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Abstract 

The different steps for manufacturing a microchannel reactor for the PROX 

reaction are discussed. Transient Liquid Phase bonding (TLP) using a Ni-B-Si 

amorphous melt spun is used for joining micromilled Al-alloyed ferritic stainless 

steel plates followed by recrystallization at 1200ºC for 5 hours. A CuOx-CeO2 

catalyst synthesized by the coprecipitation method was washcoated on the 

microchannel block resulting in a homogenous 20-30 µm thick layer. The 

catalytic activity for CO-PROX reaction is similar in both the powder catalyst 

and the microchannel coated reactor but the selectivity is higher in the 

microchannel reactor. 
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1. Introduction 

The widespread use of portable electric and electronic devices increases the 

need for efficient autonomous power supplies that replace the currently 

predominant battery technology. The use of common fuels/chemicals 

(hydrocarbons or alcohols) as energy sources is a promising alternative when 

combined with the recent developments in microchannel reactor technology. 

The high power density, rapid start-up time, and low-temperature operation of 

PEMFC make these devices as the most promising for powering up electric or 

electronic devices. However, an essential requirement for the reformate-fed 

PEMFC is the removal of CO from the H2 stream after the reforming and water–

gas shift (WGS) reactions. After the WGS units the CO content of the hydrogen 

streams may vary between ca. 0.5 and 2 vol.% being, therefore, mandatory 

clean-up units for the removal of CO to trace level. Preferential CO oxidation 

(CO-PROX) is among the preferred technologies for small-scale fuel processor 

applications [1]. CO-PROX reactions allow reducing CO contents from 1 % in 

the feed to the ppm level.  

When using PEMFCs for portable or automotive applications packed-bed 

reactors have several drawbacks such as pressure drop within catalyst layer, 

temperature gradients, and hot spot due to the high exothermicity of the 

oxidations of CO and H2. Microreactors have the advantages of fast response 

time, easy integration, and small footprint, which are ideal for portable power 

systems. In addition, enhanced mass and heat transport properties are also 

widely recognized as advantages of microreactors [2-6]. In addition to this, 

recent studies of simulated CO-PROX reactions have shown that the reverse 

water-gas-shift side reaction is favoured in the case of packed bed reactors with 

respect to thin catalytic films deposited on microchannel walls [4]. Therefore, 

CO-PROX units based on microchannel reactors have been reported as part of 

integrated fuel processors in a wide power range [6-9].  

Different catalytic systems and reactor designs have been proposed for the CO-

PROX reaction. In a recent study Bion et al. [10] review the performances of 

noble metals (including Pt, Ru, Rh, Pd and Au) and transition metal oxides 

catalysts and compare the advantages and drawbacks for each type of 

catalysts in terms of activity and selectivity including the influence of the 



presence of CO2 and H2O in the reactants flow. They conclude that CuO–CeO2 

catalysts are very attractive for industrial applications since their excellent 

performances, stability and low cost compared to noble metal-based catalysts. 

Dudfield et al. [11, 12] operated a compact fin heat-exchanger reactor 

containing 2.5% Pt-Ru catalyst in the CO-PROX reaction. Using a two-stage 

configuration this unit allowed reductions in the CO concentrations down to 15 

ppm. Silicon wafers [13] or austenitic stainless steel plates [14, 15] were used 

for building microchannel reactors for the PROX reaction. Hwang et al. [16] 

studied the reaction over a silicon-based microreactor coated with a Pt/Al2O3 

catalyst, yielding 99.4% CO conversion.  Kim et al. [15, 17] obtained CO outlet 

concentration below 50 ppm at O2/CO ratio of 2.5 by using a 13-layered micro-

channel reactor built by stacking chemically etched stainless steel plates coated 

with a Pt–Co/Al2O3 catalyst. Despite most of the work on CO-PROX in 

microreactors has been carried out using noble metal based catalysts a few 

insights on copper based catalysts have been reported. Snytnikov et al. [18] 

compared a 5 wt.% Cu/CeO2 catalyst in both fixed bed and microchannel 

reactors with the latter exhibiting higher conversion and selectivity. This catalyst 

allowed the reduction of the CO concentration from 1 vol.% to 10 ppm. Kim et 

al. [15] compared a CuO/CeO2 coated microreactor with a Pt-Co coated 

microreactor showing better selectivities in the CO-PROX reaction for the 

copper-based catalyst. 

In the present work, we provide a description of the different steps required for 

manufacturing a microchannel reactor for the CO-PROX reaction. The reactor is 

tested using conventional CuOx/CeO2 catalysts and the results compared with 

those obtained for powdered catalysts. 

 

2. Materials and methods 

2.1. Catalyst preparation 

The CuOx-CeO2 catalyst was prepared by the coprecipitation method. The 

amount necessary for preparing a 0,5 M solution of Cu(NO3)2·3H2O and 

Ce(NO3)3·6H2O were mixed, under vigorous stirring, to get a 9:1 

Ce(OH)3:Cu(OH)2 weight ratio. After homogenizing the system, a NaOH 

solution (2 M) was added dropwise until a stable pH of 9. The precipitate was 



filtered and washed with distilled water in order to remove the Na+ and NO3
- 

ions. Finally, the obtained solid was dried overnight at 60°C and finally, calcined 

2h at 300 ºC. 

 

2.2. Catalysts characterization 

BET specific surface areas were measured by nitrogen adsorption at liquid 

nitrogen temperature in a Micromeritics ASAP 2000 apparatus. Before analysis, 

the samples were degassed 2 h at 150ºC in vacuum. 

The cerium and copper contents of the samples were determined by X-ray 

fluorescence spectrometry (XRF) in a Panalytical AXIOS PW4400 sequential 

spectrophotometer with a rhodium tube as the source of radiation. 

X-ray diffraction (XRD) analysis was performed on a Siemens D 500 

diffractometer. Diffraction patterns were recorded with Cu Ka radiation (40 mA, 

40 kV) over a 10-80º 2θ range using a position-sensitive detector with a step 

size of 0.01º and a step time of 7 s.  

The Raman spectra were recorded in a dispersive Horiva Jobin Yvon LabRam 

HR800 microscope, with a 20 mWHe-Ne green laser (532,14 nm), without filter, 

and with a 600 g·mm-1 grating. The microscope used a 50x objective and a 

confocal pinhole of 100 μm. The Raman spectrometer is calibrated using a 

silicon wafer. 

The reducibility studies were carried out on a pilot plant built by PID Eng&Tech 

in TPR mode equipped with a VINCI thermal conductivity detector. The 

experiments were done by a thermo-programmed reduction (TPR) of 50 mg of 

catalyst, in a H2 flow of 5 % diluted in Ar (total flow = 50 mL/min), using a 

temperature ramp of 10 °C/min from room temperature to 900 °C.  

The Zeta Potential was measured by using a MALVERN Zetasizer 2000 

instrument. The solids were dispersed in an aqueous solution of 0.003 M NaCl. 

The pHs of the solutions were adjusted with HNO3 or NaOH solutions. 

Rheological properties of the slurries were measured in a rotational 

viscosimeter HAAKE, model VT 500, geometry NV. 

The adherence of the catalytic layer deposited onto the substrates was 



evaluated using an ultrasonic technique. The weight loss caused by the 

exposure of the sample to ultrasound is measured. The structured supports 

immersed in petroleum ether were submitted to an ultrasonic treatment for 30 

min at room temperature. After that, the samples were dried and calcined. The 

weight loss was determined by the difference in the mass of the samples before 

and after the ultrasonic test. The results are presented in terms of the retained 

amount of coating on the monolith, expressed as percentage. 

 

2.3. Catalytic activity measurements 

The CO-PROX reaction was carried out at atmospheric pressure in a PID 

Eng&Tech Microactivity set-up, employing a stainless steel tubular reactor with 

internal diameter of 9 mm and a constant feed stream flow rate of 100 cm3·min-1 

(STP). The catalyst (100 mg, particle size in the 100–200 mm range) was 

diluted with crushed glass particles in the same particle size range forming a 

bed of about 5 mm in length. The experimental runs were carried out in a flow 

containing 50 vol.% H2, 2 vol. % CO and 1 vol. % O2 concentrations using N2 as 

balance. The reaction temperature was increased from 50–60 to 190–250 ºC in 

steps of 10 ºC. For each step the temperature was stabilized and data were 

recorded at steady-state conditions. Fresh catalyst was loaded into the reactor 

after each complete run. Some experiments carried out at the same space-time 

but at varying gas linear velocities confirmed the absence of external mass 

transfer effects. On-line analyses of the feed and products streams were 

performed on an Agilent 7890 gas chromatograph equipped with a Porapak Q, 

two Molecular Sieve 5A and two Hayesep Q columns and two TCD detectors 

and a FID detector. 

The same computerized PID Eng&Tech Microactivity set-up was used to study 

the reaction in the microchannel reactor, replacing the tubular stainless steel 

reactor for the built microchannel reactor the same compositions were chosen 

but 300 cm3·min-1 (STP) feed stream flow rate since 300 mg catalyst was 

loaded in the microchannel block. To study the effect of CO2 and H2O, a series 

of experiments keeping constant the H2 content of the feed stream set at 50 

vol.%, and both the CO and O2 concentrations fixed at 1 vol.% were carried out. 

The CO2 and H2O concentrations in the feed were varied within the 2–10 vol.% 



and 0–20 vol.% ranges, respectively, using N2 as balance. The microactivity 

reference hot box controlled the reaction temperature. For each step the 

temperature was stabilized and data were recorded at steady-state conditions. 

 

3. Microchannel reactor 

The metallic microchannel reactor was manufactured using Al-alloyed ferritic 

stainless steel (for instance, Fecralloy®), since ferritic alloys containing 3–5% of 

aluminium produce by thermal treatment an Al2O3 layer that favours the 

interaction with the catalytic coating [19-22]. The Fecralloy consisted of Cr 22%, 

Al 4.8%, Si 0.3%, Y 0.3%, and Fe balance [21]. 

Characterization of the joined steel plates were carried out by optical and 

electron microscopy. Specimens were extracted from the samples, grinded with 

SiC paper of #240, #400, #600 and #1200 grain size and mirror polished with 

0,3 and 0,1 µm Al2O3 powder. Etching with Vilella’s reagent developed the 

microstructure. Sample observation in the as polished an etched conditions was 

done in a Leica-DM-IRM optical microscope equipped with a digital camera 

(Leica DC300). In order to identify metallic and non-metallic inclusions as well 

as to determine local compositions, the as-polished samples were also 

observed by SEM using a JEOL 5400 system equipped with secondary and 

backscattered electron and x-ray detectors. 

Microchannels were fabricated by micro-milling 1 mm thick ferritic stainless 

steel plates. Each plate has 10 square channels of 750 µm separated between 

them 300 µm machined in a 20x20 mm2 plate. This process results in channels 

with 56 mm2 geometric surface and 700 µm hydraulic radius. 

In order to minimize the high pressures and processing times required for solid 

state bonding the ferritic stainless steel plates were joined together using the 

transient liquid phase (TLP) bonding process. The TLP bonding process uses 

interlayers, which either contain melting point depressants (e.g. B, Si or P) or 

form an eutectic with the parent metal being bonded. The joint is held at the 

bonding temperature until the melting point depressants are lost from the liquid 

interlayer by diffusion and the liquid interlayer solidifies isothermally due to the 

change in composition of the bond. This technique has been previously used to 



join different alloy systems including duplex stainless steels [23-29]. Figure 1 is 

a schematic picture of the steel plates-metallic glass assembly used in this 

work. 

For TLP bonding, a nickel-based interlayer with a composition of Ni-14B-7Si (wt 

%, Goodfellow) was used. This interlayer was an amorphous melt spun foil with 

a thickness of 25 µm. The bonding process was performed in vacuum using a 

test machine developed by Microtest that allows the control of the applied force, 

temperature and time allowing rapid heating up to the bonding temperature. 

Various trials were conducted to establish the optimum bonding parameters, 

varying the temperature, applied force and time. A bonding temperature of 

850°C with an applied force of 2,8 kN (~7 MPa) was selected. Low temperature 

and light pressure applied is required for keeping the mechanical integrity of the 

machined plate since the low creep strength of the selected alloy [30]. Figure 2 

shows the macroscopic aspects of joined plates at different applied forces 

clearly shown that for applied pressures above 15 MPa (6,0 kN) and 900ºC 

creep results in a strong deformation of the machined microchannels. The TLP 

bonded samples were finally treated at 1200ºC for 5 h. 

After the joining procedure the two ferritic steel plates are separated by a 

metallic alloy ca. 25 µm thick whose composition mainly corresponds to that of 

the Ni-based interlayer. The microstructure of the joined area is characterized 

by the existence of two ferritic layers in which the precipitation of chromium 

carbides is evident separated by the Ni-based interlayer. A strong chromium 

carbide precipitation occurs at the stainless steel-interlayer interfaces, figure 3A. 

Upon post-processing at 1200ºC a single phase recrystallizes. EDX analysis 

across the joined area show that the Fe, Cr, Al and Al line profiles are almost 

flat indicating interdiffusion of the Ni-based interlayer and the ferritic steel, 

except for some chromium maximum and iron minimum corresponding to the 

presence of chromium carbide precipitates. Using nickel as a marker, it should 

be noted that this element is absent in the ferritic steel this diffusion is clearly 

seen. Figure 3D shows the Gaussian-fitted Ni line profile across the joined area, 

the FWHM of the Gaussian distribution, ca. 400 µm, is considerable higher than 

the thickness of the used interlayer demonstrating the formation of a single 

phase upon the designed joining procedure. 



Micromachining and joining of the steel plates resulted in a microblock that was 

housed in Al-alloyed ferritic steels cases designed using CFD algorithms for 

ensuring homogeneous flow through all the channels, the housing was join 

together using graphite seals, figure 4. Finally, the microchannel block was 

fitted with thermocouples monitoring inlet and outlet temperatures as well as 

temperature gradients within the microblock. Manifolding and instrumentation of 

the microreactor was implemented in a computerized Microactivity Reference 

Catalytic Reactor from PID Eng&Tech that controls the reaction temperature in 

the reactor through the temperature control of the hot box. 

Prior to the assembly of the microreactor the microchannel block was coated 

with the catalyst. For improving the interaction between the washcoated layer 

and the metallic support, the surface of the microchannel block was modified 

generating an oxide scale that enhances adhesion of the catalytic layer both 

mechanically, through the generated roughness, and chemically through the 

interaction between this oxide scale and the catalytic material.  

Modified surfaces are obtained upon heating in air at elevated temperatures 

being the resulting oxide scale an excellent substrate to adhere catalysts [19-

22]. The optimal treatment parameters remain usually undisclosed. Upon 

heating at 900 ºC for 22 h in air the microchannel block a homogeneous surface 

layer of α-Al2O3 is formed as confirmed by DRX. SEM micrographs, figure 5, 

clearly show the needle-like structure of the formed whiskers having 

thicknesses ranging between 3 and 6 µm.  

Washcoating was selected for coating the microchannels with the CuOx/CeO2 

catalyst. The first step for washcoating a metallic substrate is to prepare stable 

slurries of the catalyst to be deposited. Particle size, solid content of the 

suspension and pH of the catalyst slurry are parameters that influence the slurry 

stability.  The particle size of our catalyst, d90=0.5μm, is well below 10µm the 

upper recommend limit for preparing stable slurries [31] therefore the usual ball 

milling process for reducing particle size was avoided. The isoelectric point 

(IEP) of the catalyst is ca. 7 and therefore the pH was fixed at 4 for ensuring 

high values of zeta potential and then high repulsions between the particles, 

favouring the stability of the slurries [32]. The use of additives for the slurry 

formulation attempts to improve the catalyst adherence and the washcoating 



drying process. The addition of colloidal alumina, that presents a narrow particle 

size distribution, improves the catalyst adherence [31, 33] according to the 

model previously proposed by Nijhuis et al. [34] a bimodal particle size 

distribution increase adherence since the smaller particles are located between 

the bigger ones. The use of polyvinyl alcohol (PVOH) helps in preventing crack 

formation during the drying process improving the wetting properties of the 

catalytic layer. After several trials of slurry formulation for washcoating the 

following proportions of catalyst and additives was selected: 76% catalyst 

content, 7% PVOH (w/w), 17% colloidal alumina (w/w) and pH of the 

suspension adjusted to 4 with diluted HNO3. 

Assuming the Einstein model for the diluents dispersion of hard spheres, the 

viscosity of ideal water slurries only depends on the solid content, being higher 

as the solid content increases [35]. In the case of the CuOx/CeO2 catalyst the 

viscosity ranges from 20 cps for 15% solid content to 200 cps for a dispersion 

containing 25% solids. The viscosity of the catalytic slurry is the key parameter 

in controlling the coating process; a detailed description of the different factors 

influencing the washcoating process is given elsewhere [31, 33]. Slurry with 

18% solid concentration provides an excellent compromise between the slurry 

wetting properties and catalyst loading. Figure 6 presents the amount of loaded 

catalyst over the substrates as a function of the number of coatings. The 

specific load increases almost linearly with the number of coatings. The 

washcoating method gives additive and homogenous results. Low viscosities 

allow to obtain highly adherent and homogeneous coatings but with low specific 

loads. Thus for obtaining the target loading numerous coating are required. On 

the contrary, high viscosity will allow high specific load per coating although with 

lower homogeneities (i.e. accumulations, channel blocking) resulting in less 

adherent coatings [33]. The slurry prepared in these conditions was stable for 

96 hours. Once the microchannels were immersed in the slurry the elimination 

of the excess was done by air blowing for microchannels (2L·min-1). Finally, the 

microchannel block was dried at 120ºC for 30 minutes between coatings and 

after the last coating procedure the microchannel block was calcined at 300ºC 

for 3 hours  (1ºC/min). This procedure resulted in a microchannel block loading 

of 5,46 mg·cm-2 catalyst after eight washcoating processes. The adherence of 



the resulting catalytic layer is better than 99,95%. 

 

4. Results and discussion 

4.1. Powder Catalyst. 

The XRD pattern of the CuOx-CeO2 catalyst corresponds to that of the c-CeO2 

fluorite structure (figure 7). The observed reflections can be indexed to (111), 

(200), (220) and (311) crystallographic planes of the cubic ceria phase. The 

diffraction lines corresponding to copper containing phases are undetectable. 

The lattice parameter calculated from these reflections (a=5,4131) closely 

agrees with the one reported in the literature [36, 37] accounting for the 

presence of oxygen vacancies and therefore for the presence of trivalent cerium 

ions. However, for the sake of simplicity this non-stoichiometric phase will be 

referred as CeO2 all over the text. Similar results have been previously reported 

by Liu and co-workers for CuO-CeO2 synthesized by a chelating method [38] 

proposing the dispersion of CuO on the ceria surface without formation of solid 

solution. The Raman spectrum of the catalyst (figure 8) presents only a strong 

band centred at 463 cm-1 characteristic of the CeO2 cubic structure 

accompanied by a broad band at 612 cm-1 associated to the presence of 

surface oxygen vacancies. This band increases considerably upon heating as a 

result of the dehydroxylation of the surface. A similar behaviour has been 

previously reported for europium-doped ceria [39]. Features that might be 

ascribed to copper phases or ceria-copper interactions are not observed.  

The textural properties of the catalysts are summarized in table 1. 

The TPR profile (figure 9) of the CuOx-CeO2 catalyst shows three reduction 

peaks distributed in two main reduction zones (A and B). The zone at the 

highest temperatures, zone B, corresponds to the peaks at 727 ºC and 854 ºC. 

This reduction peaks can be associated to the reduction of bulk Ce4+ [40], while 

the low temperature peak (184 ºC – zone A) is ascribed to the reduction of 

Cu2+. Table 2 presents the hydrogen consumption for the two zones. Integration 

of the low temperature peak results in hydrogen consumption ca. 20% higher 

than required for completely reduce copper oxides to metallic copper, therefore 

surface reduction of cerium cations occurs also at this low temperatures through 

the interaction of copper species with the ceria surface.  



The enhancement of the Ce reducibility by doping ceria with different cations 

has been widely reported [37, 38, 41, 42]. These doping agents generate a 

decreasing of the energy barrier for the oxygen migration of the CeO2 network 

[43, 44] and the environment through mechanisms as the oxygen vacancies 

formation. This process takes place especially at the surface of the material, 

where this becomes stable through the decreasing of its Gibbs free energy [44]. 

In this sense, it is possible that the reduction of some surface Ce species takes 

place at low temperatures, which is in agreement with our results and is pointing 

out the interaction Ce-Cu in the CeO2-CuOx system. Mariño et al. [45] also 

observed a Cu–Ce synergy on the surface reduction of ceria using both CuCe 

mixed oxides and mechanical mixtures of copper and cerium oxides. In both 

cases a reduction peak accounting for an overall H2 consumption higher than 

the stoichiometric amount required to reduce all the copper of the catalyst from 

Cu2+ to Cu0, evidences, for these authors, that some degree of surface 

reduction of ceria takes place at low temperatures as a result of copper–cerium 

interaction in these catalysts. This copper-cerium interaction would result from 

H2 dissociation on Cu0 particles and further spillover over the ceria surface 

favouring the low temperature reduction of surface Ce4+ species. Spillover of 

hydrogen species from reduced copper sites to ZnO/SiO2 support has been 

previously claimed as responsible for the formation of formate species during 

carbon oxides hydrogenation over Cu/ZnO/SiO2 methanol-synthesis catalysts 

[46]. 

Therefore, the TPR data account for the reduction of copper together with 

partial surface reduction of ceria at low temperature followed by bulk ceria 

reduction at high temperatures. This in contrast with the sequential process 

reported by Liu et al. [38] that established a reduction process for CuO-CeO2 in 

four steps: (a) reduction of CuO with small particle sizes; (b) reduction of CuO 

with large particle sizes; (c) reduction of Cu2O; (d) reduction of surface or bulk 

oxygen species of ceria. 

 

4.2. Catalytic activity of the powder and the microchannel reactor 

The catalytic activity of the CuOx-CeO2 catalyst was studied in a micro packed-

bed reactor. The conversion of CO and the O2 selectivity to CO2 for the CO-



PROX reaction in the absence of CO2 or H2O in the feed is shown in figure 10. 

The CO conversion increases with temperature reaching a maximum at ca. 

150ºC while the selectivity continuously decreases. This behaviour is in 

accordance with previous reports in the literature [47, 48]. In both cases the 

selectivity decreases with the reaction temperature, which is result of the higher 

activation energy for H2 oxidation than for CO oxidation. A detailed description 

of the CO-PROX process for this catalyst taking into account the oxidation of 

CO and H2 simultaneously and the reverse WGS is given elsewhere [49]. The 

activation energy measured for the oxidation of CO 36,9 kJ·mol-1 is very close 

to the value measured by Jernigan and Somorjai over metallic copper (37.6 

kJ·mol-1) [50], which is in accordance with the presence of metallic copper at 

the reaction conditions as deduced from the TPR experiments. On the other 

hand, the ratio between the area of the vibrational mode for oxygen vacancies 

and for the F2g vibrational mode of the ceria phase under the actual reaction 

conditions is higher than the same ratio for the activated catalyst. This result 

points to the increase in the number of oxygen vacancies at the reaction steady 

state and therefore to the importance of the Ce4+/Ce3+ redox couple in the 

activity towards the oxidation of CO under CO-PROX conditions. Operando-

DRIFTS experiments carried out by Gamarra et al. [51] demonstrate that the 

CO oxidation activity under CO-PROX conditions of the CuO-CeO2 catalysts is 

correlated to the degree of reduction achieved under reaction conditions in the 

surface dispersed copper oxide entities.  

The washcoating procedure requires the use of additives, colloidal alumina and 

PVOH, as well as to acidify the resulting suspension in order to increase the 

slurry stability. Therefore, textural properties of the coating would be affected by 

the presence of the alumina additive and the copper amount by possible 

leaching of the active phase at acid pH. 

The textural properties of the coated solid are altered since the presence of the 

colloidal alumina resulting in higher surface area and wider average pore 

diameter. Similarly, the low pH required for stabilizing the slurry may modify the 

catalyst due to leaching of the active phase. In order to model the behaviour of 

the catalyst at the low pH required for preparing the slurry the catalyst was 

submitted to an acid solution prepared using HNO3 at pH=2 for 15 hours without 



stirring. After drying and calcining the catalyst, the measured amount of copper 

is reduced by ca. 40% (copper content measured by FRX is 6%) and the 

surface increased from 75.9 to 113 m2·g-1.  

The catalytic activity and the O2 selectivity to CO2 of the leached solid is also 

modified, figure 9. The catalyst, after copper leaching, presents a lower activity 

for CO oxidation but higher selectivity to CO2 in the whole temperature range. 

The lower copper loading together with the higher surface area results in a 

modification of the copper oxide dispersion. Bion et al. [10] report a collection of 

studies for the CO-PROX reaction over copper-ceria catalysts showing that not 

only the CO oxidation proceeds more readily as copper content of the catalyst 

increases but also the activity of the samples for the undesirable H2 oxidation 

increases with copper content.  A limit of 6% w/w of copper is estimated as the 

limit in which the copper phase is completely dispersed on the ceria surface for 

ceria supports with surface areas in the range of 100 m2·g-1, above this value 

the formation of copper oxide islands occurs shifting the CO conversion curves 

vs. temperature to lower temperatures as copper loading increases as observed 

in figure 10.  

The catalytic activity shown by the copper-ceria catalyst in the microchannel 

reactor is presented in figure 11. The CO conversion in the absence of CO2 or 

H2O in the feed using the stoichiometric amount of oxygen is similar to that 

found in the powder catalyst; however the selectivity is slightly higher probably 

due to the heat transfer characteristics of the microchannel block that avoids the 

formation of hot spots.  

Considerably amounts of CO2 and H2O present in the reformate gas stream are 

a critical issue for CO-PROX reactions. Figure 12 presents CO conversions at 

150ºC as a function of CO2 and H2O concentrations in the reaction mixture. The 

presence of CO2 affects negatively the CO conversion mainly due to its 

elevated heat of adsorption [49]. On the contrary, the O2 selectivity to CO2 is 

hardly affected (88±5%) pointing to an equivalent effect on both CO and H2 

oxidation reactions as previously reported [47, 52]. The CO conversion and the 

O2 selectivity to CO2, however, remains almost unaltered by the presence of 

H2O in the feed stream showing the same excellent tolerance to water 

previously reported by Liu and Flytzani-Stephanopoulos for Cu-Ce, Co-Ce and 



Cu-Zr fluorite oxide composite catalysts [53].  

 

5. Conclusions 

The viability of the TLP technique using amorphous melt spuns as interlayer for 

bonding micromilled stainless steel plates is demonstrated. A recrystallization 

treatment is required for recovering the heat-affected zone and obtaining a 

homogeneous microstructure. Slurry formulation for coating the resulting 

microchannel block results in partial leaching of the copper active phase. This 

leaching procedure, however, enhances the O2 selectivity to CO2 by increasing 

the active phase dispersion as a consequence of the increase in surface area 

and the reduction of copper loading. A 20-30 µm thick catalytic layer is obtained 

after coating the microchannel block with the formulated slurry showing 

adherences better than 99%. 

The catalytic activity of both the powder packed bed reactor and the coated 

microchannel reactor is similar but the O2 selectivity to CO2 obtained in the 

microchannel reactor is higher. 
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TABLE AND FIGURE CAPTIONS 

Table 1. Textural properties of the catalysts 

 

Table 2. Hydrogen consumption during the TPR analysis for the CuOx-CeO2 
solid  

 

Table 3. Parameters chosen for welding the microchannel plates  

 

Figure 1: Schematic picture of the steel plates-metallic glass assembly in cross-
flow configuration. 

 

Figure 2. Joined Al-alloyed ferritic stainless steel plates at 900ºC as a function 
of the applied uniaxial pressure. A) 10 MPa and B) 15 MPa 

 

Figure 3. Microstructures of the joined area. A) SEM micrigraph before the 
recrystallization process; B) Optical micrograph after recrystallizing the 
microreactor for 5h at 1200ºC; C) EDX line profile across the joined are after 
recrystallization; D) Gaussian fit of the Ni EDX line profile across the joined are 
after recrystallization. The profile is taken along the line marked in pannel B.  

 

Figure 4. Microchannel block and microchannel reactor for the CO-PROX 
reaction. 

 

Figure 5. SEM micrographs of the α-Al2O3 formed upon heating at 900 ºC for 22 
h in air the microchannel block 

 

Figure 6. Evolution of the catalyst loading after the drying process as a function 
of the number of coatings performed. The amount loaded upon calcination is 
indicated by an arrow and the specific loading is indicated after 4, 6 or 8 
coatings 

 

Figure 7. XRD pattern of the CuOx-CeO2 solid 

 

Figure 8. Raman spectra of the CuOx-CeO2 solid at different temperatures 

 

Figure 9. TPR profile for the prepared CuOx-CeO2 solid 

 



Figure 10. CO conversion (A) and O2 selectivity to CO2 (B) for the CO-PROX 
reaction over CuOx-CeO2 catalysts. Open circles synthesized catalyst; Full 
circles after leaching in HNO3 at pH=2 

 

Figure 11. CO conversion (A) and O2 selectivity to CO2 (B) for the CO-PROX 
reaction over CuOx-CeO2 catalysts in a atmosphere with CO:O2:H2:N2 ratios of 
2:1:50:47. F(powder) = 100 Ncm3·min-1; F(microchannel) = 300 Ncm3·min-1; W(powder) = 
100 mg; W(microchannel) = 300 mg 

 

Figure 12. CO conversion for the CO-PROX reaction over CuOx-CeO2 catalysts 
in the microchannel block as a function of the CO2 and H2O concentrations in a 
atmosphere with CO:O2:H2:N2 ratios of 2:1:50:balance. F = 300 Ncm3·min-1; 
W(microchannel) = 300 mg 

 



Table 1 

Catalyst 
BET Surface Area

m2/g 

Pore Volume

cm3/g 

Average pore diameter

Å 

CuOx-CeO2 75.9 0.136 74.1 

CuOx-CeO2 Slurry 91.6 0.200 100.0 

 



Table 2 

Reducton Zone H2 consumption (mol)
Chemical composition 

(mol) 

A 1.21x10-4 Cu Ce 

B 3.57x10-5 1.00x10-4 2.63x10-4 

 



Table 3 

 Joining Post-processing 

Applied force (kN) 2.8 --- 

Temperature (ºC) 850 1200 

Heating rate (ºC·min-1) 100  

Time (minutes) 40 300 

Atmosphere Vacuum Inert gas 
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