
Low-power focal-plane dynamic texture segmentation based
on programmable image binning and diffusion hardware

Jorge Fernández-Berni and Ricardo Carmona-Galán

Institute of Microelectronics of Seville (IMSE-CNM)
Consejo Superior de Investigaciones Cient́ıficas y Universidad de Sevilla

Parque Tecnológico de la Cartuja. Calle Américo Vespucio s/n, 41092, Seville, Spain

ABSTRACT

Stand-alone applications of vision are severely constrained by their limited power budget. This is one of the
main reasons why vision has not yet been widely incorporated into wireless sensor networks. For them, image
processing should be suscribed to the sensor node in order to reduce network traffic and its associated power
consumption. In this scenario, operating the conventional acquisition-digitization-processing chain is unfeasible
under tight power limitations. A bio-inspired scheme can be followed to meet the timing requirements while
maintaining a low power consumption. In our approach, part of the low-level image processing is conveyed to the
focal-plane thus speeding up system operation. Moreover, if a moderate accuracy is permissible, signal processing
is realized in the analog domain, resulting in a highly efficient implementation. In this paper we propose a circuit
to realize dynamic texture segmentation based on focal-plane spatial bandpass filtering of image subdivisions.
By the appropriate binning, we introduce some constrains into the spatial extent of the targeted texture. By
running time-controlled linear diffusion within each bin, a specific band of spatial frequencies can be highlighted.
Measuring the average energy of the components in that band at each image bin the presence of a targeted
texture can be detected and quantified. The resulting low-resolution representation of the scene can be then
employed to track the texture along an image flow. An application specific chip, based on this analysis, is being
developed for natural spaces monitoring by means of a network of low-power vision systems.

Keywords: Wireless sensor networks, bio-inspired processing architecture, dynamic textures, VLSI implemen-
tation, diffusion

1. INTRODUCTION

Wireless Sensor Networks (WSN)1 represent a clear example of the advances reached in communications and
electronic. In these networks, tiny autonomous sensors are capable of capturing information from their sur-
roundings, processing this information and communicating the results if necessary. Data obtained by sensors
normally comes from scalar measurements like temperature, pressure or humidity. This permits meeting strict
power budgets while employing a conventional serial processing scheme. Complex computations are not usually
necessary and the amount of information to be either processed in-situ or broadcasted is small. But recently, a
step further has been proposed: wireless multimedia sensor networks.2 This implies the incorporation of vision
capabilities into the network nodes. At this point a crucial problem arises: image processing means a great
deal of computation to be realized over a quite significant amount of raw data. In these conditions, pure digital
processing schemes could only achieve real-time performance at the expense of a very high power consumption,
especially high when compared to the limited resources of the sensor nodes.

In this paper we present an approach based on a bio-inspired processing scheme which addresses this problem.
By carefully designing focal-plane analog hardware performing low-level tasks3 over the images it is possible to
obtain a reduced representation of such images at very low energy cost. A digital processor would carry out
medium- and high-level tasks over this reduced representation in order to achieve the final result. This processing
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chain is similar to that of biological vision sensors, where the retina plays the focal-plane hardware role, pre-
processing the scene just captured. The outcome is a still retinotopic but simplified —in terms of the number of
data— and elaborated —in terms of the nature of the data— version of this scene which is sent to the visual cortex
for further understanding.4 It has been demonstrated that a physical implementation based on this approach5

can reach a high performance with less cost and power than their digital counterparts. More specifically, we
apply the previous approach to the segmentation of dynamic textures. A temporal or dynamic texture (DT)
is a spatially-repetitive time-varying visual pattern whose temporal variation presents certain stationarity.6 An
additional feature of a DT is its indeterminate spatial and temporal extent. Smoke colums, wave patterns,
swaying trees or a flock of birds are some examples of dynamic textures. The interest of implementing these
detection capabilities in WSNs comes from two facts. First, one of the most suitable applications for WSNs is
environmental monitoring.1 Second, DTs are very common in natural scenes.7 In order to carry out segmentation
of DTs, we make use of binning and filtering at the focal-plane. This processing can be realized by an arbitrarily
gated resistive grid. The resistors of this grid are implemented by MOS transistors biased in the ohmic region.
The control of their gate voltage permits to set the size of the bins according to the scale to be surveyed for
detecting the targeted textures. Within every bin, the pixel values are diffused during a certain —controlled—
period of time. This extracts relevant information at the spatial frequency bands associated to the frequency
signature of the DT. Finally, once the diffusion is stopped at the required time instant, the total energy of every
bin is calculated. A simplified representation of the original scene is built, by means of which temporal evolution
of the aimed textures can be tracked.

2. BIO-INSPIRED PROCESSING SCHEME

Existing research on DT recognition makes use of complex computations based normally on the optic flow in order
to extract motion features.8 This allows the classification of sequences containing different categories of textures.
However, optic flow computation implies heavy processing load or, in other words, high energy consumption. We
propose a different approach based on a bio-inspired processing architecture (Fig. 1). By means of focal-plane
processing —concurrent and therefore fully-parallel connected to the sensor— a scene composed of M ×N pixels
is transformed into a reduced representation composed of m × n values (with M � m and N � n). It is
this reduced representation which is then converted to the digital domain in order to be post-processed. This
alleviates the intrinsic bottleneck associated to the serialization as well as the processing load of the digital
processor.

At this point the key element is the focal-plane processing that permits texture segmentation. The spatial
repeatability of dynamic textures is exploited in the form of a distinctive frequency signature for each texture.
Thus we propose to divide the scene into portions, or bins, of size W × H pixels. Then, we will represent each
bin by a single value correlated to the chance of containing textures close to the targeted ones. The original
amount of information will be reduced W × H times, resulting in a total number of bins:

m × n =
M × N

W × H
(1)

The size of the bins will be determined not only by the spatial frequency signature but also by the scale in
which we look for it. It must also allow to track the texture across the scene. As an example, in Fig. 2 a binning
process has been applied to a scene containing a flock of birds. The value of each bin is calculated as:

Figure 1. Processing scheme proposed
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Figure 2. Binning and filtering applied to a scene containing a flock of birds

Bkl =
∑

∀k>0 Ekl(k)
∑

∀k Ekl(k)
(2)

where kT = (u, v)T represents the wave number and Ekl(k) the energy associated to the frequency component k
within the bin Bkl. As can be seen, even the density of birds within the flock can be observed without performing
a pixel-level analysis.

The next step is to design power-efficient analog hardware capable of realizing both pixel binning and spatial
filtering. This hardware must extract information about any selected band of frequencies, defined within each
bin. This will permit searching for specific frequency signatures by region. A family of spatial filters extensively
employed in literature because of their suitable properties to develop a multiscale representation of the image is
the Gaussian lowpass filters. They are closely related to diffusion and a feasible implementation with MOS-based
resistances, which in turns will allow to control the size of the bins, will be proposed.

3. SPATIAL FILTERING WITH LINEAR RESISTIVE GRIDS

The impulsive response of a Gaussian filter is given by:9

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3)

where σ is the standard deviation of a Gaussian distribution centered at the origin. It expresses the spreading of
the original image information towards the neighbouring pixels. In the Fourier space, this function is represented
by:

H(kx, ky) = e−2π2σ2(k2
x+k2

y) (4)

Let us consider now the diffusion equation:

∂V

∂t
(x, y, t) = D∇2V (x, y, t) (5)

whose spatial Fourier transform is:

∂V̂

∂t
(kx, ky, t) = −4π2D(k2

x + k2
y)V̂ (kx, ky, t) (6)

and solving:

V̂ (kx, ky, t) = V̂ (kx, ky, 0)e−4π2Dt(k2
x+k2

y) (7)

Therefore, diffusion during a period of time denoted by t is equivalent to the application of a Gaussian filter
whose spread is controlled by this t through:
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Figure 3. Resistive grid with time-controlled smoothing factor

σ =
√

2Dt (8)

thus, the longer the diffusion time the larger the spread of the original image information towards its vicinity.
If we substract the result of diffusing the original function, V (x, y, 0), during two time periods t1 and t2, the
outcome is equivalent to apply a DoG bandpass filter.10 Therefore, time-controlled diffusion permits to evaluate
the magnitude of different spatial frequency components. In order to implement this diffusion, we are going to
make use of a resistive grid. Resistor networks have been a useful tool in many branches of science and technology
since long ago.11

Consider the resistive grid of Fig. 3, where the smoothing factor is determined by the amount of time that the
initial node voltages are allowed to diffuse, thus differing from static implementations of resistive grid filtering.12

If we permit the network to evolve from the initial state, the equation satisfied at each node is:

τ
dVij

dt
= −4Vij + Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 (9)

where τ = RC, and the indexes i and j are employed to denote the position of the pixel in the now discrete grid
in which diffusion takes place. Applying the DFT to this equation we obtain:

τ
dV̂uv

dt
= −4V̂uv + e

2πiu
M V̂uv + e

−2πiu
M V̂uv + e

2πiv
N V̂uv + e

−2πiv
N V̂uv (10)

where we have considered that the set of pixels being processed is of size M × N . Eq.( 10) can be rewritten as:

τ
dV̂uv

dt
= [−4 + 2cos(

2πu

M
) + 2cos(

2πv

N
)]V̂uv (11)

and now solving in the time domain we obtain:

V̂uv(t) = V̂uv(0)e
2t
τ [cos( 2πu

M )+cos( 2πv
N )−2] (12)

where V̂uv(0) represents the DFT of the image defined by the initial voltages at the capacitors and V̂uv(t) is the
DFT of the image defined by those same node voltages after a certain time interval t since the network started
to evolve. A transfer function can be defined as follows:

Ĥuv(t) =
V̂uv(t)
V̂uv(0)

= e
2t
τ [cos( 2πu

M )+cos( 2πv
N )−2] (13)

what reflects an approximation of a Gaussian spatial filtering where t determines the cut-off frequency. Let us
represent the transfer function defined by Eq. (13) over the corresponding discrete Fourier plane for different
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Figure 4. Transfer function of the resistive grid for increasing values of t
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Figure 5. Original image and outcome of applying to it the transfer functions in Fig. 4, respectively

values of t. For the sake of simplicity, we are going to consider square images. The result is depicted in Fig. 4.
Take into account that the center of the planes corresponds to the wave number (u, v)T = (0, 0)T where the
transfer function always equals its maximum value for any value of t, that is, Ĥ00(t) = 1. The outcome of
applying the transfer functions in Fig. 4 is shown in Fig. 5. It can be seen that the operation realized by the
grid is ideally an isotropic lowpass filtering whose bandwidth is determined by t. The longer the interval t the
narrower the bandwidth. A certain distortion appears as higher frequencies are to be filtered. It is due to the
4-connected interconnection pattern among neighbor pixels which constrains the filtering of the highest spatial
frequency to only four spatial directions.13 The smaller the frequencies considered the more the possible spatial
directions involved in the filtering and therefore the more its isotropic shape.

One of the most interesting aspects of the transfer function just described is that information about any band
of spatial frequencies with approximately the same norm can be easily extracted from the difference between two
filtered images. In Fig. 6 the normalized difference between the adjacent transfer functions in Fig. 4 are depicted.
Note that the bandwidth of the resulting bandpass filters depends on the time intervals considered. The ideally
isotropic shape of the filtering performed by the proposed resistive grid has an enormous importance when it
comes to segment dynamic textures. It implies that any spatial frequency signature defined can be detected
whatever its spatial orientation be.

Finally, there is an additional issue to be remarked about the physics behind the circuit realizing the filtering
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Figure 6. Normalized difference between the adjacent transfer functions in Fig. 4

just explained. It is composed of capacitors connected by resistors where a simple charge diffusion process which
does not require further energy insertion is carried out. That is to say, the signal processing within the circuit
is massively parallel and ultra power-efficient.

4. PHYSICAL IMPLEMENTATION OF IMAGE BINNING AND FILTERING

We have demonstrated that a simple resistive grid meets two essential features for the proposed processing scheme:
power-efficient operation and flexibility for extracting information about different bands of spatial frequencies.
To achieve a VLSI implementation of programmable image binning based on such a circuit we propose the
hardware structure depicted in Fig. 7. It consists of a M × N grid where the value of each pixel is stored in a
capacitor. Each capacitor is 4-connected to the neighboring capacitors by means of MOS transistors. Both the
capacitors and the transistors are nominally identical throughout the grid. The gate voltage of each transistor is
controlled by the corresponding row or column selection signal. When selected, i. e. the control signal is high,
the MOS are biased in the ohmic region, behaving as resistors connecting two nodes. If the control signal is low
the MOS transistors are off, establishing the boundary of a bin. Thus the particular distribution of 0’s and 1’s in
the set of row and column selection signals determines the size and amount of bins in which the image plane is
divided. For instance, bins with a size of 2× 2 pixels would be established by the distribution in Fig. 7. Finally,
once the image plane division is defined, a charge diffusion process like that of the resistive grid described in
the previous section is performed within the bin whenever the corresponding control signals remain high. By
switching to low these signals, the diffusion is stopped.

As a measure of the accuracy and robustness reached by a grid implemented by MOS transistors with
respect to an ideal resistive grid, we have implemented in HSPICE an NMOS grid. The models belong to
a standard 0.35μm CMOS process. The main parameters employed are nominally W = 1μm, L = 4μm,
μ0 = 3.41 · 10−2m2/Vs and tox = 7nm. Independent deviations following gaussian distributions with σ = 10% of
μ0 and tox from their nominal values are introduced in a 64×64 grid. Initializing the grid with the original image
in Fig. 5 and permitting the network to evolve, the RMSE of the voltages at the capacitors with respect to an
ideal resistive grid is always less than 0.75%, that is, an accuracy better than 7 bits. To visualize this accuracy,
we have represented in Fig. 8 the output images for an ideal resistive grid and for the NMOS grid implemented
at the time instant in which the RMSE in the NMOS grid reaches its maximum. As can be seen, the outcome
is perceptually equivalent. We have also represented their difference normalized by a maximum observed error
between pixels of 1.88%.

5. COMPUTING THE ENERGY OF THE BINS

Notwithstanding the above mentioned, the hardware proposed in Fig. 7 does not still match the focal-plane
processing defined in Fig. 1. It is necessary to represent every bin by only one value once the difussion has been
stopped. This is the way a reduced representation of the scene is built. Let Vij(t) be the voltages at the M ×N
grid at time instant t. That is, the raw image after diffusion for t seconds. For a discrete-time signal, the total
energy is defined as the sum of the squared amplitude of the samples. In the case of a discrete-space signal, i. e.
the image of size M ×N pixels, the energy of the complete image at any given time instant is given by the sum:
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Figure 7. Hardware structure for programmable image binning and filtering
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Figure 8. Outcome of an ideal resistive grid and a grid composed of NMOS, respectively, at the time instant in which the
RMSE in the NMOS grid reaches its maximum value with respect to the ideal resistive grid. Their difference normalized
by a maximum observed error between pixels of 1.88% is also represented
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E(t) =
M−1∑

i=0

N−1∑

j=0

|Vij(t)|2 (14)

what matches the value obtained by adding up the energies corresponding to the different components of the
spatial DFT of the image:

E(t) =
M−1∑

u=0

N−1∑

v=0

|V̂uv(t)|2 (15)

Eqs. (14) and (15) mean that the energy of the image accounts for the filtering undergone during the diffusion.
The total charge in the whole capacitor array is conserved, but, naturally, the system evolves towards the less
energetic configuration. Thus the energy at each time instant is a measure of the evolution of the diffusion
process. The longer t the less E(t). The energy lost between two consecutive points in time during the difussion
corresponds to that of the spatial frequencies filtered. Notice that changing the reference level for the amplitude
of the pixels does not have an effect beyond the dc component of the image spectrum. A constant value added to
every pixel does not eliminate nor modify any of the spatial frequency components already present, apart from
that at the origin of the Fourier space.

In order to analyze the presence of different spatial frequency components within a particular bin of the
image, we would need to measure the energy of the bin pixels once filtered. Remember that for analyzing a
particular band of frequencies we will substract two lowpass filtered versions of the image. In this way, only the
components of the targeted frequency band will remain. This will allow to track changes at that band without
pixel-level analysis. The hardware employed to calculate the energy of the bins at the pixel-level is very simple.
It consists of a MOS grid like that of Fig. 7 linked pixel to pixel with the MOS grid performing diffusion. For
this new grid, all the capacitors must be pre-charged to a reference voltage VREF . The link between both grids
is realized by means of the circuit depicted in Fig. 9 where CP represents the capacitor storing the pixel value
and CE the corresponding capacitor pre-charged to VREF . Once the diffusion has been stopped after a certain
time interval t, the switch SE in all the pixels is switched ON during a fixed period of time TE. It leads to a
final voltage at CE :

VEij = VREF − TE

CE
β[Vij(t) − Vth]2 (16)

We are assuming that all the transistors ME , operating in saturation, are nominally identical. Deviations occur
from pixel to pixel due to mismatch in the threshold voltage (Vth), the transconductance parameter (β), and
the body-effect constant (γ, not in this equation). Being area dependent effects, transistors ME are tailored to
control the resulting error in the computation. Also, mobility degradation contributes to the deviation from the
behaviour depicted in Eq. (16). The useful signal range will be limited by this. When SE is switched back to
OFF in all the pixels after the period of time TE, charge redistribution takes place in the grid, with the same
binning scheme as the diffusion. It results in averaging the pixel energy within each bin:

Figure 9. Circuit linking pixel to pixel the two MOS grids
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V̄Ekl
= VREF − βTE

WHCE

kW+W−1∑

i=kW

lH+H−1∑

j=lH

[Vij(t) − Vth]2 (17)

where indexes k and l identify the bin. This voltage is proportional to the total energy of the pixels of that bin
t seconds after the diffusion started. As referred before, the offset introduced by Vth does not affect any spatial
frequency other than the dc component. Finally, in order to achieve a reduced representation of the scene, only
one pixel out of every bin needs to be read as all the capacitors within the bin will be at the same voltage V̄Ekl

.

6. CONCLUSIONS
A new generic approach to segment dynamic textures has been presented. It is based on a bio-inspired processing
architecture suitable for real-time vision applications where the power requirements demand very low energy
consumption. At the circuit level, we make intensive use of simple resistive grids. It permits the design of
massively parallel and ultra power-efficient analog hardware flexible enough to achieve programmable image
binning and filtering and to extract information about different frequency bands at the focal plane. Finally,
a reduced representation of the scene is obtained by computing the total energy of the pixels within the bins
established. This alleviates the workload of the digital post-processing in order to reduce as much as possible
the power consumption while meeting the timing requirements of real-time vision applications
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