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Antibiotic-resistant isolates of Salmonella enterica were selected
on plates containing lethal concentrations of rifampicin, kanamy-
cin, and nalidixic acid. The stability of the resistance phenotype
was scored after nonselective growth. Rifampicin-resistant (Rifr)
isolates were stable, suggesting that they had arisen by mutation.
Mutations in the rpoB gene were detected indeed in Rifr mutants.
In contrast, a fraction of kanamycin-resistant (Kmr) and nalidixic
acid-resistant (Nalr) isolates showed reduced resistance after non-
selective growth, suggesting that mechanisms other than muta-
tion had contributed to bacterial survival upon lethal selection.
Single-cell analysis revealed heterogeneity in expression of the
porin gene ompC, and subpopulation separation provided evi-
dence that reduced ompC expression confers adaptive resistance
to kanamycin. In the case of Nalr isolates, mutations in the gyrA
gene were present in most nalidixic acid-resistant isolates. How-
ever, the efflux pump inhibitor Phe-Arg-β-naphtylamide (PAβN)
reduced the level of resistance in Nalr mutants, indicating that
active efflux contributes to the overall level of nalidixic acid re-
sistance. Heterogeneous efflux pump activity was detected in sin-
gle cells and colonies, and a correlation between high efflux and
increased resistance to nalidixic acid was found. These observations
suggest that fluctuations in the expression and the activity of crit-
ical functions of the bacterial cell, alone or combined with muta-
tions, can contribute to adaptive resistance to antibiotics.

Except for bacterial species that undergo developmental pro-
grams, bacteria have been traditionally viewed as clonal

populations of identical cells. In fact, classic genetics and phys-
iology have routinely used batch cultures of bacteria and in-
dividual bacterial colonies, assuming that all cells were identical.
Because bacterial mutation rates are in the range of 10−10 per
base pair per replication (1), most cells in a liquid culture or
within a colony are isogenic indeed. However, genetic identity
does not necessarily imply phenotypic identity. The existence of
spatial organization in Escherichia coli colonies has been known
for almost a century (2–4), and the occurrence of diverse gene-
expression patterns inside a colony was described 25 years ago (5).
These historic examples are not rare exceptions: in the last few
decades, single-cell analysis has provided examples of phenotypic
variability in bacterial populations made of isogenic cells, both
under laboratory conditions and in natural environments (6–12).
Phenotypic heterogeneity can be the consequence of chemical

communication, leading to a heterogeneous response at the
single-cell level (13). In other cases, however, phenotypic het-
erogeneity arises either as a programmed epigenetic event or at
random, without the involvement of environmental cues. Classic
phenomena involving programmed heterogeneity are the bi-
furcation of a bacterial population into two distinct states or
“bistability” (14) and the reversible switching of gene expression
or “phase variation” (15). Randomly generated heterogeneity is
usually the consequence of noisy gene expression (16, 17). The
distinction between programmed and random heterogeneity,
albeit useful in practice, is not always clear-cut: quantitative
differences caused by noise can become qualitative above a thresh-
old, triggering a programmed response (18). Another source of
heterogeneity is gene amplification, which spontaneously occurs in
a fraction of cells within a bacterial population (19).

The selective value of phenotypic heterogeneity can be envi-
sioned in certain cases (6, 20). Furthermore, theoretical analysis
supports the view that randomly generated phenotypic diversity
can increase the chances of survival when bacterial populations are
subjected to rapid, severe, or complex environmental fluctuations
(21, 22). Such bet hedging strategies imply group selection, which
has been considered intrinsically weak in classic population biology
studies (23). However, models based on game theory suggest that
strategies that generate phenotypic heterogeneity can provide an
evolutionary advantage, despite the fact that they lower the im-
mediate fitness of individual organisms (24–26). Models based on
information theory also support the view that bet hedging can be
advantageous in harsh and changing environments (27).
Coevolution of bacteria with natural antibacterial compounds

has fostered the evolution of resistance mechanisms, usually
classified into three types: innate resistance, acquired resistance
(e.g., by mutation and by horizontal transfer of genetic deter-
minants), and adaptive resistance (28–30). Adaptive resistance
typically involves environmentally induced gene-expression changes
that increase the ability of a bacterium to survive in the presence
of an antibiotic (31–36). In this study, we provide evidence that
cell-to-cell fluctuations in the expression and activity of critical
cellular functions can induce adaptive resistance to antibiotics in
the absence of known environmental stimuli. Physiological dif-
ferences preadapt certain cells within an isogenic culture to survive
lethal selection. If a feedback loop propagates the physiological
state that permits survival, growth of the “lucky” survivors gen-
erates a bacterial population with increased antibiotic resistance.

Results
Characterization of Antibiotic-Resistant Derivatives of Salmonella
enterica SL 1344. Antibiotic-resistant colonies of S. enterica were
selected by plating aliquots (approximately 2–3 × 108 cells) from
an S. enterica Luria-Bertani broth (LB) culture on LB agar
supplemented with a lethal concentration of kanamycin, nalidixic
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acid, or rifampicin (25 μg/mL, 10 μg/mL, and 100 μg/mL, re-
spectively). Resistant colonies appeared at frequencies of ≥10−7
mutants per colony-forming-unit, which roughly correspond to
mutation rates of ≥10−10 (37). Because the selection was lethal,
antibiotic-resistant colonies were expected to derive from “pre-
adapted” antibiotic-resistant cells present in the previous culture.
Preadaptation was confirmed by Luria-Delbrück fluctuation
analysis (38) (Tables S1–S3).
The stability of antibiotic resistance was scored after non-

selective growth. For this purpose, antibiotic-resistant colonies
were transferred to LB and grown overnight. The minimal in-
hibitory concentration (MIC) of each antibiotic for individual
isolates was then determined. Results from these experiments
(Fig. 1) can be summarized as follows:
First, all rifampicin-resistant (Rifr) isolates grew in the pres-

ence of a high concentration of the antibiotic, and the MICs of
rifampicin showed high reproducibility in the replicas (Fig. 1A).
Because the degree of resistance of such isolates was stably
maintained upon nonselective growth, they were tentatively
considered mutants. Because rifampicin resistance is often as-
sociated with mutations in the β-subunit of RNA polymerase (39,
40), the rpoB gene of three independent isolates (#12, #13, and
#19) was PCR-amplified and sequenced. Nucleotide substitutions
that yielded a Q512R amino acid replacement were found.
Second, the MIC of kanamycin showed low reproducibility

among individual isolates, with substantial variation between rep-
licas (Fig. 1B). A fraction of kanamycin-resistant (Kmr) isolates
showed a level of resistance below the concentration used for se-
lection (Fig. 1B). Hence, Kmr isolates appeared to belong to two

classes: (i) stable, putatively carrying mutations that confer kana-
mycin resistance; and (ii) unstable isolates that lost antibiotic re-
sistance, partially or completely, upon nonselective growth,
suggesting that resistance was not mutational. The numbers of
stable Kmr isolates showed Luria-Delbrück fluctuation but the
numbers of unstable Kmr isolates did not (Table S4).
Third, nalidixic acid-resistant (Nalr) isolates also showed a

broad distribution of MIC values but none showed a level of
resistance below the concentration used in the initial selection
(Fig. 1C). Low reproducibility between replicas was also ob-
served (Fig. 1C). A tentative interpretation was that mutations
provided a given level of nalidixic acid resistance but nonmuta-
tional resistance contributed to the overall level of resistance in
certain isolates.

Contribution of ompC Down-Regulation to Nonmutational Resistance
to Kanamycin. A conceivable explanation for nonmutational re-
sistance to kanamycin was that, in the culture previous to selection,
certain cells were in a physiological state that preadapted them to
resist killing by the antibiotic. For example, certain cells might be
partially or completely refractory to antibiotic uptake. Amino-
glycosides diffuse through porin channels in the outer membrane
of Gram-negative bacteria, and a low level of aminoglycoside re-
sistance can be acquired by reduced drug uptake (41, 42). Because
reduced synthesis of OmpC porin has been shown to contribute to
kanamycin resistance (43), we designed experiments to test: (i)
whether variations in the level of OmpC synthesis occurred in
individual cells of an isogenic population grown in LB broth; and
(ii) whether reduced ompC expression yielded Kmr cells. To
monitor ompC gene expression in individual S. enterica cells, an
ompC::GFP fusion was used. A wide range of fluorescence in-
tensities was detected, thus confirming the occurrence of hetero-
geneous ompC::GFP expression (Fig. 2).
In an attempt to correlate ompC expression (fluorescence in-

tensity) and survival (antibiotic resistance), two fractions of the
population were sorted in the high and low fluorescence intensity
windows (Fig. 3A). The collected cells were plated on LB agar
containing kanamycin (25 μg/mL). Kmr colonies were three- to
fourfold more abundant in the population that expressed ompC at
low levels (Fig. 3B). Therefore, the decrease in ompC expression
can be correlated with an increase in antibiotic resistance. A ten-
tative interpretation is that reduced ompC expression may lower
the number of porin channels in the outer membrane, thus re-
ducing drug uptake (42, 44). Down-regulation of ompC expression
was found to be reversible (Fig. S1), thereby confirming the non-
genetic origin of the kanamycin-resistant subpopulation.

Characterization of Nalidixic Acid-Resistant Derivatives of S. enterica:
Mutational and Nonmutational Preadaptation. High levels of re-
sistance to nalidixic acid are often associated with the presence
of mutations in the quinolone resistance-determining region
(QRDR) of genes that encode gyrase (gyrA and gyrB) and top-
oisomerase IV (45). Sequencing of the gyrA QRDR region in
independent nalidixic acid-resistant isolates revealed mostly amino
acid substitutions at codons 81, 83, and 87, as described previously
(46, 47). Mutations affecting amino acid 83 caused higher levels of
nalidixic acid resistance than those affecting amino acids 87 and 81
(Fig. 4A). However, certain isolates carrying identical mutations
showed different MICs (Fig. 4A), and all of the isolates showed
high variation between independent replicas (see error bars in Fig.
4A). These variations, we reasoned, might indicate that mutations
in the target genes did not thoroughly account for the resistance
phenotypes. Hence, we hypothesized that nonmutational mecha-
nisms might be also involved.
Although fluoroquinolone resistance has been mainly attrib-

uted to mutations (46, 47), resistance can be also mediated by
antibiotic efflux (48–51). We tested whether an efflux pump in-
hibitor, Phe-Arg-β-naphthylamide (PAβN, 20 μg/mL), altered
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Fig. 1. Stability of the antibiotic-resistant phenotype in independent
S. enterica isolates. MICs of rifampicin (A), kanamycin (B), and nalidixic acid (C)
for antibiotic-resistant isolates after nonselective growth in LB. Three replicas
for each isolate were performed, and the MICs are represented as bars of
different colors. Shaded areas indicate the concentration of antibiotic used for
selection of antibiotic-resistant isolates (100 μg/mL rifampicin, 25 μg/mL
kanamycin, and 10 μg/mL nalidixic acid).
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the MIC of nalidixic acid in Nalr isolates showing different and
identical mutations in gyrA. In most isolates, addition of PAβN
did not fully revert nalidixic acid resistance but decreased the
MIC regardless of the types of mutations present in the QRDR
of gyrA (Fig. 4B). This effect was especially noticeable among
isolates showing low resistance, in which the MIC of nalidixic
acid decreased from resistance to sensitivity (in other words, to
MICs similar to that of the wild-type). These observations sug-
gest that most amino acid changes in GyrA are unable to confer
high level of resistance to nalidixic acid. Even isolates carrying
mutations in codon 83, which confer high levels of resistance,
showed decreased resistance upon efflux pump inhibition (Fig.
4B). Therefore, high levels of resistance to nalidixic acid seem to
result from a combination of mutational and nonmutational
mechanisms (QRDR mutation and active efflux, respectively).

Contribution of Heterogeneous Efflux Pump Activity to Adaptive
Resistance to Nalidixic Acid. Evidence for heterogeneous efflux in
individual S. enterica cells was obtained using ethidium bromide
(EtBr), a common substrate of bacterial efflux pumps (52–54).
Heterogeneous EtBr accumulation was observed (Fig. 5A). A
priori, cell-to-cell differences in EtBr accumulation may reflect
differences in efflux as described in the literature (52), but also
cell-to-cell differences in EtBr uptake. Two observations indicate
that EtBr accumulation can be used indeed to monitor active
efflux: (i) addition of PAβN increased EtBr fluorescence (Fig.
5B); and (ii) in strain SV7371 (Δ acrAB), which lacks a major
efflux pump, EtBr fluorescence increased to levels similar to
those detected in the presence of PAβN (Fig. 5B).
Evidence that nalidixic acid resistance can be affected by ac-

tive efflux was obtained using EtBr-agar, which permits to dis-
tinguish colonies with different levels of efflux pump activity
(52). When an aliquot from an S. enterica batch culture (small
enough to permit formation of isolated colonies) was plated on
LB + EtBr, colonies of different colors appeared (Fig. 5C): ac-
cumulation of EtBr makes colonies pink and low intracellular
levels of EtBr makes colonies white (52). When colonies growing
on LB + EtBr were transferred to LB + nalidixic acid by replica-
plating (55), colonies exhibiting high fluorescence turned out to
be sensitive to nalixidic acid, but nonfluorescent colonies were
nalidixic acid-resistant (Fig. 5 D and E).
Because spontaneous gene amplification is a source of hetero-

geneity (19) and acrAB duplication has been shown to increase
active efflux (56), acrAB gene dosage was measured in 17 Nalr

colonies (Fig. S2). One case of acrAB amplification was detected,
suggesting that spontaneous gene amplification can contribute to
nalidixic acid resistance. However, cell-to-cell variations in efflux
pump synthesis or activity may be a more frequent cause of het-
erogeneous nalidixic acid resistance.

Discussion
This study shows that cell-to-cell differences in the expression or
activity of critical cell functions can contribute to adaptive re-
sistance to lethal concentrations of antibiotics. Evidence that the
antibiotic concentrations used did cause lethality was provided
by absence of growth on antibiotic plates, except for antibiotic-
resistant colonies that appeared at frequencies typical of spon-
taneous mutation. As expected, most isolates obtained under
such conditions were stable and were considered bona fide
mutants (e.g., all of the rifampicin-resistant mutants under
study). However, kanamycin-resistant isolates that partially or
completely lost resistance after nonselective growth were
obtained. Because reversion cannot explain loss of resistance at
high frequency, a tentative explanation was that certain cells in
the previous culture happened to be in a physiological state that
permitted survival upon selection with kanamycin.
Reduced expression of ompC, a gene encoding an outer-

membrane porin, has been shown to increase kanamycin re-
sistance (41, 43). Hence, we hypothesized that one cause (per-
haps among others) of adaptive resistance to kanamycin might
be reduced ompC expression. If such was the case, we reasoned,
ompC expression should be heterogeneous in S. enterica cultures,
so that only certain cells would be able to survive lethal selection
with kanamycin. When ompC expression was monitored at the
single-cell level, heterogeneous expression was indeed detected
(Fig. 3A), and S. enterica subpopulations exhibiting high and low
levels of ompC expression did differ in their levels of kanamycin
resistance (Fig. 3B). We thus propose that ompC expression is
noisy, and that reduced ompC expression confers adaptive re-
sistance to kanamycin in a fraction of the bacterial population.
Because kanamycin down-regulates ompC expression (42), a feed-
back loop can be expected to propagate the cellular state that
initially permitted survival.
Loss of resistance was not detected among nalidixic-resistant

isolates, and mutations in the QRDR region of the gyrA gene
were found in most Nalr isolates (Fig. 4A). However, several
observations suggested that the overall level of nalidixic acid
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resistance was not solely a result of mutation: (i) isolates carrying
identical QRDR mutations showed different MICs (Fig. 4A); (ii)
in most Nalr isolates, nonselective growth caused a substantial

decrease in the MIC (Fig. 1C); and (iii) variations in the MIC were
detected among replicas performed for the same isolate (Figs. 1C
and 4). Taken together, these observations led us to hypothesize
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Fig. 5. Contribution of heterogeneous efflux pump activity to nalidixic acid resistance. (A) Flow cytometry assessment of EtBr accumulation in an isogenic
culture of S. enterica. Data are represented by a dot plot [cellular size (forward side) versus fluorescence intensity (EtBr accumulation)]. (B) EtBr fluorescence of
a S. enterica culture in the presence of PAβN 20 μg/mL (blue histogram) and in the absence of PAβN (red histogram). As a control, EtBr fluorescence was also
monitored in a culture of strain SV7371 (ΔacrAB) (green histogram). Because different numbers of cells were counted for each culture, the cell numbers have
been normalized to 100. (C) Heterogeneous accumulation of EtBr by S. enterica colonies grown on LB agar supplemented with EtBr (1 μg/mL). EtBr fluo-
rescence was detected under UV illumination. A high level of fluorescence indicates low efflux, and a low level of fluorescence indicates high efflux. (D)
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that resistance to nalidixic acid might have two components, one
mutational and another adaptive.
Because active efflux plays a role in quinolone resistance (34),

we tested whether inhibition of efflux with PAβN reduced the
MIC of isolates carrying QRDR mutations. Reduction of MIC
values was obtained for all of the isolates tested, irrespective of
the QRDR mutation present in the gyrA gene (Fig. 4B). We thus
concluded that the overall level of nalidixic resistance found in
most Nalr isolates had two components indeed. One was muta-
tion in the QRDR determinant of the gyrA gene; the other was
adaptive resistance caused by active efflux.
Use of EtBr to monitor efflux pump activity confirmed the

occurrence of efflux fluctuations: (i) broad distribution of EtBr
fluorescence was detected by flow cytometry, indicating hetero-
geneous efflux pump activity in individual S. enterica cells (Fig.
5 A and B); (ii) heterogeneous EtBr fluorescence was also ob-
served among S. enterica colonies grown on LB agar (Fig. 5C),
and replica-plating revealed that colonies with low EtBr fluo-
rescence were nalidixic acid-resistant but colonies with high
EtBr fluorescence were nalidixic acid-sensitive (Fig. 5 D and E).
Hence, variations in efflux pump activity seem to explain the
differences in nalidixic acid resistance observed among S. enterica
isolates carrying QRDR mutations and among replicas of MIC
assays for a given isolate. In other words, QRDR mutations may
confer steady levels of resistance but heterogeneous efflux pump
activity may confer unsteady, adaptive resistance.
Although adaptive resistance typically occurs in response to

environmental conditions (28), this study provides evidence that
mechanisms of adaptive resistance can be activated in the ab-
sence of known trigger signals. Spontaneous activation does not
occur in the entire bacterial population but in a subpopulation of
cells, and may occur at random. This view is in agreement with
current notions indicating that isogenic bacterial populations
show remarkable levels of phenotypic heterogeneity (18, 57, 58),
which is often a consequence of cellular noise (17, 21, 59, 60).
Because resistance to stressful conditions can have adverse
effects on bacterial physiology (60), subpopulation formation
may involve a trade-off between fitness and survival. In analogy
with other cell responses that show high levels of heterogeneity,
spontaneous activation of mechanisms that confer adaptive re-
sistance may be viewed as a bet-hedging strategy (57, 61, 62).
Preadaptation of certain cells to antibiotic challenge will increase
the chances that a fraction of the bacterial population survives
(63, 64).

Materials and Methods
Bacterial Strains, Media, Culture Conditions, and Chemicals. Strains of S. enterica
serovar Typhimurium derive from SL1344 (65). SV7371 (Δ acrAB) belongs to the
laboratory collection. LB was used as liquid medium. LB plates contained agar
at 15 g/L final concentration. Cultures were grown at 37 °C with shaking.
Kanamycin sulfate, nalidixic acid, rifampicin, PAβN, and EtBr were purchased
from Sigma Aldrich.

Determination of Minimal Inhibitory Concentrations of Kanamycin, Nalidixic
Acid, and Rifampicin. Exponential cultures in LB broth were prepared, and
samples containing around 3 × 102 colony forming units were transferred to
polypropylene microtiter plates (Soria Genlab) containing known amounts
of antibiotic. After 12-h incubation at 37 °C, growth was visually monitored.

Construction of an ompC::gfp Fusion (Strain SV6811). A fragment containing
the promoterless green fluorescent protein (gfp) gene and the chloram-
phenicol resistance cassette was amplified from pZEP07 (66) using primers
5′ GCA TCA ACA CCG ACG ACA TCG TAG CGC TGG GTC TGG TTT ACC AGT
TCT AAT AAG AAG GAG ATA TAC ATA TGA G 3′, and 5′ TAA GGC ATG AAA
AAA GGG CCC GCA GGC CCT TTA GCA ACA TCT TTT GCT GAT TAT CAC TTA
TTC AGG CGT A 3′. The 5′ regions of these primers are homologous to the

3′ untranslated region of the S. enterica ompC gene, so that the fusion is
formed downstream of the ompC stop codon and the strain is OmpC+. The
construct was integrated into the chromosome of S. enterica using the
Lambda Red recombination system (67).

Sequencing of gyrA and rpoB Alleles. The QRDR of the S. enterica gyrA gene
was PCR-amplified using primers 5′ GAG ATG GCC TGA AGC CGG TA 3′ and
5′ GGC ATG ACG TCC GGA ATT 3′. The rpoB gene was PCR-amplified using
Go-Taq DNA polymerase (Promega) and sets of primers that allowed direct
sequencing of PCR products: 5′ CGA GCA AGA TCC TGA AGG GC3 ’, 5′ CGG
CTG AAC AAG CTG GAT TC3 ’, 5′ TCA GCG AGC TGA GGA ACC CT3 ’, 5′ GAC
TAC GTT GAC GAA TCT AC 3′, 5′ GAA CTC CAA CCT GGA TGA CG 3′, 5′ TTA
CTC GTC TTC CAG TTC GA 3′, 5′ TTA CTC GTC TTC CAG TTC GA 3′, 5′ GGA
TGA ATC CGG TAT CGT TT 3′, and 5′ ACT TCC ATC TCC CCG AAG CG 3′. PCR
products were purified using the MinElute PCR Purification Kit (Qiagen) and
sequenced at the facilities of Stab Vida, Caparica, Portugal. DNA sequences were
aligned with the gyrA and rpoB sequences of S. enterica SL1344 available at the
Web site of the Wellcome Trust Sanger Institute, Hinxton, England.

Flow Cytometry and Cell Sorting. Exponential cultures were washed and
resuspended in PBS to a final concentration of 5 × 106 cells/mL. Cells were
sorted using a MoFloTM XDP cytometer (Beckman Coulter). Immediately
before sorting, 5 × 106 cells were analyzed for GFP expression. Based on this
analysis, gates were drawn to separate the 10% of cells expressing lower
GFP levels, and the 10% of cells expressing higher GFP levels. From each
gate, 1 × 106 cells were collected into a sterile tube. After sorting, cells were
spun at 6,000 rpm for 10 min and FACS buffer was removed. An aliquot of
sorted cells was run again at the cytometer to confirm the purity of the
preparation. Data were obtained with CXP and WinMDI Software.

Assessment of Efflux Pump Activity by Flow Cytometry. Flow cytometry was
used to monitor accumulation and efflux of EtBr on a real-time basis (52, 53).
Data acquisition and analysis were performed using a Cytomics FC500-MPL
cytometer (Beckman Coulter). EtBr was excited at 488 nm, and fluorescence
was detected using a 585-nm filter. S. enterica strains SL1344 and SV7371
(ΔacrAB) were grown in 10 mL of LB broth at 37 °C until an OD600 of 0.3. EtBr
was then added (1 μg/mL). When appropriate, PAβN was also added (20 μg/
mL). After incubation at 22 °C for 60 min to permit EtBr accumulation, ali-
quots of 0.5 mL were taken (53). The bacterial suspension was centrifuged
for 3 min at 3,400 × g and the pellet was resuspended in PBS for fluorescence
measurement. Data were collected for 100,000 events per sample.

Fluorescence Microscopy. Strain SV6811 (ompC::GFP) was grown at 37 °C in
LB, diluted 1:100 in fresh medium, and grown to an OD600 of 0.1–0.2.
Samples of 1.5 mL were collected by centrifugation at 3,400 × g for 5 min.
Cells were placed on an agarose slab (0.9% agarose/1% LB medium) pre-
warmed at 37 °C. Images were captured with a Leica DMR fluorescence
microscope (Leica Camera).

EtBr–Agar Method to Screen for Nalidixic Acid Susceptibility. An S. enterica
SL1344 culture was swabbed onto LB-agar plates containing EtBr at a con-
centration of 1 μg/mL, and the plates were incubated at 37 °C in the dark
during 16 h. The fluorescence produced upon excitation of EtBr by UV light
was detected with a UV transilluminator. Low-fluorescence indicates high
efflux and higher fluorescence indicates low efflux (52). EtBr–agar plates
containing colonies with diverse levels of fluorescence were replicated to LB
agar plus nalidixic acid using replica plating velvets (55).
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