(a))) Then

3. cluster(a)← cluster(a) ∪ {x}
4. d′(x)← d(center(a), x)
5. timestamp(x)← CurrentT ime
6. If (|cluster(a)| = k + 1) Then

7. y ← argmaxz∈cluster(a)d
′(z)

8. cluster(a)← cluster(a)− {y}
9. InsertCl(a,y)

10. Else

11. c← argminb∈N(a)d(center(b), x)

12. If d(center(a), x) < d(center(c), x) ∧ |N(a)| < MaxArity
Then /* b is a new node, neighbor of a, with center(b) = x */

13. N(a)← N(a) ∪ {b}
14. center(b)← x
15. N(b)← ∅, R(b)← 0
16. cluster(b)← ∅
17. timestamp(x)← CurrentT ime
18. time(b)← CurrentT ime
19. Else

20. InsertCl (c,x)

at distance up to r from q, so in each decision we simulate the insertion of q
permitting a tolerance of ±r. So that it may be that relevant elements were
inserted in a cluster, in different children of the current node, and backtracking
is necessary.

Algorithm 2 Range query algorithm on a DSACL–tree with root node a.
RangeSearchCl (Node a, Query q, Radius r, Timestamp t)
1. If time(a) < t ∧ d(center(a), q) ≤ R(a) + r Then

2. If d(center(a), q) ≤ r Then Report a
3. If (d(center(a), q)− r ≤ rc(a)) ∨ (d(center(a), q) + r ≤ rc(a)) Then

4. For ci ∈ cluster(a) Do

5. If |(d(center(a), q)− d(ci)| ≤ r Then

6. If d(ci, q) ≤ r Then Report ci

7. If d(center(a), q) + r < rc(a) Then Return

8. dmin ← ∞
9. For bi ∈ N(a) in increasing order of timestamp Do

10. If d(center(bi), q) ≤ dmin + 2r Then

11. k ← min{j > i, d(center(bi), q) > d(center(bj), q) + 2r}
12. RangeSearchCl (bi,q,r,time(bk))
13. dmin ← min{dmin, d(center(bi), q)}
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5 Secondary Memory

The distance is assumed to be expensive to compute. However, when we work in
secondary memory, the complexity of the search must consider both the number
of distance evaluations performed and the I/O time; other components such as
CPU time for side computations can usually be disregarded. Given a dataset of
|S| = n objects of total size N and disk page size B, queries can be trivially
answered by performing n distance evaluations and N/B I/Os. The goal of an
index is to preprocess the dataset so as to answer queries with as few distance
evaluations and I/O operations as possible.

The DSACL*-tree (DSACL-tree in secondary memory) make also a parti-
tion of the searching space considering spatial proximity, grouping the closest
elements, relating complete clusters by its proximity in the space. This permits
that each node of the structure is capable of storing multiple elements from
the database. Because of each node has an fixed size, this structure seems to
be naturally adequate for secondary memory. To avoid disk underutilization,
DSACL*-tree we will fix the number of size of the clusters and also the maxi-
mum arity of the tree in function to the page size available. Therefore, each node
takes exactly one page in disc, simplifying the administration of nodes.

As in the original DSACL-tree does, for each neighbor of a node a, we will
save its object center, its location on the file and its insertion time. We do this
to avoid, as we shall see, some I/Os on insertions. Because we need to set the
size of a node as a size of a page disk, considering the size needed to represent
an element we must to fix the maximum arity and the cluster size of each node.
If the elements are big it is possible to notice that the arity and the cluster size
will be small. However, as it has been demonstrated in [7], it is not a drawback
because small arities were a key factor, for the DSA-tree, to reduce construction
and search costs in several metric spaces.

To insert an element x into our structure we proceed exactly like in the
DSACL-tree: We find the insertion point in the tree, following a unique path, so
that when we determine that x should be added to a node a because x is closer
to a than to any neighbor in N(a), already have loaded the page corresponding
to a. If a already have its k elements then it must choose the element furthest
from the center from its k + 1 elements and then choose if x must to be inserted
like center of a new neighbor, if the arity allows it, otherwise the insertion must
to continue forcing x to choose the closest neighbor from N(a) and keeping going
down on the tree recursively.

As mentioned earlier, in every node (page) we store the object center of all
its neighbors, this avoid some I/O operations when the element to insert must
to decide which element is closer the center of the node or some neighbor.

6 Experimental Results

In order to give a broad picture of the performance of our index, we have selected
four widely different metric spaces, all from the SISAP Metric Space Library
(www.sisap.org). The metric spaces considered are:
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– WORDS: a dictionary of 69,069 English words. The distance is the edit
distance, that is, the minimum number of character insertions, deletions and
substitutions needed to make two strings equal.

– DOCUMENTS: 1,265 documents under the Cosine similarity, from TREC-3
collection. In this model the space has one coordinate per term and docu-
ments are seen as vectors in this space. The distance we use is the angle
among the vectors.

– IMAGES: 40,700 20-dimensional feature vectors, generated from NASA im-
ages, using Euclidean distance.

– HISTOGRAMS: 112,682 8-D color histograms(112-dimensional vectors) from
an image database. Euclidean distance is used.

For search experiments, we built the indexes with 90% of the objects and used
the other 10% (randomly chosen) as queries. All our results are averaged over 10
index constructions using different database permutations. We have considered
range queries retrieving on average 0.01%, 0.1% and 1% of the dataset. This
corresponds to radii 0.14, 0.15 and 0.195 for DOCUMENTS, 0.60574, 0.78 and
1.009 for IMAGES, and 0.051768, 0.082514 and 0.131163 for HISTOGRAMS.
WORDS have a discrete distance, so we used radii 1 to 4. The same queries were
used for all the experiments on the same datasets.

In [2] it was experimentally demonstrated that DSACL-tree can beat DSA-
tree in some of these metric spaces. So, we only show here the behavior of
DSACL*-tree for lack of space. As it can be noticed in Figure 1, the maximum
arity has a tradeoff with the cluster size, and this tradeoff affects the number of
I/O operations performed. If the arity is small, the cluster can increase its size,
and it has showed to be good to minimize the I/O operations (see Figure 2).
In WORDS the better results is with maximum arity of 2, considering distance
evaluations and I/O operations performed during searches. For IMAGES and
DOCUMENTS the maximum arity would be 4. In the case of HISTOGRAMS,
because the size of each element (112 real numbers are needed to represent each
element), the maximum arity allowed is 2.

It is also important to notice that our secondary memory version of the
DSACL-tree have a good fill ratio, in all cases over 69%. Table 1 shows the
average disk page occupancy achieved for the different spaces. In [8] are presented
two versions for secondary memory for the DSA-tree (DSA*-tree and DSA+-
tree), and the experimental results for them and for the M-tree [4], on the same
four metric spaces. We compare the fill ratio and the total number of pages used
by these data structures with our results. As it can be noticed we obtain a good
fill ratio and we use, in general, fewer disk pages than the other indices designed
for secondary memory, while we maintain a good search performance.

7 Conclusions

In this work we present the DSACL*-tree which is an index for searching metric
spaces for secondary memory. This new index enhances the good features of the
DSACL-tree (spatial approximation, dynamism, and clustering), but also takes
into account the I/O operations costs. In fact, each node of the DSACL*-tree
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Fig. 1. Distance evaluations at search time, for the four spaces.

Fill ratio Total pages used
Dataset DSA*-tree DSA+-tree DSACL*-tree DSA*-tree DSA+-tree M-tree DSACL*-tree

WORDS 83% 66% 69% 904 1,536 1,608 901
DOCUMENTS 84% 68% 69% 12 22 31 9
IMAGES 80% 67% 72% 1,271 1,726 1,973 1,366
HISTOGRAMS 75% 67% 91% 18,781 21,136 31,791 24,827

Table 1. Average space usage for the different datasets.

corresponds to a page. By this way, we try to get the most advantage in each read
or write into the disk, locating similar objects together. Therefore, we reduce the
backtracking at searches improving the cost, in distance evaluations, at the same
time we make few I/O operations during the retrieval relevant elements. We have
shown some empirical evidence that our new index is competitive considering
the space used, with respect to the other dynamic indices for secondary memory
such as DSA*-tree, DSA+-tree and M–tree.

For the final version of this paper we plan to include the complete comparison
of DSACL*-tree with the other secondary memory indices.
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